domvpavlino.ru

Как сделать ручной шокер. Как самому сделать электрошокер в домашних условиях: несколько легких в исполнении вариантов. Особые виды самодельных ЭШУ

Несколько простых вариантов проверенных и рабочих схем электрошкеров изготовленных и сконструированных своими руками. Электрошокеры бывают в двух базовых конфигурациях: прямые и Г-образные. Не существует никаких обаснованных доказательств, какая форма лучше. Одни предпочитают Г-образные, так как им кажется, что таким шокером легче прикоснуться к противнику. Другие выбирают прямые, как дающие максимальную свободу движений, относительно короткие или длинные, напоминающие полицейскую дубинку.

Подробна рассмотрена каждая схема электрошокера и его конструкция, расказаны возможные способы модернизаций уже готовых устройств.

Связано не только с болью от поражения током. Высокое напряжение накопленное в шокере, при контакте дуги с кожей преобразуется в переменное электрическое напряжение со специально рассчитанной частотой, вынуждающей мышцы в зоне контакта сокращаться чрезвычайно быстро. Эта ненормальная сверхактивность мышц приводит к молниеносному разложению сахара крови, который питает мышцы. Иными словами, мышцы в зоне контакта на какое-то время теряют работоспособность. Параллельно импульсы блокируют деятельность нервных волокон, по которым мозг управляет данными мышцами.

Среди популярных средств самозащиты электрошокеры далеко не не на последнем месте, особенно по силе психологического и паралитического действия на бандита. Однако, нормальные промышленные образцы стоят достаточно дорого, что подталкивает радиолюбителей к изготовлению электрошокеров своими руками


R1 - 2,2kR2 - 91 OmR3 - 10 мOmR4 - 430 OmC1 - 0,1 x 600вC2 и C3 - 470пф х 25квД1 - кд510Д2,3,4 - д247
Т1 - на сердечнике Ш5х5 магнитной проницаемостью М 2000 НН или подходящем ферритовом кольце.Обмотки I и II - по 25 витков провода 0,25 мм ПЭВ-2.Обмотка III содержит 1600 витков провода ПЭВ-2 диаметром 0,07 мм.
Т2 на кольце К40х25х11 или К38х24х7 из феррита М2000 НН с пропиленным зазором 0,8 мм. Можно без зазора на кольце из прессованного пермаллоя марок МП140, МП160.Обмотка I - 3 витка из провода ПЭВ-2 диаметром 0,5 мм.Обмотка II - 130 витков из провода МГТФ. Выводы этой обмотки должны быть разнесены на возможно большее расстояние.После намотки трансформатор нужно пропитать лаком или парафином.

Схема электрошокера "Гром"

Работу генератора проверяют измерением напряжения на точках "А". Затем, нажимая кнопку, добиваются появления высоковольтного разряда. Контакты разрядника могут быть разных конструкций: плоские, острые и др. Расстояние между ними не более 12 мм. 1000 Вольт пробивает 0,5 мм воздуха.

Прибор представляет из себя генератор высоковольтных импульсов напряжения, подсоединенный к электродам и помещенный в корпус из диэлектрического материала. Генератор состоит из 2-х последовательно соединенных преобразователей напряжения (Схема на рис. 1). Первый преобразователь - это несимметричный мультивибратор на транзисторах VT1 и VT2. Он включается кнопкой SB1. Нагрузкой транзистора VT1 служит первичная обмотка трансформатора Т1. Импульсы, снимаемые со вторичной его обмотки, выпрямляются диодным мостом VD1-VD4 и заряжают батарею накопительных конденсаторов С2-С6. Напряжение конденсаторов С2-С6 при включении кнопки SВ2 является питающим для второго преобразователя на тринистре VS2. Заряд конденсатора С7 через резистор R3 до напряжения переключения динистра VS1 приводит к выключению тринистра VS2. При этом батарея конденсаторов С2-С6 разряжается на первичную обмотку трансформатора Т2, наводя в его вторичной обмотке импульс высокого напряжения. Поскольку разряд носит колебательный характер, то полярность напряжения на батарее С2-С6 изменяется на противоположную, после чего восстанавливается благодаря переразрядке через первичную обмотку трансформатора Т2 и диод VD5. При перезарядке конденсатора С7 снова до напряжения переключения динистра VD1 снова включается тринистор VS2 и формируется следующий импульс высокого напряжения на выходных электродах.

Все элементы устанавливают на плате из фольгираванного стеклотексталита, как показано на рис.2. Диоды, резисторы и конденсаторы устанавливаются вертикально. Корпусом может служить любая подходящая по размерам коробка из материала не пропускающего электричество.

Электроды делают стальными игольчатыми до 2-х см длинной - для доступа к коже через одежду человека или шерсть животного. Расстояние между электродами не менее 25 мм.

Устройство не нуждается в наладке и действует безотказно только при правильно намотанных трансформаторах. Поэтому следуйте правилам их изготовления: трансформатор Т1 выполнен на ферритовом кольце типоразмера К10*6*3 или К10*6*5 из феррита марки 2000НН, его обмотка I содержит 30 витков провода ПЭB-20.15 мм, а обмотка II - 400 витков ПЭВ-20.1 мм. Напряжение на его первичной обмотке должно быть 60 вольт. Трансформатор Т2 намотан на каркасе из эбонита или оргстекла с внутренним диаметром 8 мм, внешним 10 мм, длинной 20 мм, диаметром щек 25 мм. Магнитопроводом служит отрезок от ферритового стержня для магнитной антенны длинной 20 мм и диаметром 8 мм.

Обмотка I содержит 20 витков провода ПЭЛШ (ПЭВ-2) - 0,2 мм, а обмотка II - 2600 витков ПЭВ-2 диаметром 0,07-0,1 мм. В начале на каркас наматывают обмотку II, через каждый слой которой кладется прокладка из лакоткани (обязательно иначе может произойти пробой между витками вторичной обмотки), а затем поверх нее наматывают первичную обмотку. Выводы вторичной обмотки тщательно изолируют и присоединяют к электродам.

Перечень элементов: С1 - 0,047мкФ; С2...С6 - 200мкФ*50В; С7 - 3300пФ; R1 - 2,7 кОм; R2 - 270 МОм; R3 - 1 МОм; VT1 - K1501; VT2 - K1312; VS1 - KH102B; VS2 - KУ111; VD1...VD5 - КД102А; VS1 и VS2 - П2К (независимые, фиксируемые).

Применение: При предполагаемой угрозе Вашей безопасности или заранее, нажмите кнопку VS1 после чего начинается зарядка устройства, в это время напряжение на электродах пока отсутствует.

Через 1-2 минуты электрошок полностью зарядится и будет готов к применению. Состояние готовности сохраняется в течении нескольких часов, затем постепенно происходит разрядка элемента питания.

В момент, когда опасность не вызывает сомнений, нужно коснуться оголенной кожи нападающего и нажать кнопку VS2.

Получив серию высоковольтных ударов нападающий несколько минут находится в состоянии шока и ужаса, и не способен к активным действиям, что дает Вам шанс либо скрыться, либо обезвредить нападавшего.

Прибор самообороны "Меч-1" применяется против хулигана или грабителя. "Меч-1" при включении излучает громкий звук сирены, генерирует ослепительные вспышки света, а прикосновение его к открытым участкам тела приводит к сильнейшему электрическому удару (но не смертельному!).

Описание принципиальной схемы: На микросхеме D1 транзисторах VT1-VT5 выполнен генератор сирены. Мультивибратор на элементах D1.1, D1.2 вырабатывает прямоугольные импульсы с периодом 2-3 сек., которые после интегрирования цепочкой R2, R5, R6, C2 через резистор R7 модулируют сопротивление Э-К транзистора VT1, что вызывает девиацию частоты тонального мультивибратора на элементах D1.3, D1.4. Сигнал сирены с выхода элемента D1.4 поступает на выход ключевого усилителя мощности, собранного на транзисторах VT2-VT5 (составных, с коэффициентом усиления? 750).

Преобразователь напряжения для питания лампы-вспышки и электроразрядника, представляет собой блокинг-генератор с повышенной вторичной обмоткой, собранный на элементах VT6, T1, R12, C4. Он производит преобразование 3в постоянного напряжения в 400в переменного. Диоды VD1 и VD2 выпрямляют это напряжение, конденсаторы электроразрядника С6, С7 и конденсатор вспышки С8 заряжаются. Одновременно заряжается и конденсатор цепи поджига вспышки С5. Неоновая лампа Н1 загорается при готовности вспышки. При нажатии на кнопку S3 конденсатор С5 разряжается через первичную обмотку трансформатора Т2, при этом на его вторичной обмотке возникает импульс напряжения 5-10 кв, поджигающий импульсную лампу VL1 (энергия вспышки 8,5 дж.).

Питается "Меч-1" от 4-х элементов А-316 или от 4-х аккумуляторов ЦП К-0,4 5. При этом преобразователь напряжения включается выключателем S2, а сирена - S1.

