domvpavlino.ru

В чем измеряется солнечная радиация. Солнечные излучения. Некоторые физические основы эффективного аккумулирования солнечной энергии солнечным соляным прудом



Солнечная радиация

Со́лнечная радиа́ция

электромагнитное излучение, исходящее от Солнца и поступающее в земную атмосферу. Длины волн солнечной радиации сосредоточены в диапазоне от 0,17 до 4 мкм с макс. на волне 0,475 мкм. Ок. 48 % энергии солнечного излучения приходится на видимую часть спектра (дл. волны от 0,4 до 0,76 мкм), 45 % – на инфракрасную (более 0,76, мкм), и 7 % – на ультрафиолетовую (менее 0,4 мкм). Солнечная радиация – осн. источник энергии процессов в атмосфере, океане, биосфере и т. д. Она измеряется в единицах энергии на единицу площади в единицу времени, напр. Вт/м². Солнечная радиация на верхней границе атмосферы на ср. расстоянии Земли от Солнца называется солнечной постоянной и составляет ок. 1382 Вт/м². Проходя сквозь земную атмосферу, солнечная радиация меняется по интенсивности и спектральному составу вследствие поглощения и рассеяния на частицах воздуха, газовых примесей и аэрозоля. У поверхности Земли спектр солнечного излучения ограничен 0,29–2,0 мкм, а интенсивность существенно снижена в зависимости от содержания примесей, высоты над уровнем моря и облачности. До земной поверхности доходит прямая радиация, ослабленная при прохождении сквозь атмосферу, а также рассеянная, образовавшаяся при рассеянии прямой в атмосфере. Часть прямой солнечной радиации отражается от земной поверхности и облаков и уходит в космос; рассеянная радиация также частично уходит в космос. Остальная солнечная радиация в осн. переходит в тепло, нагревая земную поверхность и частично воздух. Солнечная радиация, т. обр., представляет собой одну из осн. составляющих радиационного баланса.

География. Современная иллюстрированная энциклопедия. - М.: Росмэн . Под редакцией проф. А. П. Горкина . 2006 .


Смотреть что такое "солнечная радиация" в других словарях:

    Электромагнитное и корпускулярное излучения Солнца. Электромагнитное излучение охватывает диапазон длин волн от гамма излучения до радиоволн, его энергетический максимум приходится на видимую часть спектра. Корпускулярная составляющая солнечной… … Большой Энциклопедический словарь

    солнечная радиация - Полный поток электромагнитной радиации, излучаемой Солнцем и попадающий на Землю … Словарь по географии

    У этого термина существуют и другие значения, см. Радиация (значения). В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомн … Википедия

    Все процессы на поверхности земного шара, каковы бы они ни были, имеют своим источником солнечную энергию. Изучаются ли процессы чисто механические, процессы химические в воздухе, воде, почве, процессы ли физиологические или какие бы то ни было… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    Электромагнитное и корпускулярное излучение Солнца. Электромагнитное излучение охватывает диапазон длин волн от гамма излучения до радиоволн, его энергетический максимум приходится на видимую часть спектра. Корпускулярная составляющая солнечной… … Энциклопедический словарь

    солнечная радиация - Saulės spinduliuotė statusas T sritis fizika atitikmenys: angl. solar radiation vok. Sonnenstrahlung, f rus. излучение Солнца, n; солнечная радиация, f; солнечное излучение, n pranc. rayonnement solaire, m … Fizikos terminų žodynas

    солнечная радиация - Saulės spinduliuotė statusas T sritis ekologija ir aplinkotyra apibrėžtis Saulės atmosferos elektromagnetinė (infraraudonoji 0,76 nm sudaro 45 %, matomoji 0,38–0,76 nm – 48 %, ultravioletinė 0,38 nm – 7 %) šviesos, radijo bangų, gama kvantų ir… … Ekologijos terminų aiškinamasis žodynas

    Излучение Солнца электромагнитной и корпускулярной природы. С. р. основной источник энергии для большинства процессов, происходящих на Земле. Корпускулярная С. р. состоит в основном из протонов, обладающих около Земли скоростями 300 1500… … Большая советская энциклопедия

    Эл. магн. и корпускулярное излучение Солнца. Эл. магн. излучение охватывает диапазон длин волн от гамма излучения до радиоволн, его энергетич. максимум приходится на видимую часть спектра. Корпускулярная составляющая С. р. состоит гл. обр. из… … Естествознание. Энциклопедический словарь

    прямая солнечная радиация - Солнечная радиация, поступающая непосредственно от солнечного диска … Словарь по географии

