domvpavlino.ru

Наименьшее общее кратное нод. Нахождение нод трех и большего количества чисел

Множество делителей

Рассмотрим такую задачу: найти делитель числа 140. Очевидно, что у числа 140 не один делитель, а несколько. В таких случаях говорят, что задача имеет множество решений. Найдем их все. Прежде всего разложим данное число на простые множители:

140 = 2 ∙ 2 ∙ 5 ∙ 7.

Теперь мы без труда можем выписать все делители. Начнем с простых делителей, то есть тех, которые присутствуют в разложении, приведенном выше:

Затем выпишем те, которые получаются попарным умножением простых делителей:

2∙2 = 4, 2∙5 = 10, 2∙7 = 14, 5∙7 = 35.

Затем - те, которые содержат в себе три простых делителя:

2∙2∙5 = 20, 2∙2∙7 = 28, 2∙5∙7 = 70.

Наконец, не забудем единицу и само разлагаемое число:

Все найденные нами делители образуют множество делителей числа 140, которое записывается с помощью фигурных скобок:

Множество делителей числа 140 =

{1, 2, 4, 5, 7, 10, 14, 20, 28, 35, 70, 140}.

Для удобства восприятия мы выписали здесь делители (элементы множества ) в порядке возрастания, но, вообще говоря, это делать необязательно. Кроме того, введем сокращение записи. Вместо «Множество делителей числа 140» будем писать «Д(140)». Таким образом,

Точно так же можно найти множество делителей для любого другого натурального числа. Например, из разложения

105 = 3 ∙ 5 ∙ 7

мы получаем:

Д(105) = {1, 3, 5, 7, 15, 21, 35, 105}.

От множества всех делителей следует отличать множество простых делителей, которые для чисел 140 и 105 равны соответственно:

ПД(140) = {2, 5, 7}.

ПД(105) = {3, 5, 7}.

Следует особо подчеркнуть, что в разложении числа 140 на простые множители двойка присутствует два раза, в то время как во множестве ПД(140) - только один. Множество ПД(140) - это, по своей сути, все ответы на задачу: «Найти простой множитель числа 140». Ясно, что один и тот же ответ не следует повторять больше одного раза.

Сокращение дробей. Наибольший общий делитель

Рассмотрим дробь

Мы знаем, что эту дробь можно сократить на такое число, которое одновременно является и делителем числителя (105) и делителем знаменателя (140). Взглянем на множества Д(105) и Д(140) и выпишем их общие элементы.

Д(105) = {1, 3, 5, 7, 15, 21, 35, 105};

Д(140) = {1, 2, 4, 5, 7, 10, 14, 20, 28, 35, 70, 140}.

Общие элементы множеств Д(105) и Д(140) =

Последнее равенство можно записать короче, а именно:

Д(105) ∩ Д(140) = {1, 5, 7, 35}.

Здесь специальный значок «∩» («мешок отверстием вниз») как раз и указывает на то, что из двух множеств, записанных по разные стороны от него, надо выбрать только общие элементы. Запись «Д(105) ∩ Д(140)» читается «пересечение множеств Дэ от 105 и Дэ от 140».

[Заметим по ходу дела, что с множествами можно производить разные бинарные операции, почти как с числами. Другой распространенной бинарной операцией является объединение , которое обозначается значком «∪» («мешок отверстием вверх»). В объединение двух множеств входят все элементы как того, так и другого множества:

ПД(105) = {3, 5, 7};

ПД(140) = {2, 5, 7};

ПД(105) ∪ ПД(140) = {2, 3, 5, 7}. ]

Итак, мы выяснили, что дробь

можно сократить на любое из чисел, принадлежащих множеству

Д(105) ∩ Д(140) = {1, 5, 7, 35}

и нельзя сократить ни на какое другое натуральное число. Вот все возможные способы сокращения (за исключением неинтересного сокращения на единицу):

Очевидно, что практичнее всего сокращать дробь на число, по возможности большее. В данном случае это число 35, про которое говорят, что оно является наибольшим общим делителем (НОД ) чисел 105 и 140. Это записывается как

НОД(105, 140) = 35.

Впрочем, на практике, если нам даны два числа и требуется найти их наибольший общий делитель, мы вовсе не должны строить какие-либо множества. Достаточно просто разложить оба числа на простые множители и подчеркнуть те из этих множителей, которые являются общими для обоих разложений, например:

105 = 3 ∙ 5 7 ;

140 = 2 ∙ 2 ∙ 5 7 .