Трансформаторы

Т1 - Броневой сердечник Б18 из феррита 2000НМ (без зазора). Сначала на каркас наматывают виток к витку повышающую обмотку V-VI - 1350 витков провода ПЭВ-2 =0,07мм с изоляцией пропарафиненной тонкой бумагой через каждые 450 витков. Поверх повышающей обмотки укладывают двойной слой пропарафиненной бумаги, затем наматывают обмотки:I-II - 8 витков ПЭВ-2 =3мм.III-IV - 6 витков ПЭВ-2 =0,3мм.Допустимо использовать сердечник Б14, из ферритов 2000НМ.
Т2 - Стержневой сердечник =2,8мм L=18мм из феррита 2000НМ. На сердечник крепят щетки из картона, текстолита и т.п. материала, затем обматывают двумя слоями лакоткани. Сначала наматывают повышающую обмотку III-IV - 200 витков ПЭЛШО =0,1мм (через 100 витков - изоляция двумя слоями лакоткани). Затем поверх нее первичную обмотку I-II - 20 витков провода ПЭВ-2 =0,3мм. Вывод 4 трансформатора проводом в хорошей изоляции (МГТФ и т.п.) подсоединяется к поджигающему электроду импульсной лампы VL1. При использовании деталей обозначенных в скобках или других подходящих, габариты прибора могут возрасти.

Большая часть деталей "Меч-1" смонтирована на односторонней печатной плате (А1) из фольгированного стекло текстолита. Резисторы R4, R10, R11 установлены на плате горизонтально, все остальные вертикально. Диоды VD1, VD2 распаивают в первую очередь, так как они находятся под расположенным горизонтально транзистором VT6.

Собранный без ошибок "Меч-1" в налаживании не нуждается. Перед включением питания, необходимо тщательно проверить правильность монтажа. После этого выключателем S1 подают питание на сирену и проверяют ее работу. Выключив сирену и включив SA1 убеждаются в работе преобразователя напряжения (должен появиться тихий свист). Подстроечным резистором R15 добиваются, чтобы индикаторная лампа загоралась при напряжении на конденсаторе С8 = 340 вольт.

Отсутствие генерации или низкое выходное напряжение указывают на неправильное включение обмоток трансформатора Т1 или межвитковое замыкание. В первом случае надо поменять местами выводы 3 и 4 трансформатора. Во втором случае перемотать Т1.

При работающем преобразователе и заряженном конденсаторе С8 (светится индикатор Н1), нажатие на кнопку S3 вызывает вспышку импульсной лампы VL1. Вспышки не будет при обратном включении выводов 1 и 2 трансформатора Т2 или при межвитковом замыкании. Следует поменять местами выводы, а если это не поможет - перемотать трансформатор.

Конструктивно "Меч-1" выполнен в корпусе из ударопрочного полистирола с габаритами 114х88х34 мм. В торце корпуса находится окошко отражателя импульсной лампы VL1 и электроды разрядника (см. рисунок). Разрядник состоит из изоляционного основания (оргстекло, полистирол) высотой 28мм и двух металлических электродов XS1 и XS2 выступающих над ним на 3 мм. Расстояние между электродами - 10 мм. Выключатели S1, S2 и кнопка S3 расположены на боковой поверхности корпуса, там же находится и глазок индикатора Н1. Отверстия для звука от динамика ВА1 закрыты декоративной решеткой.

Прибор "Меч" является вариантом прибора "Меч-1" и отличается от последнего отсутствием генератора сирены, питанием от 2-х элементов А316 и меньшими габаритами. Принципиальная схема "Меч" изображена на рис. 2. Основа схемы - преобразователь напряжения, полностью идентичен преобразователю "Меч-1". Те элементы "Меч", обозначения которых на схеме не совпадает со схемой "Меч-1" - даны в разделе "Детали" в квадратных скобках, перед обозначением элементов "Меч-1". Например, VT6 KT863A (или KT829).

Здесь это элемент схемы "Меч", а VT6 - схемы "Меч-1".

Детали "Меч" смонтированы на печатной плате. Элементы питания расположены на плате между контактными пластинами из пружинистого металла.

Корпус прибора имеет габариты 98х62х28 мм. Расположение электродов, кнопки, и т.п. аналогично расположению на "Меч-1".




Резисторы (МЛТ-0,125) R1, R5, R7 - 100 Коm; R2 - 200 Коm;R3, R4 - 3,3 Коm; R6, R9 - 56 Коm; R8, R16 - 1,0 Mom; R10, R11 - 3,3 Коm; R12 - 300 om; R13 - 240 Kom; R14 - 510 Коm.

Резистор построечный R15 - СПЗ-220 1.0 Mom.

Индикатор H1 - ИН-35 (любая неонка).

Головка динамическая BA1 - 1ГДШ-6 (любая с R=4-8 ом мощностью > 0,5 Вт).

Лампа импульсная VL1 - ФП2-0,015 с отраж. (или ИФК-120).

Конденсаторы С1, С2 - К50-6 16В 1.0 МКф;С3 - КТ-1 2200 Пф; C4 - K50-1 50В 1 МКф;С5 - К73-24 250В 0,068 МКф; C6, C7 - К50-35 160В 22 МКф; C8 - К50-1,7 400В 150 МКф.

Микросхема D1 - К561ЛА7 (или К561ЛЕ5).

Диоды VD1, VD2 - КД105В(или КЦ111А).

Транзисторы VT1 - КТ315Г;VT2, VT4 - КТ973А;VT3, VT5 - КТ972А; VT6 - KT863A (или КТ829А).

Принципиальная схема.На микросхеме DD1 собран генератор сирены. Частота генерации генератора на DD1.3-DD1.4 плавно изменяется. Это изменение задается генератором на DD1.1-DD1.2, VT1:VT4 - усилитель мощности. На транзисторах VT5-VT6 собран преобразователь для питания лампы-вспышки. Частота генерации - около 15 кГц. VD1-VD2 - выпрямитель высокого напряжения: С6 - накопительный конденсатор. Напряжение на нем после зарядки - около 380 Вольт.

Конструкция и детали.

Диоды КД212А можно заменить на КД226.

Вместо К561ЛА7 можно использовать микросхемы 564ЛА7, К561ЛН2, но с изменением рисунка печатной платы.

КТ361Г можно заменить на КТ3107 с любыми буквенными индексами.

КТ315Г можно заменить на КТ342, КТ3102 с любыми буквенными индексами.

Вместо 0,5 ГДШ-1 можно установить любую с сопротивлением обмотки 4:8 Ом, желательно выбирать малогабаритные с более высоким КПД.

Кнопки МП7 или им подобные.

Лампа ФП - 0,015 - из набора к фотоаппарату <Эликон>; можно применить ИФК80, ИФК120, однако они имеют большие габариты.

С1, С2 - марки К53-1, С3-С5 - марки КМ-5 или КМ-6, С7 - марки К73-17, С6 - марки К50-17-150,0 мкф х 400 В. С5 припаян к выводу R7.

Трансформатор Тр1 выполнен на броневом ферритовом сердечнике М2000НМ с внешним диаметром 22 мм, внутренним 9 мм и высотой 14 мм, количество витков обмоток: I - 2х2 витка ПЭВ-2-0,15; II - 2х8 витков ПЭВ-2-0,3; III - 500 витков ПЭВ-2-0,15. Порядок намотки обмоток III - II - I .

Тр2 выполнен на сердечнике диаметром 3 мм, длиной 10 мм от контурных катушек радиоприемника: I обмотка - 10 витков ПЭВ-2-0,2; II - 600 витков ПЭВ-2-0,06. Порядок намотки обмоток II - I. Все обмотки трансформатора изолируются слоем лакоткани.

Длина штыревой части разрядника - около 20 мм, такое же и расстояние между штырями.

Трансформаторы VT5-VT6 закреплены на медной пластине 15х15х2.

Печатная плата с деталями установлена в самодельном корпусе из полистирола.

Кнопки Кн1:Кн3 закреплены в удобном месте корпуса.

1. Нажатием кнопки Кн1 включают сирену, звучащую с достаточной громкостью.

2. Нажатием кнопки Кн2 и выдержкой ее в нажатом состоянии в течение нескольких секунд заряжают накопительный конденсатор, после этого можно:

а - нажатием кнопки Кн3 получить мощную вспышку света.б - прикосновением оголенных электродов <Р> к телу хулигана вызвать у него электрошок вплоть до потери сознания.

Схема, как правило, начинает работать сразу. Единственная операция, которая может потребоваться, это подбор резисторов R7, R8. При этом добиваются минимального времени заряда конденсатора С6 при приемлемом потребляемом токе, который находится в пределах 1 А.

Прибор при работе потребляет значительный ток, поэтому после его применения нужно проверить батареи и при необходимости заменить их.

Необходимо помнить о соблюдении мер безопасности при сборке и эксплуатации прибора - на выводных электродах разрядника присутствует высокий потенциал.

Высоковольтный генератор (ВГ) состоит из мощного двухтактного VT1, VT2 автогенераторного преобразователя (АП) 9-400 В; выпрямителя VD3-VD7; накопительного конденсатора С; формирователя импульсов разряда на однопереходном транзисторе VT3; коммутатора VS н высоковольтных импульсных трансформаторов Т2а, Т2б.

Карманный вариант ВГ собран на двух печатных платах, располагаемых друг над другом компонентами внутрь. Т1 выполнен на кольце М1500НМЗ 28х16х9. Первой наматывают обмотку W2 (400 витков D 0.01) и тщательно изолируют. Затем наматывают обмотки W1a, W1б (по 10 витков D 0.5) и базовую обмотку Wб (5 витков D 0.01). Т2а (Т2б) выполнен на ферритовом стержне 400НН длиной 8-10 см, D 0.8 см. Стержень предварительно изолируют, поверх наматывают обмотку W2a (W2б), содержащую 800-1000 витков D 0.01 и тщательно изолируют. Обмотки W1a и W1б (по 10 витков D 1.0) наматывают противофазно. Для предотвращения электрического пробоя высоковольтные трансформаторы заливают эпоксидной смолой!


