domvpavlino.ru

Со диагностических газов в трансформаторном масле. Системы мониторинга трансформаторов. Бездефектный трансформатор тока

Страница 5 из 9

Хроматографический анализ газов, растворенных в трансформаторном масле

Необходимость контроля за изменением состава масла в процессе эксплуатации трансформаторов ставит вопрос о выборе такого аналитического метода, который смог бы обеспечить надежное качественное и количественное определение содержащихся в трансформаторном масле соединений. В наибольшей степени этим требованиям отвечает хроматография, представляющая собой комплексный метод, объединивший стадию разделения сложных смесей на отдельные компоненты и стадию их количественного определения. По результатам этих анализов проводится оценка состояния маслонаполненного оборудования.

Хроматографический анализ газов, растворенных в масле, позволяет выявить дефекты трансформатора на ранней стадии их развития, предполагаемый характер дефекта и степень имеющегося повреждения. Состояние трансформатора оценивается сопоставлением полученных при анализе количественных данных с граничными значениями концентрации газов и по скорости роста концентрации газов в масле. Этот анализ для трансформаторов напряжением 110 кВ и выше должен осуществляться не реже 1 раза в 6 месяцев.

Основными газами, характеризующими определенные виды дефектов в трансформаторе, являются: водород Н 2 , ацетилен С 2 Н 2 , этан С 2 Н 6 , метан СН 4 , этилен С 2 Н 4 , окись СО и двуокись СО 2 углерода.

Водород характеризует дефекты электрического характера (частичные, искровые и дуговые разряды в масле); ацетилен - перегрев активных элементов; этан - термический нагрев масла и твердой изоляции обмоток в диапазоне температур до 300°С; этилен - высокотемпературный нагрев масла и твердой изоляции обмоток выше 300°С; окись и двуокись углерода - перегрев и разряды в твердой изоляции обмоток.

С помощью анализа количества и соотношения этих газов в трансформаторном масле можно обнаружить следующие дефекты в трансформаторе.

1. Перегревы токоведущих частей и элементов конструкции магнитопровода. Основные газы: этилен или ацетилен. Характерные газы: водород, метан и этан. Если дефектом затронута твердая изоляция, заметно возрастают концентрации окиси и двуокиси водорода.

Перегрев токоведущих частей может определяться: выгоранием контактов переключающих устройств; ослаблением крепления электростатического экрана; ослаблением и нагревом контактных соединений отводов обмотки низкого напряжения или шпильки проходного изолятора ввода; лопнувшей пайкой элементов обмотки; замыканием проводников обмотки и другими дефектами.

Перегрев элементов конструкции магнитопровода может определяться: неудовлетворительной изоляцией листов электротехнической стали; нарушением изоляции стяжных шпилек, ярмовых балок с образованием короткозамкнутого контура; общим нагревом и недопустимыми местными нагревами от магнитных полей рассеяния в ярмовых балках, бандажах, прессующих кольцах; неправильным заземлением магнитопровода и другими дефектами.

2. Дефекты твердой изоляции. Эти дефекты могут быть вызваны перегревом изоляции от токоведущих частей и электрическими разрядами в изоляции. При перегреве изоляции от токоведущих частей основными газами являются окись и двуокись углерода, их отношение СО2/СО, как правило, больше 13; характерными газами с малым содержанием являются водород, метан, этилен и этан; ацетилен, как правило, отсутствует.

При разрядах в твердой изоляции основными газами являются ацетилен и водород, а характерными газами любого содержания - метан и этилен. При этом отношение СО 2 /СО, как правило, меньше 5.

3. Электрические разряды в масле. Это частичные, искровые и дуговые разряды. При частичных разрядах основным газом является водород; характерными газами с малым содержанием - метан и этилен. При искровых и дуговых разрядах основными газами являются водород и ацетилен; характерными газами с любым содержанием - метан и этилен.

После выявления дефекта и его подтверждения не менее чем двумя-тремя последующими измерениями следует планировать вывод трансформатора из работы прежде всего с дефектами группы 2. Чем раньше выведен из работы трансформатор с развивающимся дефектом, тем меньше риск его аварийного повреждения и объем ремонтных работ.

Если по результатам диагностики трансформатор должен быть выведен из работы, но по каким-то объективным причинам это невозможно осуществить, его следует оставить на контроле с учащенным отбором проб масла и хромотографическим анализом газов.