Перемножая подчеркнутые числа (в любом из разложений), получаем:

НОД(105, 140) = 5 7 = 35.

Разумеется, возможен случай, когда подчеркнутых множителей окажется больше двух:

168 = 2 2 ∙ 2 ∙ 3 ∙ 7;

396 = 2 2 3 ∙ 3 ∙ 11.

Отсюда видно, что

НОД(168, 396) = 2 2 3 = 12.

Особого упоминания заслуживает ситуация, когда общих множителей совсем нет и подчеркивать нечего, например:

42 = 2 ∙ 3 ∙ 7;

В этом случае,

НОД(42, 55) = 1.

Два натуральных числа, для которых НОД равен единице, называются взаимно простыми . Если из таких чисел составить дробь, например,

то такая дробь является несократимой .

Вообще говоря, правило сокращения дробей можно записать в таком виде:

a / НОД(a , b )

b / НОД(a , b )

Здесь предполагается, что a и b - натуральные числа, а вся дробь положительна. Если мы теперь припишем знак «минус» к обоим частям этого равенства, то получим соответствующее правило для отрицательных дробей.

Сложение и вычитание дробей. Наименьшее общее кратное

Пусть требуется вычислить сумму двух дробей:

Мы уже знаем, как раскладываются на простые множители знаменатели:

105 = 3 ∙ 5 7 ;

140 = 2 ∙ 2 ∙ 5 7 .

Из этого разложения сразу следует, что, для того чтобы привести дроби к общему знаменателю, достаточно числитель и знаменатель первой дроби умножить на 2 ∙ 2 (произведение неподчеркнутых простых множителей второго знаменателя), а числитель и знаменатель второй дроби - на 3 («произведение» неподчеркнутых простых множителей первого знаменателя). В результате знаменатели обеих дробей станут равны числу, которое можно представить так:

2 ∙ 2 ∙ 3 ∙ 5 7 = 105 ∙ 2 ∙ 2 = 140 ∙ 3 = 420.

Нетрудно видеть, что оба исходных знаменателя (как 105, так и 140) являются делителями числа 420, а число 420, в свою очередь, кратно обоим знаменателям, - и не просто кратно, оно является наименьшим общим кратным (НОК ) чисел 105 и 140. Это записывается так:

НОК(105, 140) = 420.

Приглядевшись повнимательнее к разложению чисел 105 и 140, мы видим, что

105 ∙ 140 = НОК(105, 140) ∙ НОД(105, 140).

Точно так же, для произвольных натуральных чисел b и d :

b d = НОК(b , d ) ∙ НОД(b , d ).

Теперь давайте доведем до конца суммирование наших дробей:

3 ∙ 5 7

2 ∙ 2 ∙ 5 7

2 ∙ 2 ∙ 3 ∙ 5 7

2 ∙ 2 ∙ 3 ∙ 5 7

2 ∙ 2 ∙ 3 ∙ 5 ∙ 7

2 ∙ 2 ∙ 3 ∙ 5 ∙ 7

2 ∙ 2 ∙ 3 ∙ 5

Примечание. Для решения некоторых задач требуется знать, что такое квадрат числа. Квадратом числа a называется число a , помноженное само на себя, то есть a a . (Как нетрудно видеть, оно равно площади квадрата со стороной a ).

Ланцинова Айса

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Задачи на НОД и НОК чисел Работа ученицы 6 класса МКОУ «Камышовская ООШ» Ланциновой Айсы Руководитель Горяева Зоя Эрднигоряевна, учитель математики с. Камышово, 2013г

Пример нахождения НОД чисел 50, 75 и 325. 1) Разложим числа 50, 75 и 325 на простые множители. 50= 2 ∙ 5 ∙ 5 75= 3 ∙ 5 ∙ 5 325= 5 ∙ 5 ∙ 13 2) Из множителей входящих в разложение одного из этих чисел, вычеркнем те, которые не входят в разложение других. 50= 2 ∙ 5 ∙ 5 75= 3 ∙ 5 ∙ 5 325= 5 ∙ 5 ∙13 3) Найдём произведение оставшихся множителей 5 ∙ 5 = 25 Ответ: НОД (50, 75 и 325)= 25 Наибольшее натуральное число, на которое делятся без остатка числа a и b называют наибольшим общим делителем этих чисел.

