domvpavlino.ru

Традиционные методы измерения атмосферного давления. Барометр - что это такое? Прибор для измерения атмосферного давления Приборы для определения атмосферного давления воздуха

В гигиенических исследованиях применяются два типа барометров :

- жидкостные барометры ;

- металлические барометры - анероидные .

Принцип работы различных модификаций жидкостных барометров основан на том, что атмосферное давление уравновешивает определенной высоты столб жидкости в запаянной с одного конца (верхнего) трубке. Чем меньше удельный вес жидкости, тем выше столб последней, уравновешиваемый давлением атмосферы.

Наибольшее распространение получили , так как высокий удельный вес жидкой ртути позволяет сделать прибор более компактным, что объясняется уравновешиванием давления атмосферы менее высоким столбом ртути в трубке.

Используются три системы ртутных барометров:

- чашечные ;

- сифонные ;

- сифонно-чашечные .

Указанные системы ртутных барометров схематически представлены на рисунке 35.

Станционные чашечные барометры (рисунок 35). В этих барометрах в чашку, заполненную ртутью, помещается запаянная сверху стеклянная трубка. В трубке над ртутью образуется так называемая торичеллиевая пустота. Воздух в зависимости от состояния обусловливает то или иное давление на ртуть, находящуюся в чашке. Таким образом, уровень ртути устанавливается на ту или иную высоту в стеклянной трубке. Именно данная высота будет уравновешивать давление воздуха на ртуть в чашке, а значит отражать атмосферное давление. Высоту уровня ртути, соответствующую атмосферному давлению, определяют по так называемой компенсированной шкале, имеющейся на металлической оправе барометра. Изготавливаются чашечные барометры со шкалами от 810 до 1110 мб и от 680 до 1110 мб. Рис. 35. Чашечный барометр (слева) А - шкала барометра; Б - винт; В - термометр; Г - чашечка со ртутью Ртутный сифонный барометр (справа) А - верхнее колено; В - нижнее колено; Д - нижняя шкала; Е - верхняя шкала; Н - термометр; а - отверстие в трубке

В отдельных модификациях имеются две шкалы - в мм рт. ст. и мб. Десятые доли мм рт. ст. или мб отсчитываются по подвижной шкале - нониусу. Для этого необходимо винтом установить нулевое деление шкалы нониуса на одной линии с вершиной мениска ртутного столба, отсчитать число целых делений миллиметров ртутного столба по шкале барометра и число десятых до-лей миллиметра ртутного столба до первой отметки шкалы нониуса , совпадающей с делением основной шкалы.

Пример . Нулевое деление шкалы нониуса находится между 760 и 761 мм рт. ст. основной шкалы. Следовательно, число целых делений равно 760 мм рт. ст. К этой цифре необходимо прибавить число десятых долей миллиметра ртутного столба, отсчитанных по шкале нониуса. Первым с делением основной шкалы совпадает 4-е деление шкалы нониуса. Барометрическое давление равно 760 + 0,4 = 760,4 мм рт. ст.


Как правило, в чашечные барометры встроен термометр (ртутный или спиртовый в зависимости от предполагаемого диапазона температуры воздуха при исследованиях), так как для получения окончательного результата необходимо специальными расчетами привести давление к стандартным условиям температуры (0°С) и барометрического давления (760 мм рт. ст.).

В чашечных экспедиционных барометрах перед наблюдением предварительно с помощью специального винта, расположенного в нижней части прибора, устанавливают уровень ртути в чашке на нулевую отметку.

Сифонные и сифонно-чашечные барометры (рисунок 35). В этих барометрах величина атмосферного давления измеряется по разнице высот ртутного столба в длинном (запаянном) и коротком (открытом) коленах трубки. Данный барометр позволяет производить измерение давления с точностью до 0,05 мм рт. ст . При помощи винта в нижней части приборов уровень ртути в коротком (открытом) колене трубки приводят к нулевой точке, а затем отсчитывают показания барометра.

Сифонно-чашечный инспекторский барометр. Данный прибор имеет две шкалы: слева в мб и справа в мм рт. ст. Для определения десятых долей мм рт. ст. служит нониус. Найденные значения атмосферного давления, как и при работе с другими жидкостными барометрами, необходимо с помощью вычислений или специальных таблиц привести к 0°С.

На метеорологических станциях в показания барометров вводят не только температурную поправку, но и так называемую постоянную поправку: инструментальную и поправку на силу тяжести.

Устанавливать барометры следует в отдалении или изолированно от источников теплового излучения (солнечное излучение, нагревательные приборы), а также в отдалении от дверей и окон.

Металлический барометр-анероид (рисунок 36). Данный прибор особенно удобен при проведении исследований в экспедиционных условиях. Однако этот барометр перед использованием должен быть выверен по более точному ртутному барометру.

Рис. 36.Барометр-анероид Рис. 37. Барограф

Принцип устройства и действия барометра-анероида очень прост. Металлическая подушечка (коробка) с гофрированными (для большей эластичности) стенками, из которой удален воздух до остаточного давления 50-60 мм рт. ст., под воздействием давления воздуха изменяет свой объем и в результате деформируется. Деформация передается по системе рычажков стрелке, которая и указывает на циферблате атмосферное давление. На циферблате барометра анероида вмонтирован изогнутой формы термометр в связи с необходимостью, как указывалось выше, приведения результатов измерения к 0°С. Градуировка циферблата может быть в мб или в мм рт. ст. В некоторых модификациях барометра-анероида имеются две шкалы - как в мб, так и в мм рт. ст.

Анероид-высотомер (альтиметр). В измерении высоты по уровню атмосферного давления заложена закономерность, согласно которой между давлением воздуха и высотой имеется зависимость, весьма близкая к линейной. То есть при подъеме на высоту пропорционально снижается атмосферное давление.

Данный прибор предназначен для измерения атмосферного давления именно на высоте и имеет две шкалы. На одной из них нанесены величины давления в мм рт. ст. или мб, на другой - высота в метрах. На летательных аппаратах применяют альтиметры с циферблатом, на котором по шкале определяется высота полета.

