domvpavlino.ru

Интенсивность ультрафиолета от температуры спектра. Основные характеристики приборов серии «Аргус». Перечень учебной литературы к занятию

Кафедра общей гигиены и физической культуры

СОЛНЕЧНАЯ РАДИАЦИЯ И ЕЕ БИОЛОГИЧЕСКОЕ ДЕЙСТВИЕ.

ПРИМЕНЕНИЕ ИСКУССТВЕННОГО УФ

В ПРОФИЛАКТИЧЕСКИХ ЦЕЛЯХ

МЕТОДИЧЕСКОЕ ПОСОБИЕ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ ЛЕЧЕБНОГО, ПЕДИАТРИЧЕСКОГО, СТОМАТОЛОГИЧЕСКОГО И ФАРМАЦЕВТИЧЕСКОГО ФАКУЛЬТЕТОВ

ВЛАДИКАВКАЗ 2012

Эти кабели используются для подключения инверторов к трансформатору и трансформатору к подстанции объекта. Кабели высокого и низкого напряжения широко используются в энергетике как на обычных, так и на возобновляемых источниках энергии. В кабелях переменного тока широко используемый проводящий материал представляет собой алюминий. Эти кабели имеют срок службы более 35 лет и десятилетиями используются во многих различных энергетических системах по всему миру.

Работа в солнечной установки, с другой стороны, связано с перерывами из-за постоянно меняющейся солнечной радиации. Технические характеристики, касающиеся кабель Экономичного производства электроэнергии из возобновляемых источников требуют специально разработанной системы проводки, чтобы оптимизировать эффективность и свести к минимуму потери энергии.

Составители:

Кусова А.Р. – зав. кафедрой общей гигиены и физической культуры профессор д.м.н.; Цилидас Е.Г.- доцент кафедры к.м.н.; ассистенты:

к.м.н. Битарова И.К., Худалова Ф.К., Наниева А.Р.

Рецензенты:

Боциев И.Ф. – доцент кафедры химии и физики к.ф-м.н.,

Туаева И.Ш.- доцент кафедры общественного здоровья и здравоохранения с гигиеной МПФ

Это позволяет больше выходной мощности, чтобы достичь подстанции, где передаются в сеть. Для того, чтобы оптимизировать производительность, кабели, используемые в точках генерации электроэнергии от солнечной энергии, имеют более высокий, чем номинальное напряжение стандартного класса обычных приложений.

В солнечных растений на открытом воздухе, как правило, используют кабели, которые устойчивы к воздействию ультрафиолетовых лучей и атмосферных воздействий и может работать в широком диапазоне температур. Кабели с изоляцией из сшитого металла отличаются улучшенной защиты и защиты от перенапряжений и изолирующего слоя, защищающего их не только под воздействием тепла, но и с помощью механических воздействий.

Утверждено ЦКУМС ГБОУ ВПО СОГМА Минздравсоцразвития России

Цель занятия - ознакомить студентов с биологическим действием солнечной радиации и использованием искусственного ультрафиолетового излучения в профилактических целях.

Студент должен знать:

а) биологическое действие солнечной радиации;

б) источники лучистой энергии на производстве и в быту, их влияние на организм человека;

Поперечное сечение кабеля должно быть пропорционально, так что потери в номинальном режиме не должна превышать 1%. Струнные кабели обычно имеют поперечное сечение 4-6 кв. Кабели, используемые в фотоэлектрических электростанций разработаны, чтобы выдерживать длительное воздействие солнечного света.

Для поддержания высокой производительности и надежности во время рабочего цикла, кабели для солнечных установок разработаны с высокой стойкостью к воздействию озона, влаге и другим погодным условиям и деструктивному, чтобы обеспечить превосходную гибкость с точкой зрения снижения давления и устойчивости к деформации при длительном экспозиции при высоких температурах.

в) основные симптомы проявления ультрафиолетовой недостаточности, меры профилактики.

г) показания и противопоказания к профилактическому облучению искусственным УФ источником;

д) понятие «биодоза».

Студент должен ознакомиться:

а) с устройством и правилами работы приборов для измерения солнечной радиации;

Учитывая часто экстремальные условия, в которых для установки и эксплуатации солнечных систем, в сочетании с необходимостью экономии времени и обеспечением надежности проводки была разработано ранее, связанным с разъемами кабельных решений. Идеально подходит для систем промышленного и коммунального масштаба, эти системы позволяют быстро и легко кабельных соединений, что упрощает установку, устраняя и несоответствия, связанные с прекращением кабелей на месте.

Технология соединения в последние годы на первый план выходит необходимость максимально надежной технологии для подключения кабелей для фотогальванических установок, как плохой контакт может привести к электрической дуги и серьезный материальный ущерб объектам.

б) с устройством и правилами работы приборов для измерения лучистой энергии от искусственных источников.

в) с расчетом установок для санации воздуха помещений искусственными источниками коротковолнового УФ излучения – бактерицидными лампами из увиолевого стекла;

г) с расчетом установок профилактического облучения людей искусственными источниками длинноволнового УФ излучения.

Соединение между кабелями должно иметь сопротивление постоянно низкий уровень контакта. Винтовые зажимы и пружинные зажимы постепенно заменяются специальными ударопрочными штекерами, которые упрощают связь между модулем и строковыми кабелями. Обжимный доказали в качестве безопасной альтернативы размещения соединителей и концов кабелей. Методика может быть использована как в полевых условиях, например, от технических специалистов монтажников солнечной установки на крыше и производство предварительно собранных кабелей с разъемами в заводских условиях.

Студент должен уметь :

а) измерять интенсивность УФ радиации;

б) определять биодозу;

в) давать оценку эффекта обеззараживания воздуха с помощью бактерицидных ультрафиолетовых лучей.

Перечень учебной литературы к занятию

Обязательная:

1. Гигиена/ Под ред. Г.И. Румянцева. – М., 2000. – Гл. IV.

2.Пивоваров Ю.П., Королик В.В. Руководство к лабораторным

В этом соединителе выбрасывается провод входит через кабельный зажим в пружинной муфте. Затем весной надавите пальцем, пока он не встанет на место. Таким образом, безопасный соединительный кабель обеспечивает прочный и надежный контакт между двумя кабелями.

На рынке имеются в наличии и подключить в комбинации с колодцами, к которым ранее были сварены провода. Такие растворы пригодны для производства предварительно собранных кабельных систем, но не для монтажных работ в полевых условиях. Они предназначены для облегчения установки и подключения нескольких преобразователей в растении.

занятиям по гигиене и основам экологии человека. – М.,

2006. – Раздел 1.

3.Пивоваров Ю.П., Королик В.В, Зиневич Л.С. Гигиена и основы

экологии человека. – М., 2004. – Гл. I.

Дополнительная:

1. Госпитальная гигиена/ Под ред. Ю.В. Лизунова. – СПБ: Изд. «Фолиант», 2004. – Гл.II.

2.Нормативные документы: МУ «Профилактическое ультрафиолетовое облучение людей с применением искусственных источников ультрафиолетового излучения» Минздравпром №5046-89.

После значительного роста цен на медь в последние годы алюминий приобрел экономическое значение в качестве электрического проводника. Можно сэкономить около 50% от стоимости проекта с использованием алюминиевых кабелей, особенно кабелей низкого и среднего напряжения для подземной установки.