Пример нахождения НОК чисел 72, 99 и 117. 1) Разложим на простые множители числа 72, 99 и 117. 72 = 2 ∙ 2 ∙ 2 ∙ 3 ∙ 3 99 = 3 ∙ 3 ∙ 11 117 = 3 ∙ 3 ∙13 2) Выписать множители, входящих в разложение одного из чисел 2 ∙ 2 ∙ 2 ∙ 3 ∙ 3 и добавить к ним недостающие множители остальных чисел. 2 ∙ 2 ∙ 2 ∙ 3 ∙ 3 ∙ 11 ∙ 13 3)Найдите произведение получившихся множителей. 2 ∙ 2 ∙ 2 ∙ 3 ∙ 3 ∙ 11 ∙ 13= 10296 Ответ: НОК (72, 99 и 117) = 10296 Наименьшим общим кратным натуральных чисел a и b называют наименьшее натуральное число, которое кратно a и b .

Лист картона имеет форму прямоугольника, длина которого 48 см., а ширина 40 см. Этот лист надо разрезать без отходов на равные квадраты. Какие наибольшие квадраты можно получить из этого листа и сколько? Решение: 1) S = a ∙ b – площадь прямоугольника. S= 48 ∙ 40 = 1960 см ² . – площадь картона. 2) a – сторона квадрата 48: a – число квадратов, которое можно уложить по длине картона. 40: а – число квадратов, которое можно уложить по ширине картона. 3) НОД (40 и 48) = 8(см) – сторона квадрата. 4) S = a² – площадь одного квадрата. S = 8² = 64 (см ² .) – площадь одного квадрата. 5) 1960: 64 = 30 (количество квадратов). Ответ: 30 квадратов со стороной 8 см каждый. Задачи на НОД

Камин в комнате необходимо выложить отделочной плиткой в форме квадрата. Сколько плиток понадобится для камина размером 195 ͯ 156 см и каковы наибольшие размеры плитки? Решение: 1) S = 196 ͯ 156 = 30420 (см ²) – S поверхности камина. 2) НОД (195 и 156) = 39 (см) – сторона плитки. 3) S = a² = 39² = 1521 (см ²) – площадь 1 плитки. 4) 30420: = 20 (штук). Ответ: 20 плиток размером 39 ͯ 39 (см). Задачи на НОД

Садовый участок размером 54 ͯ 48 м по периметру необходимо оградить забором, для этого через равные промежутки надо поставить бетонные столбы. Сколько столбов необходимо привезти для участка, и на каком максимальном расстоянии друг от друга будут стоять столбы? Решение: 1) P = 2(a + b) – периметр участка. P = 2(54 + 48) = 204 м. 2) НОД (54 и 48) = 6 (м) – расстояние между столбами. 3) 204: 6 = 34 (столба). Ответ: 34 столба, на расстоянии 6 м. Задачи на НОД

Из 210 бордовых, 126 белых, 294 красных роз собрали букеты, причём в каждом букете количество роз одного цвета поровну. Какое наибольшее количество букетов сделали из этих роз и сколько роз каждого цвета в одном букете? Решение: 1) НОД (210, 126 и 294) = 42 (букета). 2) 210: 42 = 5 (бордовых роз). 3) 126: 42 = 3 (белых роз). 4) 294: 42 = 7 (красных роз). Ответ: 42 букета: 5 бордовых, 3 белых, 7 красных роз в каждом букете. Задачи на НОД

Таня и Маша купили одинаковое число почтовых наборов. Таня заплатила 90 руб., а Маша на 5 руб. больше. Сколько стоит один набор? Сколько наборов купила каждая? Решение: 1) 90 + 5 = 95 (руб.) заплатила Маша. 2) НОД (90 и 95) = 5 (руб.) – цена 1 набора. 3) 980: 5 = 18 (наборов) – купила Таня. 4) 95: 5 = 19 (наборов) – купила Маша. Ответ: 5 рублей, 18 наборов, 19 наборов. Задачи на НОД

В портовом городе начинаются три туристских теплоходных рейса, первый из которых длится 15 суток, второй – 20 и третий – 12 суток. Вернувшись в порт, теплоходы в этот же день снова отправляются в рейс. Сегодня из порта вышли теплоходы по всем трём маршрутам. Через сколько суток они впервые снова вместе уйдут в плавание? Какое количество рейсов сделает каждый теплоход? Решение: 1) НОК (15,20 и 12) = 60 (суток) – время встречи. 2) 60: 15 = 4 (рейса) – 1 теплоход. 3) 60: 20 = 3 (рейса) – 2 теплоход. 4) 60: 12 = 5 (рейсов) – 3 теплоход. Ответ: 60 суток, 4 рейса, 3 рейса, 5 рейсов. Задачи на НОК