Хроматографический анализ газов, растворенных в масле, позволяет выявлять не только развивающиеся дефекты в трансформаторе, но и общее состояние изоляции его обмоток. Объективным показателем, позволяющим оценить степень износа изоляции обмоток трансформатора, является степень ее полимеризации, снижение которой прямо характеризует глубину физико-химического разрушения (деструкции) изоляции в процессе эксплуатации. Деструкции целлюлозной изоляции сопутствует рост содержания в трансформатором масле окиси и двуокиси углерода и образование фурановых производных. В частности, наличие суммарной концентрации СО и СО2 более 1% может свидетельствовать о деградации целлюлозной изоляции. Образование фурановых производных является прямым следствием старения бумажной изоляции.

Метод жидкостной хроматографии позволяет определять и контролировать требуемое содержание в трансформаторном масле антиокислительных присадок, защищающих масло и другие изоляционные материалы трансформатора от старения.

Метод дефектоскопии, основанный на хроматографическом анализе растворенных в масле газов (ХАРГ)

Этот метод позволяет выявить дефекты в силовых трансформаторах, а также во вводах на ранней стадии развития.

Лабораторные исследования, проведенные в ряде стран, а также анализ спектра газов в трансформаторах и вводах позволили установить характеристические газы, специфичные для того или иного вида повреждения: водород (Н 2), углеводородные газы: метан (СН 4); этилен (С 2 Н 4); этан (С 2 Н 6), двуокись углерода (СО 2) и окись углерода (СО), ацетилен (С 2 Н 2). Таким образом, по характеристическим газам можно предположить вид развивающегося дефекта. Газоадсорбционная хроматография основана на разделении компонентов газовой смеси при помощи различных адсорбентов - пористых веществ с сильно развитой поверхностью.

Выделенные из масла газы обычно анализируются газовым хроматографом с детектором по теплопроводности.

Структурная схема хроматографической установки приведена на рис.3.4.

Рис.4.

1 - баллон с газом-носителем; 2 - устройство для введения пробы (дозатор); 3 - разделительная колонка; 4 - детектор; 5 - регистратор; 6 - устройство для извлечения газа из масла.

Процесс газовой хроматографии состоит из двух этапов: разделение анализируемой смеси на компоненты (качественный анализ) и определение их концентраций (количественный анализ).

Анализируемая смесь газов (проба) вводится в поток газа-носителя, который с постоянной скоростью пропускается через разделительную колонку, содержащую адсорбент. Различия в физико-химических свойствах отдельных газов смеси вызывают различия в скорости их продвижения через адсорбент (пористое вещество с сильно развитой поверхностью). Поэтому на выходе разделительной колонки будут последовательно появляться составляющие анализируемой пробы (в смеси с газом-носителем). Эти составляющие имеют различную теплопроводность, что позволяет, детектором формировать соответствующие сигналы, регистрируемые специальным устройством (обычно самопишущим потенциометром).

Последовательность (время) выхода из разделительной колонки конкретных газов известна (для данных условий анализа). Это дает информацию о составе анализируемой смеси. Для получения количественных данных интегратором определяется площадь пиков хроматограммы, которая на основании данных калибровки приводится к значениям концентрации соответствующих газов. Возможности разделения компонентов газовой смеси определяются характеристиками разделительной колонки: ее наполнителем (адсорбентом), длиной и температурным режимом.

Газ-носитель должен быть инертным по отношению к анализируемым веществам и примененным адсорбентам. Он также должен обеспечивать нормальную работу детектора.

Назначение детектора состоит в преобразовании поступающих на его вход отдельных компонентов газовой смеси в электрические сигналы, которые регистрируются на ленте электронного потенциометра в виде последовательно расположенных импульсов напряжения, получивших название хроматограммы.

Принцип действия часто применяемого детектора-катарометра основан на индикации изменения теплопроводности проходящих сквозь него газов (детектор по теплопроводности). Чувствительные элементы катарометра - резисторы расположены в камерах, по которым проходит поток газов. Два рабочих резистора обтекаются газом, выходящим из разделительной колонки; два других резистора - чистым газом-носителем. Резисторы включены в мостовую измерительную схему и нагреваются протекающим по ним током. При появлении в рабочей камере компонента анализируемой смеси, который изменяет теплопроводность газа в камере, изменяются условия теплопередачи от рабочих резисторов к ее стенке. При этом изменяются сопротивления рабочих резисторов и измерительный мост разбалансируется. Напряжение на диагонали моста, соответствующее концентрации данного компонента смеси, записывается регистратором.