Однако, тем слабее проводимость алюминия означает, что для тех же целей необходимы алюминиевые кабели с большим поперечным сечением меди. Особое внимание лучше обратиться к винтовым клеммам. Если винтовые соединения слишком плотно, кабель ослабьте время монтажа, что может привести к возникновению электрической дуги и пожарной опасности.

Солнечная радиация – интегральный поток электромагнитных колебаний и корпускулярных частиц, включающий в себя лучи Рентгена, гамма лучи, световые (видимые), инфракрасные (тепловые) и ультрафиолетовые лучи, а также радиоволны.

Составляющими солнечного излучения являются:

Прямое (исходит непосредственно от солнца);

Строка подключения к преобразователю не всегда легко. Рынок предлагает различные разъемы кабеля и еще не установлены стандарты для этих систем, которые часто делают его трудным для дизайнеров. Вставные разъемы от разных производителей, как правило, либо полностью несовместимы друг с другом, или не в состоянии обеспечить соединение оставаться постоянной плотной в длительной эксплуатации.

Если разъем вставляется в разъем слишком плотно, это в свою очередь может привести к поломке изолирующих пластмассовых деталей. С другой стороны, слишком свободно облегающие разъемы друг с другом создает риск высокого сопротивления контакта. Это приводит к потерям в урожайности и нагревательных зонах вокруг отношений, создавая даже риск электрических дуговых плавок соединителя.

Рассеянное (от небесного свода);

Отражение (от поверхности различных предметов).

Атмосфера пропускает до поверхности Земли только оптическую часть спектра, в которую входят невидимые ультрафиолетовые (290-400 нм), видимые световые (400-760 нм) и невидимые инфракрасные лучи (760-2800 нм). У поверхности Земли ультрафиолетовая часть составляет 1%, видимая – 40%, инфракрасная – 59%.

При подключении розетки другого производитель создает «крест» отношения, которые, как правило, могут быть доказаны надежным только если это сделано сложными и дорогие тесты. В дополнение к измерению сопротивления контакта и определения прочности связи и точность подгонки целесообразно также проводить тесты на факторы ускоряют старение и устойчивость к атмосферным воздействиям.

Такие тесты ясно показывают ли совместимы друг с другом в конечном счете или нет различных материалов разъем и разъем. Это относится как для металлов, используемых в контактах, а также для пластиковых материалов. Такая стандартизация обеспечит надежное прилегание друг друг продуктов от разных производителей, и производители смогли предложить взаимные гарантии для конкретной «перекрестной» комбинации разъемов и розеток.

Солнечная радиация оказывает влияние на обмен веществ в организме, его тонус и работоспособность, является мощным оздоровительным и профилактическим природным фактором. Помимо теплового эффекта и влияния на функции органа зрения она оказывает многообразное биологическое действие на весь организм.

Солнечная радиация имеет 2 характеристики:

Раздел физики, изучающий световые явления и их многочисленные приложения, называется оптикой. Сегодня известно, что свет представляет собой электромагнитную волну или, другими словами, процесс распространения в пространстве периодических изменений интенсивностей электрического и магнитного полей.

В тех случаях, когда длина волны намного больше размеров объектов, с которыми она сталкивается, тот факт, что свет является волной, можно игнорировать, а явления света могут быть описаны идеей световых лучей - бесконечно узкими пучками света, испускаемого источниками света. Эта часть оптики называется геометрической оптикой. Геометрической оптики достаточно, чтобы понять некоторые явления, такие как рефракция и отражение света, устройство и действие ряда оптических инструментов, таких как зеркала, лупы, микроскопы, телескопы и т.д.

1. Количественная – определяется интенсивностью (напряжением) радиации в калориях в минуту на 1 см поверхности, расположенной перпендикулярно к источнику излучения. Эталоном является солнечная постоянная - измеряется на границе атмосферы, где воздействие факторов, способствующих поглоще­нию, отражению и рассеиванию солнечных лучей, минимально. Этот показа­тель равен 1,94 кал/см 2 /мин и показывает максимальное напряжение солнечной энергии.

Однако, когда длина волны света сравнима с размерами объектов, с которыми она сталкивается, геометрической оптики недостаточно для объяснения явлений, а тот факт, что свет является волной, имеет решающее значение для понимания световых явлений. Эта часть оптики называется волновой оптикой.

В свою очередь, взаимодействие света с веществом является предметом ряда физических исследований, связанных с изучением структуры вещества. Источники и приемники светлых тел, которые светятся нашим собственным светом, называются источниками света. Большинство объектов, которые мы видим, отражают только свет, испускаемый источниками света. Даже Луна «горит», потому что она отражает солнечный свет. Поэтому важно изучать явления отражения и преломления света. Глаза живых существ - приемники света. Есть искусственные световые приемники, которые играют важную роль в технике.

2. Качественная - определяется длиной волны различных видов лучистой энергии.

Факторы, определяющие напряжение солнечной радиации:

1. Состояние погоды (облака, осадки и т.д.);

2. Степень загрязнения атмосферного воздуха;

3. Высота стояния столба (массы воздуха);

4. Широта местности (определяет угол падения солнечных лучей (чем ближе к экватору, тем меньше рассеянная солнечная радиация);

Это, например, объективы камеры. Природные объекты и искусственные устройства, излучающие электромагнитные волны, можно разделить на разные группы. Разделение производится в зависимости от частоты электромагнитных волн, их интенсивности и принципа действия.

Наиболее распространенными являются источники тепла. Чем выше температура тела, тем быстрее движутся его атомы и молекулы. В интерференции между ними создаются условия, в которых излучаются электромагнитные волны. Типичным примером источника тепла является электрический нагреватель. Лампы накаливания нитей также могут рассматриваться как таковые, потому что более 85% их потребляемой энергии идет на тепловое излучение. Солнце и звезды, которые излучают в довольно широком диапазоне, также являются источниками тепла.

5. Время суток, года.

Наибольшее значение для гигиенической оценки внешней среды имеет оптический спектр - инфракрасные, видимые и ультрафиолетовые лучи.

Ультрафиолетовые, световые и инфракрасные лучи продуцируются нагретыми телами. В зависимости от температуры тел в общем потоке лучистой энергии преобладают лучи, имеющие то большую, то меньшую длину волны. Чем выше температура, тем больше максимум сдвигается в сторону коротковолнового излучения.

Люмен и световые источники. Ряд веществ, облученных ультрафиолетовыми лучами или видимым светом с малой длиной волны, сами начинают излучать свет. Если свет тела гаснет после обрыва облучения, мы говорим, что вещество флуоресцирует. Если свет горит после отключения излучения, мы говорим, что вещество является фосфористым. Флуоресценция и фосфоресценция являются особым случаем люменения. В этом явлении атомы вещества поглощают энергию падающей электромагнитной волны, а затем - сразу или после некоторой задержки излучают электромагнитные волны с большей длиной волны.

Например солнце, имеющее температуру на поверхности около 6000°, продуцирует сложный комплекс лучистой энергии, начиная от длинноволновой, инфракрасной радиации и кончая коротковолновой, ультрафиолетовой. Тела, имеющие меньшую температуру (до 1600°), испускают только световые и инфракрасные или же только тепловые (до 650°) невидимые лучи (например, поверхность отопительных приборов).

Чувствительность люмена также наблюдается, когда заряженные частицы попадают в вещество. В некоторых химических реакциях энергия выделяется в виде светящегося света. Источники, из которых они испускаются из-за таких явлений, называются люменцен. Таковы различные газоразрядные и люминесцентные лампы. С ними, по сравнению с обычными лампочками, большая часть потребляемой энергии идет на волны в видимой области. Интересное явление, называемое северным сиянием, связано с заряженными частицами, которые «магнитное поле Земли» «захватывает».

