domvpavlino.ru

Животные живущие в экстремальных условиях. §15. Класс насекомые. Какие насекомые вредители вам были известны раньше

Некоторые организмы обладают особым преимуществом, которое позволяет им выдерживать самые экстремальные условия, где другие просто не справятся. Среди таких способностей можно отметить устойчивость к огромному давлению, экстремальным температурам и другие. Эти десять существ из нашего списка дадут фору любому, кто осмелится претендовать на звание самого выносливого организма.

10. Гималайский прыгающий паук

Азиатский дикий гусь славится полетами на высоте более 6,5 километров, в то время как самое высокое поселение, населенное людьми, находится на высоте в 5100 метров, в перуанских Андах. Тем не менее, высокогорный рекорд принадлежит вовсе не гусям, а гималайскому прыгающему пауку (Euophrys omnisuperstes). Обитая на высоте свыше 6700 метров, этот паук питается преимущественно мелкими насекомыми, занесенными туда порывами ветра. Ключевой особенностью этого насекомого является способность выжить в условиях почти полного отсутствия кислорода.

9. Гигантский кенгуровый прыгун


Обычно, когда мы размышляем о животных, которые способны дольше всех прожить без воды, на ум сразу приходит верблюд. Но верблюды способны продержаться без воды в пустыне всего лишь 15 дней. Между тем, вы удивитесь, когда узнаете, что в мире существует животное, способное прожить всю жизнь, так и не выпив ни капли воды. Гигантский кенгуровый прыгун - близкий родственник бобров. Средняя продолжительность их жизни обычно составляет от 3 до 5 лет. Влагу они обычно получают из пищи, поедая различные семена. Кроме того, эти грызуны не потеют, тем самым избегая дополнительных потерь воды. Обычно эти зверьки обитают в Долине Смерти, и в данный момент находятся под угрозой исчезновения.

8. "Жароустойчивые" черви


Поскольку тепло в воде более эффективно передается организмам, то температура воды в 50 градусов по Цельсию будет куда опаснее, чем такая же температура воздуха. По этой причине в горячих подводных источниках процветают преимущественно бактерии, чего не скажешь о многоклеточных формах жизни. Тем не менее, существует особый вид червей, называемый paralvinella sulfincola, который с радостью обустраивается в местах, где вода достигает температур в 45-55 градусов. Учеными был проведен эксперимент, где подогревалась одна из стенок аквариума, в результате выяснилось, что черви предпочли оставаться именно в этом месте, игнорируя более прохладные места. Считается, что такая особенность выработалась у червей для того, чтобы те могли лакомиться бактериями, в изобилии водящимися в горячих источниках. Поскольку у них до этого не было естественных врагов, бактерии были сравнительно легкой добычей.

7. Гренландская полярная акула


Гренландская полярная акула - одна из самых крупных и наименее изученных акул планеты. Несмотря на то, что плавают они достаточно медленно (их может обогнать любой пловец-любитель), встречают их крайне редко. Это связано с тем, что этот вид акул, как правило, обитает на глубине в 1200 метров. Кроме того, эта акула одна из самых устойчивых к холоду. Обычно она предпочитает оставаться в воде, температура которой колеблется в промежутке между 1 и 12 градусами Цельсия. Поскольку эти акулы обитают в холодных водах, им приходится передвигаться крайне медленно, чтобы по минимуму тратить свою энергию. В пище они неразборчивы и едят все, что попадается на пути. Ходят слухи, что их срок жизни составляет порядка 200 лет, но никто до сих пор не смог подтвердить или опровергнуть его.

6. Дьявольский червь


На протяжении многих десятилетий ученые считали, что только одноклеточные организмы способны выживать на больших глубинах. По их мнению, высокое давление, недостаток кислорода и экстремальные температуры стояли на пути у многоклеточных существ. Но затем были обнаружены микроскопические черви на глубине в несколько километров. Названные halicephalobus mephisto, в честь демона из немецкого фольклора, она были обнаружены в пробах воды, на глубине в 2,2 километра от поверхности земле, залегавших в одной из пещер в Южной Африке. Им удалось пережить экстремальные условия окружающей среды, что дало возможность предположить, что на Марсе и на других планетах в нашей галактике возможна жизнь.

5. Лягушки


Некоторые виды лягушек широко известны благодаря своей способности буквально замораживаться на весь зимний период и оживать с приходом весны. В Северной Америке было найдено пять видов таких лягушек, самым распространенным среди которых является обычная древесная лягушка. Поскольку древесные лягушки не очень сильны в закапывании, то прячутся просто под опавшей листвой. В их жилах находится вещество наподобие антифриза, и хотя их сердца в конце концов останавливаются, это временное явление. Основой их техники выживания является огромная концентрация глюкозы, поступающая в кровь из печени лягушки. Что еще более удивительно, так это тот факт, что лягушки способны демонстрировать свое умение замораживаться не только в природной среде, но и в лабораторных условиях, позволяя ученым раскрыть свои секреты.