Анализ извлеченной смеси газов производится по методике, определяемой типом примененного хроматографа и составом контролируемых газов. Результаты анализа регистрируются на диаграммной ленте. Состав анализируемой смеси определяется по времени и последовательности появления пиков на хроматограмме. Калибровка производится или эталонной смесью газов с известной концентрацией компонентов, или по одному газу (обычно азоту или воздуху) с соответствующим пересчетом по коэффициентам чувствительности.

Методика диагностики повреждений по хроматографическому анализу растворенных в масле газов является многокритериальной:

Если анализ газов показал состояние "опасности" или "повреждений", чаще проводится хроматографический контроль;

по характеристическим газам определяют вид развивающего дефекта;

по отношению концентраций газов этот дефект уточняется;

по скорости нарастания концентрации газов за определенный промежуток времени оценивается степень опасности развивающегося дефекта и даются рекомендации.

Преимущества метода ХАРГ: позволяет обнаружить довольно широкий класс дефектов, высокая вероятность совпадения прогнозируемого и фактического дефектов. В настоящее время применяют ХАРГ вместе с измерением tgд изоляции как основные методы диагностики вводов в процессе эксплуатации.

Недостатки: отбор масла под рабочим напряжением вводов невозможен вследствие особенностей конструкций их маслоотборных устройств. Необходимость частого отбора пробы масла неприемлема, особенно для герметичных конструкций.

Малый объем масла во вводах 110-220 кВ существенно затрудняет регулярный контроль путем отбора и анализа проб масла. Полная отдача сильфонов, компенсирующих температурное изменение объема масла в конструкциях серийных вводов 110-150 кВ, составляет 1,5-2,0 л, так что после отбора пробы (0,5 л) возникает необходимость последующего трудоемкого долива масла и соответствующего дорогостоящего приспособления. Характеристика пробы масла не всегда соответствует его фактическому состоянию в оборудовании, поскольку часть примесей может не попадать в пробу.

Методика выделения газов существенно влияет на точность определения концентраций контролируемых газов. Расхождения в методике выделения нередко являются причиной значительных расхождений в результатах анализа, проведенных в разных лабораториях. Кроме того, газосодержание масла конкретного ввода и скорость его изменения зависят от большого количества факторов. К ним относятся различия конструктивных материалов, режимы нагрузки, класс напряжения и т.п. Поэтому к граничным нормам следует относиться как к величине, отражающей компромисс между желанием выявить дефекты и затратами на контроль. Высокая чувствительность метода ХАРГ увеличивает вероятность ложной отбраковки, т.к. с учетом сравнительно небольшого объема масла во вводе, позволяет обнаружить дефект, который из-за малого его развития может и не приводить к аварийному повреждению ввода.

Эффективность контроля при этом в значительной мере определяется опытом персонала. Так, в частности, нормальное состояние ввода можно констатировать и в случае превышения нормы концентрации ряда газов, если скорости изменения этих концентраций малы. Однако при скорости изменения концентрации, превышающей нормированную предельную, малое абсолютное превышение концентрации не может быть признаком отсутствия дефекта.

Необходимо также отметить о сложности и высокой стоимости хроматогра-фической установки и трудности ее наладки и освоения.

Экспертиза нефтепродуктов различных марок включает в себя самые разные методы исследования. К примеру, химический анализ трансформаторного масла можно дополнить хроматографическими методами исследования. И если вам понадобилось провести комплексное исследование какого-либо вида нефтепродуктов, специалисты НП «Федерация Судебных Экспертов» готовы выполнить ваш заказ с помощью самых современных методов экспертизы и с применением новейшего оборудования.

Впервые хроматографический метод исследований был введен в научный оборот в начале 20 века, и его автором является русский ученый-ботаник М.С. Цвет. В дальнейшем хроматография стала усиленно развиваться, и теперь такие методы исследования широко используются в таких научных областях, как биохимия, физиология, фармацевтика, органическая химия.

Использование хроматографических методов для изучения нефтепродуктов началось еще в середине 20 века, когда с подачи ученых в нефтяной промышленности стали использоваться методы жидкостной и капиллярной хроматографии. Использование этих методов позволило проводить точный и эффективный анализ содержания различных фракций в нефти того или иного месторождения.

Хроматографические методы анализа нефти, используемые при проведении экспертизы нефтепродуктов, позволяют решить следующие задачи:

  • определение фракционного состава нефти и нефтепродуктов;
  • определение компонентного состава нефти и нефтепродуктов;
  • вычисление отдельных физических свойств компонентов, входящих в состав нефтепродуктов, в том числе – и автомобильного топлива;
  • анализ хлорорганических веществ, меркаптана, сероводорода и других сопутствующих соединений в составе изучаемой нефти;
  • анализ компонентного и фракционного состава нефти для установления источника их происхождения.