Барограф (барометр-самописец). Данный прибор предназначен для непрерывной регистрации атмосферного давления. В гигиенической практике применяются металлические (анероидные) барографы (рисунок 37). Под влиянием изменений атмосферного давления пакет соединенных вместе анероидных коробок в результате деформации оказывает влияние на систему рычажков, а через них на специальное перо с незасыхающими специальными чернилами. При увеличении атмосферного давления анероидные коробки сжимаются и рычажок с пером поднимается кверху.

При уменьшении давления анероидные коробки с помощью помещенных внутри их пружин расширяются и перо чертит линию книзу. Запись давления в виде непрерывной линии вычерчивается пером на градуированной в мм рт. ст. или мб бумажной ленте, помещенной на цилиндрический вращающийся с помощью механического завода барабан. Используются барографы с недельным или суточным заводом с соответствующими градуированными лентами в зависимости от цели, задач и характера исследований. Выпускаются барографы с электрическим приводом, вращающим барабан.

Однако на практике данная модификация прибора менее удобна, так как ограничивается его использование в экспедиционных условиях. Для устранения температурных влияний на показания барографа в них вставляется биметаллические компенсаторы, автоматически осуществляющие коррекцию (поправку) движения рычажков в зависимости от температуры воздуха. Перед началом работы рычажок с пером с помощью специального винта устанавливается в исходное положение, соответствующее времени, обозначенном на ленте и на уровень давления, измеренный точным ртутным барометром.

Чернила для записи барограмм можно приготовить по следующей прописи:

Приведение объема воздуха к нормальным условиям (760 мм рт. ст., 0°С). Данный аспект измерения барометрического давления весьма важен при измерении концентраций загрязняющих веществ в воздухе. Игнорирование указанного аспекта может обусловить значительные ошибки в расчетах концентраций вредных веществ, которые могут достигать 30 и более процентов.

Приведение объема воздуха к нормальным условиям производится по формуле:

(39)

Пример . Для измерения концентрации пыли в воздухе через бумажный фильтр с помощью электрического аспиратора пропущено 200 л воздуха. Температура воздуха в период его аспирации составляла- +26° С, барометрическое давление - 752 мм рт. ст. Необходимо привести объем воздуха к нормальным условиям, то есть к 0°С и 760 мм рт. ст.

Подставляем в формулу Х значения соответствующих параметров примера и рассчитываем искомый объем воздуха при нормальных условиях:

Таким образом, при расчете концентрации пыли в воздухе необходимо учитывать объем воздуха именно 180,69 л , а не 200 л .

Для упрощения расчетов объема воздуха при нормальных условиях можно пользоваться поправочными коэффициентами на температуру и давление (таблица 25) или рассчитанными готовыми величинами формулы 39 и (таблица 26).