Маша для Медведя купила в магазине яйца. По дороге в лес она сообразила, что число яиц делится на 2,3,5,10 и 15. Сколько яиц купила Маша? Решение: НОК (2;3;5;10;15) = 30 (яиц) Ответ: Маша купила 30 яиц. Задачи на НОК

Требуется изготовить ящик с квадратным дном для укладки коробок размером 16 ͯ 20 см. Какова должна быть наименьшая длина стороны квадратного дна, чтобы уместить коробки в ящик вплотную? Решение: 1) НОК (16 и 20) = 80 (коробок). 2) S = a ∙ b – площадь 1 коробки. S = 16 ∙ 20 = 320 (см ²) – площадь дна 1 коробки. 3) 320 ∙ 80 = 25600 (см ²) – площадь квадратного дна. 4) S = а² = а ∙ а 25600 = 160 ∙ 160 – размеры ящика. Ответ: 160 см- сторона квадратного дна. Задачи на НОК

Вдоль дороги от пункта К стоят столбы электролинии через каждые 45 м. Эти столбы решили заменить другими, поставив их на расстоянии 60 м друг от друга. Сколько столбов было и сколько будут стоять? Решение: 1) НОК (45 и 60) = 180. 2) 180: 45 = 4 –было столбов. 3) 180: 60 = 3 – стало столбов. Ответ: 4 столба, 3 столба. Задачи на НОК

Сколько солдат маршируют на плацу, если они будут маршировать строем по 12 человек в шеренге и перестраиваться в колонну по 18 человек в шеренге? Решение: 1)НОК (12 и 18) = 36 (человек) – маршируют. Ответ: 36 человек. Задачи на НОК

Наибольший общий делитель

Определение 2

Если натуральное число a делится на натуральное число $b$, то $b$ называют делителем числа $a$, а число $a$ называют кратным числа $b$.

Пусть $a$ и $b$-натуральные числа. Число $c$ называют общим делителем и для $a$ и для $b$.

Множество общих делителей чисел $a$ и $b$ конечно, так как ни один из этих делителей не может быть больше, чем $a$. Значит,среди этих делителей есть наибольший, который называют наибольшим общим делителем чисел $a$ и $b$ и для его обозначения используют записи:

$НОД \ (a;b) \ или \ D \ (a;b)$

Чтобы найти наибольший общий делитель двух, чисел необходимо:

  1. Найти произведение чисел, найденных на шаге 2. Полученное число и будет искомым наибольшим общим делителем.

Пример 1

Найти НОД чисел $121$ и $132.$

    $242=2\cdot 11\cdot 11$

    $132=2\cdot 2\cdot 3\cdot 11$

    Выбрать числа, которые входят в разложение этих чисел

    $242=2\cdot 11\cdot 11$

    $132=2\cdot 2\cdot 3\cdot 11$

    Найти произведение чисел, найденных на шаге 2.Полученное число и будет искомым наибольшим общим делителем.

    $НОД=2\cdot 11=22$

Пример 2

Найти НОД одночленов $63$ и $81$.

Будем находить согласно представленному алгоритму. Для этого:

    Разложим числа на простые множители

    $63=3\cdot 3\cdot 7$

    $81=3\cdot 3\cdot 3\cdot 3$

    Выбираем числа, которые входят в разложение этих чисел

    $63=3\cdot 3\cdot 7$

    $81=3\cdot 3\cdot 3\cdot 3$

    Найдем произведение чисел, найденных на шаге 2.Полученное число и будет искомым наибольшим общим делителем.

    $НОД=3\cdot 3=9$

Найти НОД двух чисел можно и по-другому, используя множество делителей чисел.

Пример 3

Найти НОД чисел $48$ и $60$.

Решение:

Найдем множество делителей числа $48$: $\left\{{\rm 1,2,3.4.6,8,12,16,24,48}\right\}$

Теперь найдем множество делителей числа $60$:$\ \left\{{\rm 1,2,3,4,5,6,10,12,15,20,30,60}\right\}$

Найдем пересечение этих множеств: $\left\{{\rm 1,2,3,4,6,12}\right\}$- данное множество будет определять множество общих делителей чисел $48$ и $60$. Наибольший элемент в данном множестве будет число $12$. Значит наибольший общий делитель чисел $48$ и $60$ будет $12$.

Определение НОК

Определение 3

Общим кратным натуральных чисел $a$ и $b$ называется натуральное число, которое кратно и $a$ и $b$.