Инфракрасное излучение (760-2800 нм)

Воздействует на молекулы и атомы различных веществ, вызывая тепловой эффект. Оказывает прямое влияние на климатические и погодные условия и опосредованное – не жизнедеятельность растений и животных, состояние и здоровье человека. Проникает сквозь атмосферу, толщу воды и почвы, сквозь оконное стекло, одежду.

Короткие волны (760-1400 нм) обладают большой энергией, большой проникающей способностью. Могут проникать в глубокие слои кожи, не вызывая ощущения тепла. Проникают сквозь ткани человека, в том числе и кости черепа, на глубину 4-5 см. При воздействии на рецепторы мозга возможно эритематозное воспаление. Под влиянием коротковолнового ИК излучения повышается температура тканей, что может привести к возникновению теплового удара. Изменения со стороны сердечно-сосудистой системы – тахикардия, повышение систолического и снижение диастолического давления. Инфракрасное излучение Солнца способствует развитию катаракты. Воздействие на хрусталик глаза возможно также в производственных условиях (профессиональная катаракта).

Длинные волны (1400-2800 нм) поглощаются поверхностными слоями кожи, вызывают ощущение жжения. Способствуют улучшению кровообращения, ослабляют условно-рефлекторную реакцию сосудов.

При локальном действии на ткани ИК излучение ускоряет биохимические реакции, ферментативные и иммунобиологические процессы, рост клеток и регенерацию тканей, усиливает биологическое действие ультрафиолетовых лучей.

Положительное общее действие проявляется в виде нормализации тонуса вегетативной нервной системы, болеутоляющего, противо­воспа­лительного действия. Эти свойства ИК излучения используют в физиотерапии с помощью искусственных источников. Для общего облучения применяют инфракрасные ванны; для местного – лампы Соллюкс и лампы Минина.

С целью профилактики возможного неблагоприятного воздействия ИК излучения на организм в условиях производства используют: экранирование, водяные души, средства индивидуальной защиты, профилактические осмотры, прием витаминов, минеральной воды.

Измерение напряжения (интенсивности) лучистой энергии солнца и других источников производится с помощью приборов актинометров. Они показывают напряжение радиации в малых калориях, получаемых в течение одной минуты на 1 см 2 поверхности, расположенной перпендикулярно к источнику лучей. Актинометрические приборы подразделяются на абсолютные , дающие показания непосредственно в малых калориях, и относительные , показания которых необходимо переводить в тепловые единицы с помощью разработанных переводных коэффициентов.

Методы измерения солнечной радиации

Актинометрические приборы, предназначенные для определения рассеянной и суммарной солнечной радиации (а по их разности – прямой радиации) называются пиранометрами. Для измерения интенсивности солнечной радиации используются пиранометры Янишевского, Носкова, актинометр Калитина, актинометр термоэлектрический (АТ-50), универсальный гелиограф (ГУ).

Пиранометр Янишевского . Приемной частью прибора является термобатарея, состоящая из константановых и ланганитовых тонких полосок, часть которых окрашена в черный, другая часть – в белый цвет. Черные поглощают лучистую энергию и нагреваются в большей степени, чем белые. В цепи возникает термоток, который регистрируется гальванометром. Для защиты от ветра, осадков и повреждений батарея закрыта стеклом. Прибор имеет небольшой черный диск, затеняющий приемную часть от прямых солнечных лучей. В этом случае измеряется только рассеянная радиация. При отсутствии затенения прибор реагирует на солнечную (прямую) и рассеянную радиацию.

Измерение лучистой энергии искусственных источников инфракрасной радиации.

Искусственными источниками инфракрасной радиации являются все нагретые тела (предметы), от температуры которых зависит длина волны излучения. Мощность этого излучения выражается в калориях на см 2 поверхности, расположенной перпендикулярно потоку лучей в одну минуту (кал/см 2 мин). Мощность излучения не зависит от окружающей среды, а определяется лишь состоянием тела (закон Прево-Кирхгофа). По закону Стефана-Больцмана, мощность излучения определяется температу­рой нагретого тела:

где: Е - мощность излучения;

К - постоянная, равная 1,38*10 -12 кал/см 2 сек (7,98*10 -11 кал/см 2 мин);

Т - температура тела в градусах Кельвина.

Измерение потока лучистой энергии искусственных источников производится актинометром Ленинградского института гигиены труда и профессио­нальных болезней (ЛИОТ-Н). Прибор имеет широкий диапазон измерений. Его устройство основано на принципе термоэлектрического эффекта.

В качестве термоприемни­ка в актинометре использована термобатарея-пластинка, состоящая из ряда тер­моэлементов, спаянных между собой. Эти спаи поочередно имеют белый и черный цвет. При действии на такую пластинку инфракрасного излучения соседние спаи приобретают разную температуру вследствие разности поглощения лучистого тепла черным квадратиком и отражения его белым. Разность температур обуслов­ливает появление в батарее тока, который измеряется гальванометром в единицах тепловой радиации - калориях на см 2 в мин. Предел измерения - от 0 до 20 кал/см 2 мин.

Измерение инфракрасного излучения малой интенсивности

Для измерения инфракрасного излучения малой интенсивности, а также для измерения теплопотерь человека используется дифференциальный радиoметр А.Н.Сизякова. Воспринимающей частью радиометра является термостолбик, состоящий из медно-константановых термопар. Термостолбик соединен с гальванометром. Радиометр позволяет определить радиационный теплообмен между двумя телами (организмом человека и окружающими предметами). Интенсивность теплообмена выражается в кал на см 2 в час. Для того, чтобы получить данные о тепловом радиационном обмене, необходимо среднее значение трех показаний гальванометра уменьшить на градуировочный коэффициент прибора.

Величина радиационной теплоотдачи «человек-окружающие предметы» для жилых и общественных зданий в пределах 1-1,5 кал/см 2 час определяет состояние теплового комфорта человека.

Лучистая энергия солнца и в частности ее наиболее биологически активная область – ультрафиолетовая радиация, является постоянно действующим фактором внешней среды.

По характеру биологического действия ультрафиолетовую часть спектра условно делят на три области – А, В, С. Длинноволновая область А(320-400 нм) обладает преимущественно загарным действием, средневолновая область В (280-320 нм) – витаминообразующим действием, что позволяет применять этот вид излучения в качестве лечебного профилактического средства. При действии ультрафиолетового излучения области В провитамин 7, 8 – дегидрохолестерин в коже человека переходит в активную форму. Область С (200-280 нм) обладает преимущественно бактерицидным действием, в основе которого лежит нарушение жизнедеятельности микробных клеток, возникающее благодаря фотохимическому расщеплению белковых компонентов области.

Ультрафиолетовая часть солнечного спектра обладает наибольшей биологической активностью, является фактором внешней среды, имеющим большое значение для профилактики заболеваний и укрепления здоровья человека.

Отсутствие или длительный недостаток воздействия ультрафиолетового излучения на организм отрицательно влияет на здоровье людей и может привести к развитию патологического состояния – ультрафиолетовой недостаточности или светового голодания. Дефицит ультрафиолетовых лучей испытывают люди, работающие в метро, шахтах, подземных рудниках, проживающие на Севере в период полярной ночи. При облачной погоде интенсивность ультрафиолетовой радиации у поверхности земли может снижаться до 80%, при загрязнении воздуха пылевыми аэрозолями на 11-50%. Однако интенсивность и спектральный состав УФ излучения солнца постоянно меняются. Эти показатели зависят от сезона, состояния атмосферы, количества водяных паров, аэрозолей, высоты стояния солнца над горизонтом, уровня запыления и годового загрязнения воздуха.