{banner_ads_inline}


4. Глубоководные микробы


Все мы знаем, что самая глубокая точка в мире - это Марианская впадина. Ее глубина достигает почти 11 километров, а давление там превышает атмосферное в 1100 раз. Несколько лет назад ученым удалось обнаружить там гигантских амеб, которых удалось заснять при помощи камеры с высоким разрешением и защищенной стеклянной сферой от того огромного давления, что царит на дне. Более того, недавняя экспедиция, отправленная самим Джеймсом Кэмероном, показала, что в глубинах Марианской впадины могут существовать и другие формы жизни. Были добыты образцы донных отложений, которые доказали, что впадина буквально кишит микробами. Этот факт поразил ученых, ведь экстремальные условия царящие там, а также огромное давление - далеко не райский уголок.

3. Bdelloidea


Коловратки вида Bdelloidea - невероятно крохотные беспозвоночные женского пола, обычно они встречаются в пресной воде. С момента их открытия, не было найдено ни одного самца этого вида, а сами коловратки размножаются бесполым путем, что, в свою очередь, разрушает их собственный ДНК. Восстанавливают они свой родной ДНК поедая другие виды микроорганизмов. Благодаря этой способности, коловратки могут выдерживать экстремальное обезвоживание, более того, они способны выдержать такие уровни радиации, которые убили бы большинство живых организмов нашей планеты. Ученые считают, что их способность восстанавливать свое ДНК появилась в результате необходимости выживания в крайне засушливой среде.

2. Таракан


Существует миф, что тараканы будут единственными живыми организмами, которые переживут ядерную войну. В самом деле, эти насекомые способны прожить без воды и пищи несколько недель, и более того, они могут неделями жить без головы. Тараканы существуют вот уже 300 миллионов лет, пережив даже динозавров. Каналом Discovery был проведен ряд экспериментов, которые должны были показать, выживут или нет тараканы при мощном ядерном излучении. В результате оказалось, что почти половина всех насекомых смогла пережить излучение в 1000 рад (такое излучение способно убить взрослого здорового человека всего за 10 минут воздействия), более того, 10% тараканов выжило при воздействии излучения в 10000 рад, что равно излучению при ядерном взрыве в Хиросиме. К сожалению, ни одно из этих маленьких насекомых не выжило после дозы излучения в 100000 рад.

1. Тихоходки


Крошечные водные организмы, называемые тихоходками, оказались самыми выносливыми организмами нашей планеты. Эти, на первый взгляд, милые животные способны пережить практически любые экстремальные условия, будь то жара или холод, огромное давление или высокая радиация. Они способны выжить некоторое время даже в космосе. В экстремальных условиях и в состоянии крайнего обезвоживания эти существа способны оставаться живыми на протяжении нескольких десятилетий. Они оживают, стоит их только поместить в водоем.

Многочисленные наблюдения и опыты, проведенные с целью выявления действия субнулевых температур на пойкилотермных животных, опровергли некоторые ранее разработанные общепринятые теории, и в последние годы вся проблема в целом подверглась пересмотру.

Многие исследователи получили данные, что насекомые различных сильно отличающихся друг от друга видов переживают замораживание при низких температурах. Например, Сколендер и сотрудники показали, что личинки комара-звонца (Chironomus), которых обнаруживали на Аляске замерзшими во льду или в иле на дне арктических водоемов при температуре -20°, всегда оживали после оттаивания, даже после замораживания при -40°. Они переживали также неоднократное охлаждение до -16°. Определяли количество льда и воды в этих замороженных, но живых личинках при различных температурах. Отношение содержания воды к сухому весу резко уменьшалось по мере падения температуры. При -15° вымерзало до 90% воды. При -35°, т. е. наиболее низкой температуре, применявшейся в данных исследованиях, в личинке оставалось еще какое-то небольшое количество свободной воды. Иногда личинку переохлаждали, но это не влияло на переживание ею низких температур. С помощью микрометода определяли потребление кислорода частично замороженной личинки при различных температурах. В интервале температур от 0 до -15° у отдельных личинок наблюдалось резкое уменьшение потребления О 2 . Поразительные изменения коэффициента Q 10 для потребления О 2 обнаружены в личинках, охлажденных до температур, лежащих выше точки замерзания, а также между точкой замерзания и -5°. Некоторое количество кислорода они потребляли и при -15°, но когда температура падала до -40°, потребность в кислороде сводилась к нулю. В опытах определяли интенсивность диффузии кислорода и СО 2 через лед, и она оказывалась достаточной для поддержания дыхания личинок, находившихся в мелких замерзших водоемах при температуре, преобладающей в естественных условиях.

Очень интересное изучение выживаемости замороженных насекомых провел японский ученый Асэхина с сотрудниками. Они сообщили, что предкуколки бабочки Монета flavescens (более известной как Cnidocampa flavescens Walk.) переживали замораживание при -30°, будучи переохлажденными примерно до -20°. Типичная кривая показывает постепенное понижение температуры насекомого во время охлаждения до -20°.