Оптимизация параметров:

Мощность заряда конденсатора С ограничена максимальной мощностью, развиваемой (кратковременно!) источником питания P = U1I1 (U1=9B , I1=1A), максимально допустимым средним током VD3-VD7 I2=CU2/2Tp и VT1-VT2 I1=N1I2. Энергия, накапливаемая на выходе АП E = CU22/2, определяется емкостью С (1-10 мкФ) при приемлемых габаритах и рабочем напряжении U2 = N1U1, N1 = W2/W1.

Период импульсов разряда Тр = RpCp должен быть больше постоянной заряда Тз = RC.

R ограничивает импульсный ток АП I2u = U2/R, I1u = N1I2u.

Напряжение высоковольтного импульса определяется соотношением витков Т2а (Т2б) Uвu = 2n2U2, n2 = w2/w1.

Наименьшее число витков w1 ограничено максимальным импульсным током VS Iи = U2(2G/L)1/2,

L - индуктивность w1a (w1б), наибольшее - электрической прочностью Т2а, Т2б (50 В на виток).

Пиковая мощность разряда зависит от быстродействия VS.

Режимы мощных элементов близки к критическим. Поэтому время работы ВГ должно быть ограничено. Допускается включать ВГ без нагрузки (разряд в воздухе) не более 1-3 секунд. Работу VS и VT3 сначала проверяют при отключенном АП, подав +9В на анод VD7. Для проверки АП Т2а и Т2б заменяют на резистор 20-100 Ом достаточной мощности. При отсутствии генерации необходимо поменять местами выводы обмотки Wб. Ограничить ток потребления АП можно уменьшением Wб, подбирая R1, R2. Правильно собранный ВГ должен обязательно пробивать внутренний межэлектродный промежуток 1,5-2,5 см.

При использовании ВГ необходимо соблюдать адекватные меры предосторожности. Импульсы тока высоковольтного разряда через миелиновую оболочку нервных волокон кожной ткани способны передаваться к мышцам, вызывая тонические судороги и спазмы. Благодаря синапсам, нервное возбуждение охватывает другие группы мышц, развивая рефлекторный шок и функциональный паралич. По данным U.S. Consumer Product Safety Commission печальные последствия - трепетание и фибрилляция желудочков с последующим переходом в асистолию, завершающую терминальные состояния - наблюдаются при разряде с энергией 10 Дж. По непроверенным сведениям 5 секундное воздействие высоковольтного разряда с энергией 0,5 Дж вызывает тотальную иммобилизацию. Восстановление полного мышечного контроля происходит не ранее чем через 15 минут.

Внимание: За рубежом аналогичные устройства официально (Bureau of Tobacco and Firearm) классифицированы как огнестрельное оружие.

Высоковольтный трансформатор наматывается на стержне от ферритовой антенны транзисторного приемника. Первичная обмотка содержит 5+5 витков провода ПЭВ-2 0,2-0,3 мм. Вторичная обмотка мотается виток к витку с изоляцией каждого слоя (1 виток на 1 вольт), 2500–3500 витков.

R1, R2 – 8-12 кОм
С1, С2 – 20-60 нФ
С3 – 180 пФ
С4, С5 – 3300 пФ – 3,3 кВ
D1, D2 – КЦ 106В
Т1, Т2 – КТ 837

Данное устройство предназначено только для демонстрационных испытаний в лабораторных условиях. Предприятие не несет ответственности за любое использование данного устройства.

Ограниченный сдерживающий эффект достигается воздействием мощного ультразвукового излучения. При сильных интенсивностях, ультразвуковые колебания производят чрезвычайно неприятный, раздражающий и болезненный эффект на большинство людей, вызывая сильные головные боли, дезориентацию, внутричерепные боли, паранойю, тошноту, расстройство желудка, ощущение полного дискомфорта.

Генератор ультразвуковой частоты выполнен на D2. Мультивибратор D1 формирует сигнал треугольной формы, управляющий качанием частоты D2. Частота модуляции 6-9 Гц лежит в области резонансов внутренних органов.


D1, D2 - КР1006ВИ1; VD1, VD2 - КД209; VT1 - KT3107; VT2 - KT827; VT3 - KT805; R12 - 10 Ом;

T1 выполнен на ферритовом кольце М1500НМЗ 28х16х9, обмотки n1, n2 содержат по 50 витков D 0.5.

Отключить излучатель; отсоединить резистор R10 от конденсатора C1; подстроечным резистором R9 выставить на выв. 3 D2 частоту 17-20 кГц. Резистором R8 установить требуемую частоту модуляции (выв. 3 D1). Частоту модуляции можно уменьшить до 1 Гц, увеличив емкость конденсатора С4 до 10 мкФ; Подсоединить R10 к С1; Подключить излучатель. Транзистор VT2 (VT3) устанавливают на мощный радиатор.

В качестве излучателя лучше всего применить специализированную пьезокерамическую головку ВА импортного или отечественного производства, обеспечивающую при номинальном напряжении питания 12 В уровень звуковой интенсивности 110 дБ: Можно использовать несколько мощных высокочастотных динамических головок (динамиков) ВА1...BAN, соединенных параллельно. Для выбора головки, исходя из требуемой интенсивности ультразвука и расстояния действия, предлагается следующая методика.

Средняя подводимая к динамику электрическая мощность Рср = Е2 / 2R, Вт, не должна превышать максимальной (паспортной) мощности головки Рmaх, Вт; Е - амплитуда сигнала на головке (меандр), В; R - электрическое сопротивление головки, Ом. При этом эффективно подводимая электрическая мощность на излучение первой гармоники Р1 = 0.4 Рср, Вт; звуковое давление Рзв1 = SдP11/2/d, Па; d - расстояние от центра головки, м; Sд = S0 10(LSд/20) Па Вт-1/2; LSд - уровень характеристической чувствительности головки (паспортное значение), дБ; S0 = 2 10-5 Па Вт-1/2. В результате, интенсивность звука I = Npзв12 / 2sv, Вт/м2; N - число параллельно соединенных головок, s = 1.293 кг/м3 - плотность воздуха; v = 331 м/с - скорость звука в воздухе. Уровень интенсивности звука L1 = 10 lg (I/I0), дБ, I0 = 10-12 I m/м2.

Уровень болевого порога считается равным 120 дБ, разрыв барабанной перепонки наступает при уровне интенсивности 150 дБ, разрушение уха при 160 дБ {180 дБ прожигает бумагу). Аналогичные зарубежные изделия излучают ультразвук с уровнем 105-130 дБ на расстоянии 1 м.

При использовании динамических головок дли получения требуемого уровня интенсивности может потребоваться увеличить напряжение питания. При соответствующем радиаторе (игольчатый с габаритной площадью 2 дм2) транзистор KT827 (металлический корпус) допускает параллельное включение восьми динамических головок с сопротивлением катушки 8 0м каждая. 3ГДВ-1; 6ГДВ-4; 10ГИ-1-8.

Разные люди переносят ультразвук по разному. Наиболее чувствительны к ультразвуку люди молодого возраста. Дело вкуса, если вместо ультразвука вы предпочтете мощное звуковое излучение. Для этого необходимо увеличить емкость С2 в десять раз. При желании можно отключить модуляцию частоты, отсоединив R10 от С1.

С ростом частоты эффективность излучения некоторых типов современных пьезоизлучателей резко увеличивается. При непрерывной работе более 10 минут, возможен перегрев и разрушение пьезокристалла. Поэтому рекомендуется выбирать напряжение питания ниже номинального. Необходимый уровень звуковой интенсивности достигается включением нескольких излучателей.

Ультразвуковые излучатели обладают узкой диаграммой направленности. При использовании исполнительного устройства для охраны помещений большого объема излучатель нацеливают в направление предполагаемого вторжения.

Устройство предназначено для активной самообороны путем воздействия на нападающего высоковольтным разрядом электротока. Схема позволяет получить на выходных контактах напряжение до 80000 В, что приводит к пробою воздуха и образованию электрической дуги (искрового разряда) между контактными электродами. Так как при касании электродов протекает ограниченный ток, угрозы для человеческой жизни нет.

Электрошоковое устройство благодаря своим малым размерам может использоваться как индивидуальное средство безопасности или же работать в составе системы охраны для активной защиты металлического объекта (сейфа, металлической двери, дверного замка и т.д.). Кроме того, конструкция настолько проста, что для изготовления не требует применения промышленного оборудования - все легко выполняется в домашних условиях.


В схеме устройства, рис. 1. на транзисторе VT1 и трансформаторе Т1 собран импульсный преобразователь напряжения. Автогенератор работает на частоте 30 кГц. и во вторичной обмотке (3) трансформатора Т1 после выпрямления диодами на конденсаторе С4 выделяется постоянное напряжение около 800...1000 В. Второй трансформатор (Т2) позволяет еще повысить напряжение до нужной величины. Работает он в импульсном режиме. Это обеспечивается регулировкой зазора в разряднике F1 так, чтобы пробой воздуха происходил при напряжении 600...750 В. Как только напряжение на конденсаторе С4 (в процессе заряда достигнет этой величины, разряд конденсатора проходит через F1 и первичную обмотку Т2.