  • Поправка коэффициента рк значению температуры воздуха
  • 5. Методы измерения температуры воздуха и оценки температурных условий
  • 5.2. Изучение температурных условий
  • Результаты изучения температурных условий в учебной аудитории
  • 6. Гигиеническое значение, методы измерения и оценки влажности воздуха
  • 6.1. Гигиеническое значение и оценка влажности воздуха
  • Максимальное напряжение водяных паров при разных температурах воздуха,
  • Максимальное напряжение водяных паров надо льдом при температурах ниже 0о,
  • 6.2. Измерение влажности воздуха
  • Величины психрометрических коэффициентов а в зависимости от скорости движения воздуха
  • (При скорости движения воздуха 0,2 м/с)
  • 7. Гигиеническое значение, методы измерения и оценки направления и скорости движения воздуха
  • 7.1. Гигиеническое значение движения воздуха
  • 7.2. Приборы для определения направления и скорости движения воздуха
  • Скорость движения воздуха (при условии скорости менее 1 м/с) с учетом поправок на температуру воздуха при определении с помощью кататермометра
  • Скорость движения воздуха (при условии скорости более 1 м/с) при определении с помощью кататермометра
  • Шкала скорости движения воздуха в баллах
  • 8. Гигиеническое значение, методы измерения и оценки теплового (инфракрасного) излучения
  • 8.1. Гигиеническое значение теплового (инфракрасного) излучения
  • Соотношение прямой и рассеянной солнечной радиации, %
  • Пределы переносимости человеком тепловой радиации
  • 8.2. Приборы для измерения и методы оценки лучистой энергии
  • Относительная степень черноты некоторых материалов, в долях единицы
  • 9. Методы комплексной оценки метеорологических условий и микроклимата помещений различного назначения
  • 9.1. Методы комплексной оценки метеорологических условий и микроклимата при положительных температурах
  • Различные сочетания температуры, влажности и подвижности воздуха, соответствующие эффективной температуре 18,8
  • Результирующей температур по основной шкале
  • Результирующей температур по нормальной шкале
  • 9.2. Методы комплексной оценки метеорологических условий и микроклимата при отрицательных температурах
  • Вспомогательная таблица для определения теплового самочувствия (условной температуры) методом, рекомендуемым для населения
  • Ветрохолодовой индекс (вхи)
  • 10. Методы физиолого-гигиенической оценки теплового состояния организма человека
  • Тепловое самочувствие военнослужащих до и после проведения коррекции рационов питания с целью повышения резистентности организма к холодовому воздействию
  • Потери воды организмом человека потоотделением (г/ч) при различных температурах и относительной влажности воздуха
  • 11. Физиолого-гигиеническая оценка атмосферного давления
  • 11.1. Общие гигиенические аспекты значения атмосферного давления
  • Характеристика форм декомпрессионной болезни по тяжести заболевания
  • Зоны высоты над уровнем моря в зависимости от реакции организма человека
  • 11.2. Единицы измерения и приборы для измерения атмосферного давления
  • Единицы измерения атмосферного давления
  • Соотношение единиц измерения барометрического давления
  • Приборы для измерения атмосферного давления.
  • 12. Гигиеническое значение, методы измерения интенсивности ультрафиолетового излучения и выбор доз искусственного облучения
  • 12.1. Гигиеническое значение ультрафиолетовой радиации
  • 12.2. Методы определения интенсивности ультрафиолетовой радиации и ее биодозы при профилактическом и лечебном облучении
  • Основные характеристики приборов серии «Аргус»
  • 13. Аэроионизация; ее гигиеническое значение и методы измерения
  • 14. Приборы для измерения показателей метеорологических и микроклиматических условий с совмещенными функциями
  • Режимы работы прибора ивтм -7
  • Требования к измерительным приборам
  • 15. Нормирование некоторых физических факторов среды обитания в различных условиях жизнедеятельности человека
  • Характеристика отдельных категорий работ
  • Допустимые величины интенсивности теплового облучения поверхности тела
  • Критерии допустимого теплового состояния человека (верхняя граница)*
  • Критерии допустимого теплового состояния человека (нижняя граница)*
  • Критерии предельно допустимого теплового состояния человека (верхняя граница)* для продолжительности не более трех часов за рабочую смену
  • Критерии предельно допустимого теплового состояния человека (верхняя граница)* для продолжительности не более одного часа за рабочую смену
  • Допустимая продолжительность пребывания работающих в охлаждающей среде при теплоизоляции одежды 1 кло*
  • Гигиенические требования к теплозащитным показателям
  • (Суммарное тепловое сопротивление) головных уборов, рукавиц и обуви
  • Применительно к метеорологическим условиям различных климатических регионов
  • (Физическая работа категории iIа, время непрерывного пребывания на холоде – 2 часа)
  • Значения тнс-индекса (оС), характеризующие микроклимат как допустимый в теплый период года при соответствующей регламентации продолжительности пребывания
  • Рекомендуемые величины интегрального показателя тепловой нагрузки среды
  • Классы условий труда по показателям микроклимата для рабочих помещений
  • Охлаждающим микроклиматом
  • Классы условий труда по показателю температуры воздуха, °с (нижняя граница), для открытых территорий в зимний период года применительно к категории работ Iб
  • Классы условий труда по показателю температуры воздуха, °с (нижняя граница), для открытых территорий в зимний период года применительно к категории работ iIа-iIб
  • Классы условий труда по показателю температуры воздуха, °с (нижняя граница) для неотапливаемых помещений применительно к категории работ Iб
  • Классы условий труда по показателю температуры воздуха, °с (нижняя граница) для неотапливаемых помещений применительно к категории работ Па-Пб
  • Взаимосвязь между средневзвешенной температуры кожи человека, его физиологическим состоянием и типом погоды и оценка типов погоды для отдыха, лечения и туризма
  • Характеристика классов погоды момента при положительной температуре воздуха
  • Характеристика классов погоды момента при отрицательной температуре воздуха
  • Физиолого-климатическая типизация погод теплого времени года
  • Журнал регистрации сведений о погодных условиях в______________
  • Оптимальные и допустимые нормы температуры, относительной влажности и скорости движения воздуха в помещениях жилых зданий
  • Гигиенические требования к параметрам микроклимата основных помещений закрытых плавательных бассейнов
  • Уровни уф-а излучения (400-315 нм)
  • 2.2.4. Гигиена труда. Физические факторы
  • 2. Нормируемые показатели аэроионного состава воздуха
  • 3. Требования к проведению контроля аэроионного состава воздуха
  • 4. Требования к способам и средствам нормализации аэроионного состава воздуха
  • Термины и определения
  • Библиографические данные
  • Классификация условий труда по аэроионному составу воздуха
  • 16. Ситуационные задачи
  • 16.1. Ситуационные задачи по расчету прогноза состояния здоровья людей в зависимости от температуры наружного воздуха
  • Ультрафиолетового облучения с помощью биодозиметра
  • 16.5. Ситуационные задачи по определению регламентов облучения ультрафиолетовым излучением в фотариях
  • 17. Литература, нормативные и методические материалы
  • 17.1. Библиография
  • 17.2. Нормативные и методические документы
  • Гигиенические требования к аэроионному составу воздуха производственных и общественных помещений: СанПиН 2.2.4.1294-03
  • Гигиенические требования к размещению, устройству, оборудованию и эксплуатации больниц, родильных домов и других лечебных стационаров: СанПиН 2.1.3.1375-03.
  • Психрометрическая будка (будка Вильде) с закрытой психрометрической цинковой клеткой
  • Психрометрическая будка (будка Вильде, английская будка)
  • Вспомогательная величина а при определении средней радиационной температуры табличным методом в.В. Шиба
  • Вспомогательная величина в при определении средней радиационной температуры табличным методом в.В. Шиба
  • Нормальная шкала эффективных температур
  • Единицы измерения атмосферного давления

    Обозначение единицы

    Соотношение с единицей системы СИ –

    паскалем (Па) и другими

    Миллиметр ртутного столба

    (мм рт. ст.)

    1 мм. рт. ст. = 133,322 Па

    Миллиметр водного столба

    (мм вод. ст.)

    1 мм вод. ст. = 9,807 Па

    Атмосфера техническая (ат)

    1 ат = 9,807  10 4 Па

    Атмосфера физическая (атм)

    1 атм = 1,033 ат = 1,013  10 4 Па

    1 тор = 1 мм рт. ст.

    Миллибар (мб)

    1 мб = 0,7501 мм рт. ст. = 100 Па

    Таблица 24

    Соотношение единиц измерения барометрического давления

    мм рт. ст.

    мм вод. ст.

    Паскаль, Па

    Атмосфера нормальная, атм

    Миллиметр ртутного столба,

    мм рт. ст.

    Миллибар, мб

    Миллиметр водного столба, мм вод. ст.

    Из приведенных в таблицах 23 и 24 единиц измерения наибольшее распространение в России получили мм. рт. ст. имб . Для удобства пересчетов в необходимых случаях можно использовать следующее соотношение:

    760 мм рт. ст. = 1013мб = 101300Па (36)

    Более простой способ:

    Мб = мм. рт. ст.(37)

    Мм рт. ст. = мб(38)

    Приборы для измерения атмосферного давления.

    В гигиенических исследованиях применяются два типа барометров :

      жидкостные барометры ;

      металлические барометры – анероидные .

    Принцип работы различных модификаций жидкостных барометров основан на том, что атмосферное давление уравновешивает определенной высоты столб жидкости в запаянной с одного конца (верхнего) трубке. Чем меньше удельный вес жидкости, тем выше столб последней, уравновешиваемый давлением атмосферы.