Затем следует резкое и быстрое повышение температуры, совпадающее с наступлением процесса замораживания и обусловленное выделением скрытой теплоты кристаллизации. После этого температура постепенно понижается и достигает уровня температуры окружающего воздуха, тогда как жидкости организма постепенно вымерзают. Когда зимующих предкуколок освобождали от коконов, они переживали замораживание при таких низких температурах, как -30°, что подтвердилось восстановлением у них сокращений сердца после оттаивания. Они переживали также неоднократное замораживание и оттаивание с интервалами в 1 день. Будучи на той же стадии развития, но в интактных коконах, предкуколки переживали и нормально развивались после замораживания и пребывания в течение 100 дней при температуре -15°. В противоположность этому гусеницы, вылупившиеся в летние месяцы, не переживали даже кратковременного замораживания при -10°.

Процесс замораживания зимующих предкуколок Cnidocampa flavescens изучали под микроскопом. Куколкам вскрывали брюшную полость и охлаждали их на столике микроскопа до -10 или -20°. Вымерзание начиналось в нескольких местах с поверхности крови. Постепенно кристаллы разрастались в радиальном направлении, пока не заполняли все пространство, занятое кровью. Когда сердца зимующих предкуколок изолировали и охлаждали в крови непосредственно под микроскопом, кристаллы льда образовывались вне клеток сердечной мышцы. Отдельные клетки и целые органы сморщивались, но после оттаивания они вновь приобретали нормальный вид, а сердечная деятельность восстанавливалась. При таком же замораживании сердец летних гусениц в крови, а также при замораживании сердец зимующих гусениц в 0,15 М растворе хлористого натрия отдельные клетки замораживались изнутри при температуре около -15°. Внутри клеток были видны кристаллы льда, а все сердце в целом темнело. Сердца, в которых происходила внутриклеточная кристаллизация льда, после оттаивания не возобновляли ритмических сокращений. Вполне возможно, что у насекомых, замерзших в естественных зимних условиях, кристаллы льда образовались вне клеток, которые обезвоживались и сморщивались.

В следующих опытах Асахина и Аоки охлаждали зимующих предкуколок Cnidocctmpa flavescens до -90° в специальной холодильной камере, где температура за 1,5 час снижалась от -5 до -90° Спустя 45 мин предкуколок согревали при комнатной температуре, причем из 60 ожило 20. Предкуколок, извлеченных из коконов, погружали в жидкий кислород с температурой -180°. Предварительно их замораживали при -30° и выдерживали при этой температуре в течение одного дня. После оттаивания при комнатной температуре у них восстанавливались сокращения сердца и некоторые предкуколки продолжали развиваться, но не завершали полностью метаморфоза до стадии имаго. Предкуколки, которых до погружения в жидкий кислород выдерживали в течение 1 дня при температуре -10 или -20°, не выживали после оттаивания. Зимующие гусеницы бабочки боярышницы A porta crataegi adherbal Fruhstorfer также переживали погружение в жидкий кислород при условии предварительного замораживания при -30°. После оттаивания у них восстанавливалась нормальная подвижность и они продолжали расти. Можно полагать, что выживание при температуре -180° зависело в каждом отдельном случае от внеклеточного вымерзания воды при -30°.

Еще не выяснены основные факторы, способствующие выживанию этих и других видов насекомых при низких температурах на определенной стадии цикла развития, а также отличие их от насекомых, которые неизбежно погибают при действии замораживания. Новую струю внесли исследования Уайетта и сотрудников, которые установили, что глицерин является основным растворимым компонентом в плазме куколки бабочки Hyalophora cecropia и родственного ей вида сатурнии Telea polyohemus; глицерин обнаружен также в яйцах тутового шелкопряда (Bombyx mori) и в личинках лугового мотылька (Loxostege stictlcalts) и золотарниковой мухи-пестрокрылки (Eurosta solidaglnis). В каждом случае стадия развития насекомого, во время которой в организме находили глицерин, представляла собой зимнюю стадию. Отсюда можно было сделать вывод, что своей устойчивостью к холоду некоторые насекомые обязаны именно накоплению глицерина. Более ранние исследования показывали, что присутствие глицерина в гемолимфе и тканевых жидкостях не всегда связано с устойчивостью к холоду. Солт, например, обнаружил, что личинки лугового мотылька (Loxostege stictlcalts), не переживающие замораживания, имеют почти такую же концентрацию глицерина (2-4%), как и личинки золотарниковой мухи-пестрокрылки (Eurosta solidagints), которые переживают храпение в течение 18 дней при температуре -55°.