Общими кратными чисел называются числа которые делятся на исходные без остатка.Например для чисел $25$ и $50$ общими кратными будут числа $50,100,150,200$ и т.д

Наименьшее из общих кратных будет называться наименьшим общим кратным и обозначается НОК$(a;b)$ или K$(a;b).$

Чтобы найти НОК двух чисел, необходимо:

  1. Разложить числа на простые множители
  2. Выписать множители, входящие в состав первого числа и добавить к ним множители, которые входят в состав второго и не ходят в состав первого

Пример 4

Найти НОК чисел $99$ и $77$.

Будем находить согласно представленному алгоритму. Для этого

    Разложить числа на простые множители

    $99=3\cdot 3\cdot 11$

    Выписать множители, входящие в состав первого

    добавить к ним множители, которые входят в состав второго и не ходят в состав первого

    Найти произведение чисел, найденных на шаге 2.Полученное число и будет искомым наименьшим общим кратным

    $НОК=3\cdot 3\cdot 11\cdot 7=693$

    Составление списков делителей чисел часто очень трудоемкое занятие. Существует способ нахождение НОД, называемый алгоритмом Евклида.

    Утверждения, на которых основан алгоритм Евклида:

    Если $a$ и $b$ --натуральные числа, причем $a\vdots b$, то $D(a;b)=b$

    Если $a$ и $b$ --натуральные числа, такие что $b

Пользуясь $D(a;b)= D(a-b;b)$, можно последовательно уменьшать рассматриваемые числа до тех пор, пока не дойдем до такой пары чисел, что одно из них делится на другое. Тогда меньшее из этих чисел и будет искомым наибольшим общим делителем для чисел $a$ и $b$.

Свойства НОД и НОК

  1. Любое общее кратное чисел $a$ и $b$ делится на K$(a;b)$
  2. Если $a\vdots b$ , то К$(a;b)=a$
  3. Если К$(a;b)=k$ и $m$-натуральное число, то К$(am;bm)=km$

    Если $d$-общий делитель для $a$ и $b$,то К($\frac{a}{d};\frac{b}{d}$)=$\ \frac{k}{d}$

    Если $a\vdots c$ и $b\vdots c$ ,то $\frac{ab}{c}$ - общее кратное чисел $a$ и $b$

    Для любых натуральных чисел $a$ и $b$ выполняется равенство

    $D(a;b)\cdot К(a;b)=ab$

    Любой общийй делитель чисел $a$ и $b$ является делителем числа $D(a;b)$

Сейчас и в дальнейшем мы будем подразумевать, что хотя бы одно из данных чисел отлично от нуля. Если все данные числа равны нулю, то их общим делителем является любое целое число, а так как целых чисел бесконечно много, то мы не можем говорить о наибольшем из них. Следовательно, нельзя говорить о наибольшем общем делителе чисел, каждое из которых равно нулю.

Теперь мы можем дать определение наибольшего общего делителя двух чисел.

Определение.

Наибольший общий делитель двух целых чисел – это наибольшее целое число, делящее два данных целых числа.

Для краткой записи наибольшего общего делителя часто используют аббревиатуру НОД – Наибольший Общий Делитель. Также наибольший общий делитель двух чисел a и b часто обозначают как НОД(a, b) .

Приведем пример наибольшего общего делителя (НОД) двух целых чисел. Наибольший общий делитель чисел 6 и −15 равен 3 . Обоснуем это. Запишем все делители числа шесть: ±6 , ±3 , ±1 , а делителями числа −15 являются числа ±15 , ±5 , ±3 и ±1 . Теперь можно найти все общие делители чисел 6 и −15 , это числа −3 , −1 , 1 и 3 . Так как −3<−1<1<3 , то 3 – это наибольший общий делитель чисел 6 и −15 . То есть, НОД(6, −15)=3 .

Определение наибольшего общего делителя трех и большего количества целых чисел аналогично определению НОД двух чисел.

Определение.

Наибольший общий делитель трех и большего количества целых чисел – это наибольшее целое число, делящее одновременно все данные числа.

Наибольший общий делитель n целых чисел a 1 , a 2 , …, a n мы будем обозначать как НОД(a 1 , a 2 , …, a n) . Если найдено значение b наибольшего общего делителя этих чисел, то можно записать НОД(a 1 , a 2 , …, a n)=b .