Весь комплекс хроматографических исследований нефти включает в себя разные методы анализа, выбор которых зависит от целей и задач, поставленных перед экспертом. К примеру, распространенный метод бумажной хроматографии позволяет установить содержание в нефти смолянистых веществ и асфальтенов. Другой вид анализа, известный как эклюзионный хроматографический метод, предназначен для контроля динамики изменений молекулярных масс во время переработки нефти.

Хроматографический анализ является удобными и точным методом исследований, и может быть использован для экспертизы отдельных видов нефтепродуктов. К примеру, хроматографический анализ масла, используемого в силовых трансформаторах, позволяет установить содержание растворенных газов, антиокислительных присадок, влаги, полихлорбенилов, что дает возможность сделать выводы о качественном составе и эксплуатационных свойства исследуемого масла.

Хроматографический анализ трансформаторного масла позволяет так же диагностировать состояние оборудования за счет анализа отдельных компонентов в составе масла. К примеру, повышенное содержание ацетилена, растворенного в трансформаторном масле, может сигналом об имеющемся перегреве токоведущих соединений в трансформаторе, а слишком высокое соединение углекислого газа – об увлажнении или ускоренном старении твердой изоляции.

Газохроматографические методы анализа позволяют экспертам решать целый ряд различных аналитических задач при проведении экспертизы нефтепродуктов. Использование таких методов исследования гарантирует точность и объективность полученных результатов при проведении работы с самыми разными видами нефтепродуктов.

Важно учитывать, что современные методы исследования и высокотехнологичное аналитическое оборудование требует высокой квалификации экспертов. Поэтому, если вам понадобились химический анализ трансформаторного масла или хроматографическое исследование нефти, обращайтесь в НП «Федерация Судебных Экспертов». Наши специалисты обладают необходимой квалификацией и выполнят все необходимые виды экспертизы на высоком уровне.

Химический анализ трансформаторного масла

Стоимость экспертизы

Тип исследования

Анализ нефтепродуктов:

Дизельное топливо по показателям: - 30 800

  1. Плотность
  2. Фракционный состав
  3. Содержание воды
  4. Содержание механических примесей
  5. Массовая доля серы
  6. Предельная температура фильтруемости
  7. Температура помутнения
  8. Температура вспышки
  9. Коэффициент фильтруемости
  10. Испытание на медной пластине

Анализ включает в себя пакетное исследование по 11 показателям.

Испытание автомобильного бензина АИ-80, АИ-92, АИ-95, АИ-98 - 27 000

  1. Плотность
  2. Фракционный состав
  3. Механические примеси, вода
  4. Массовая доля серы
  5. Октановое число
  6. Содержание водорастворимых кислот и щелочей
  7. Содержание фактических смол
  8. Испытания на медной пластине

Анализ включает в себя пакетное исследование по 8 показателям.

Дополнительно делаем анализ по 101 (сто одному) индивидуальному показателю для нефтепродуктов и гарюче-смазочных материалов.

ПРИМЕЧАНИЕ:
Цена aнализ асбеста на загрязнение указана с учетом налогов.
Консультации экспертов по проведению анализа асбеста на загрязнение - бесплатно.
Вы можете вызвать эксперта-химика на место изъятия образцов.

Дополнительные услуги:

Режим регулирования напряжения.

Устройства регулирования напряжения под нагрузкой (РПН) должны работать, как правило, в автоматическом режиме. Допускается дистанционное переключение РПН с пульта управления. На трансформаторах с переключением без возбуждения (ПБВ) правильность выбора коэффициента трансформации должна проверяться два раза в год - перед зимним максимумом и летним минимумом нагрузки.

Аварийные режимы.

При отключении трансформатора защитой, не связанной с его внутренними повреждениями, например, максимальной токовой защитой, трансформатор может быть вновь включен в работу.

При отключении трансформатора защитами от внутренних повреждений (газовой, дифференциальной) этот трансформатор включается в работу только после осмотра, испытаний, анализа масла, анализа газа из газового реле и устранения выявленных дефектов.