Интересно отметить, что концентрация глицерина в личинках Bracon cephi увеличивалась осенью при хранении их как в естественных условиях, так и при температуре -5°. Одновременно с этим понижалась температура переохлаждения и таяния. В, этот же период у насекомых наблюдалась способность переживать воздействие температур от -40 до -47° в переохлажденном состоянии, а также переживать замораживание. Весной и ранним летом происходил обратный процесс - концентрация глицерина в крови понижалась и исчезала устойчивость к холоду. В гемолимфе и других тканевых жидкостях зимующих личинок В. cephi, помимо глицерина, присутствовали также какие-то другие, еще не идентифицированные растворенные вещества. Когда концентрация глицерина достигала 5 М, она не соответствовала наблюдавшемуся в это время понижению температуры таяния примерно на одну моляльную единицу. Не может быть никаких сомнений в том, что исключительная устойчивость личинок В. cephi к холоду в осеннее время связана главным образом с их способностью обеспечивать высокую концентрацию глицерина. Концентрация глицерина в личинках в середине зимы достигала 20-27%, и этого было достаточно для обеспечения переохлаждения до такой низкой температуры, что насекомые не замерзали в своих естественных местах обитания. Концентрация глицерина была также достаточной для защиты отдельных клеток и тканей от повреждения, если личинки В. cephi все-таки замерзали. В чувствительных же к холоду личинках Loxostege sticticalis его концентрация была, видимо, недостаточно высокой для оказания защитного действия. Как бы то ни было, исследования на Bracon cephi показали, что благодаря изменению метаболических процессов с наступлением холодов у ряда насекомых развивалась повышенная устойчивость к холоду. Примечательно, что раньше сам Солт сомневался в существовании такого основного фактора, повышающего устойчивость к холоду.

Впоследствии глицерин обнаружили в зимующих личинках жуков-древоточцев Melandra striata и кукурузного мотылька (Pyrausta nubilalis). Впадающие в спячку пенсильванские муравьи-древоточцы (Camponotus pennsilvanicus) и их яйца содержали зимой 10% глицерина. Когда муравьев, постепенно согревая до комнатной температуры, выводили из состояния спячки, они вновь становились подвижными и приблизительно через 3 дня в их организме уже нельзя было обнаружить глицерина. Как только у насекомых посредством охлаждения вызывали состояние спячки, глицерин вновь появлялся и снова каждый раз исчезал, когда муравьев выводили из этого состояния. Таким образом, нет никаких сомнений в том, что глицерин играет главную роль в устойчивости этих видов насекомых к зимним холодам.

Однако оставалось еще много неясных моментов. Так, например, не известно, откуда берут глицерин личинки Bracon cephi и Camponotus pennsilvanicus в осеннее время. Чино установил, что глицерин и сорбит в находящихся в диапаузе яйцах тутового шелкопряда (Botbyx mori) образуются из гликогена. Уайетт и Мейер полагают, что глицерин является продуктом ферментативного гидролиза глицерофосфатов во время диапаузы у куколок Hyalophora cecropia. Другой невыясненный вопрос касается причины повреждений чувствительных к холоду видов насекомых во время замораживания и оттаивания. Повышение концентрации электролитов, наступающее в процессе вымерзания воды, представляет собой основную причину повреждения эритроцитов и сперматозоидов некоторых видов млекопитающих и, вероятно, различных других клеток в организме млекопитающего. Глицерин в соответствующей концентрации защищает их, по крайней мере частично, действуя как солевой буфер. Однако многие насекомые не так уж богаты электролитами. Глицерин в маленьких количествах может оказывать защитное действие на некоторые липопротеидные компоненты оболочек, находящиеся как внутри, так и вне клеток. Необходимо провести еще много исследований, чтобы выявить роль глицерина в гемолимфе насекомого, в частности в отношении повышения устойчивости к холоду.

Было сделано еще одно важное наблюдение. Крупные клетки жирового тела устойчивой к холоду золотарниковой мухи-пестрокрылки (Eurosta solidaginis) переживают внутриклеточную кристаллизацию льда. Солт изучал процессы замораживания и оттаивания этих клеток непосредственно под микроскопом. Замерзая, они сохраняли свою сферическую форму и первоначальный размер, не сжимаясь, как это обычно бывает с клетками при наступлении внеклеточной кристаллизации. При неоднократном замораживании и оттаивании отдельные капельки жира внутри клеток сливались друг с другом. В естественных условиях зимой клетки жирового тела личинки Е. solidaginis округлялись, а после наступления теплой погоды процесс развития продолжался. Следовательно, можно предположить, что внутриклеточное замораживание и оттаивание представляют собой нормальное явление у этого насекомого на стадии личинки. Так это или нет, но Солт первый наблюдал (причем совершенно отчетливо) выживание живых клеток после внутреннего замораживания. Возможно, различные клетки других холодоустойчивых пойкилотермных животных также переживали внутриклеточную кристаллизацию льда в естественных условиях. Вновь возникает вопрос: всегда ли внутриклеточное замораживание влечет за собой летальный исход?