Энергия, накопленная на конденсаторе С4 (передаваемая во вторичную обмотку трансформатора), определяется из выражения:

W = 0,5С х Uc2 = 0,5 х 0,25 х 10-6 х 7002 = 0,061 [Дж]

где, Uc - напряжение на конденсаторе [В];
С - емкость конденсатора С4 [Ф].

Аналогичные устройства промышленного изготовления имеют примерно такую же энергию заряда или чуть меньше.

Питается схема от четырех аккумуляторов типа Д-0,26 и потребляет ток не более 100 мА.

Элементы схемы, выделенные пунктиром, являются бестрансформаторным зарядным устройством от сети 220 В. Для подключения режима подзаряда используется шнур с двумя соответствующими вилками. Светодиод HL1 является индикатором наличия напряжения в сети, а диод VD3 предотвращает разряд аккумуляторов через цепи зарядного устройства, если оно не включено в сеть.

В схеме использованы детали: резисторы МЛТ, конденсаторы С1 типа К73-17В на 400 В, С2 - К50-16 на 25 В. С3 - К10-17, С4 - МБМ на 750 В или типа К42У-2 на 630 В. Высоковольтный конденсатор (С4) применять других типов не рекомендуется, так как ему приходится работать в жестком режиме (разряд почти коротким замыканием), который долго выдерживают только эти серии.

Диодный мост VD1 можно заменить четырьмя диодами типа КД102Б, a VD4 и VD5 - шестью последовательно включенными диодами КД102Б.

Включатель SA1 типа ПД9-1 или ПД9-2.

Трансформаторы являются самодельными и намотка в них начинается со вторичной обмотки. Процесс изготовления потребует аккуратности и намоточного приспособления.

Трансформатор Т1 выполняется на диэлектрическом каркасе, вставляемом в броневой сердечник Б26, рис 2, из феррита М2000НМ1 (М1500НМ1). Он содержит в обмотке I - 6 витков; II - 20 витков проводом ПЭЛШО диаметром 0,18 мм (0,12...0,23 мм), в обмотке III - 1800 витков проводом ПЭЛ диаметром 0,1 мм. При намотке 3-й обмотки необходимо через каждые 400 витков укладывать конденсаторную диэлектрическую бумагу, а слои пропитывать конденсаторным или трансформаторным маслом. После намотки катушки вставляем ее в ферритовые чашки и склеиваем стык (предварительно убедившись, что она работает). Места выводов катушки заливаются разогретым парафином или воском.

При монтаже схемы необходимо соблюдать полярность фаз обмоток трансформатора, указанную на схеме.

Высоковольтный трансформатор Т2 выполнен на пластинах из трансформаторного железа, набранных в пакет, рис. 3. Так как магнитное поле в катушке не замкнутое, конструкция позволяет исключить намагничивание сердечника. Намотка выполняется виток к витку (сначала наматывают вторичную обмотку) II - 1800...2000 витков проводом ПЭЛ диаметром 0,08...0,12 мм (в четыре слоя), I - 20 витков диаметром 0,35 мм. Межслойную изоляцию лучше выполнять из нескольких витков тонкой (0,1 мм) фторопластовой ленты, но подойдет также и конденсаторная бумага - ее можно достать из высоковольтных неполярных конденсаторов. После намотки обмоток трансформатор заливается эпоксидным клеем. В клей перед заливкой желательно добавить несколько капепь конденсаторного масла (пластификатор) и хорошо перемешать. При этом в заливочной массе клея не должно быть пузырьков воздуха. А для удобства заливки потребуется изготовить картонный каркас (размерами 55x23x20 мм) по габаритам трансформатора, где и выполняется герметизация. Изготовленный таким образом трансформатор обеспечивает во вторичной обмотке амплитуду напряжения более 90000 В, но включать его без защитного разрядника F2 не рекомендуется, так как при таком напряжении возможен пробой внутри катушки.

Диод VD3 любой со следующими параметрами:
- обратное напряжение > 1500 В
- ток утечки < 10-15 мкА
- прямой ток > 300 мА
Наиболее подходящие по параметрам: два последовательно соединенные диода КД226Д.

Данные трансформаторов:
Т1 - железо типоразмера 20х16х5 (можно феррум марки М2000мм Ш7х7)

Обмотки:
I - 28 витков 0,3 мм
II - 1500 витков 0,1 мм
III - 38 витков 0,5 мм

Т2 - сердечник ферритовый 2000-3000 нм (кусок от трансформатора строчной развертки телевизора (ТВС), в крайнем случае кусок стержня от магнитной антенны радиоприемника).
I - 40 витков 0,5 мм
II - 3000 витков 0,08 - 0,15 мм

Этот трансформатор - самая ответственная деталь шокера. Порядок его изготовления следующий: ферритовый стержень изолируют двумя слоями фторопластовой пленки (ФУМ) или стеклотканью. После этого начинают намотку. Витки укладывают сотнями так, чтобы витки из соседних сотен не попадали друг на друга: в один слой наматывают 1000 витков (10 по 100), потом пропитывают эпоксидной смолой, наматывают два слоя фторопластовой пленки или лакоткани и наверх наматывают следующий слой провода (1000 витков) таким же образом, как и в первый раз; снова изолируют и наматывают третий слой. В итоге выводы катушки получаются с разных сторон ферритового стержня.

Конденсатор С2 должен выдерживать напряжение 1500 В (в крайнем случае 1000 В) желательно с возможно меньшим током утечки. Разрядник К представляет собой две скрещенных между собой латунных пластины шириной 1-2 мм с зазором между пластинами 1 мм: для обеспечения разряда 1 КВ (киловольт).

Настройка: сначала собирают преобразователь с трансформатором Т1 (детали на обмотку II не подключают) и подают питание. Должен послышаться свист частотой около 5 КГц. Потом подносят один к одному (с небольшим, порядка 1 мм зазором) выводы обмотки II трансформатора. Должна появиться электрическая дуга. Если между этими выводами положить кусок бумаги, то он загорится. Эту работу нужно делать аккуратно, так как на этой обмотке напряжение до 1,5 КВ. Если свист в трансформаторе не слышно, то поменяйте местами выводы обмотки III у Т1. После этого подключите к обмотке II Т1 диод и конденсатор. Снова включите питание. Через несколько секунд выключите. Теперь хорошо изолированной отверткой закоротите выводы конденсатора С2. Должен произойти громкий разряд. Значит преобразователь работает отлично. Если нет, то поменяйте местами выводы обмотки II Т1. После этого можно собирать схему целиком. При нормальной работе разряд на выходе достигает длинны 30 мм. Резистором R1 = 2...10 Ом можно увеличить мощность прибора (если уменьшать этот резистор) или уменьшить (увеличивая его сопротивление). В качестве элемента питания служит батарейка типа «Крона» (желательно импортная), обладающая большой емкостью и дающая ток до 3 А в кратковременном режиме.

Трансформатор Т1 намотан на феррите М2000НМ-1 типоразмера Ш7х7,
Обмотки: I - 28 витков 0,35 мм.
II - 38 витков 0,5 мм.
III - 1200 витков 0,12 мм.

Трансформатор Т2 на стержне 8 мм и длиной 50 мм.
I - 25 витков 0,8 мм.
II - 3000 витков 0,12 мм.

Конденсаторы С2, С3 должны выдерживать напряжение до 600 В.

На транзисторе VT1 собран однотактный преобразователь напряжения, которое выпрямляется диодом VD1 и заряжает конденсаторы С2 и С3. Как только напряжение на С3 достигает порога срабатывания динистора VS1, он открывается и открывает тиристор VS2. При этом происходит разряд конденсатора С2 через первичную обмотку высоковольтного трансформатора Т2. На его вторичной обмотке возникает импульс высокого напряжения. Так процесс повторяется с частотой 5-10 Гц. Диод VD2 служит для защиты тиристора VS2 от пробоя.


Настройка заключается в подборе резистора R1 для достижения оптимального соотношения между потребляемым током и мощностью преобразователя. Путем замены динистора VS1 на другой, с большим или меньшим напряжением срабатывания, можно регулировать частоту высоковольтных разрядов.

Производство - Корея.
Выходное напряжение - 75 кV.
Питание - 6 V.
Вес - 380 г.

Задающий генератор собран на транзисторе VT1.

Данные трансформатора Т1:
- сердечник-феррум М2000 20х30 мм;
I - 16 витков 0,35 мм, отвод от 8-го витка
II - 500 витков 0,12 мм.

Данные трансформатора Т2:
I - 10 витков 0,8 мм.
II - 2800 витков 0,012 мм.


Трансформатор Т2 намотан в пять слоев по 560 витков в слое. Хотя вместо этого трансформатора можно взять катушку зажигания от автомобиля. Трансформатор - самая ответственная деталь шокера. Порядок его изготовления следующий: ферритовый стержень изолируют двумя слоями фторопластовой пленки (ФУМ) или стеклотканью. После этого начинают намотку. Витки укладывают сотнями так, чтобы витки из соседних сотен не попадали друг на друга: в один слой наматывают 1000 витков (10 по 100), потом пропитывают эпоксидной смолой, наматывают два слоя фторопластовой пленки или лакоткани и наверх наматывают следующий слой провода (1000 витков) таким же образом, как и в первый раз; снова изолируют и наматывают третий слой. В итоге выводы катушки получаются с разных сторон ферритового стержня.