Ультрафиолетовая недостаточность отрицательно отражается на здоровье и проявляется снижением адаптационных возможностей организма, окислительно-восстановительных процессов, ухудшением регенерации тканей, нарушением фосфорно-кальциевого обмена, стойкости капилляров, поражением нервной системы, системы кроветворения, паренхиматозных органов, повышением утомляемости, снижением работоспособности и сопротивляемости организма к токсическим, канцерогенным, мутагенным и инфекционным агентам. Наиболее частым проявлением ультрафиолетовой недостаточности является гиповитаминоз или авитаминоз D. У взрослых нарушение фосфорно-кальциевого обмена на почве гиповитаминоза D проявляется в плохом срастании костей при переломах, ослаблении связочного аппарата суставов, в быстром разрушении эмали зубов. Ультрафиолетовая недостаточность у детей в условиях нормального питания является ведущим фактором экзогенного рахита.

Бороться с ультрафиолетовой недостаточностью следует, меняя комплекс гигиенических мероприятий, прежде всего используя облучение солнцем. Однако пребывать на открытом воздухе, пользоваться соляриями, пляжами можно не везде, не во все сезоны. Поэтому для компенсации недостатка солнечного света применяется искусственное ультрафиолетовое облучение.

Противопоказаниями для облучения человека искусственным УФ излучением являются заболевания активной формой туберкулеза, щитовидной железы, резко выраженный атеросклероз, заболевания сердечно-сосудистой системы, печени, почек, малярия, злокачественные новообразования.

Для профилактики ультрафиолетового голодания рекомендуется облучение искусственными источниками ультрафиолетового излучения в фотариях, а также обогащение светового потока источников искусственного освещения зрительной составляющей.

Искусственные ультрафиолетовые лучи образуются при электросварке, электроплавлении стали, в производстве радиоламп, при работе ртутно-кварцевых и бактерицидных ламп.

Чрезмерное использование ультрафиолетовых лучей как естественного, так и искусственного происхождения, негативно отражается на состоянии организма: поражаются глаза (фото- или электрофтальмия), кожа (эритема, фотосенсибилизация, рак кожи).

Ультрафиолетовые лучи, попадая на кожу, вызывают сдвиги в коллоидном состоянии белков, а также рефлекторно влияют на весь организм. Общебиологическое действие заключается в образовании путем фотохимических реакций биологически активных веществ (гистамин, ацетилхолин, витамин D и др.), стимулирующих обмен веществ, иммунную систему, укреплении организма.

Биологический эффект ультрафиолетовых лучей зависит от длины волны.

Зона А (320-400 нм) или длинноволновое излучение – обладает эритемно-загарным или пигментобразующим действием. В результате фотохимических реакций возникает резко очерченная эритема, переходящая в загар. Лучи этой зоны обладают флуоресцентным действием, что используется для диагностики в медицине.

Зона В (280-320 нм) или средневолновое излучение - оказывает специфическое антирахитическое (D-витаминообразующее) действие за счет образования в результате фотохимических реакций витамина D. При недостатке УФ радиации у детей возникает рахит, у взрослых - нарушение фосфорно-кальциевого обмена. Оказывает также слабое бактерицидное действие.

Зона С (200-280 нм) или коротковолновое излучение оказывает бактерицидное действие, убивает патогенные микробы, находящиеся в воздухе, воде, на поверхности почвы, способствуя самоочищению природной среды.

Коротковолновая ультрафиолетовая радиация повреждает биологическую ткань. Биологические объекты не подвергаются губительному действию коротковолновой ультрафиолетовой радиации, т.к. таких лучей до поверхности земли доходит мало в силу их рассеяния в верхних слоях атмосферы.

Абиогенное действие УФ радиации . При увеличении суммарной зрительной дозы происходит угнетение синтеза ДНК, торможение функции ЦНС, гипертрофия клеток надпочечников, нарушение обмена витаминов, лейкоцитоз, усиление онкогенеза. Это проявляется в виде ожогов, фотодерматоза, опухолей, фототоксикоза, фотоаллергии, кератоконъюнктивита, фотокератита, катаракты и др.

В настоящее время в связи с изменением озонового слоя атмосферы возрастает опасность ультрафиолетового онкогенеза.

Единицы измерения интенсивности УФ радиации

Измерение интенсивности ультрафиолетовой радиации производится в энергетических единицах или в биологических редуцированных единицах – биодозах. БИОДОЗА – величина эритемного потока, вызывающая эритему через 6-10 часов после облучения. Энергетическая единица выражается в миллиграмм-калориях на 1 см 2 в минуту. Биологически редуцированные единицы (биодозы) выражаются в «Эр» (обусловлена эритемным действием на кожу) и «бакт» (бактерицидным действием).

«Эр» - эритемный поток ультрафиолетовых лучей с длиной волны 296,7 нм мощностью 1 ватт на единицу площади. Производные величины мэр/м 2 , мкэр/см 2 .

Для получения эритемы необходимо от 330 до 1000 мкэр в минуту на см 2 (мкэр/мин см 2).

«Бакт» бактерицидный поток излучения с длиной волны 253,7 нм мощностью 1 ватт. Производные: 1мб/м 2 , 1 мкб/см 2 .

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Учреждение высшего профессионального образования

Ультрафиолетовое излучение

Санкт-Петербург 2016

Введение

Нормальная жизнедеятельность организма и его работоспособность тесно связаны с воздухом, его физическими свойствами и химическим составом. Воздушная среда является необходимым условием жизни на Земле. Она играет важную роль в дыхании человека, животных и растений. Без воздуха немыслимо сохранение жизнеспособности организма. Роль воздуха состоит в снабжении кислородом, удалении продуктов обмена веществ, обеспечении процесса теплообмена. Велика роль воздушной среды в производственной деятельности человека. Она является резервуаром токсичных и микробных загрязнений (вредные газы, взвешенные частицы, различные микроорганизмы), которые могут отрицательно воздействовать на организм. В ходе эволюции человек подготавливался природой к восприятию действия различных факторов окружающей среды. Резкие изменения физических свойств и химического состава неблагоприятно отражаются на важнейших функциях организма и приводят к различным заболеваниям.

К основным факторам воздушной среды, влияющим на жизнедеятельность человека, его самочувствие и работоспособность, относятся: физические - солнечная радиация, температура, влажность, скорость движения воздуха, барометрическое давление, электрическое состояние, радиоактивность; химические - содержание кислорода, азота, углекислоты и других составных частей и примесей; механические загрязнители - пыли, дым, а также микроорганизмы.

Перечисленные факторы, как в совокупности, так и каждый в отдельности могут оказывать неблагоприятное влияние на организм. Поэтому перед гигиеной стоит задача изучить их положительное и отрицательное влияние и разработать мероприятия как по использованию положительных свойств (солнечные ванны, закаливающие процедуры и др.), так и по предупреждению вредного влияния (солнечные ожоги, перегрев).