Давно известно, что многие насекомые для полного развития нуждаются на определенной фазе их жизненного цикла в пребывании в течение какого-то периода времени на холоду. Например, озимая муха (Leplohylemyia. coarctata (Fall.)) откладывает яйца на землю в самое жаркое время года, в июле или августе, а ее личинки вылупляются зимой следующего года, между январем и мартом. Таким образом, они переносят воздействие температур от +30° и выше в августе до -5° и ниже в январе и феврале. Первая стадия развития (морфогенез до диапаузы) протекает при температурах от +3 до +30°. За этим следует диапауза с верхним температурным пределом около +12° и оптимальной, как предполагали ранее, температурой примерно +3°. Уэй установил заметное увеличение длительности диапаузы при -6°, как показало сокращение числа личинок, вылупившихся из яиц через 6, 14 и 34 дня, по сравнению с результатами, полученными, когда яйца инкубировали при +3°. Уэй провел специальный опыт для определения минимальной температуры диапаузы. Яйца, отложенные в середине августа, оставляли в земле, на открытом воздухе, до второй недели ноября, а затем их переносили в сосуды с температурой +3, -6, -18, -22 и -24°. Через определенные промежутки времени яйца извлекали из сосудов и инкубировали при +20°. Регистрировали время вылупления личинок, причем получили неожиданные результаты. При падении температуры ниже -6° диапауза заканчивалась быстрее. Так, из инкубированных при +3° яиц 50% личинок вылупилось через 20 дней, а из инкубированных при температуре -6° - через 45 дней. Однако после воздействия температурой -24° те же 50% личинок вылупилось уже через 6 час, а 88% - через 24 час. При -24° диапауза длилась в 80 раз меньше, чем при общепризнанной ранее оптимальной температуре +3°, и в 180 раз меньше, чем при -6°. Находящиеся в диапаузе яйца повреждались, когда их выдерживали при низких температурах дольше, чем это требовалось для завершения диапаузы. Например, Уэй наблюдал, что после выдерживания при температуре -24° в течение б дней вывелось 98% личинок, а после выдерживания в течение 20 дней - только 32%. После инкубации при температуре -18° в течение 63 дней вылупилось 97%, а после инкубации в течение 206 дней - лишь 36%. Для того чтобы добиться быстрого окончания диапаузы, необходимо было до хранения яиц при -18 или -24° инкубировать их 50-80 дней при +5°. Совершенно ясно, что существуют по крайней мере две фазы в диапаузе. Первая наступает сравнительно быстро при температуре около +5° и может наступить при +20°, но никогда при -18 или -20°. Вторая быстрее всего наступает при температуре от -18 до -24° и может наступить при -5°, но никогда при +20°. Уэй показал, что яйца в диапаузе переохлаждались даже до таких низких температур, как -25 и -28°, и замораживание не было причиной быстрого окончания диапаузы в яйцах, на которых действовали температурой от -18 до -24°. Переохлажденные до -26,5° и затем замороженные яйца при оттаивании оказывались погибшими. До настоящего времени попытки ввести в яйца глицерин терпели неудачу. Еще неясны физиологические процессы, происходящие во время диапаузы, и неизвестны средства, с помощью которых их можно было бы ускорить, используя низкие температуры. Это, по-видимому, один из немногих примеров, когда течение биологического процесса ускоряется за счет понижения температуры животного до -20 или -24°.

Изучая воздействие низких температур на насекомых и другие живые организмы, важно помнить об основных экологических принципах. Мелланби подчеркивает, что при охлаждении насекомых их возможное переживание и смерть не является ни единственным, ни даже самым важным фактором, которые следует иметь в виду. Выживание вида зависит от многих сторон активности, связанных с жизненным циклом, в том числе от питания и способности размножаться. Выживаемость же отдельной особи связана с ее способностью избегать непосредственно угрожающей ей опасности. Так, например, личинки желто-лихорадочного комара (Aedes aegypti) обычно находятся у поверхности воды, но немедленно уходят на дно, как только их встревожит появление какой-либо тени или сотрясение воды. Реакция тревоги исчезает при охлаждении воды до 9-14° (в зависимости от того, к какой температуре привыкли личинки). Последующее охлаждение приводит к тому, что личинки становятся неподвижными, хотя они еще в состоянии реагировать на механическое раздражение. Затем достигается температура Холодовой комы, а при дальнейшем понижении температуры насекомые уже находятся в состоянии холодового наркоза. Показано действие акклиматизации при различных температурах на личинки A. aegypti у согретых после Холодовой комы и оживших личинок восстанавливается реакция тревоги.

Многие насекомые погибают при температурах выше нуля. Личинки комара А. aegypti, например, погибают при +0,5° через различные сроки в зависимости от температуры, при которой они раньше жили. Все личинки, культивированные при +30°, погибали менее чем через 17 час при температуре +0,5°. Если же их предварительно выдерживали при температуре 17°, они переживали такой срок хранения при +0,5°. Через 18 час наступала полная акклиматизация к окружающей холодной среде при условии, что температура была все же выше, чем та, при которой наступает холодовая кома.