В качестве примера приведем НОД четырех целых чисел −8 , 52 , 16 и −12 , он равен 4 , то есть, НОД(−8, 52, 16, −12)=4 . Это можно проверить, записав все делители данных чисел, выбрав из них общие и определив наибольший общий делитель.

Отметим, что наибольший общий делитель целых чисел может быть равен одному из этих чисел. Это утверждение справедливо в том случае, если все данные числа делятся на одно из них (доказательство приведено в следующем пункте этой статьи). Например, НОД(15, 60, −45)=15 . Это действительно так, так как 15 делит и число 15 , и число 60 , и число −45 , и не существует общего делителя чисел 15 , 60 и −45 , который превосходит 15 .

Особый интерес представляют так называемые взаимно простые числа , - такие целые числа, наибольший общий делитель которых равен единице.

Свойства наибольшего общего делителя, алгоритм Евклида

Наибольший общий делитель обладает рядом характерных результатов, иными словами, рядом свойств. Сейчас мы перечислим основные свойства наибольшего общего делителя (НОД) , формулировать их мы будем в виде теорем и сразу приводить доказательства.

Все свойства наибольшего общего делителя мы будем формулировать для положительных целых чисел, при этом будем рассматривать лишь положительные делители этих чисел.

    Наибольший общий делитель чисел a и b равен наибольшему общему делителю чисел b и a , то есть, НОД(a, b)=НОД(a, b) .

    Это свойство НОД напрямую следует из определения наибольшего общего делителя.

    Если a делится на b , то множество общих делителей чисел a и b совпадает со множеством делителей числа b , в частности, НОД(a, b)=b .

    Доказательство.

    Любой общий делитель чисел a и b является делителем каждого из этих чисел, в том числе и числа b . С другой стороны, так как a кратно b , то любой делитель числа b является делителем и числа a в силу того, что делимость обладает свойством транзитивности, следовательно, любой делитель числа b является общим делителем чисел a и b . Этим доказано, что если a делится на b , то совокупность делителей чисел a и b совпадает с совокупностью делителей одного числа b . А так как наибольшим делителем числа b является само число b , то наибольший общий делитель чисел a и b также равен b , то есть, НОД(a, b)=b .

    В частности, если числа a и b равны, то НОД(a, b)=НОД(a, a)=НОД(b, b)=a=b . К примеру, НОД(132, 132)=132 .

    Доказанное свойство наибольшего делителя позволяет нам находить НОД двух чисел, когда одно из них делится на другое. При этом НОД равен одному из этих чисел, на которое делится другое число. Например, НОД(8, 24)=8 , так как 24 кратно восьми.

    Если a=b·q+c , где a , b , c и q – целые числа, то множество общих делителей чисел a и b совпадает со множеством общих делителей чисел b и c , в частности, НОД(a, b)=НОД(b, c) .

    Обоснуем это свойство НОД.

    Так как имеет место равенство a=b·q+c , то всякий общий делитель чисел a и b делит также и c (это следует из свойств делимости). По этой же причине, всякий общий делитель чисел b и c делит a . Поэтому совокупность общих делителей чисел a и b совпадает с совокупностью общих делителей чисел b и c . В частности, должны совпадать и наибольшие из этих общих делителей, то есть, должно быть справедливо следующее равенство НОД(a, b)=НОД(b, c) .

    Сейчас мы сформулируем и докажем теорему, которая представляет собой алгоритм Евклида . Алгоритм Евклида позволяет находить НОД двух чисел (смотрите нахождение НОД по алгоритму Евклида). Более того алгоритм Евклида позволит нам доказать приведенные ниже свойства наибольшего общего делителя.

    Прежде чем дать формулировку теоремы, рекомендуем освежить в памяти теорему из раздела теории , которая утверждает, что делимое a может быть представлено в виде b·q+r , где b – делитель, q – некоторое целое число, называемое неполным частным, а r – целое число, удовлетворяющее условию , называемое остатком.

    Итак, пусть для двух ненулевых целых положительных чисел a и b справедлив ряд равенств

    заканчивающийся, когда r k+1 =0 (что неизбежно, так как b>r 1 >r 2 >r 3 , … - ряд убывающих целых чисел, и этот ряд не может содержать более чем конечное число положительных чисел), тогда r k – это наибольший общий делитель чисел a и b , то есть, r k =НОД(a, b) .

    Доказательство.

    Докажем сначала, что r k является общим делителем чисел a и b , после чего покажем, что r k не просто делитель, а наибольший общий делитель чисел a и b .