Солнечная радиация - единственный источник энергии, тепла и света на Земле. Солнце оказывается огромное разнообразное влияние на процессы, происходящие в органическом и неорганическом мире. Благодаря солнечной радиации происходят нагревание поверхности земного шара, испарение воды, перемещение воздушных масс, изменение погоды. Она является основным фактором,

Под солнечной радиацией мы понимаем весь испускаемый Солнцем интегральный поток радиации, который представляет собой электромагнитные колебания различной длины волны. Основную часть солнечного спектра составляют лучи с чрезвычайно малыми длинами волн, которые измеряются в нанометрах (нм). В гигиеническом отношении особый интерес представляет оптическая часть солнечного света, которая занимает диапазон от 280-2800 нм. Более длинные волны - радиоволны, более короткие - гамма-лучи, ионизирующее излучение не доходят до поверхности Земли, потому что при прохождении через воздушную оболочку задерживаются, теряя до 57% первоначальной мощности, в озоновом слое в частности. Озон распространен во всей атмосфере, но на высоте около 35 км формирует озоновый слой.

Интенсивность солнечной радиации зависит в первую очередь от высоты стояния солнца над горизонтом. Если солнце находится в зените, то путь, который проходит солнечные лучи, будет значительно короче, чем их путь, если солнце находится у горизонта. За счет увеличения пути интенсивность солнечной радиации меняется. Интенсивность солнечной радиации зависит также от того под каким углом падают солнечные лучи, от этого зависит и освещаемая территория (при увеличении угла падения площадь освещения увеличивается). Солнечные лучи значительно ослабевают - рассеиваются, отражаются, поглощаются. В среднем при чистой атмосфере на поверхности Земли интенсивность солнечной радиации составляет 1,43-1,53 калориисм 2 в мин. Напряжение солнечных лучей в полдень в мае в Ялте 1,33, в Москве 1,28, в Иркутске 1,30, В Ташкенте 1,34. Таким образом, та же солнечная радиация приходится на большую поверхность, поэтому интенсивность уменьшается. Интенсивность солнечной радиации зависит от массы воздуха, через который проходит солнечные лучи. Интенсивность солнечной радиации в горах будет выше, чем над уровнем моря, потому что слой воздуха, через который проходят солнечные лучи, будет меньше чем над уровнем моря.

Особое значение представляет влияние на интенсивность солнечной радиации состояние атмосферы, ее загрязнение. Если атмосфера загрязнена, то интенсивность солнечной радиации снижается (в городе интенсивность солнечной радиации в среднем на 12% меньше чем в сельской местности). Напряжение солнечной радиации имеет суточный и годовой фон, то есть напряжение солнечной радиации меняется в течение суток, и зависит также от времени года. Наибольшая интенсивность солнечной радиации отмечается летом, меньшая - зимой. По своему биологическому действию солнечная радиация неоднородна: оказывается, каждая длина волны оказывает различное действие на организм человека. В связи с этим солнечный спектр условно разделен на 3 участка:

1. ультрафиолетовые лучи, от 280 до 400 нм.

2. видимый спектр от 400 до 760 нм.

3. инфракрасные лучи от 760 до 2800 нм.

При суточном и годовом годе солнечной радиации состав и интенсивность отдельных спектров подвергается изменениям. Наибольшим изменениям подвергаются лучи УФ спектра.

1. Ультрафиолетовые лучи (УФ)

Это наиболее активная в биологическом плане часть солнечного спектра. Она также неоднородна, А-излучение с длиной волн от 400 до 315 нм и В-излучение с длиной волн от 320 до 280 нм. В связи с этим различают длинноволновые и коротковолновые УФ. Биологическое действие УФ зависит е только от количества, он и качества поглощенной ком покровом лучистой энергии. Установлено, что роговой слой кожи не пропускает лучи короче 200 нм, а эпидермис с сосочковым слоем - лучи с длиной волн менее 313 нм. Следовательно, глубина проникновения УФ в кожу составляет около 0,5 нм. При поступлении УФ на кожу в ней образуются 2 группы веществ: 1) специфические вещества, к ним относятся витамин Д, 2) неспецифические вещества - гистамин, ацетилхолин, аденозин, то есть это продукты расщепления белков.

При недостаточном воздействии УФ на организм человека возникают разные проявления D- авитаминоза. В первую очередь нарушается трофика ЦНС, что ведет к ослаблению окислительно-восстановительных процессов. При недостаточности витамина D нарушается фосфор-кальциевый обмен, который тесно связан с процессами окостенения скелета, свертываемостью крови и др. Отмечается падение работоспособности и снижение резистентности организма к простудным заболеваниям.

Загарное или эритемное действие сводится к фотохимическому эффекту - гистамин и другие, биологически активные вещества способствуют расширению сосудов. Особенность этой эритемы - она возникает не сразу. Эритема имеет четко ограниченные границы. Ультрафиолетовая эритема всегда приводит к загару более или менее выраженному, в зависимости от количества пигмента в коже. Механизм загарного действия еще недостаточно изучен. В России рак кожи в южных районах составляет 20-22% всех форм рака, в то время как в северных районах он не превышает 7%.Самый благоприятный загар возникает под воздействием УФЛ с длиной волны примерно 320 нм, то есть при воздействии длинноволновой части УФ-спектра. На юге в основном преобладают - коротковолновые, а на севере - длинноволновые УФЛ. Коротковолновые лучи наиболее подвержены рассеянию. А рассеивание лучше всего происходит в чистой атмосфере и в северном регионе. Таким образом, наиболее полезный загар на севере - он более длительный, более темный. УФЛ являются очень мощным фактором профилактики рахита. При недостатке УФЛ у детей развивается рахит, у взрослых - остеопороз или остеомаляция. Обычно с этим сталкиваются на Крайнем Севере или у групп рабочих работающих под землей. Для профилактики солнечного голодания используется искусственный загар. Световое голодание - это длительное отсутствие УФ спектра. При действии УФ в воздухе происходит образование озона, за концентрацией которого необходим контроль.

Недостаточность УФ отражается на процессах фотосинтеза растений. В частности, у злаковых это приводит к снижению содержания белка и увеличению количества углеводов в зернах. УФЛ оказывают бактерицидное действие. Оно используется для обеззараживания больших палат, пищевых продуктов, воды. Определяется интенсивность УФ радиации фотохимическим методом по количеству разложившихся под действием УФ щавелевой кислоты в кварцевых пробирках (обыкновенное стекло УФЛ не пропускает). Интенсивность УФ радиации определяется и прибором ультрафиолетметром. В медицинских целях ультрафиолет измеряется в биодозах.

2. Биологическое действие ультрафиолетового излучения

Различают три участка спектра ультрафиолетового излучения, имеющего различное биологическое воздействие. Слабое биологическое воздействие имеет ультрафиолетовое излучение с длиной волны 0,39-0,315 мкм. Противорахитичным действием обладают УФ-лучи в диапазоне 0,315-0,28 мкм, а ультрафиолетовое излучение с длиной волны 0,28-0,2 мкм обладает способностью убивать микроорганизмы. Для организма человека вредное влияние оказывает как недостаток ультрафиолетового излучения, так и его избыток. Воздействие на кожу больших доз УФ-излучения приводит к кожным заболеваниям (дерматитам). Повышенные дозы УФ-излучения воздействуют и на центральную нервную систему, отклонения от нормы проявляются в виде тошноты, головной боли, повышенной утомляемости, повышения температуры тела и др.

Ультрафиолетовое излучение с длиной волны менее 0,32 мкм отрицательно влияет на сетчатку глаз, вызывая болезненные воспалительные процессы. Уже на ранней стадии этого заболевания человек ощущает боль и чувство песка в глазах. Заболевание сопровождается слезотечением, возможно поражение роговицы глаза и развитие светобоязни ("снежная" болезнь). При прекращении воздействия ультрафиолетового излучения на глаза симптомы светобоязни обычно проходят через 2-3 дня.