В отношении некоторых насекомых можно добиться того, что они привыкнут к действию низких температур, бывших ранее летальными. Так, пребывание при относительно высокой температуре +15° помогает черным тараканам (Blatta orientalis) переживать кратковременное пребывание при такой низкой температуре, как -6,8°, которая детальна для насекомых этого вида, предварительно инкубированных при +30°. Механизм такой быстрой акклиматизации еще не известен, но вряд ли можно сомневаться в наличии приспособительных изменений во всех тканях активного насекомого в ответ на колебания температуры. Насекомые, впадающие под влиянием холода в состояние наркоза, не акклиматизируются. Более того, они подвергаются опасности быть уничтоженными другими животными или различными механическими и физическими силами, помимо самого замерзания. Замерзание не всегда является главной причиной гибели охлажденных насекомых. Для выживания многих видов существенное значение имеет продолжительное пребывание их ежегодно при температуре значительно выше нуля.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Вконтакте

Биологи из Марист колледжа (Marist College) обнаружили, что раки-бокоплавы, или амфиподы (Stygobromus allegheniensis ), обитающие в Ледяных пещерах (Ice Caves) штата Нью-Йорк, способны оставаться в живых после заморозки. Такая особенность впервые описана для беспозвоночных, обитающих в пещерах, которые, как правило, живут в относительно тёплых условиях. Статья опубликована в журнале Subterranean Biology .

Stygobromus allegheniensis - это бесцветные, лишённые глаз, беспозвоночные длиной всего два сантиметра. Этот вид впервые был найден в 1976 году в пещерах Пенсильвании, и он оказался одним из самых распространённых раков-бокоплавов, населяющих подземные воды. В 2009 году учёные, исследуя Ледяные пещеры в штате Нью-Йорк, обнаружили S. allegheniensis , которые плавали в небольших водоёмах в количестве сотен или даже тысяч особей. Поскольку каждую зиму пещеры полностью промерзают, биологи решили узнать, каким же образом беспозвоночным удавалось выжить.

Учёные провели несколько экспериментов, в которых проверили способность амфипод выживать в условиях заморозки. Параллельно биологи также выяснили, какую температуру они предпочитают. Раков помещали в длинный резервуар с водой, один конец которого полностью охлаждался с помощью сухого льда, а на другом конце был установлен электрический водонагреватель. Таким образом создавался температурный градиент от 0 до 21 градуса Цельсия. К концу эксперимента беспозвоночные перемещались исследователями в холодную сторону со льдом, где они замерзали. После разморозки все S. allegheniensis оказались живыми и проявляли прежнюю активность.

Исследователи также экспериментировали с временными интервалами, замораживая S. allegheniensis в произвольных интервалах от одного до двенадцати часов. При этом абсолютно все бокоплавы выдерживали низкие температуры в течение не более двух часов. Учёные предполагают, что их устойчивость к замерзанию объясняется содержанием в их организме таких веществ, как глицерин, различные сахара и аминокислоты. Эти соединения понижают температуру замерзания биологических жидкостей и не дают образовываться кристалликам льда, которые могли бы повредить клетки, по крайней мере в течение двух часов.

Биологи считают, что более продолжительное выживание в замёрзшем состоянии в Ледяных пещерах объясняется постепенным понижением температуры - организм раков успевает лучше подготовиться к длительной зимовке, выделяя антифризные вещества.

Криофилы - общее название для всех организмов, которые предпочитают жить в низких температурах и могут выживать даже при длительной заморозке. Как правило, это характерно для микроорганизмов, однако существуют и хладоустойчивые круглые черви, насекомые и некоторые земноводные.

Особенности организма насекомых некоторых видов позволяют: сохранять жизнь после замерзания и оттаивания; населять горячие источники с температурой воды +500С; долгое время жить без воды за счет окисления запасенных питательных веществ; выживать в глубоком вакууме и часами находиться в чистом углекислом газе; жить в солевом рассоле, сырой нефти и т.д.

Конечно, в холодных и сухих районах, а также в таких критических для жизни условиях проживают представители немногих видов насекомых. Однако именно они своим примером с наглядностью демонстрируют, какими поистине феноменальными возможностями наделены, казалось бы, совсем беззащитные существа. Больше того, как и многие другие животные, насекомые именно не «выживают» в такой сложной и суровой среде, а живут в ней той полноценной жизнью, особенности которой внесены в их генетическую программу. Рассмотрим это на некоторых примерах.

Холодоустойчивость насекомых

Некоторые насекомые относятся к покорителям и постоянным обитателям горных вершин. В седловине Эльбруса на высоте 5300 м можно увидеть стрекоз и крапивниц. А оседло живущие мухи, жуки, тли бабочки, саранчовые обнаружены в Гималаях даже на высоте 6000 м над уровнем моря. Питаются они пыльцой растений и органическими остатками, которые приносят горные бризы. Живут насекомые под камнями, в почве, в редких пятнах высокогорных растительных ковров и даже в снегу. Но особенно много их у кромки тающего льда, где большая влажность и легче найти корм, приносимый талой водой. Для нормальной жизни и воспроизводства сверчки одного из видов обязательно поселяются именно на горной местности, покрытой снегом, так как устройство их организма рассчитано только на среду обитания с пониженной температурой. А проживающая в северных широтах и высоко в горах бабочка желтушка наделена удивительным свойством живорождения, что очень озадачило в свое время энтомологов, поскольку для бабочек это не характерно. Предполагается, что живорождение помогает ее потомству завершить развитие в течение короткого лета этих мест.