Книги

  • Зависимость распространения гельминтов от экологических факторов , Салех Магеррамов. Изучение гельминтофауны овец представлены в разных экологических зонах Нахичеванской АР. Наличие зональности в распределении гельминтофауны овец на территории Нахичеванской АР отмечается в…

Страница 2 из 6

III. 1. ХАРАКТЕРИСТИКА СОЛНЕЧНОЙ РАДИАЦИИ
Солнечная радиация представляет собой поток идущего от Солнца электромагнитного излучения в широком диапазоне длин волн. В Международной системе единиц (СИ) длины волн оптического диапазона измеряются в микрометрах (мкм) или нанометрах (им), для которых существует соотношение: 1 мкм= 10 3 нм.
К верхней границе атмосферы на перпендикулярную к солнечным лучам поверхность поступает 1,98 кал/(см 2 мин) лучистой энергии (~ 140 тыс. лк). Эта величина радиационных условий и характеризует «солнечную постоянную».
Для количественной оценки солнечного излучения используют два показателя. Плотность потока (интенсивность) радиации - поток лучистой энергии, проходящей в единицу времени через перпендикулярную лучам единицу поверхности. Наиболее распространенными единицами измерения являются Вт/м 2 или кал/(см 2 мин). Сумма (доза) радиации - количество радиации, приходящей на единицу площади соответственно ориентированной поверхности за время действия облучения (час, день и т. д.). Измеряется она в кал/см 2 , ккал/см 2 , Дж/см 2 постояные множители для различных единиц измерения радиации приведены в работе .

В энергетическом отношении солнечная радиация почти полностью (на 99%) сосредоточена в области 290-4000 нм. ;)|и коротковолновая, или интегральная, радиация (ИР). Ра-/пьчцпя с длиной волн свыше 4000 нм относится к длинноволновой, или тепловой.
Для физиологических процессов растения наибольшее значите имеет коротковолновая радиация. Она подразделяется на ультрафиолетовую (290-380 нм), оказывающую фотоморфоге-ический эффект, видимую, или фотосинтетически активную радиацию (ФАР, 380-710 нм), дающую фотосинтетический, фотоморфогенетический и тепловой эффект, и близкую инфракрасную радиацию (750-4000 нм), дающую морфогенетический и тепловой эффект .
Величина ФАР может определяться либо путем непосредственного измерения с помощью фитопиранометров, либо рассчитываться на основе ИР с помощью переходных коэффициентов .
Нсли актинометрическая станция находится на расстоянии не более 50 км от опытного участка, можно пользоваться данными прихода суммарной ИР, полученной на станции, и переходить от них к суммарной ФАР. Суммарную приходящую ФАР вычисляют приближенно по формуле

2q* = 2qc, (in. 1)

где - дневная (месячная, годовая) сумма ИР (прямой и рассеянной); С - переходный коэффициент, равный 0,5.
Суммарная ИР может быть приближенно рассчитана по формуле :
Q = 49SU1 X 10-44-10,5(sinun)2,1, (Ш.2)

где S - продолжительность солнечного сияния за месяц; hu - полуденная высота Солнца на 15-е число месяца.

Определение месячных сумм радиации по этой формуле для территории от 35 до 65° с. ш. дает ошибку не более 10%.
Для оценки агроклиматических ресурсов по обеспеченности тершей ФАР могут быть использованы климатологические средние месячные суммы или карты сумм ФАР для районов Советского Союза .
Коротковолновая радиация подразделяется на следующие виды : S -прямая солнечная радиация; D - рассеянная радиация; Q - суммарная радиация, равная S + D; R - отраженная от поверхности земли или растений радиация; Вк = - (J R --остаточная коротковолновая радиация, или коротковолновый радиационный баланс. Все указанные виды радиации количественно оцениваются через плотности лучистого потока.
Следует отметить, что до последнего времени в подавляющей части работ фитофизиологического и экологического характера световые условия оценивались в единицах освещенности - люксах. Это имело место и в исследованиях с виноградом. Характеристика освещенности в люксах дает неполное представление об обеспеченности растений энергией солнечной радиации .
Для перехода от освещенности (в люксах) к энергетическим единицам используют пересчетные коэффициенты - энергетические эквиваленты люкса. В случае обратного пересчета пользуются световыми эквивалентами радиации. Для суммарной ИР световой эквивалент 1 кал/(см 2 мин) составляет 70 тыс. лк с пределами колебаний примерно ±5% . Световой эквивалент 0,1 кал/(см 2 мин) ФАР равен 20 тыс. лк . Энергетический эквивалент люкса для суммарной ФАР в безоблачную погоду для высот Солнца 11, 19 и 65° практически одинаков - 5,72хЮ_6 кал/(см 2 мин). При сплошной облачности 1 лк равен 3,88х10- 6 кал/(см 2 - мин) . По Цельникер , энергетический эквивалент люкса для ясной погоды при высоте Солнца 40-50° равен 5,70х10 6 кал/(см 2 - мин) для ФАР в границах 380-710 нм.