    Будем двигаться по записанным равенствам снизу вверх. Из последнего равенства можно сказать, что r k−1 делится на r k . Учитывая этот факт, а также предыдущее свойство НОД, предпоследнее равенство r k−2 =r k−1 ·q k +r k позволяет утверждать, что r k−2 делится на r k , так как и r k−1 делится на r k и r k делится на r k . По аналогии из третьего снизу равенства заключаем, что r k−3 делится на r k . И так далее. Из второго равенства получаем, что b делится на r k , а из первого равенства получаем, что a делится на r k . Следовательно, r k является общим делителем чисел a и b .

    Осталось доказать, что r k =НОД(a, b) . Для достаточно показать, что любой общий делитель чисел a и b (обозначим его r 0 ) делит r k .

    Будем двигаться по исходным равенствам сверху вниз. В силу предыдущего свойства из первого равенства следует, что r 1 делится на r 0 . Тогда из второго равенства получаем, что r 2 делится на r 0 . И так далее. Из последнего равенства получаем, что r k делится на r 0 . Таким образом, r k =НОД(a, b) .

    Из рассмотренного свойства наибольшего общего делителя следует, что множество общих делителей чисел a и b совпадает с множеством делителей наибольшего общего делителя этих чисел. Это следствие из алгоритма Евклида позволяет найти все общие делители двух чисел как делители НОД этих чисел.

    Пусть a и b – целые числа, одновременно не равные нулю, тогда существуют такие целые числа u 0 и v 0 , то справедливо равенство НОД(a, b)=a·u 0 +b·v 0 . Последнее равенство представляет собой линейное представление наибольшего общего делителя чисел a и b , это равенство называют соотношением Безу, а числа u 0 и v 0 – коэффициентами Безу.

    Доказательство.

    По алгоритму Евклида мы можем записать следующие равенства

    Из первого равенства имеем r 1 =a−b·q 1 , и, обозначив 1=s 1 и −q 1 =t 1 , это равенство примет вид r 1 =s 1 ·a+t 1 ·b , причем числа s 1 и t 1 - целые. Тогда из второго равенства получим r 2 =b−r 1 ·q 2 = b−(s 1 ·a+t 1 ·b)·q 2 =−s 1 ·q 2 ·a+(1−t 1 ·q 2)·b . Обозначив −s 1 ·q 2 =s 2 и 1−t 1 ·q 2 =t 2 , последнее равенство можно записать в виде r 2 =s 2 ·a+t 2 ·b , причем s 2 и t 2 – целые числа (так как сумма, разность и произведение целых чисел является целым числом). Аналогично из третьего равенства получим r 3 =s 3 ·a+t 3 ·b , из четвертого r 4 =s 4 ·a+t 4 ·b , и так далее. Наконец, r k =s k ·a+t k ·b , где s k и t k - целые. Так как r k =НОД(a, b) , и, обозначив s k =u 0 и t k =v 0 , получим линейное представление НОД требуемого вида: НОД(a, b)=a·u 0 +b·v 0 .

    Если m – любое натуральное число, то НОД(m·a, m·b)=m·НОД(a, b) .

    Обоснование этого свойства наибольшего общего делителя таково. Если умножить на m обе стороны каждого из равенств алгоритма Евклида, то получим, что НОД(m·a, m·b)=m·r k , а r k – это НОД(a, b) . Следовательно, НОД(m·a, m·b)=m·НОД(a, b) .

    На этом свойстве наибольшего общего делителя основан способ нахождения НОД с помощью разложения на простые множители .

    Пусть p – любой общий делитель чисел a и b , тогда НОД(a:p, b:p)=НОД(a, b):p , в частности, если p=НОД(a, b) имеем НОД(a:НОД(a, b), b:НОД(a, b))=1 , то есть, числа a:НОД(a, b) и b:НОД(a, b) - взаимно простые.

    Так как a=p·(a:p) и b=p·(b:p) , и в силу предыдущего свойства, мы можем записать цепочку равенств вида НОД(a, b)=НОД(p·(a:p), p·(b:p))= p·НОД(a:p, b:p) , откуда и следует доказываемое равенство.

    Только что доказанное свойство наибольшего общего делителя лежит в основе .

    Сейчас озвучим свойство НОД, которое сводит задачу нахождения наибольшего общего делителя трех и большего количества чисел к последовательному отысканию НОД двух чисел.

    Наибольший общий делитель чисел a 1 , a 2 , …, a k равен числу d k , которое находится при последовательном вычислении НОД(a 1 , a 2)=d 2 , НОД(d 2 , a 3)=d 3 , НОД(d 3 , a 4)=d 4 , …, НОД(d k-1 , a k)=d k .