Блоха изотома обитает исключительно на поверхности вечных снегов. Каждую ночь организм этого крошечного насекомого подвергается самым жестоким испытаниям, однако насекомое снова и снова демонстрирует великолепную способность жить в предельно суровых условиях. Оно полностью замерзает, как только заходит солнце, но благодаря своей темной окраске также быстро оттаивает в теплых утренних лучах. Ожив, блоха изотома продолжает заниматься всеми насущными жизненными проблемами, осуществляя реализацию своей наследственной программы, которую и передаст потомкам. Недавно энтомологи обнаружили, что комары-дергуны некоторых видов тоже способны жить и продолжать свой род в таких экстремальных условиях, которые, казалось бы, несовместимы с жизнью. Они обитают в трещинах и тоннелях ледников на высоких склонах Гималаев. Это насекомое наделено таким превосходным организмом, что прекрасно чувствует себя и не замерзает при –160С. А самка комара даже проявляет активность в зимний период, когда в горах свирепствуют морозы. Как дергуны живут и продолжают род при столь низких температурах, и каковы физиологические особенности их организма комаров этого вида пока ученым не ясно.

Около 40 видов насекомых (комары, шмели, жуки, дневные и ночные бабочки) живут за Северным Полярным кругом – там, где есть цветковые растения. Благодаря северному типу организма комары некоторых разновидностей играют особо важную роль в холодных арктических пустынях и зоне тундры. Их самцы и самки, перелетая от цветка к цветку, питаются нектаром и попутно опыляют растения. Ведь в тундре и тайге практически нет пчел. В Заполярье опылением цветков заняты и шмели. Их организм хорошо оснащен для работы в холодных краях. Активная работа мышц и лохматая теплая шубка шмеля обеспечивают нагрев его тела до +370С при наружной температуре воздуха 00С. Это тепло образуется во время полета за счет химических реакций, происходящих в мускулах.

Организм не только жителей высокогорий, но и обитателей мхов и лишайников антарктических островов, например жуков определенных видов, способен не разрушаться при быстром охлаждении почти до – 400С. Их генетическая программа управляет уникальным минипроизводством глицеринового масла и других особых веществ, действие которых подобно действию известного автомобильного антифриза. Такими же спасительными веществами наделены некоторые виды земноводных и других холодоустойчивых представителей животного мира. А жуки и мухи, обитающие на Аляске, наделены замечательной способностью выдерживать даже температуры до –600С. Насекомые, конечно, замерзают, но их организм обустроен таким образом, что кристаллы льда образуются только снаружи, не повреждая клеток, органов и тканей.

От влажных тропиков до безводных пустынь

Для несметного количества насекомых экологической нишей служат тропические леса, занимающие немалую часть земной поверхности. Ветви деревьев, начиная с высоты не ниже 15 м, так тесно переплетены между собой и плотно обвиты лианами, что сквозь образуемую крону почти не пробивается свет. Полог леса, толщина которого порой составляет 30 м, заселен такими животными, как обезьяны, птицы, мыши, лягушки, насекомые и даже земляные черви (!). Здешние обитатели тут рождаются, растут, живут активной полноценной жизнью и умирают. Причем многие из них за всю свою жизнь никогда не касаются земли. А насекомые обитают на всех «этажах» леса: в земле, листовой подстилке, в стволах деревьев, в глубине тропического полога и на самом верхнем ярусе леса – на ветвях и листьях этой так называемой «крыши мира».

Из насекомых в тропическом лесу преобладают бабочки, жуки, муравьи, термиты, цикады. Бабочки и жуки необычайно велики и красивы. Им дарована яркая окраска, чтобы с помощью ее находить свои пары, ведь иначе в гуще переплетенных ветвей насекомым невозможно ни увидеть, ни услышать друг друга. Существуют там и удивительные птицекрылые бабочки, гигантские крылья (30 см) которых позволяют в брачный сезон летать самцам и самкам выше сплошной кроны тропических деревьев.

Насекомые составляют и значительную часть жителей пустынь. Больше всего там муравьев, москитов, комаров, жуков-чернотелок и красивых златок, особенно черно-золотистого цвета. Все они прячутся от дневного зноя в глубоких норках, а выбираются на охоту только с наступлением темноты. Великолепные возможности организма и поведения демонстрируют жуки-чернотелки некоторых видов, обитающие в самых жарких и безводных районах пустыни. Благодаря инстинктивным поведенческим механизмам они отправляются ночью на вершины песчаных дюн, чтобы «испить влагу туманов». Опустив голову, жук поднимает брюшко кверху и поворачивается навстречу влажному ветру с моря. Влага, конденсируясь на его особой ребристой спинке, стекает насекомому прямо в рот.