Далее идет снова пропитка эпоксидкой, три слоя изоляции, а поверх наматывают 40 витков провода 0,5-0,8 мм. Включать этот трансформатор можно только после отвердения эпоксидной смолы. Не забывайте об этом, потому что его «пробьет» высоким напряжением.

Настройка заключается в подборе R2 до получения, при отключенных динисторах VD2, VD3, напряжения на С4 - 500 Вольт. При нажатии на кнопку начинает работать блокинг-генератор, и на выходе Т1 появляется напряжение, которое достигает 600 В. Через VD1 начинает заряжаться С4, и как только напряжение на нем достигает порога срабатывания динисторов, они открываются, ток в первичной цепи достигает 2А, напряжение на С4 резко падает, динисторы закрываются и процесс повторяется с частотой 10-15 Гц.

Основу прибора составляет преобразователь постоянного напряжения (рис.1). На выходе прибора я применил умножитель на диодах КЦ-106 и конденсаторах 220 пф х 10 кв. Питанием служат 10 аккумуляторов Д-0,55. С меньшими - результат чуть хуже. Можно применять и батареи "Крона" или "Корунд". Важно иметь 9-12 вольт.


I - 2 х 14 диам. 0,5-0,8 мм.
II - 2 х 6 диам. 0,5-0,8 мм.
III - 5-8 тыс. диам. 0,15-0,25 мм.

Аккумуляторы удобны только тем, что их можно заряжать.

Очень важным элементом является трансформатор, который я изготовил из ферритового сердечника (ферритовый стержень от радиоприемника диаметром 8 мм), но эффективнее работал трансформатор из феррита от ТВС - из П-образного я изготовил брусок.

Правила намотки высоковольтной обмотки взял из ("Электрическая спичка") - через каждую тысячу витков прокладывал изоляцию. Для межвитковой изоляции применил ленту ФУМ (фторопласт). На мой взгляд, другие материалы менее надежны. Экспериментируя, я пробовал изоленту, слюду, применял провод ПЭЛШО. Трансформатор служил недолго - обмотки "прошивало".

Корпус изготовил из пластмассовой коробки подходящих размеров - пластмассовая упаковка от электропаяльника. Размеры оригинала: 190 х 50 х 40 мм (см. рис.2).

В корпусе сделал перегородки из пластмассы между трансформатором и умножителем, а также между электродами со стороны пайки - меры предосторожности во избежание прохождения искры внутри схемы (корпуса), что также предохраняет трансформатор. С наружной части под электродами расположил небольшие "усики" из латуни для уменьшения расстояния между электродами - разряд образуется между ними. В моей конструкции расстояние между электродами - 30 мм, а длина короны - 20 мм. Искра образуется и без "усов" - между электродами, но есть опасность пробоя трансформатора, образования ее внутри корпуса. Идею "усов" я подсмотрел на "фирменных" моделях.

Во избежание самовключения при ношении целесообразнее применять выключатель движкового типа.

Хочу предупредить радиолюбителей о необходимости осторожного обращения с изделием как в период конструирования и наладки, так и с готовым аппаратом. Помните, что он направлен против хулигана, преступника, но, в то же время, против человека. Превышение пределов необходимой обороны наказывается по закону.

Основу прибора представляет преобразователь постоянного напряжения. Он выполнен по схеме двухтактного импульсного генератора на транзисторах VT1 и VT2. Он нагружен первичной обмоткой трансформатора. Вторичная служит для обратной связи. Третичная -повышающая. При нажатии на кнопку КН1 на конденсаторе С2 появляется постоянное напряжение 400В. Роль умножителя напряжения выполняет катушка зажигания от автомобиля "Москвич-412”.


При нажатии на кнопку поступает напряжение на генератор, и в его выходной обмотке индуцируется высокое переменное напряжение, которое диодом VD1 преобразуется в нарастающее постоянное на С2. Как только С2 зарядится до 300В динисторы VD2 и VD3 откроются и в первичной обмотке катушки зажигания возникнет импульс тока, в результате во вторичной будет импульс высокого напряжения, амплитудой в несколько десятков киловольт. Использование катушки зажигания вызвано её надёжностью, и в этом случае нет необходимости в трудоёмкой намотке самодельной катушки. А диодный умножитель весьма не надёжен. Трансформатор Тр1 намотан на феритовом кольце с внешним диаметром 28 мм. Его первичная обмотка содержит 30 втков ПЭВ 0,41 с отводом от середины. Вторичная - 12 витков с отводом от середины того же провода. Третичная - 800 витков провода ПЭВ 0,16. Правила намотки такого трансформатора известны

Это устройство можно использовать для защиты от нападения диких животных (и не только животных). В основе большинства подобных устройств лежит импульсный генератор и высоковольтный трансформатор с самодельной катушкой, которая не отличается простотой изготовления и прочностью.


В данном устройстве смоделирована система зажигания автомобиля. Используется автомобильная катушка зажигания, девятивольтовая батарея из шести элементов А373 , и прерыватель с конденсатором на электромагнитном реле. Работой прерывателя управляет мультивибратор на микросхеме DI и ключ на транзисторе VT1. Все устройство смонтировано в пластмассовой трубе длиной около 500 мм и диаметром - по диаметру катушки зажигания. Катушка расположена у рабочего конца (с двумя штырями от вилки на 220В и разрядными лепестками между ними.), а батарея в противоположной стороне трубы, между ними электронный блок. Включение - кнопкой, установленной между элементами батареи. Катушка зажигания может быть от любого автомобиля, электромагнитное реле тоже автомобильное, например реле звукового сигнала от “ВАЗ 08” или “Москвич 2141”.

Внимание: При эксплуатации приборов будьте осторожны; напряжение на электродах сохраняется 20-40 секунд после выключения.

Комплекта свежих элементов А316 хватает на 20-30 включений прибора по 0,5-1 мин. Своевременно заменяйте элементы. При опасности включите преобразователь напряжения. Через 2-3 сек, напряжение на электродах достигнет 300 в. Нажимать на кнопку включения вспышки следует не ранее загорания индикатора (5-12 сек, после включения преобразователя). Вспышку производите с расстояния не более 1,5 метров, направив лампу в глаза нападающего. Сразу после вспышки можно нанести электрический удар.

Что главное в жизни человека, кроме семейного счастья, обеспеченного существования и реализации собственных амбиций? Естественно личная безопасность и уверенность в себе. Конечно, хорошо быть уверенным, когда у вас рост под два метра, косая сажень в плечах, и вы в совершенстве владеете . А как быть тем, кто не имеет таких замечательных физических данных. Для этого придумали одно очень эффективное приспособление, называемое - электрошокер. Мы с вами сегодня попробуем собрать электрошокер своими руками. Оказывается, ничего сложного в этом инструменте самозащиты нет. Сделать электрошокер можно имея минимум знаний по электротехнике, но максимум усердия, впрочем, как и при создании любого другого самодельного оружия . Сразу хочу предупредить, сам я это устройство не собирал, инструкцию по сборке нашел в интернете и выложил на сайте чисто в ознакомительных целях. Так, что, за достоверность информации ручаться не могу. Если кто-то найдет ошибки в устройстве, прошу отписаться в комментариях, будем исправлять.

Итак, для сборки электрошокового устройства , нам понадобиться:

  1. преобразователь
  2. конденсатор
  3. разрядник
  4. трансформатор

Принцип работы довольно прост: поджигающий конденсатор дает разряд на пару разрядник-трансформатор и боевой конденсатор, в результате на выходе получается довольно мощный электро-импульс.

Начнем с изготовления трансформатора преобразователя. Нам понадобится сердечник Б22 из феррита 2000НМ, на который нужно намотать тонкую эмалированную проволоку диаметром 0,1 миллиметра. Это устройство похоже на шпульку от швейной машинки и его можно приобрести в магазине электротоваров.

Наматываем до тех пор, пока до края не останется 1.5 миллиметра. Должно получиться пять, шесть слоев обмотки. Между каждым слоем нужно прокладывать изоленту. Дальше все полностью обматываем изолентой в пару слоев и делаем обмотку более толстой проволокой диаметром 0,9 миллиметра. Где-нибудь на третьем слое делаем отводку и доматываем оставшиеся витки. Соединяем крышки шпульки и обматываем все опять же изолентой.

Теперь нас ждет изготовление более сложной детали - выходного трансформатора. Покупаем в сантехническом магазине полипропиленовую трубку диаметром 20мм. Отрезаем кусок длиной в пять сантиметров. Теперь нам нужно изготовить из него каркас, для этого в дрель вставляем подходящий по диаметру трубки болт, наматываем на него изоленту и насаживаем в трубку. В место резака можно использовать пилку по металлу или заточенную стальную пластику. Протачиваем канавки глубиной и шириной в два миллиметра, но осторожно, чтобы не прорезать трубку. После чего ножом прорезаем канавку вдоль всей трубки шириной два, три миллиметра.