Недостаток УФ-лучей опасен для человека, так как эти лучи являются стимулятором основных биологических процессов организма. Наиболее выраженное проявление "ультрафиолетовой недостаточности" - авитаминоз, при котором нарушается фосфорно-кальциевый обмен и процесс костеобразования, а также происходит снижение работоспособности и защитных свойств организма от заболеваний. Подобные проявления характерны для осенне-зимнего периода при значительном отсутствии естественной ультрафиолетовой радиации ("световое голодание").

В осенне-зимний период рекомендуется умеренное, под наблюдением медицинского персонала, искусственное ультрафиолетовое облучение эритемными люминесцентными лампами в специально оборудованных помещениях - фотариях. Искусственное облучение ртутнокварцевыми лампами нежелательно, так как их более интенсивное излучение трудно нормировать. При оборудовании помещений источниками искусственного УФ-излучения необходимо руководствоваться "Указаниями по профилактике светового голодания у людей", утверждёнными Министерством здравоохранения СССР (N547-65). Документом, регламентирующим допустимую интенсивность ультрафиолетового излучения на промышленных предприятиях, являются "Указания по проектированию и эксплуатации установок искусственного ультрафиолетового облучения на промышленных предприятиях". Воздействие ультрафиолетового излучения на человека количественно оценивается эритемным действием, т.е. покраснением кожи, в дальнейшем приводящим к пигментации кожи (загару).

Оценка ультрафиолетового облучения производится по величине эритемной дозы. За единицу эритемной дозы принят 1 эр, равный 1Вт мощности УФ-излучения с длиной волны 0,297 мкм. Эритемная освещённость (облучённость) выражается в эр/м2. Для профилактики ультрафиолетового дефицита достаточно десятой части эритемной дозы, т.е. 60-90 мкэр·мин/см2. Бактерицидное действие ультрафиолетового излучения, т.е. способность убивать микроорганизмы, зависит от длины волны. Так, например, УФ-лучи с длиной волны 0,344 мкм обладают бактерицидным эффектом в 1000 раз большим, чем ультрафиолетовые лучи с длиной волны 0,39 мкм. Максимальный бактерицидный эффект имеют лучи с длиной волны 0,254-0,257 мкм. Оценка бактерицидного действия производится в единицах, называемых бактами (б). Для обеспечения бактерицидного эффекта ультрафиолетового облучения достаточно примерно 50 мкб мин/см2.

3. Защита от ультрафиолетового излучения

Для защиты от избытка УФИ применяют противосолнечные экраны, которые могут быть химическими (химические вещества и покровные кремы, содержащие ингредиенты, поглощающие УФИ) и физическими (различные преграды, отражающие, поглощающие или рассеивающие лучи). Хорошим средством защиты является специальная одежда, изготовленная из тканей, наименее пропускающих УФИ (например, из поплина). Для защиты глаз в производственных условиях используют светофильтры (очки, шлемы) из тёмно-зелёного стекла. Полную защиту от УФИ всех длин волн обеспечивает флинтглаз (стекло, содержащее окись свинца) толщиной 2 мм. При устройстве помещений необходимо учитывать, что отражающая способность различных отделочных материалов для УФИ другая, чем для видимого света. Хорошо отражают УФ-излучения полированный алюминий и медовая побелка, в то время как оксиды цинка и титана, краски на масляной основе - плохо.

4. Основные нормативные документы

Гигиенические требования к методам измерений, контроля и оценки этого фактора, характеристики источников УФ-излучения изложены в ряде нормативно-методических документов, технических правовых нормативных актов. Основными из них являются:

СН 2.2.4-13-45-2005 "Санитарные нормы ультрафиолетового излучения производственных источников", утвержденные постановлением Главного государственного санитарного врача Республики Беларусь от 16.12.2005 № 230 (далее - СН 2.2.4-13-45-2005), устанавливающие действующие в Республике Беларусь гигиенические нормативы и регламентирующие параметры УФ-излучения в условиях производства;

Методические рекомендации 105-9807-99 "Методика по гигиенической оценке производственных источников ультрафиолетового излучения. Методические рекомендации", утвержденные Главным государственным санитарным врачом Республики Беларусь 18.05.1999 (далее - МР 105-9807-99), излагающие основные методические подходы к гигиенической оценке производственных (техногенных) и промышленно-бытовых источников УФ-излучения, рассматривающие основные виды и типы искусственных источников ультрафиолетового излучения, условия формирования и интенсивность потока излучения, особенности воздействия на работающих, методы контроля, меры безопасности;

Методические рекомендации 26-0101 "Применение ультрафиолетового бактерицидного излучения для обеззараживания воздуха и поверхностей в лечебно-профилактических учреждениях", утвержденные Министерством здравоохранения Республики Беларусь (далее - МР 26-0101), содержащие информацию по вопросам безопасной эксплуатации бактерицидных облучателей, особенностях измерений и оценки безопасности при работе с источниками ультрафиолетового бактерицидного излучения;

СанПиН 13-2-2007, устанавливающие основные методические подходы при комплексной гигиенической оценке факторов условий труда, в том числе с определением вредности и опасности каждого фактора, включая оптическое излучение в ультрафиолетовом диапазоне.

Кроме того, есть и другие отраслевые, внутриведомственные нормативные документы и правовые акты, устанавливающие требования правил гигиены и охраны труда при применении некоторых отдельных источников, оборудования и технологий, использующих энергию УФ-излучения. Согласно определению, приведенному в СН 2.2.4-13-45-2005 (гл. 2), "ультрафиолетовое излучение представляет собой электромагнитное излучение оптического диапазона с длиной волны (?) в пределах 200-400 нм".

Отметим, что в некоторых литературных источниках в качестве нижней границы коротковолнового диапазона указана длина волны 100 нм. Однако излучение в диапазоне 100-200 нм возможно только в условиях вакуума, поэтому такое излучение называют "вакуумный ультрафиолет". В обычных условиях окружающей, в том числе производственной, среды такого излучения не существует, так как в обычной воздушной среде оно сразу поглощается. В зависимости от длины волны и возможного биологического влияния на организм или эффекта ультрафиолетового облучения различают:

Длинноволновой диапазон (загарный или ближний спектр УФ-излучения) с длиной волны равной 315-400 нм (чаще его кратко обозначают УФ-А);

Средневолновой или эритемный диапазон (обозначается как УФ-В) с длиной волны 280-315 нм. В некоторых справочниках вместо величины длины волны, разделяющей диапазоны УФ-В и УФ-А и равной 315 нм, приведена величина 320 нм. Это различие не имеет принципиального значения при измерениях и оценке УФ-излучения;

УФ-С - коротковолновой диапазон (жесткий, дальний, бактерицидный) с длиной волны 200-280 нм.

Кроме того, на основании экспериментальных исследований с учетом возможного биологического эффекта от УФ-облучения в каждом диапазоне определена величина длины волны УФ-излучения, при воздействии которой отмечается максимальный эффект того или иного воздействия УФ-облучения. Такими характерными особенностями или эффектами биологического воздействия УФ-излучения на организм являются загарный и эритемный эффект, воспаление роговой оболочки глаза (кератит), развитие конъюнктивита (воспаление слизистых оболочек глаза), бактерицидное действие и др.