    Наибольшее распространение получили ртутные барометры , так как высокий удельный вес жидкой ртути позволяет сделать прибор более компактным, что объясняется уравновешиванием давления атмосферы менее высоким столбом ртути в трубке.

    Используются три системы ртутных барометров:

      чашечные ;

      сифонные ;

      сифонно-чашечные .

    Указанные системы ртутных барометров схематически представлены на рисунке 35.

    Станционные чашечные барометры (рисунок 35). В этих барометрах в чашку, заполненную ртутью, помещается запаянная сверху стеклянная трубка. В трубке над ртутью образуется так называемая торичеллиевая пустота. Воздух в зависимости от состояния обусловливает то или иное давление на ртуть, находящуюся в чашке. Таким образом, уровень ртути устанавливается на ту или иную высоту в стеклянной трубке. Именно данная высота будет уравновешивать давление воздуха на ртуть в чашке, а значит отражать атмосферное давление.

    Высоту уровня ртути, соответствующую атмосферному давлению, определяют по так называемой компенсированной шкале, имеющейся на металлической оправе барометра. Изготавливаются чашечные барометры со шкалами от 810 до 1110 мб и от 680 до 1110 мб.

    Рис. 35. Чашечный барометр (слева)

    А – шкала барометра; Б – винт; В – термометр; Г – чашечка со ртутью

    Ртутный сифонный барометр (справа)

    А – верхнее колено; В – нижнее колено; Д – нижняя шкала; Е – верхняя шкала; Н – термометр; а – отверстие в трубке

    В отдельных модификациях имеются две шкалы – в мм рт. ст. и мб. Десятые доли мм рт. ст. или мб отсчитываются по подвижной шкале – нониусу. Для этого необходимо винтом установить нулевое деление шкалы нониуса на одной линии с вершиной мениска ртутного столба, отсчитать число целых делений миллиметров ртутного столба по шкале барометра и число десятых до-лей миллиметра ртутного столба до первой отметки шкалы нониуса, совпадающей с делением основной шкалы.

    Пример. Нулевое деление шкалы нониуса находится между 760 и 761 мм рт. ст. основной шкалы. Следовательно, число целых делений равно 760 мм рт. ст. К этой цифре необходимо прибавить число десятых долей миллиметра ртутного столба, отсчитанных по шкале нониуса. Первым с делением основной шкалы совпадает 4-е деление шкалы нониуса. Барометрическое давление равно 760 + 0,4 = 760,4 мм рт. ст.

    Как правило, в чашечные барометры встроен термометр (ртутный или спиртовый в зависимости от предполагаемого диапазона температуры воздуха при исследованиях), так как для получения окончательного результата необходимо специальными расчетами привести давление к стандартным условиям температуры (0С) и барометрического давления (760 мм рт. ст.).

    В чашечных экспедиционных барометрах перед наблюдением предварительно с помощью специального винта, расположенного в нижней части прибора, устанавливают уровень ртути в чашке на нулевую отметку.

    Сифонные и сифонно-чашечные барометры (рисунок 35). В этих барометрах величина атмосферного давления измеряется по разнице высот ртутного столба в длинном (запаянном) и коротком (открытом) коленах трубки. Данный барометр позволяет производить измерение давления с точностью до 0,05мм рт. ст . При помощи винта в нижней части приборов уровень ртути в коротком (открытом) колене трубки приводят к нулевой точке, а затем отсчитывают показания барометра.

    Сифонно-чашечный инспекторский барометр. Данный прибор имеет две шкалы: слева в мб и справа в мм рт. ст. Для определения десятых долей мм рт. ст. служит нониус. Найденные значения атмосферного давления, как и при работе с другими жидкостными барометрами, необходимо с помощью вычислений или специальных таблиц привести к 0С.

    На метеорологических станциях в показания барометров вводят не только температурную поправку, но и так называемую постоянную поправку: инструментальную и поправку на силу тяжести.

    Устанавливать барометры следует в отдалении или изолированно от источников теплового излучения (солнечное излучение, нагревательные приборы), а также в отдалении от дверей и окон.

    Металлический барометр-анероид (рисунок 36). Данный прибор особенно удобен при проведении исследований в экспедиционных условиях. Однако этот барометр перед использованием должен быть выверен по более точному ртутному барометру.

    Рис. 36. Барометр-анероид

    Рис. 37. Барограф

    Принцип устройства и действия барометра-анероида очень прост. Металлическая подушечка (коробка) с гофрированными (для большей эластичности) стенками, из которой удален воздух до остаточного давления 50-60 мм рт. ст., под воздействием давления воздуха изменяет свой объем и в результате деформируется. Деформация передается по системе рычажков стрелке, которая и указывает на циферблате атмосферное давление. На циферблате барометра анероида вмонтирован изогнутой формы термометр в связи с необходимостью, как указывалось выше, приведения результатов измерения к 0С. Градуировка циферблата может быть в мб или в мм рт. ст. В некоторых модификациях барометра-анероида имеются две шкалы – как в мб, так и в мм рт. ст.

    Анероид-высотомер (альтиметр). В измерении высоты по уровню атмосферного давления заложена закономерность, согласно которой между давлением воздуха и высотой имеется зависимость, весьма близкая к линейной. То есть при подъеме на высоту пропорционально снижается атмосферное давление.

    Данный прибор предназначен для измерения атмосферного давления именно на высоте и имеет две шкалы. На одной из них нанесены величины давления в мм рт. ст. или мб, на другой – высота в метрах. На летательных аппаратах применяют альтиметры с циферблатом, на котором по шкале определяется высота полета.