Лучистая энергия Солнца, или солнечная радиация, является основным источником тепла для поверхности Земли и для ее атмосферы. Радиация, поступающая от звезд и Луны, ничтожно мала по сравнению с солнечной радиацией и существенного вклада в тепловые процессы на Земле не вносит. Так же ничтожно мал поток тепла, направленный к поверхности из глубин планеты. Солнечная радиация распространяется по всем направлениям от источника (Солнца) в виде электромагнитных волн со скоростью, близкой к 300 000 км/сек. В метеорологии рассматривают преимущественно тепловую радиацию, определяемую температурой тела и его излучательной способностью. Тепловая радиацияимеет длины волн от сотен микрометров до тысячных долей микрометра. Рентгеновское излучение и гамма-излучение в метеорологии не рассматриваются, так как в нижние слои атмосферы они практически не поступают.

Тепловую радиацию принято подразделять на коротковолновую и длинноволновую . Коротковолновой радиацией называют радиацию в диапазоне длин волн от 0,1до 4 мкм, длинноволновой - от 4 до 100 мкм. Солнечная радиация, поступающая к поверхности Земли, на 99% является коротковолновой. Коротковолновую радиацию подразделяют на ультрафиолетовую (УФ), с длинами волн от 0,1 до 0,39 мкм; видимый свет (ВС) - 0,4 - 0,76 мкм; инфракрасную (ИК) - 0,76 - 4 мкм. ВС и ИК радиация дают наибольшую энергию: на ВС приходится 47% лучистой энергии, на ИК - 44%, а на УФ - только 9% лучистой энергии. Такое распределение тепловой радиации соответствует распределению энергии в спектре абсолютно черного тела с температурой в 6000К. Эту температуру считают условно близкой к фактической температуре на поверхности Солнца (в фотосфере, являющейся источником лучистой энергии Солнца). Максимум лучистой энергии при такой температуре излучателя, согласно закону Вина

l= 0,2898/Т (см*град). (28)

приходится на сине-голубые лучи с длинами около 0,475 мкм (l.- длина волны, Т - абсолютная температура излучателя).

Общее количество излучаемой тепловой энергии пропорционально, согласно закону Стефана-Больцмана, четвертой степени абсолютной температуры излучателя:

где s = 5,7*10 -8 Вт/м 2 *К 4 (постоянная Стефана-Больцмана).

Количественной мерой солнечной радиации, поступающей на поверхность, служит энергетическая освещенность, или плотность потока радиации . Энергетическая освещенность - это количество лучистой энергии, поступающей на единицу площади в единицу времени . Она измеряется в Вт/м 2 (или кВт/м 2). Это означает, что на 1 м 2 в секунду поступает 1 Дж (или 1 кДж) лучистой энергии. Энергетическую освещенность солнечной радиации, падающей на площадку единичной площади, перпендикулярную солнечным лучам в единицу времени на верхней границе атмосферы при среднем расстоянии от Земли до Солнца называют солнечной постоянной S о. При этом под верхней границей атмосферы понимают условие отсутствия воздействия атмосферы на солнечную радиацию. Поэтому величина солнечной постоянной определяется только излучательной способностью Солнца и расстоянием между Землей и Солнцем. Современными исследованиями с помощью спутников и ракет установлено значение S о, равное 1367 Вт/м 2 с ошибкой ±0,3%, среднее расстояние между Землей и Солнцем в этом случае определено как 149,6*10 6 км. Если учитывать изменения солнечной постоянной в связи с изменением расстояния между Землей и Солнцем, то при среднегодовом значении 1,37 кВт/м 2 , в январе она будет равна 1,41 кВт/м 2 , а в июне - 1,34 кВт/м 2 , следовательно, северное полушарие за летний день получает на границе атмосферы несколько меньше радиации, чем Южное полушарие за свой летний день.

В связи с постоянным изменением солнечной активности солнечная постоянная, возможно, испытывает колебания из года в год. Но эти колебания, если они и существуют, настолько малы, что лежат в пределах точности измерений современных приборов. Но за время существования Земли солнечная постоянная, вероятнее всего, меняла свое значение.

Зная солнечную постоянную, можно рассчитать количество солнечной энергии, поступающей на освещенное полушарие на верхней границе атмосферы. Оно равно произведению солнечной постоянной на площадь большого круга Земли. При среднем радиусе земли, равном 6371 км, площадь большого круга составляет p*(6371) 2 = 1,275*10 14 м 2 , а приходящая на нее лучистая энергия - 1,743*10 17 Вт. За год это составит 5,49*10 24 Дж.