Теперь нам понадобится ферритовый стержень диаметром десять миллиметров и длиной пятьдесят миллиметров. Его можно взять из трансформатора строчной развертки старого телевизора. Откалываем от него нужные нам куски и склеиваем их, чтобы получился стержень нужного размера. Обработать его до круглого состояния можно на наждаке. Впрочем, можно купить ферритовые колечки в магазине и склеить их между собой суперклеем.

Обматываем стержень слоем изоленты и наматываем на него провод 0.9 миллиметров, отступив от краев 5-10 миллиметров. Намотайте его обязательно в том же направлении, что и на секциях трубки. Далее изолируем его изолентой, но чтобы стержень с обмоткой мог свободно входить в трубку. Вставляем стержень в трубку со стороны, где нет вывода проводка, и соединяем две обмотки вместе. В результате должно получится три вывода: конец от первой обмотки, общий соединенный конец и HV-вывод. Фазы обмотки должны быть в одном направлении. Дальше трансформатор вложим в картонный коробок и заливаем парафином.

На рисунке ниже показана схема электрошокера.

Через мост заряжается поджигающий конденсатор, и одновременно через диоды заряжается боевой. Диоды нужны для разделения цепи конденсаторов на две разные. Все используемые в схеме детали можно купить в магазине и поместить на плате 40Х45 миллиметров.

Понадобятся:

  1. транзисторы IRFZ24; IRL2505
  2. Резисторы
  3. Конденсатор на 3300 пик
  4. аккумуляторы 6 штук NicD типоразмера 1/2 АА

Теперь приступим к процессу сборки. Футляр электрошокера можно изготовить из картона. Вставляем туда «внутренности» шокера и заливаем эпоксидкой.

Я не стал подробно описывать весь процесс сборки, потому как все что нужно указано на схеме выше. Те, кто могут понимать подобные схемы и держать в руках паяльник легко справятся с задачей и без этих «ценных» указаний, те, кто нет…что ж, им вряд ли удастся сделать электрошокер своими руками и лучше пусть приобретут его в магазине.

После застывания эпоксидки можно приступить к испытанию самодельного электрошокера на надоевших соседях (шутка)

Электрошокер — устройство очень полезное, но то, что продается в магазине, вас не защитит в реальных «боевых» ситуациях. Стоит в лишний раз напомнить, что по ГОСТ-у гражданские лица (простые смертные) не могут носить и применить электрошоковые устройства, мощность которых превышает 3 Ватт. Это смешная мощность, которой хватит только для отпугивания псов и пьяных алкашей, но никак не для обороны.
Электрошоковое устройство должно иметь высокую эффективность, чтобы защитить своего хозяина в любых ситуациях, но в магазине таких увы… нет.

Так как же быть в таком случае? Ответ прост — собрать электрошокер своими руками в домашних условиях. У некоторых из вас может возникнуть вопрос: безопасно ли это для нападающих? Безопасно, если знаешь что собирать. Мы в этой статье предложим шокер, который обладает титанической выходной мощностью 70 ватт (130 ватт в пике) и может уложить любого человека за доли секунды.

В паспортных данных промышленных электрошоковых устройств можно увидеть параметр — ЭФФЕКТИВНОЕ ВРЕМЯ ВОЗДЕЙСТВИЯ. Это время напрямую зависит от мощности. Для штатных 3-х ваттных шокеров время воздействия составляет 3-4 секунд, но естественно никто еще не смог подержать 3 секунды, поскольку из-за ничтожной выходной мощности, нападающий быстро сообразит в чем дело и набросится повторно. В этой ситуации ваша жизнь будет под угрозой и если нечем оборонятся, то последствия могут быть трагическими.

Давайте перейдем к сборке электрошокера своими руками. Но прежде, хочу сказать, что данный материал изложен в сети впервые, содержимое полностью авторское, спасибо хорошему другу Евгению за предложение использовать в высоковольтной части двухтактного умножителя. Последовательный умножитель (часто используемый в шокерах) обладает довольно низким КПД, а в этом случае мощность передается к телу нападающего без особых потерь.

Ниже представляем основные параметры электрошокера:

Номинальная выходная мощность 70 Ватт
Максимальная выходная мощность 100 Ватт
Пиковая выходная мощность 130 Ватт
Выходное напряжение на разрядниках 35000 Вольт
Частота искрообразования 1200 Гц
Расстояние между выходными электродами 30 мм
Максимальный пробой воздуха 45 мм
Фонарик имеет
Предохранитель имеет
Питание аккумулятор (LI-po 12V 1200mA)

Инвертор

Использовалась мощная схема двухтактного инвертора с применением N-канальных силовых ключей. Такая схема простого мультивибратора имеет минимальное количество комплектующих компонентов и «жрет» ток до 11 Ампер, а после замены транзисторов на более мощные, то потребления вырос до 16 Ампер — немало для такого компактного инвертора.

Но если имеется такой мощный преобразователь, то нужен соответствующий источник питания. Несколько недель назад на аукционе ebay были заказаны два комплекта литий-полимерных аккумуляторов, емкость которых составляет 1200мА при напряжении 12 Вольт. Позже удалось накопать в сети некоторые данные про эти аккумуляторы. Один из источников сообщал, что ток КЗ данных аккумуляторов составляет 15 Ампер, но потом из более достоверных источников стало понятно, что ток КЗ достигает до 34-х Ампер!!! Дикие аккумуляторы при достаточно компактных размерах. Следует заметить, что 34 А — это кратковременный отдаваемый ток короткого замыкания.

После выбора источника питания нужно приступать к сборке начинки электрошокера.

В инверторе можно использовать полевые транзисторы IRFZ44, IRFZ46, IRFZ48, можно и более мощные — IRL3705, IRF3205 (именно последний вариант использован у меня).

Импульсный трансформатор был намотан на сердечнике от на 50 Ватт. Такие китайские трансформаторы предназначены для питания 12-Вольтовых галогенных ламп и стоят копейки (чуть больше 1 доллара США).



Первичная обмотка мотается сразу 5-ю жилами провода 0,5 мм (каждая). Обмотка содержит 2х5 витков и мотается сразу двумя шинами, каждая шина состоит из 5 витков, как говорилось выше.

Сразу двумя шинами по всему каркасу мотаем 5 витков, т.к у нас в итоге получается 4 вывода первичной обмотки.


Обмотку тщательно изолируем 10-15 слоями тонкого прозрачного скотча и мотаем повышающую обмотку.


Вторичная обмотка состоит из 800 витков и намотана проводом 0,1мм. Обмотку мотаем слоями — каждый слой состоит из 70-80 витков. Межслойную изоляцию ставим тем же прозрачным скотчем, для каждого ряда 3-5 слоев изоляции.


Готовый трансформатор можно залить эпоксидной смолой, чего я никогда не делаю, поскольку технология намотки отработана и пока что ни один трансформатор не пробивал.



Умножитель

Продолжаем собирать электрошокер своими руками. В высоковольтной части использованы два двухтактных умножителя последовательно соединенных. В них использованы достаточно распространенные высоковольтные компоненты — конденсаторы 5кВ 2200пФ и диоды КЦ123 или КЦ106 (первые работают лучше из-за повышенного обратного напряжения).



Особо пояснять нечего, собираем тупо по схеме. Готовый умножитель получается довольно компактным, его нужно залить эпоксидной смолой после того, как он будет смонтирован в корпусе.

С такого умножителя можно снять до 5-6 см чистой дуги, но не стоит раздвигать выходные контакты на большое расстояние во избежание нежелательных последствий.

Корпус и монтаж

Корпус был взят от китайского светодиодного фонарика, правда пришлось чуть переделать его. Аккумуляторы расположены в задней части корпуса.


В качестве предохранителя используется выключатель по питанию. Можно использовать практически любые с током 4-5 Ампер и более. Выключатели были сняты из китайских ночников (цена в магазине менее доллара).


Кнопку без фиксации тоже следует брать с большим током. В моем случае кнопка имеет два положения.


Фонарик собран на обычных белых светодиодах. 3 светодиода от фонарика соединены последовательно и через ограничительный резистор 10Ом подключаются к аккумулятору. Светит такой фонарик достаточно ярко, для освящения ночной дороги вполне подходит.


После окончательного монтажа стоит лишний раз проверить всю схему на исправность.

Для заливки умножителя напряжения я использовал эпоксидную смолу, которая продается в шприцах, вес всего 28-29 Грамм, но одной упаковки хватит для заливки двух таких умножителей.





Готовый электрошокер получается очень компактным и дико мощным.




Благодаря повышенной частоте искрообразования к телу человека подается больше джоулей в секунду, поэтому время эффективного воздействия шокером составляет микросекунды!

Зарядка осуществляется бестрансформаторной схемой, о конструкции которой мы поговорим как-нибудь в другой раз.

Готовый шокер был покрыт 3D карбоном (цена порядка 4 доллар за 1 метр).



Вот таким образом можно сделать электрошокер своими руками, при этом он будет значительно лучше по сравнению с заводскими вариантами.

Впервые я приготовил несколько подробных видеоуроков по сборке этого электрошокера.


Всем Доброго дня!
Не так давно бродя по просторам интернета наткнулся на схему электрошокера и решил собрать,что из этого вышло смотрите сами.