    Барограф (барометр-самописец). Данный прибор предназначен для непрерывной регистрации атмосферного давления. В гигиенической практике применяются металлические (анероидные) барографы (рисунок 37). Под влиянием изменений атмосферного давления пакет соединенных вместе анероидных коробок в результате деформации оказывает влияние на систему рычажков, а через них на специальное перо с незасыхающими специальными чернилами. При увеличении атмосферного давления анероидные коробки сжимаются и рычажок с пером поднимается кверху. При уменьшении давления анероидные коробки с помощью помещенных внутри их пружин расширяются и перо чертит линию книзу. Запись давления в виде непрерывной линии вычерчивается пером на градуированной в мм рт. ст. или мб бумажной ленте, помещенной на цилиндрический вращающийся с помощью механического завода барабан. Используются барографы с недельным или суточным заводом с соответствующими градуированными лентами в зависимости от цели, задач и характера исследований. Выпускаются барографы с электрическим приводом, вращающим барабан. Однако на практике данная модификация прибора менее удобна, так как ограничивается его использование в экспедиционных условиях. Для устранения температурных влияний на показания барографа в них вставляется биметаллические компенсаторы, автоматически осуществляющие коррекцию (поправку) движения рычажков в зависимости от температуры воздуха. Перед началом работы рычажок с пером с помощью специального винта устанавливается в исходное положение, соответствующее времени, обозначенном на ленте и на уровень давления, измеренный точным ртутным барометром.

    Чернила для записи барограмм можно приготовить по следующей прописи:

    Приведение объема воздуха к нормальным условиям (760 мм рт. ст., 0 С). Данный аспект измерения барометрического давления весьма важен при измерении концентраций загрязняющих веществ в воздухе. Игнорирование указанного аспекта может обусловить значительные ошибки в расчетах концентраций вредных веществ, которые могут достигать 30 и более процентов.

    Приведение объема воздуха к нормальным условиям производится по формуле:

    Пример . Для измерения концентрации пыли в воздухе через бумажный фильтр с помощью электрического аспиратора пропущено 200 л воздуха. Температура воздуха в период его аспирации составляла- +26С, барометрическое давление - 752 мм рт. ст. Необходимо привести объем воздуха к нормальным условиям, то есть к 0С и 760 мм рт. ст.

    Подставляем в формулу Х значения соответствующих параметров примера и рассчитываем искомый объем воздуха при нормальных условиях:

    Таким образом, при расчете концентрации пыли в воздухе необходимо учитывать объем воздуха именно 180,69 л , а не 200л .

    Для упрощения расчетов объема воздуха при нормальных условиях можно пользоваться поправочными коэффициентами на температуру и давление (таблица 25) или рассчитанными готовыми величинами формулы 39 и(таблица 26).

    Таблица 25

    Поправочные коэффициенты на температуру и давление для приведения объема воздуха к нормальным условиям

    (температура 0 о

    Барометрическое давление, мм рт. ст.

    Окончание таблицы 25

    Барометрическое давление, мм рт. ст.

    Таблица 26

    Коэффициенты для приведения объемов воздуха к нормальным условиям

    (температура 0 о С, барометрическое давление 760 мм рт. ст.)

    мм рт. ст.

    мм рт. ст.

    В семнадцатом веке человечеству стал известен и доказан факт, что воздух имеет определённый вес. Предположение его давления на различные предметы было доказано с помощью особого прибора - барометра. О нем пойдет речь в этой статье.

    Прибор, который определяет давление воздуха

    Для начала дадим определение. Барометр - это прибор для измерения определённого давления воздуха на предметы. Его изобретателем стал Э. Торричелли. В 1644 году барометр представлял собой трубку со ртутью и измерительной шкалой. В день, когда проводились испытания барометра, уровень ртути находился на отметке 760 мм, что и послужило поводом считать отметку на этом уровне нормальным давлением. Такие приборы до сих пор используются метеорологическими станциями.

    Через два столетия, после изобретения ртутного барометра в результате множества исследований был сконструирован Люсьеном Види принципиально новый безжидкостный вид. Впоследствии названный барометром-анероидом. На протяжении всего времени существования анероиды приобрели большую популярность у многих пользователей, ведь имеют небольшой размер, легки и точны. По сравнению со ртутными барометрами - анероиды полностью безопасны в использовании.

    Виды барометров

    Ртутный - прибор, измеряющий давление. Принцип действия заключается в движении ртути, относительно нанесенной шкалы.

    Жидкостный - прибор, с помощью которого уровень давления измеряется уравновешиванием веса столба жидкости атмосферным давлением.

    Барометр-анероид - принцип действия и отображение показателей основывается на изменении размеров герметичной металлической коробки, заполненной разрежённым воздухом, под действием на её поверхность атмосферного давления.

    Электронный - это современный вид прибора, который преобразовывает линейные показатели классического анероида в электронный сигнал. Обработанные микропроцессором сигналы, отображаются на жидкокристаллическом экране.

    Барометр-анероид - это самый распространенный из вышеперечисленных приборов, благодаря своим небольшим размерам и отсутсвию жидкости в механизме. Рассмотрим его более детально.

    Строение атмосферного барометра

    • Круглая серебряно-никелевая пластина.
    • Коробка с ребристыми основаниями.
    • Передаточный механизм.
    • Возвратная пружина.
    • Указательная стрелка.

    Атмосферный барометр - принцип работы

    В собранном виде анероид - это коробка с различными механизмами. Когда из неё откачивают определённое количество воздуха, это создает сильное разряжение возвратной пружины, указательной стрелки и передаточного между ними механизма. Под действием давления стенки «барокамеры» сокращаются или увеличиваются в размерах, а указательная стрелка начинает двигаться относительно измерительной шкалы в сторону повышения или снижения давления, соответственно. В спокойном состоянии стрелка будет находиться на отметке в 760 мм.

    Самозаписывающий барометр

    Используется для записи метеорологических данных относительно колебаний атмосферного давления. Другими словами, это усовершенствованный барометр-анероид, с добавлением в барокамеру часового механизма, аппарата удерживающего проградуированную бумагу и стрелки-привода, которая наносит на бумагу чернильную линию.

    Изображаемый «рисунок» на бумаге прибора называется барограммой. В процессе работы барографа, в соответствии с часовыми показателями, механизм наматывает на своё основание специальную бумагу, по поверхности которой скользит и отмечает показатели отклонений атмосферного давления прикрепленная стрелка с чернилами.

    Показатели расхождений давления фиксируются постоянно. Для метеорологов это основной документальный факт изменения погоды в ближайшее время. В зависимости от размеров барабана - продолжительность запечатления записи может составлять от нескольких часов до одной недели. Особая конструкция позволяет снимать показатели и следить за атмосферными показателями в любое время.