Приход солнечной радиации на горизонтальную поверхность на верхней границе атмосферы называют солярным климатом . Формирование солярного климата определяется двумя факторами - продолжительностью солнечного сияния и высотой Солнца. Количество радиации, приходящейся на границе атмосферы на единицу площади горизонтальной поверхности пропорционально синусу высоты Солнца, которая меняется не только в течение дня, но и зависит от времени года. Как известно, высота Солнца для дней солнцестояния определяется по формуле 90 0 - (j±23,5 0), для дней равноденствия - 90 0 -j, где j - широта места. Таким образом, высота Солнца на экваторе меняется в течение года от 90 до 66,5 0 , в тропиках - от 90 до 43 0 , на полярных кругах - от 47 до 0 0 и на полюсах - от 23,5 до 0 0 . В соответствии с таким изменением высоты Солнца зимой в каждом полушарии приток солнечной радиации на горизонтальную площадку быстро убывает от экватора к полюсам. Летом картина более сложная: в середине лета максимальные значения приходятся не на экватор, а на полюса, где продолжительность дня составляет 24 часа. В годовом ходе во внетропической зоне наблюдается один максимум (летнее солнцестояние) и один минимум (зимнее солнцестояние). В тропической зоне приток радиации достигает максимума два раза в год (дни равноденствия). Годовые количества солнечной радиации меняются от 133*10 2 МДж/м 2 (экватор) до 56*10 2 МДж/м 2 (полюса). Амплитуда годового хода на экваторе небольшая, во внетропической зоне - значительная.

Прямая солнечная радиация

Прямой солнечной радиациейназывают радиацию, приходящую к земной поверхности непосредственно от солнечного диска . Несмотря на то, что солнечная радиация распространяется от Солнца по всем направлениям, к Земле она приходит в виде пучка параллельных лучей, исходящих как бы из бесконечности. Приток прямой солнечной радиации на земную поверхность или на любой уровень в атмосфере характеризуется энергетической освещенностью - количеством лучистой энергии, поступающей за единицу времени на единицу площади. Максимальный приток прямой солнечной радиации будет поступать на площадку, перпендикулярную солнечным лучам. Во всех остальных случаях энергетическая освещенность будет определяться высотой Солнца, или синусом угла, который образует солнечный луч с поверхностью площадки

S’=S sin h c (30)

В общем случае S (энергетическая освещенность площадки единичной площади, перпендикулярной солнечным лучам) равно S o . Поток прямой солнечной радиации, приходящийся на горизонтальную площадку, называется инсоляцией.

Продолжительность солнечного сияния - это время, в течение которого прямые солнечные лучи освещают земную поверхность. Продолжительность солнечного сияния является важным элементом климата и зависит от длины дня, определяемой широтой местности и временем года, и облачности. На метеостанции она определяется гелиографами. Продолжительность солнечного сияния выражают либо в часах, либо в процентах от наиболее возможной продолжительности.

Продолжительность солнечного сияния возрастает от полярных широт к тропикам. В Арктике относительная продолжительность составляет 25% и ниже, в Северной Европе - около 40%, в Италии - 50%. Максимум продолжительности солнечного сияния отмечают в субтропических пустынях (например, в Аризоне - 88%, а в летнее время до 97% возможной). В дождливых областях близ экватора - 35%.

В годовом ходе максимум продолжительности солнечного сияния для умеренных широт приходится на июль-август, в пустынях субтропиков - на июнь и сентябрь. Внутри тропиков максимум солнечного сияния наблюдается в сухой период, минимум - во влажный (особенно в муссонных районах).

Горы в среднем беднее солнечным сиянием, чем прилегающие равнины из-за сильного развития облаков конвекции летом. Но зимой в высокогорье больше солнечного сияния, чем на низменности. Это является важным преимуществом горных курортов.

Самые солнечные часы суток в Средней Европе летом от 10 до 11 часов, зимой от 13 до 14 часов. На горных вершинах максимум приходится на два часа раньше. В тропиках наиболее богаты солнечным сиянием утренние часы - 8-9 часов.

В больших городах загрязнение воздуха снижает продолжительность солнечного сияния до 20% и более по сравнению с сельской местностью.

Условия облачности можно характеризовать также и числом ясных и пасмурных дней. Вот несколько экстремальных значений: Ифрена (Ливия) - 293 ясных дня в году, Термез (Узбекистан) - 260 дней, Имандра (Кольский п-ов) - 9 ясных дней в году, на горной станции Бен-Невис в Шотландии - 247 пасмурных дней в году, на восточном берегу острова Тайвань - 233 пасмурных дня.

Загрузка...