Внимание!!!
Основное воздействие электрошокера – оглушающе-болевое. Электрический ток вызывает сильные болевые ощущения и вводит человека в состояние дезориентации. Электрический разряд в месте контакта с телом стимулирует сверхбыстрое сокращение мышц, что приводит к кратковременной потере работоспособности. К тому же деятельность нервных окончаний оказывается заблокированной и мозг не может управлять той частью тела, на которую воздействовали электротоком. Развивается паралич, который может продолжаться до 30 минут

Схема:

Для изготовления Электрошокера нам потребуется:
Транзисторы: IRFZ48N или IRFZ44.IRF3205
Резисторы: 680 ом или 1 кОм
Конденцаторы: 2n2 x 6.3 kv
Разрядник
Диоды: КЦ123 ИЛИ 106 (Лучше КЦ123 А)
Трансформатор:От бп компьютера (Я использовал дроссель ДФ-90 ПЦ)
Провод для намотки взят был из старой бритвы
Аккумуляторы формата 16850-3шт
Реле на 12 в 10а
Макетная плата, провода, олово, канифоль, паяльник, ну и прямые руки.


Диоды я взял из умножителя УН9/27-1.3 а намоточный провод из старой бритвы


В умножителе диоды стоят так:


Трансформатор я мотал так:
4+4 витков проводом 0,6 сложенным 3 раза Первичная обмотка
900 витков проводом 0,5- 0,2 мм Вторичная,через каждые 100-110 витков перематывал скотчем


Питание на электрошокера надо коммутировать через реле и дросель


Для питания я использовал 3 аккумулятора формата 16850
Но электрошокер неплохо работает и от 2-вух
Для заряда я использую плату на TP4056


В видео весь процесс разборки сборки и запуска

Проблема обеспечения безопасности и защиты себя и своих близких от посягательств на жизнь или имущество волнует каждого человека. Существует немало способов и средств для самозащиты, однако не все они доступны для приобретения и использования.

Лучшим оружием для защиты и самообороны считается электрошок, не требующий лицензии и регистрации в органах МВД. Электрошокер может приобрести любой желающий по достижении 18-ти летнего возраста, а благодаря компактному размеру и легкому весу шокер можно носить в кармане или в женской сумочке.

Типовой электрошокер состоит из нескольких узлов - преобразователя (1), конденсатора (2), разрядника (3) и трансформатора (4). Все ето вы видити на картинке ниже. Действует оно тоже нехитро. Конденсатор периодически разряжается на трансформатор, производя при этом разряд искры на его выходе. Казалось бы очень просто, но как показала практика тут есть скрытая хитрось (fulminat) и скрыта она именно в этом самом трансформаторе. В домашних уловиях практически невозможно сделать так, чтобы он правильно передавал импульс и был достаточно эффективен, для этого нужны специальные материалы, оборудование, а главное - расчеты, которые держатся в большом секрете - в сети вы ничего не найдете по этой теме. К тому же трансформатор имеет чисто конструктивные ограничения, которые не позволяют передавать через него мощные одиночые импульсы, необходимые нам.

Мы решили схитрить и придумали как сделать электрошокер своими руками в 3 раза проще при сохранении всей мощности. Действие происходит следующим образом: поджигающий конденсатор работает на систему разрядник-трансформатор аналогично электрошокеру, вследствии чего на его выходе возникает высоковольтный импульс пробивающий несколько сантиметров воздуха. И в этот момент в дело вступает основной, боевой конденсатор, который через образовавшийся ионизированный канал бъет всеми своими джоулями напрямую. Дело тут в том, что в момент образования электрического разряда возникает проводящий канал, который по сути заменяет кусок провода. Таким образом мы используя высокое напряжение подводим заряд к объекту практически без потерь, что позволяет снизить габариты, и собственно мощность девайса необходимую для достижения дикой злости его действия.

Изготовление шокера начнем с наиболее сложной детали - трансформаторов. Как показала практика трудности с повторением шокеров заключаются обычно именно в намотке - в процессе у многих сдают нервы и конструкция подвергается преждевременному разбитию молотком:-D Поэтому мы пошли путем промышленности, где как известно исходят из того что проще сделать в больших количествах и без проблем. Процесс при этом становится почти развлечением, но не стоит забывать о внимательности - трансформатор от этого не перестает быть наиболее ответственной частью девайса.

ТРАНСФОРМАТОР ПРЕОБРАЗОВАТЕЛЯ

Вам понадобится броневой сердечник Б22 из феррита 2000НМ. Поясню броневой не значит пуленепробиваемый:-) а просто такая конструкция закрытая со всех сторон в которой оставлены только дырки для проводов. Представляет собой две небольшие чашки между которыми расположена шпулька почти как в швейной машине:-)

Только намотать на нее нужно не нитки, а тонкий эмалированный провод диаметром около 0.1мм, его можно достать из китайского будильника. Берем этот провод и мотаем на шпульке не считая витки до тех пор пока свободного места не останется около 1.5мм.

Для наилучшего результата мотать нужно слоями, прокладывая между ними тонкую изоленту. Таким образом у вас должно получится 5-6 слоев. Если вам повезет достать провод ПЭЛШО просто мотайте его внавал, без всякой изоляции, периодически капнув немного машинного масла. К концам провода полезно приделать тонкие многожильные выводы для большей надежности.

Далее изолируем все это в 1-2 слоя изолентой и наматываем 6 витков более толстой проволки, что нибудь в районе 0.7-0.9мм, с отводом от середины, т.е. на 3м витке останавливаем процесс и делаем отвод (скрутку), затем доматываем оставшиеся 3 витка. Все это не лишне будет пофиксировать суперклеем или еще чем нибудь. В завершении склеиваем чашки между собой, либо просто обматываем изолентой ели не уверены в качестве намотки.

ВЫХОДНОЙ ТРАНСФОРМАТОР

Потренировались и хватит. Теперь реально сложная деталь. Хотя забегая вперед скажу что ЭТО по сравнению с тем что приходилось делать раньше просто развлечение;-) Потому что намотать традиционный слоевой трансформатор в домашних условиях и с первого раза да еще чтобы работало НЕВЫЙДЕТ. Вместо слоев в нашем трансформаторе будут секции.

Для начала нужно достать трубку из полипропилена диаметром 20мм. Продаются они в магазине сантехники как замена обычным водопроводным трубам. По виду белая така с толстой стенкой, чистый пластик. Есть очень похожая но металопластик - не подойдет. Нам нужен кусок всего 5-6см в длину.

Путем сложного процесса этот кусок должен стать секционным каркасом. Делается это следущим образом - берем дрель, в которую зажимаем сверло или болт близкий по диаметру чтобы влезал в трубку, наматывая на него изоленту добиваемся чтобы трубка сидела плотно и ровно. Далее берем резак который можно сделать из стальной пластины, наждачного полотна и т.д., и начинаем протачивать канавки прикидывая так чтобы не прорезать трубу. В итоге должны получится секции примерно 2х2 мм т.е. 2 мм в глубину и ширину. Чтобы они были ровнее после заточки можно немного подточить надфилем. После чего берем канцелярский нож для бумаги и вдоль всего каркаса делаем надрез 2-3мм шириной, смотрите окуратнее т.к. можно прорезать стенку трубы что черевато переделыванием. На этом подготовка завершена.

Потому что далее начинается самое интересное. На этот раз нам нужен провод диаметром около 0.2 мм. Его можно в блоке питания, пускателях и т.д.. Этот провод нужно намотать на все секции нашего каркаса, не слишком усердствуя, чтобы провод не выходил за рамки секции а лучше чтобы немного недоходил. Перед намоткой к началу провода припаивается опять же небольшой многожильный проводок, который нужно хорошо зафиксировать клеем чтобы не оторвался в случае чего. Конец провода пока ни с чем не соединяем.

Теперь нужно найти ферритовый стержень диаметром около 10мм и длинной около 50. Нам нужен феррит 2000НМ, для этих целей подойдет трансформатор строчной развертки от отечественного телевизора. Нужно снять с него все лишнее. Затем оккуратно расколите его как показано на рисунке. Если строчник из небольших половинок то их можно склеить суперклеем для получения более длинного стержня. Для обработки феррита нужно применить точило (наждачный круг) чтобы в итоге получился круглый стержень диаметром около 10мм и длинной около 50. Процесс очень тяжелый, во время него вы сможете почуствовать в полной мере работником угольной шахты:-D Вместо стержня можно использовать множество маленьких феритовых колечек склееных между собой - некоторым их проще купить, а делаются они тоже из феррита 2000НМ:-)

Стержень нужно обмотать слоем изоленты и намотать 20 витков провода 0.8 - того что мы использовали в первом трансформаторе, растянув намотку на всю его длину, только по краям отступив 5-10мм и фиксируем провод нитками или той же изолентой. НАМАТЫВАТЬ ПРОВОД НУЖНО В ТОМ ЖЕ НАПРАВЛЕНИИ ЧТО И НА СЕКЦИИ, например по часовой стрелке или против кому как нравится;-) После чего все изолируем в несколько слоев, насколько позволяет внутрений диаметр трубки, чтобы она входила внутрь плотно но без усилия.

После подготовительного и намоточного процесса проделываем следущий фокус. Вставляем стержень внутрь каркаса, и с той стороны где заканчивается HV-обмотка (где нет вывода в виде проводка) СОЕДИНЯЕМ 2 ОБМОТКИ ВМЕСТЕ!!! Таким образом у трансформатора будет 3 вывода вместо обычных 4х: конец от 1й обмотки, общая точка и HV-вывод. ВНИМАНИЕ! следите за фазировкой (намотка в одинаковом направление) иначе шокер не будет работать.