    Барометр в телефоне - что это

    Технологии не стоят на месте, и теперь измерить атмосферное давление можно с помощью мобильного устройства. Многие пользователи современных гаджетов, столкнувшись с новой функцией, задаются вопросом - барометр в телефоне, что это? Современная миниатюрная метеостанция позволяет пользователю телефона постоянно проверять в электронном виде уровень атмосферного давления. Отследив показатели давления за определённое время, можно узнать - приближается циклон или антициклон. Эти показатели будут полезны для людей с повышенной чувствительностью к резким перепадам давления.

    Возможности мобильного устройства на этом не останавливаются. В электронном виде оно показывает высоту, географическую ширину и долготу, что, в свою очередь, способствует быстрому поиску аппарата и определению точного места его нахождения. Благодаря спутникам GPS процесс быстр и точен. Мобильный барометр - это точный высотомер. Точность определения нахождения пользователя сводятся до радиуса в 3 метра. Именно такими приборами пользуются альпинисты в горах. Но большую популярность они приобрели в авиационной сфере.

    Барометр, встроенный в часы

    Появился сравнительно недавно. Немногие знают, для чего этот прибор, и большинство задаются вопросом - барометр в часах, что это такое?

    Постараемся разобраться. Барометр в определённых видах часов представлен в электронном или механическом виде. Электронный вид - ничем не отличается от подачи данных атмосферного давления и их вывода на экран, как на телефоне. Часы с механическим отображением давления являются идеально точной мини-копией анероида. Разница лишь в упрощённой шкале отображения показаний. Стоимость часов-барометров достаточно велика, но, как правило, они противоударные и водонепроницаемые.

    «Нестандартный барометр»

    Благодаря своим основоположникам его называют Гарвардским. Экономический барометр лежит в основе формирования эконометрики. Предсказывает изменение конъюнктуры, динамики спроса и предложения и т.п. Гарвардский барометр - это описание эмпирических закономерностей и экстраполяции за последние месяцы наблюдения. В их основу включено исследование динамики развития разных показателей экономики.

    Прогноз развития отображался в графическом виде. Каждая кривая линия, нанесённая на график, отображала тот или иной показатель. Например, кривая «А» отображала изменения средних биржевых курсов (фондовый рынок); кривая «В» отображала индекс оптовых цен и изменения товарооборота (производства); кривая «С» - отображала рост или падение курса ценных бумаг на денежном рынке. В идеальном состоянии графика - показатели «А» и «С» должны совпадать на уровне максимума первой единицы и минимуме кривой второй единицы.

    Благодаря руководству У. Персонса и У. Митчелла - такого рода прибором США пользовались до 1925 года. Гарвардский барометр Митчелла - это первый мощный регулятор и показатель факторов в народном хозяйстве страны. Учитывая популярность и эффективность такого построения и отображения фактов - этот метод приняли на вооружение многие страны по всему земному шару. Но перспектива развития многих стран по этому соотношению показателей в экономике долго не просуществовало, ведь до начала и после Второй Мировой Войны - в процентном соотношении они стали неактуальными. Экономики всех стран, принимавших участие в войне, были в полном упадке, и для решения поднятия «с колен» каждая страна применяла свои методы для стабилизации собственной денежной валюты. Старые методы поднятия показателей (вывода из кризиса) вовсе не применялись, но основы, заложенные Митчеллом, стали прецедентом для мировой экономики.

    Манометр

    Стоит отметить еще одно устройство, которое также измеряет давление, только не воздуха, а газов и жидкостей - этот прибор называется манометр. Эти два прибора очень взаимосвязаны. Сумма показаний манометра и барометра - это давление абсолютное, которое имеет больший показатель, чем атмосферное.

    Заключение

    В современном мире барометр - это один из главных приборов метеорологии. Отмеченные показатели на бумаге помогают многим людям узнать о предстоящих изменениях атмосферного давления, соответственно, к ним подготовиться. Это в большей степени касается гипертоников. Барометр - это необязательный предмет в доме, но в качестве вспомогательного элемента или вдобавок к интерьеру - желателен. Современное обрамление столь нужного прибора позволяет его вписать в любое интерьерное решение.

    Для измерения атмосферного или близкого к нему давления применяют барометры. Эти приборы показы­вают абсолютное давление воздуха. Шкала барометра ограничена областью измерения от 680 до 800 мм рт. ст. Барометры применяют для измерения давления в открытом пространстве. Жидкостные барометры. Прибор (рис. 290) представляет собой закры­тую с одного конца U-образную трубку, запаянный конец которой значительно длиннее открытого. Трубку заполняют ртутью; над ее слоем в запаянном конце трубки со­здается безвоздушное пространство. Столб ртути в запаянном длинном

    Рис. 291. Схема устройства коробчатого

    барометра:

    / - коробка с волнистой крышкой; 2 - пру* жнна; 3 - система рычагов; 4 - стрелка.

    В табл. 11 приведены соотношения между указан-j ными величинами.

    ПРИБОРЫ ДЛЯ ИЗМЕРЕНИЯ ДАВЛЕНИЯ

    В лабораторной практике применяют приборы дл^ измерения давления - атмосферного и близкого к нем}

    Хотя все эти приборы отличаются по конструкции но принципиальной разницы между ними нет; все ониЗ измеряют силу, действующую на единицу поверхности.^ В качестве противодействия этой силе служит или столб} жидкости, или сила пружины.


    конце имеет такую высоту, при которой вес этого стол­ба уравновешивается весом столба атмосферного воз­духа.

    Между обоими коленами трубки установлена подвиж­ная миллиметровая шкала; при ее помощи можно изме­рить разность высот в обоих коленах. Эта разность оавна давлению воздуха, выраженному в миллиметрах ртутного столба.

    При точных барометрических измерениях одновремен­но следует определять и температуру окружающего про­странства. Это необходимо делать потому, что с измене­нием температуры изменяется плотность ртути вследствие

    Металлические барометры различают двух основньи конструкций: коробчатые и трубчатые. У к о р о б ч а| тых барометров (рис. 291) давление воздуха дей|

    Рис. 293. Барограф.