Например, для излучения в диапазоне УФ-С максимальное проявление бактерицидного действия УФ-излучения отмечается при max = 265 нм, эритемное действие в большей степени проявляется при = 297 нм, а загарное наиболее выражено, когда в потоке преобладает излучение с длиной волны равной 365 нм. В главе 2 СН 2.2.4-13-45-2005 приведены и другие термины, а также единицы измерения. Так, монохроматическое УФ-излучение - это совокупность выделяемых источником фотонов, обладающих в оптическом диапазоне одинаковой длиной волны (? = 200-400 нм). Иными словами, в излучаемом таким источником потоке будут преобладать УФ-лучи с одинаковой длиной волны. Характерный пример монохроматического излучения - бактерицидный поток излучения, где преобладают волны с max = 265 нм. Следует отметить, что источников с монохроматическим УФ-излучением сравнительно немного - большинство источников излучают УФ-поток с разными спектрами и длинами волн, то есть являются полихроматическими.

Полихроматическое УФ-излучение - совокупность выделяемых источником фотонов с разной длиной волны в оптическом диапазоне. Характерный пример полихроматического излучения - сварочная дуга, основу которой составляет излучение во всех трех диапазонах спектра УФ-А, УФ-В и УФ-С.

Интенсивность излучения - отношение потока излучения, падающего на участок поверхности, к площади этого участка (единица измерения - Вт/м2). Синонимы этого термина следующие: облученность, поверхностная плотность потока, энергетическая освещенность, плотность потока энергии, плотность излучения.

Гигиенические нормативы условий труда - предельно допустимая концентрация (ПДК), ориентировочно безопасный уровень воздействия (ОБУВ), предельно допустимый уровень (ПДУ) - уровни производственных факторов, которые при ежедневной (кроме выходных дней) работе, но не более 40 ч в неделю, в течение всего рабочего стажа не должны вызывать заболеваний или отклонений в состоянии здоровья обнаруживаемых современными методами исследований в процессе работы или в отдаленные сроки жизни настоящего и последующего поколений. Соблюдение гигиенических нормативов не исключает нарушения состояния здоровья у лиц с повышенной чувствительностью.

Гигиенические нормативы обоснованы с учетом 8-часовой рабочей смены, кроме особых случаев, оговоренных в технических нормативных правовых актах (ТНПА). При оценке трудовой деятельности с другой продолжительностью рабочей смены или рабочей недели производится перерасчет с учетом месячного баланса рабочего времени. Для большинства физических факторов предельно допустимые величины (гигиенические нормы, регламенты) обозначаются термином ПДУ. Для характеристики предельно допустимых величин УФ-излучения (Вт/м2), гигиенических норм УФ-потока также используется термин "допустимая интенсивность излучения" (ДИИ). Кроме того, на практике, в литературе по гигиене и охране труда, в том числе справочной и нормативно-методической документации, часто используются два близких по сути, но все-таки разных термина - излучение и облучение.

Термин "излучение" чаще используется для характеристики источника УФ-излучения, испускающего поток определенной интенсивности, при этом имеется в виду, что этот поток пока только распространяется в пространстве и конкретной поверхности "как бы" еще не достиг. Иными словами, излучение - это термин, имеющий отношение к характеристикам самого источника, это фактически процесс. А вот результат этого процесса - облучение, и этот термин следует использовать, когда речь идет об интенсивности излучения на конкретной поверхности, площади или участке, куда достиг поток ультрафиолетового излучения.

Часто используется и термин "энергетическая экспозиция" или "доза облучения" - произведение величины интенсивности потока на время воздействия (Вт х сек/м2 или Дж/м2). Понятие "доза" или "экспозиция" - очень важное в гигиене и охране труда, так как опасность облучения определяется двумя факторами - интенсивностью и временем воздействия, а термин "доза облучения" фактически объединяет эти два фактора. Например, оценка профессиональных рисков при облучении, а также неблагоприятном влиянии других производственных факторов (шум, вредные химические вещества, ионизирующее излучение и др.) обязательно включает необходимость определения, расчета экспозиции или дозы. Можно сказать и так: гигиенический норматив (ПДК, ПДУ) показывает интенсивность воздействия фактора, или сколько данного вредного фактора (химического вещества, вида излучения, шума и др.) поступает в организм работника, тогда как величина дозы, экспозиция - сколько вредного фактора поступило в организм за определенный промежуток времени его воздействия.

В продолжение вопроса о дозах, дозовых нагрузках отметим, что наиболее характерной реакцией кожи на воздействие УФ-излучения является эритема, проявляющаяся в покраснении кожи после облучения. Для оценки эритемного воздействия используется термин "минимальная эритемная доза" (МЭД) - наименьшая доза УФ-излучения, вызывающая заметное покраснение на предварительно незагоревшей коже человека через 24 ч после облучения. Величину МЭД определяют в Дж/м2. Для европейцев одна минимальная эритемная доза в зависимости от индивидуальных особенностей кожи составляет от 200 до 500 Дж/м2 и соответствует примерно 12-25-минутному воздействию солнечного излучения в июньский полдень на географической широте Беларуси. При облученности, превышающей значение МЭД в 3-9 раз, эритемное воспаление носит еще более выраженный характер с возможным развитием отека и возникновением пузырей.

Наконец, при еще большей суммарной дозе могут появляться болевые ощущения на пораженном участке кожи и общие симптомы (повышение температуры, лихорадка, головная боль). Средняя величина дозы солнечного УФ-облучения, которая может вызвать возникновение опухолей кожи или кожных покровов, достаточно велика: для ее получения необходимо практически весь летний сезон находиться в условиях солнечного облучения. Однако величина риска может существенно возрасти для лиц наиболее восприимчивых к инсоляции, с определенным, обладающим повышенной чувствительностью к солнечной радиации типом кожи, некоторых особенностей солнечного облучения и загара и др.

В действующих нормативно-методических документах для оценки количественных характеристик УФ-излучения используются энергетические и эффективные единицы измерения. На практике при проведении измерений и контроля интенсивности УФ-излучения основными являются энергетические единицы параметров оптического излучения - Вт, Ватт (характеризует поток излучения), Дж/м2, Джоуль (доза облучения), Вт/м2 (облученность, интенсивность, плотность потока излучения). Последней единицей измерения градуированы основные измерительные приборы.

Специальные или эффективные единицы используются для оценки особенностей биологического влияния УФ-излучения и более часто - для оценки монохроматического УФ-излучения или излучения, в котором преобладают волны одной длины. Так, для оценки излучения в бактерицидном диапазоне (УФ-С) единица измерения - "бакт". Эритемный спектр излучения (УФ-В) характеризует "эр". Наконец, при оценке излучения в диапазоне УФ-А используется "вит" (от латинского "vita" - жизнь). В сельском хозяйстве, растениеводстве применяется такая единица измерения УФ-потока, как "фит". Эффективные единицы измерения УФ-излучения используются относительно редко: для градуировки некоторых средств измерений, в научных исследованиях, иногда в физиотерапии, сельском хозяйстве и др. В области гигиены и охраны труда преимущественно используются указанные выше энергетические единицы измерения параметров УФ-излучения.

Область применения Санитарных норм определяет п. 2 СН 2.2.4-13-45-2005:

"Настоящие Санитарные нормы распространяются на излучение, генерируемое производственным оборудованием и технологическими процессами: высокотемпературные источники, поли- или монохроматические люминесцентные и другие облучатели, используемые при кино- и телесъемке, дефектоскопии, в полиграфии, химическом и деревообрабатывающем производстве, здравоохранении, сельском хозяйстве, пищевой и других отраслях промышленности".