    Доказательство базируется на следствии из алгоритма Евклида. Общие делители чисел a 1 и a 2 совпадают с делителями d 2 . Тогда общие делители чисел a 1 , a 2 и a 3 совпадают с общими делителями чисел d 2 и a 3 , следовательно, совпадают с делителями d 3 . Общие делители чисел a 1 , a 2 , a 3 и a 4 совпадают с общими делителями d 3 и a 4 , следовательно, совпадают с делителями d 4 . И так далее. Наконец, общие делители чисел a 1 , a 2 , …, a k совпадают с делителями d k . А так как наибольшим делителем числа d k является само число d k , то НОД(a 1 , a 2 , …, a k)=d k .

На этом закончим обзор основных свойств наибольшего общего делителя.

Список литературы.

  • Виленкин Н.Я. и др. Математика. 6 класс: учебник для общеобразовательных учреждений.
  • Виноградов И.М. Основы теории чисел.
  • Михелович Ш.Х. Теория чисел.
  • Куликов Л.Я. и др. Сборник задач по алгебре и теории чисел: Учебное пособие для студентов физ.-мат. специальностей педагогических институтов.
Нахождение наиМЕНЬШЕГО общего кратного (НОК) и наиБОЛЬШЕГО общего делителя (НОД) натуральных чисел.

2

5

2

5

3

3

5

60=2*2*3*5
75=3*5*5
2) Выпишем множители, входящие в разложение первого из этих чисел и добавим к ним недостающий множитель 5 из разложения второго числа. Получаем: 2*2*3*5*5=300. Нашли НОК, т.е. эта сумма = 300. Не забываем размерность и пишем ответ:
Ответ: Мама дает по 300 рублей.

Определение НОД: Наибольшим общим делителем (НОД) натуральных чисел а и в называют наибольшее натуральное число c , на которое и a , и b делятся без остатка. Т.е. c это нибольшее натуральное число, для которого и а и б являются кратными.

Памятка: Существуют два подхода к определению натуральных чисел

  • числа, используемые при: перечислении (нумеровании) предметов (первый, второй, третий, …); - в школах, обычно так .
  • обозначении количества предметов (нет покемонов - ноль, один покемон, два покемона, …).

Отрицательные и нецелые (рациональные, вещественные, …) числа натуральными не являются. Ноль некоторые авторы включают в множество натуральных чисел, другие - нет. Множество всех натуральных чисел принято обозначать символом N

Памятка: Делителем натурального числа a называют число b, на которое a делится без остатка. Кратным натуральному числу b называют натуральное число a , которое делится на b без остатка. Если число b - делитель числа a , то a кратно числу b . Пример: 2 - делитель 4, а 4 кратно двум. 3 - делитель 12, а 12 кратно 3.
Памятка: Натуральные числа называют простыми, если они делятся без остатка только на себя и на 1. Взаимно простыми называются числа у которых только один общий делитель, равный 1.

Определение как найти НОД в общем случае: Чтобы найти НОД (Наибольший общий делитель) нескольких натуральных чисел надо:
1) Разложить их на простые множители. (Для этого Вам может очень пригодиться Таблица простых чисел.)
2) Выписать множители, входящие в разложение одного из них.
3) Вычеркнуть те, которые не входят в разложение остальных чисел.
4) Перемножить множители, получившиеся в п.3).

Задача 2 на (НОК): К новому году Коля Пузатов купил в городе 48 хомяков и 36 кофейников. Фекла Дормидонтова, как самая честная девочка класса, получила задание разделить это имущество на наибольшее возможное число подарочных наборов для учителей. Какое число наборов получилось? Какой состав наборов?

Пример 2.1. решения задачи на нахождение НОД. Нахождение НОД подбором.
Решение: Каждое из чисел и 48, и 36 должно делиться на число подарков.
1) Выпишем делители 48: 48, 24, 16, 12 , 8, 6, 3, 2, 1
2) Выпишем делители 36: 36, 18, 12 , 9, 6, 3, 2, 1 Выбираем наибольший общий делитель. Оп-ля-ля! Нашли, это число наборов 12 штук.
3) Поделим 48 на 12 получим 4, поделим 36 на 12, получим 3. Не забываем размерность и пишем ответ:
Ответ: Получится 12 наборов по 4 хомяка и 3 кофейника в каждом наборе.

Загрузка...