    Рис. 292. Схема устройства трубчатого барометра:

    / - полая трубка; 2 - система ры­чагов; 3 - стрелка.

    :

    ствует на волнистую, очень эластичную крышку пусто металлической эвакуированной коробки.

    У трубчатых барометров (рис. 292) да^ ление воздуха действует на плоскую согнутую пустуй внутри металлическую трубку - наружная поверхности ее больше, чем внутренняя. Небольшие колебания давлеЗ ния воздуха при помощи системы рычагов увеличиваются и указываются на шкале.

    Самопишущие барометры, так называв мые барографы (рис. 293), снабжены рычагомл который давит на писец, касающийся ленты диаграммы -I давление - время, укрепленной на барабане. Барабан при водится в движение часовым механизмом, завод которой может быть суточным или недельным.

    Приборы для измерения давления больше атмосферного

    Для измерения давления больше атмосферного при^ меняют манометры (так же иногда называют при|


    боры и для определения давления ниже атмосферного - см. далее).

    Жидкостные манометры бывают откры­тые и закрытые.

    Открытые жидкостные манометры применяются двух видов: прямые и наклонные. Прямой (рис. 294) представ­ляет собой открытую с обеих сторон U-образную трубку, один конец которой соединяют с системой с измеряемым давлением. Трубка наполнена запираю­щей жидкостью, в качестве которой слу­жат вода или ртуть, а также силиконы. Преимуществом силиконов является то, что они не смачивают, как вода, стенок трубки и при этом более чувствительны, чем ртуть, к небольшим колебаниям давления.

    Поскольку давление в системе выше атмосферного, столб ртути в правом ко­лене (см. рис. 294) оказывается выше, чем столб ртути в левом колене. Разность их равна величине h, измеряемой по шкале.

    Рис. 294. Жидкостной открытый манометр, прямой.

    Открытые манометры с наклонным ко­леном (рис. 295) обладают более высокой чувствительностью по сравнению с пря­мыми: в наклонном колене жидкость продвигается на большее расстояние, чем в вертикальном. Давление столба h мм рт. ст.) в этом случае вычисляют путрм умножения длины столба жидкости / на синус угла наклона а, т. е. h - I bin a.

    В закрытых жидкостных манометрах рабочим телом является газ, находящийся над запирающей жидкостью (ртуть) в закрытом колене (рис. 29Р-). При измерении по­вышенного давления столб ртути в правом колене повы­шается и газ сжимается. Длину его столба измеряют по шкале. Недостатком этих манометров является то, что деления шкалы у них неравномерные, т. е. более узкие для более высокого давления.

    Металлические манометры. Применяются манометры с пластинчатой пружиной (рис. 297), у ко­торых, в отличие от барометров, вместо эвакуированной коробки имеется только эластичная крышка. На одну

    Трубчатые пишущие ма­нометры (рис. 298) снабжены со­гнутой неэвакуированной трубкой, име­ющей в разрезе эллиптическую фор­му. Эту трубку соединяют с сосудом, в котором должно быть измерено дав­ление.


    Распространены также специаль­ные манометры, у которых на шка-

    Рис. 297. Схема устройства Рис. 298. Схема устройства
    металлического манометра металлического трубчатого

    с пластинчатой пружиной. манометра.

    ле имеется красная черта, указывающая предельное дав-} ление, которое может быть развито в аппарате или соя суде, снабженном таким манометром. При помощи систе-..


    мы рычагов и писца давление, развивающееся в аппарате, записывается на специальной круглой диаграмме или, если применен барограф, на плоской диаграмме давле­ние - время.

    Приборы для измерения давления ниже атмосферного

    Для измерения давления ниже атмосферного приме­няют вакуумметры. Существует несколько конструкций этих приборов, рассчитанных на определенные границы разрежения (вакуума).

    Простые ртутные манометры (вакуумметры), которые применяют для контроля за процессом перегонки под ва­куумом, представляют собой LJ-образную трубку и рас­считаны на диапазон давления от 0 до приблизительно 200 мм рт. ст. (рис. 299). Шкала может быть подвижной, тогда ее нулевую точку устанавливают на уровне мениска столба ртути в запаянном колене, или неподвижной. В этом случае для определения давления следует склады­вать расстояния между нулем и обоими менисками.

    С такими манометрами (вакуумметрами) можно опре­делять давление с точностью до 0,5 мм рт. ст., если отсчитывать на глаз, и до 0,02 мм рт. ст., если отсчет вести с помощью катетометра. Катетометр представляет собой горизонтальную зрительную трубу, передвигающую­ся вертикально по станине, установленной строго верти­кально. С помощью шкалы, которой снабжена станина, и нониуса положение трубы может быть определено с точ­ностью до 0,01 мм. При отсчетах трубу нужно устанавли­вать так, чтобы горизонтальная нить, натянутая по диа­метру окуляра, всегда совпадала с верхним краем мени­ска ртути. Замер производят несколько раз, после чего находят среднее арифметическое из всех отсчетов. Давле­ние будет равно разности средних величин, определенных для каждого из менисков манометра (вакуумметра).

    Для измерения высокого вакуума, т. е. очень малых давлений, порядка 10~ в мм рт. ст., применяют другие приборы. Из них часто пользуются манометром Мак? Леода (рис. 300) Этот прибор верхним концом трубки £ припаивают к той части установки, в которой нужно из­мерять давление. Для измерения давления медленно от­крывают кран 3, впуская внешний воздух в резервуар /.

    Под действием атмосферного давления ртуть поднимается, заполняя баллон 5, в котором до этого было давление, равное давлению в установке. Нужно помнить, что ртуть в приборе должна подниматься очень медленно. Это важ­но потому, что при быстром подъеме возможны аварии вследствие толчков или ударов ртути о стенки прибора. Для облегчения регулирования впуска воздуха через

    Рис. 299. Простой ртутный манометр

    (вакуумметр):

    а - исходное положение; б - положение прн из­мерении.