От соленых вод до нефти

Представители большинства видов насекомых обитают на суше, но немало их проживает в самых разнообразных водных средах, в том числе и нетрадиционных. Так, особое устройство организма личинок некоторых видов комаров позволяет им прекрасно развиваться в горячих гейзерах, где могут еще жить лишь бактерии. Такую же способность проявляют зеленые стрекозы, молодые особи которых являются обитателями гейзеров с температурой воды +400С. Личинки комаров в массе способны размножаться и в солоноватых прибрежных водах Каспийского моря. А такие насекомые, как, например клопы некоторых видов, обладают всеми возможностями для нормальной жизни в океанах – Атлантическом и Тихом.

Дьявольский червь



Этот вид нематод обнаружен лишь недавно, в 2011 году. Ему нипочем всесокрушающее давление, недостаток кислорода и высокая температура. Места обитания червя расположены до 3,5 километров ниже поверхности планеты. Выбрав себе такой «дом», животное установило новый «мировой рекорд», улучшив прежнее «достижение» многоклеточных организмов сразу полтора километра. Черви проводят жизнь в полной темноте, поедая простейших бактерий и запивая их водой, возраст которой 12 тысяч лет.

Гималайский прыгучий паук




Прыгучий паук – полная противоположность дьявольского червя. Его «дом» расположен на высоте свыше 6,5 км над уровнем моря. Обычная «погода» для паука – чрезвычайно низкое атмосферное давление и температура, при которой замерзает все живое. Крошечные насекомые, которых заносят в горы ветра – единственная пища гималайского паука, да и та попадается не часто.

Бессмертная медуза



Кто из взрослых людей не хотел бы ненадолго вернуться в детство, когда все проблемы можно решить, поплакавшись в мамин подол? Оказывается это не фантастика, а естественный природный процесс. В соответствующих условиях эта похожая на светодиод или полицейскую "мигалку" медуза способна вернуться к младенческому состоянию, что делает ее практически бессмертной. Ученые пока не обнаружили каких-то ограничений на количество превращений. К сожалению, каждый раз, когда бессмертная медуза «впадает в детство», она становится очень уязвимой для насекомых и болезней, что ограничивает теоретическое бессмертие на практике.

Красный плоский короед




Это насекомое родом из северных районов Аляски и Канады, способно противостоять морозам до -150 градусов Цельсия. Организм жука производит природный антифриз, белок, который препятствует кристаллизации крови. Кроме того, в крови есть глицерин, который также останавливает замораживание.

Помпейский червь




Места обитания помпейского червя расположены на океаническом дне. Однако их главная способность не в том, что они успешно противостоят глубине и давлению. Червь живет в горячих термальных источниках, где температура воды достигает 80-100 градусов Цельсия. Свое тело он прячет в «домике», но голова торчит снаружи. В результате разница температуры окружающей среды для хвоста и головы составляет более 60 градусов.

Тихоходка




Микроскопические, длиной не более миллиметра животные способны выжить буквально везде. Для них не проблема ни широкий диапазон температур, от космического холода до 150 градусов Цельсия, ни давление, в 1200 раз превышающее атмосферное. Тихоходки способны десятилетиями обходиться без воды и выдерживают радиацию, в тысячу раз превышающую смертельные дозы для человека. В 2007 году люди отправили тихоходок в космос, чтобы найти пределы их живучести. Большинство животных успешно вернулись на Землю.
Комментарии: 0

    Александр Марков

    Александр Марков, Яков Кротов

    С христианской точки зрения

    Человек происходит от обезьяны, а религия - от невежества? Или как? Где проходит граница между научным и христианским пониманием человека? Гость программы "С христианской точки зрения" - биолог Александр Марков. Ведёт программу Яков Кротов.

    Трансгенные растения имеют тенденцию распространяться "сами по себе", это уже довольно известный факт. И именно как к факту к этому следует относиться. Как это происходит? И кто со всей определенностью может сказать, к чему это может привести? С этими и другими вопросами мы обратились заместителю директора по научной работе Института физиологии растений им. К. А. Тимирязева Российской Академии наук, Владимиру Дылыковичу Цыдендамбаеву.

    Многие люди испытывают невралгические боли в детском возрасте, но для молодых морских ежей рост означает выворачивание наизнанку. В новом исследовании выяснена ключевая роль распространенного и знакомого вещества гистамина для впечатляющего видоизменения, когда свободно плавающая личинка превращается в более привычную покрытую иглами взрослую особь, обитающую на морском дне.

    Математики из Университета Аризоны разработали модель, которая позволяет объяснить особую спиральную структуру, которая часто встречается в живой природе - у подсолнухов, артишоков, капусты и других растений.

Загрузка...