Примеры основных источников приведены в п. 3:

"Основными источниками производственного УФ-излучения являются электросварочные, плазменные технологии, газорезка и газосварка, ультрафиолетовая сушка, установки для обеззараживания воздуха и воды, климатические камеры и аппараты искусственной погоды, медицинские облучатели, в том числе используемые для косметических целей".

Действующие гигиенические нормативы, литературные данные и другие источники не всегда дают точные сведения и полную информацию о том, является ли конкретное оборудование источником излучения в ультрафиолетовом спектре, а, следовательно, есть ли необходимость организации контроля и проведения измерений этого параметра. Ответ на этот вопрос может содержаться в прилагаемой к данному источнику (или технологическому процессу) необходимой технической документации (паспорт, ТУ и т. д.). Если в таких документах указано, что источник излучает в диапазоне от 200 до 400 мкм (иногда приводятся сведения о длине волны, на которую приходится максимум потока УФ-энергии, излучения, то такой источник подлежит контролю за уровнем интенсивности излучения и соответствии измеренного потока допустимым гигиеническим регламентам согласно п. 4 СН 2.2.4-13-45-2005:

"Настоящие Санитарные нормы используются для оценки интенсивности излучения на рабочих местах (в рабочей зоне) персонала, работающего в условиях ультрафиолетового облучения".

Добавим, что контролю, измерениям и гигиенической оценке также подлежат приборы, оборудование и другие источники, в наименовании которых использован термин "ультрафиолетовое излучение" (например, "Прибор для ультрафиолетовой сушки", "Ультрафиолетовый бактерицидный облучатель" и т. д.).

Установленные в настоящих Санитарных нормах нормативы допустимой интенсивности излучения (далее - ДИИ) не используются при оценке безопасности пациентов (клиентов) и эффективности УФ-облучения в лечебных и профилактических целях (здравоохранение, в том числе косметология) и источников оптического излучения, применяемых в животноводстве, птицеводстве и растениеводстве. Настоящие Санитарные нормы не распространяются на ультрафиолетовое излучение, генерируемое лазерами". Таким образом, действие СН 2.2.4-13-45-2005 не распространяется на ультрафиолетовое излучение оптического диапазона, генерируемое различными лазерными установками, хотя длина волны, на которой работают многие лазерные установки и приборы, соответствует УФ-диапазону (200-400 мкм) при оценке лечебной, профилактической эффективности процедур, связанных с использованием ультрафиолетового облучения, или оценке возможного риска и безопасности пациентов, облучаемых в соответствующих кабинетах, подразделениях организаций здравоохранения и др. Санитарные нормы не используются и при оценке источников ультрафиолетового излучения, используемых в некоторых отраслях сельского хозяйства, на что указывают п. 5 и 6 СН 2.2.4.13-45-2005.

Санитарные нормы предназначены не только для организаций, осуществляющих надзор и контроль, в том числе государственный, но и для специалистов проектных организаций при разработке оборудования, технологических процессов, приборов, являющихся источниками УФ-излучения, для разработки мер по охране труда и безопасности работников, обслуживающих такие источники.

"Настоящие Санитарные нормы предназначены для специалистов органов и учреждений государственного санитарного надзора (далее - госсаннадзор), медицинских учреждений образования, научно-исследовательских организаций и лабораторий гигиенического профиля, лабораторных служб организаций, осуществляющих контроль за интенсивностью УФ-излучения и проведение гигиенической оценки источников, специалистов проектных организаций, изготавливающих и эксплуатирующих оборудование и применяющих технологические процессы, являющиеся источниками УФ-излучения.

Требования настоящих Санитарных норм должны учитываться при разработке ГОСТов, методик, других технических нормативных правовых актов".Выполнение важных и значимых требований п. 8 и 9 обеспечит единые подходы при нормировании УФ-излучения от разных источников, используемых в различных отраслях народного хозяйства при проектировании, реконструкции и эксплуатации оборудования, являющегося источником УФ-излучения.

Список использованных источников

ультрафиолетовый излучение работающий заболевание

1. Гладышевский А.И. “Формирование производственного потенциала: анализ и прогнозирование”. - М.: Наука, 1992.

2. Грузинов В.П. “Экономика предприятия и предпринимательства”. - М.: СОФИТ, 1997.

3. Ковалев В.В. “Финансовый анализ”. - М.: Наука, 1997.

4. Романов А.Н., Лукасевич И.Я. “Оценка коммерческой деятельности предпринимательства”. - М.: Экономика, 1993.

5. А.М. Большаков, И.М. Новиков Общая гигиена. - М.: Медицина,2005. - 384 с.

6. Р.Д. Габович, С.С. Познанский, Г.Х. Шахбазян Гигиена. - М.: 1984.

Размещено на Allbest.ru

Подобные документы

    Основные свойства ультрафиолетового излучения. История его открытия. Применение излучения в медицине, связанное с тем, что оно обладает бактерицидным, мутагенным, терапевтическим, антимитотическим, профилактическим действиями. Защита от УФ излучения.

    презентация , добавлен 14.09.2014

    Максимально возможное снижение воздействия на работающих вредных и опасных факторов. Гигиенические требования к методам измерений, контроля и оценки. Гигиенические характеристики основных источников ультрафиолетового излучения и его плотность.

    реферат , добавлен 19.12.2008

    Влияние ультрафиолетового излучения на трофические, регуляторные и обменные процессы у растений и живых организмов. Глобальное распределение интенсивности ультрафиолетового излучения. Нормирование ультрафиолетового излучения в производственных помещениях.

    контрольная работа , добавлен 24.04.2014

    Физическая сущность лазерного излучения. Воздействие лазерного излучения на организм. Нормирование лазерного излучения. Лазерное излучение-прямое, рассеянное, зеркальное или диффузно отраженное. Методы защиты от лазерного излучения. Санитарные нормы.

    доклад , добавлен 09.10.2008

    Понятие инфракрасного излучения, его количественные характеристики, проникающая способность, механизм теплового воздействия на организм человека. Производственные источники лучистой теплоты. Способы защиты от вредного воздействия данного вида излучения.

    реферат , добавлен 30.11.2015

    Понятие электромагнитного излучения, его характеристики и диапазоны. Особенности инфракрасного и ультрафиолетового излучений, история их исследований. Защита от источников излучения в доме и на рабочем месте. Экранирование стен и окон промышленных зданий.

    контрольная работа , добавлен 23.12.2012

    Организация производственного освещения и его влияние на процесс работоспособности. Основные виды освещения: искусственное, естественное и совмещенное. Санитарные правила и нормы. Гигиенические требования к микроклимату производственных помещений.

    реферат , добавлен 12.12.2008

    Источники искусственного света, их преимущества, недостатки, и возможность использования их в полиграфическом производстве. Характеристика воздействия ультрафиолетового излучения на организм человека. Категорирование помещений по пожарной опасности.

    дипломная работа , добавлен 29.11.2008

    Основные характеристики электромагнитного излучения. Его виды: микроволновое, инфракрасное, видимое, ультрафиолетовое. Влияния компьютеров, сотовых телефонов, электропроводки, электрической бытовой техники и геопатогенных зон на здоровье человека.

    презентация , добавлен 22.11.2013

    Электромагнитное поле и его характеристики. Источники электромагнитного излучения, механизм его воздействия и основные последствия. Влияние современных электронных устройств и электромагнитных лучей, исходящих от сотовых телефонов, на организм человека.

Загрузка...