При срабатывании газового реле на сигнал производится наружный осмотр трансформатора и отбор газа из газового реле для анализа. Если газ в реле негорючий, при наружном осмотре признаки повреждения не обнаружены, а отключение трансформатора вызывает недоотпуск электроэнергии, трансформатор может быть оставлен в работе до выяснения причин срабатывания газового реле на сигнал. После выяснения этих причин оценивается возможность дальнейшей нормальной эксплуатации трансформатора.

Аварийный вывод трансформатора из работы осуществляется:
при сильном и неравномерном шуме или потрескиваниях внутри бака трансформаторы;
ненормальном и постоянно возрастающем нагреве трансформатора при нагрузке, не превышающей номинальную, и нормальной работе устройств охлаждения;
выбросе масла из расширителя или разрыве диафрагмы выхлопной трубы;
течи масла или уменьшении уровня масла ниже уровня масломерного стекла в расширителе.

23 ВОПРОС

Хроматографический анализ газов, растворенных в трансформаторном масле

Необходимость контроля за изменением состава масла в процессе эксплуатации трансформаторов ставит вопрос о выборе такого аналитического метода, который смог бы обеспечить надежное качественное и количественное определение содержащихся в трансформаторном масле соединений. В наибольшей степени этим требованиям отвечает хроматография, представляющая собой комплексный метод, объединивший стадию разделения сложных смесей на отдельные компоненты и стадию их количественного определения. По результатам этих анализов проводится оценка состояния маслонаполненного оборудования.

Хроматографический анализ газов, растворенных в масле, позволяет выявить дефекты трансформатора на ранней стадии их развития, предполагаемый характер дефекта и степень имеющегося повреждения. Состояние трансформатора оценивается сопоставлением полученных при анализе количественных данных с граничными значениями концентрации газов и по скорости роста концентрации газов в масле. Этот анализ для трансформаторов напряжением 110 кВ и выше должен осуществляться не реже 1 раза в 6 месяцев.

Основными газами, характеризующими определенные виды дефектов в трансформаторе, являются: водород Н 2 , ацетилен С 2 Н 2 , этан С 2 Н 6 , метан СН 4 , этилен С 2 Н 4 , окись СО и двуокись СО 2 углерода.

Водород характеризует дефекты электрического характера (частичные, искровые и дуговые разряды в масле); ацетилен - перегрев активных элементов; этан - термический нагрев масла и твердой изоляции обмоток в диапазоне температур до 300°С; этилен - высокотемпературный нагрев масла и твердой изоляции обмоток выше 300°С; окись и двуокись углерода - перегрев и разряды в твердой изоляции обмоток.

С помощью анализа количества и соотношения этих газов в трансформаторном масле можно обнаружить следующие дефекты в трансформаторе.

1. Перегревы токоведущих частей и элементов конструкции магнитопровода. Основные газы: этилен или ацетилен. Характерные газы: водород, метан и этан. Если дефектом затронута твердая изоляция, заметно возрастают концентрации окиси и двуокиси водорода.

Перегрев токоведущих частей может определяться: выгоранием контактов переключающих устройств; ослаблением крепления электростатического экрана; ослаблением и нагревом контактных соединений отводов обмотки низкого напряжения или шпильки проходного изолятора ввода; лопнувшей пайкой элементов обмотки; замыканием проводников обмотки и другими дефектами.

Перегрев элементов конструкции магнитопровода может определяться: неудовлетворительной изоляцией листов электротехнической стали; нарушением изоляции стяжных шпилек, ярмовых балок с образованием короткозамкнутого контура; общим нагревом и недопустимыми местными нагревами от магнитных полей рассеяния в ярмовых балках, бандажах, прессующих кольцах; неправильным заземлением магнитопровода и другими дефектами.

2. Дефекты твердой изоляции. Эти дефекты могут быть вызваны перегревом изоляции от токоведущих частей и электрическими разрядами в изоляции. При перегреве изоляции от токоведущих частей основными газами являются окись и двуокись углерода, их отношение СО2/СО, как правило, больше 13; характерными газами с малым содержанием являются водород, метан, этилен и этан; ацетилен, как правило, отсутствует.

При разрядах в твердой изоляции основными газами являются ацетилен и водород, а характерными газами любого содержания - метан и этилен. При этом отношение СО 2 /СО, как правило, меньше 5.

3. Электрические разряды в масле. Это частичные, искровые и дуговые разряды. При частичных разрядах основным газом является водород; характерными газами с малым содержанием - метан и этилен. При искровых и дуговых разрядах основными газами являются водород и ацетилен; характерными газами с любым содержанием - метан и этилен.