В завершение процесса трансформатор нужно поместить в картонный коробок и залить горячим парафином. Для этого расплавьте парафин в консервной банке но греть не нужно, иначе горячий парафин повредит каркас и все труды пойдут насмарку. Выводы нужно предварительно заклеить каким-либо клеем чтобы парафин не вытекал:-) Лучше всего процесс производить в две стадии. Сначала залить парафином, потом поставить перед тепловентилятором или на радиатор чтобы он прогревался в течение 10-15 минут таким образом все воздушные пузырьки повсплывают и уйдут. Коробок нужно делать с ЗАПАСОМ ПО ВЫСОТЕ тк после остывания парафин сильно усаживается. Убрать лишнее можно ножом. Такая технология почти не уступает вакуумному процессу в заводских условиях, но может применятся на кухне. Если у вас есть возможность позаимствовать промышленный вакуумный насос то вместо парафина лучше использовать эпоксидку - она надежнее.

Пришло время увидеть схему электрошокера. Она очень проста и думаю не вызовет проблем с пониманием. Через мост заряжается поджигающий кондер, и одновременно через дополнительные диоды заряжается боевой. Эти диоды нужны чтобы конденсаторы не создавали одну цепь, иначе пришлось бы мотать отдельную обмотку транса и второй мост что весьма напряжно - изолировать транс придется не хуже выходного да и габариты будут больше. На некоторую разницу времени заряда которая в теории присутствует при таком варианте можно смело не обращать внимания, т.к. на практике ее попросту нет. Отсюда следует только одно ограничение, конденсаторы должны быть одинаковые. Что вобщемто нас особо не беспокоит.

Все детали не особо дефицитные, их можно свободно заказать или просто купить на базаре.. Наиболее критичны кондеры и разрядник, советую подзаморочится и найти именно те что указаны в списке деталей т.к. от них зависят размеры шокера и качество его работы.

Все остальное можно ставить что попадется под руку. Для преобразователя подходят почти любые транзисторы начиная от IRFZ24 и заканчивая IRL2505. Резисторы также некритичны и могу отличатся в ту или иную сторону.. Конденсатор на 3300 пик нужен для ограничения броска тока в момент запуска, т.е. для защиты преобразователя. При использовании довольно мощных транзисторов (IRFZ44+) его можно не ставить.

В работе этой схемы электрошокера есть одна интересная особенность которую некоторые могли уже заметить. А именно при коротком замыкании контактов, например при непосредственном контакте обоих электродов с кожей, правильная работа шокера нарушается, т.к. боевой кондер не успевает заряжатся до нужного напряжения. В данном случае этот косяк не так важен, как в умножительных шокерах, т.к. напряжение на конденсаторе всего около 1000 вольт, чего не достаточно даже для пробивания тонкой майки. Поэтому для простоты и удешевления конструкции этому факту не было уделено внимание. Но все же, если вы собрались идти на войну с нудистами:-D ТО НУЖНО ПоСТАВИТЬ ВТОРОЙ РАЗРЯДНИК последовательно с любым из выходных электродов шокера!

Теперь немного о конструктивной композиции девайса. Вся схема электрошокера, при использование указанных деталей, помещается на плате размером 40*45мм. Аккумуляторы представляют собой 6 штук NicD типоразмера 1/2 АА, т.е. вдвое короче обычных пальчиковых, емкостью 300 мА\ч. Что соответствует мощности примерно 15вт. Продаются они как запасные для радиотелефонов в виде блоков по 3 или 4 штуки. Стоимость в районе сотни деревянных за блок;-) Таким образом весь шокер можно сделать размером с пачку сигарет.

Последовательность сборки следущая. Для начала отказываемся от платы, Т.к. полюбому в процессе придется перепаивать те или иные детали и она неизбежно туда уйдет... Берем радиатор, например из БП компа и ставим на него транзисторы. Радиатор должен либо иметь изолирующие прокладки либо тогда нужно 2 отдельных радиатора чтобы они не соприкасались между собой.. Прикручиваем их туда и напаиваем все остальное прямо на весу. Таким образом начальный макет должен выглядеть как кучка хлама у вас на столе:-) Не забудьте зафиксировать HV выводы на нужном расстояние (для начала не более 15мм) иначе трансформатор и все остальное за ним также имеет нашс сгореть.

Включаем девайс. Питание нужно брать именно с тех акумов которые в дальнейшем пойдут в девайс, всякие там блоки питания и другие источники не подойдут! Впринципе настройки шокер не требует и должен заработать сразу. Вопрос в том, как он заработает. При указанных акумах частота разрядов около 35 герц. Если она меньше, тут возможно два варианта, либо трансформатор намотан плохо, либо вы использовали другие транзисторы и нужно подобрать сопротивления по 330 ом.

Смотрим даташит на нужный вам транз, ищем там строку "INPUT CAPACITANCE" чем больше цифра, тем меньше должно быть сопротивление и наоборот. К примеру для IRFZ44 оно может быть и 1к, а для IRL2505 не более 240 Ом. Подбором добиваемся оптимальной частоты разрядов... Далее начинаем разводить выходные контакты до предполагаемого расстояния которое вам нужно (например у меня 25мм). Если все ок, !разводим еще на сантиметр! и в таком состояние делаем тест в течение 5 сек. Если все ок возвращаем прежнее расстояние. Этот запас должен полюбому присутствовать, т.к. пробой воздуха зависит от многих факторов таких как влажность, давление, и прр., поэтому если расстояние будет "на пределе" в один прекрасный момент вся конструкция уйдет в нибытие. По той же причине везде используется 2 диода вместо одного, хотя и с одним все (вроде бы) работает отлично.

Если все заработало как надо можно смело запаивать детали в плату и переходить к следующему этапу...

Поскольку мы не можем как на заводе штамповать детали из пластика, и мало у кого есть возможность использовать заводской корпус, остается одно - ЭПОКСИДКА. Процесс конечно кропотливый, но он имеет ряд своих преимуществ. В результате получается монолитный блок, который не боится ударов, попадания воды, абсолютно надежен в электрическом плане. Для изготовления вам понадобится собственно эпоксидка, ее берите много, тонкий картон от какойнить коробки, клеевой пистолет и еще некоторые мелочи...

Начинается процесс с вырезания основы из картона, т.е. "вид сверху". Для етого очень удобно использовать тетрадный лист на котором предварительно разметить план как и что где будет находится, затем его наклеить на картонку и вырезать...

Теперь ваша задача обклеить основу по периметру этими полосками. Процесс довольно сложный. Для загибания картона удобно использовать плоскогубцы с длинным носом или пинцет.. Клеить нужно обязательно с наружной стороны, при этом следите за герметичностью шва.

Расположите все основные детали внутри корпуса чтобы оценить их внутренюю компоновку. На этом этапе нужно определится где будут расположены переключатель и кнопка запуска:-) а также гнездо для зарядки акумулятора.

Применим термоусадку. Очень удобно использовать ее для некоторого утапливания выступающих элементов внутрь. Учтите что после заливки последует обработка и гдето 2-3мм снимется по бокам за счет картона. Также термоусадка позволяет достичь лучшей герметичности - на фото видно что с наружной стороны она закрыта (достаточно сжать пинцетом пока она горячая). На этом же этапе нужно соединить все детали между собой и проверить работу шокера в таком состоянии. В качестве боевых и защитных электродов я использовал алюминиевые заклепки, потолще и потоньше соответственно. Внутри алюминия стальной стержень, так что с пайкой проблем быть не должно, но все же очень удобно использовать кислоту.

Заливаем! Тут пояснять особо нечего, но учтите что эпоксидка обладает свойством проникать всюду куда не нужно, поэтому проверьте герметичность перед заливкой. Проверили? теперь еще раз. После этого можно приступать...

Стадия обработки. Через 6-8 часов, когда эпоксидка надежно схватится она все еще остается достаточно мягкой. В этот момент можно срезать лишнее монтажным ножом, придав шокеру удобную форму для удержания в руке. Этим вы не избавите себя от необходимости делать дальнейшую обработку наждаком и шкуркой, но сэкономите много нервных клеток;-) После обработки корпус можно покрыть каким-нить лаком, например цапоном.

И вот результат! После всего можно порадоватся глядя на такую штуку. Теперь можно обкусить защитные электроды до нужной длины если вы етого еще не сделали, и вперед!

Итак, шокер изготовлен, громко трещит и производит впечатление на окружающих;-) Но как же реально проверить степень его злости? Вначале мы говорили что это зависит от тока в импульсе который дает шокер. Значит его и будем искать;-) Ниже вы видите сравнение разряда от обычной трещалки и нашего девайса:

Видно что разряд намного толще, он имеет характерный желтый цвет и вспышки по краям, что говорит о большом токе. Насколько большом? Проведем простой тест. Возьмите обычный сетевой предохранитель на 0.25А и расположите между контактами шокера, так чтобы не было прямого контакта. Предохранитель сгорит. Это значит что выходной ток превышает 250 мА!!! Сравните с долями милиампер в обычном шокере:-) Понятно что в реальных уловиях из-за сопротивления тканей тела этот ток будет меньше, но всеравно В ДЕСЯТКИ РАЗ превосходить значения для обычных гражданских и даже милицейских моделей!

Загрузка...