    кран 3 его входное отверстие следует соединить резиновой трубкой с капилляром. Через этот капилляр воздух будет поступать в прибор с требуемой скоростью. Регулировать скорость подъема можно также при помощи крана 4. Когда баллон 5 заполнится ртутью, находящийся в нем ранее газ будет сжат в капилляре 6. Поэтому измеряе-j мое давление можно вычислить по формуле Бойля -\ Мариотта, исходя из того, что объем сжатого газа Vi йч его давление Р 1 известны, как известен и объем газа V 0 i до сжатия:

    P n V n = PiVi


    Объем газа до Сжатия равен сумме емкостей баллона 5, широкой трубки выше метки с и капилляра 6. Эти вели­чины должны быть определены еще до того, как манометр будет впаян в установку*.

    Давление сжатого газа находят по разности уровней ртути в капиллярах 6 и 7.

    Для оборудования обычного манометра Мак-Леода требуется от 5 до 10 кг ртути. Поэтому необходимо очень осторожно обращаться с прибором, так как всегда есть опасность разбить его и разлить ртуть. Более безопас­ные условия работы создаются при использовании мано-

    Рис. 301. Манометр Мозера (вакуумметр): а - исходное положение; б - положение при измерении.

    метра (вакуумметра) Мозера, который заполняется значительно меньшим количеством ртути (рис. 301). Ма­нометр Мозера действует по тому же принципу, что и манометр Мак-Леода, но для его наполнения требуется всего лишь 80-300 г ртути. Эти приборы имеют чаще всего три области измерения: от 500 до 10 мм рт. ст., от Ю -1 до 10 мм рт. ст. и от Ю -1 до Ю -4 мм рт. ст.

    При помощи шлифа прибор соединяют с аппаратом, в котором требуется измерить давление. При измерении манометр поворачивают против часовой стрелки до тех

    * Подробное описание метода определения этих величин см. Герасимов Я. П., Древинг В. П., Коман-Д и н А. В., Химическая термодинамика, Изд. МГУ, 1951.

    пор, пока ртутный мениск во внешней трубке не достигнет некоторого предельного уровня. По уровню мениска ртути во внутреннем колене, снабженном логарифмической шка­лой, определяют давление в системе (в мм рт. ст.) Перед каждым отсчетом манометр (вакуумметр) следует вначале. привести в исходное положение, т. е. шар должен быть опущен вниз.

    Другие способы измерения вакуума

    Кроме описанных, существует еще несколько способов опреде­ления высокого вакуума. Так, вакуумметр Пирани основан на зависимости теплопроводности газов от давления. В ионизационных вакуумметрах Пеннинга использовано образование ионов при столкновении молекул газа с электронами. Мольный вакуумметр Геде основан, на измерении силы удара молекул газа. Все эти приборы позволяют измерять давление до 10 _в мм рт. ст. Работа с этими вакуумметра­ми подробно описана в инструкциях, приложенных к приборам.


    Похожая информация.


    Приборы для измерение атмосферного давления

    Измерение атмосферного давления производится с помощью барометров. Οʜᴎ бывают ртутны е и анероиды .

    Ртутные барометры представляют из себяпо существу весы, где давление столба воздуха, единичного сечения, простирающегося через всю атмосферу, уравнивает столб ртути, заключенный в стеклянную трубку, из которой выкачан воздух.

    К стеклянной трубке прикреплена шкала, по которой отсчитывается величина давления (мм pт. ст. или мб).Ртутные барометры требуют поправки на температуру (ее изменения сказываются на высоту ртутного столба). Обычно показания барометра приводятся к температуре ртути 0 о С. Вместе с тем, вводится поправка на силу тяжести, которая зависит от географической широты (на полюсе сила тяжести наибольшая, на экваторе наименьшая). Показания барометра принято приводить к нормальной силе тяжести на широте 45°. Есть еще инструментальная поправка, которая возникает при изготовлении барометра. Все поправки обычно сводятся в специальные таблицы, имеющиеся на метеостанции для каждого барометра.

    Примером ртутного барометра служит барометр чашечный стационарный .

    Барометры анероиды предназначены главным образом для измерения давления в полевых условиях. Приемником атмосферного давления в анероиде служит металлическая волнистая цилиндрическая коробочка, из которой выкачан воздух. Коробочка одним концом (нижним) прикреплена к неподвижному основанию, к верхней ее части присоединœена пружина. При увеличении атмосферного давления коробочка сжимается, а при уменьшении, под действием пружины, распрямляется. Эти изменения передаются системой рычагов на стрелку, которая перемещается вдоль шкалы с нанесенными делœениями, соответствующими давлению в миллиметрах ртутного столба или миллибарах.

    Барометр анероид устанавливается в помещении. Он снабжен термометром. Показания барометра анероида нуждаются в температурной поправке (они приводятся к 0 о С). Вместе с тем, вводятся поправки шкаловая и добавочная. Все поправки даются в сертификате (свидетельстве) прибора.

    Для непрерывной регистрации атмосферного давления и его изменения применяется прибор (самописец) барограф . Он состоит из приемной части (несколько анероидных коробочек), передающего устройства (система рычагов с пером) и барабана с часовым механизмом, на который надевается лента͵ разграфленная по вертикали линиями, означающими время, по горизонтали линиями, означающими величину давления.

    Есть барографы с суточным и недельным заводом часового механизма.

    При увеличении атмосферного давления анероидные коробочки сжимаются и линия, которую чертит перо на барабане, поднимается вверх. При уменьшении давления происходит обратное явление. С помощью графического изображения хода давления на ленте определяется барическая тенденция.

    Барограф устанавливается внутри помещений и является одним из наиболее показательных приборов, позволяющих наглядно и непрерывно следить за ходом атмосферного давления. Изменение давления является одним из признаков изменения погоды (понижение давления свидетельствует о приближении циклона - область с относительно плохой погодой, повышение давления говорит о приближении антициклона - области с относительно хорошей погодой).

    При отсутствии барографа и барометра об изменении давления (его понижении или повышении) можно судить по показаниям барометрического высотомера, имеющегося на каждом самолете. Принцип действия прибора основан на измерении атмосферного давления, для чего служит анероидная коробочка, заключенная в корпусе прибора.

    Приборы для измерение атмосферного давления - понятие и виды. Классификация и особенности категории "Приборы для измерение атмосферного давления" 2017, 2018.

    Загрузка...