После выявления дефекта и его подтверждения не менее чем двумя-тремя последующими измерениями следует планировать вывод трансформатора из работы прежде всего с дефектами группы 2. Чем раньше выведен из работы трансформатор с развивающимся дефектом, тем меньше риск его аварийного повреждения и объем ремонтных работ.

Если по результатам диагностики трансформатор должен быть выведен из работы, но по каким-то объективным причинам это невозможно осуществить, его следует оставить на контроле с учащенным отбором проб масла и хромотографическим анализом газов.

Хроматографический анализ газов, растворенных в масле, позволяет выявлять не только развивающиеся дефекты в трансформаторе, но и общее состояние изоляции его обмоток. Объективным показателем, позволяющим оценить степень износа изоляции обмоток трансформатора, является степень ее полимеризации, снижение которой прямо характеризует глубину физико-химического разрушения (деструкции) изоляции в процессе эксплуатации. Деструкции целлюлозной изоляции сопутствует рост содержания в трансформатором масле окиси и двуокиси углерода и образование фурановых производных. В частности, наличие суммарной концентрации СО и СО2 более 1% может свидетельствовать о деградации целлюлозной изоляции. Образование фурановых производных является прямым следствием старения бумажной изоляции.

Метод жидкостной хроматографии позволяет определять и контролировать требуемое содержание в трансформаторном масле антиокислительных присадок, защищающих масло и другие изоляционные материалы трансформатора от старения.

24 ВОПРОС

При внешнем осмотре могут быть установлены некоторые неисправности трансформатора: поверхностное перекрытие; пробой или разрушение изоляторов, ввод, вздутие бака, образовавшееся вследствие механических усилий внутри трансформатора при его аварии; нарушение прочности швов бака или уплотнений, наличие и течи масла; неисправности работы маслоуказателя, сливного крана и другие дефекты.

Трансформаторы являются наиболее сложным оборудованием систем электроснабжения. Ремонт трансформатора, связанный с его разгерметизацией, выемкой и ремонтом активной части, требует высокой квалификации ремонтного персонала, больших материальных и временных затрат.

Для оценки действительного состояния трансформатора при его техническом обслуживании периодически проводятся профилактические проверки, измерения, испытания, диагностирование. При обнаружении явных или прогнозировании развивающихся дефектов, которые могут привести к отказу трансформатора планируется вывод его в ремонт.

Предварительно проводится ряд организационно-технических мероприятий, обеспечивающих четкое выполнение ремонтных работ: подготовка помещения (площадки), грузоподъемных механизмов, оборудования, инструментов, материалов, запасных частей. Кроме того, составляются ведомость объема работ и смета, которые являются исходными документами для определения трудовых и денежных затрат, сроков ремонта, потребности в материалах.

Любой ремонт трансформатора, связанный с разгерметизацией и выемкой активной части относится к капитальному. В зависимости от состояния активной части различают:
капитальный ремонт без замены обмоток;
капитальный ремонт с частичной или полной заменой обмоток, но без ремонта магнитной системы;
капитальный ремонт с заменой обмоток и частичным или полным ремонтом магнитной системы.
Ремонт трансформаторов мощностью до 6300 кВ*А выполняется, как правило, на специализированных ремонтных предприятиях. Ремонт трансформаторов большей мощности, у которых затраты на транспортировку могут превосходить стоимость ремонта, выполняется непосредственно на подстанциях. В этом случае персонал специализированного ремонтного предприятия выезжает к месту установки трансформатора.

По завершению ремонта активная часть трансформатора промывается сухим трансформаторным маслом. Для старого электрооборудования со сроком службы более 25 лет следует использовать интенсивную промывку активной части, добавляя в промывочное масло специальные присадки, обладающие повышенной растворяющей способностью. Это позволяет интенсифицировать процесс выделения из изоляции и активной части трансформатора воды, механических примесей, продуктов старения масла и твердых изоляционных материалов, что положительно сказывается на характеристиках изоляции.

Твердая изоляция обмоток трансформатора обладает гигроскопичностью. В период выполнения ремонтных работ на открытой активной части изоляция обмоток впитывает влагу из окружающей среды. Поэтому по окончании ремонта возникает вопрос о необходимости сушки изоляции обмоток трансформатора.

Трансформаторы, у которых при ремонте выполнялась полная или частичная замена обмоток, подлежат обязательной сушке. Трансформаторы, прошедшие ремонт без замены обмоток, могут быть включены в работу без сушки изоляции при условиях, что:
характеристики изоляции не выходят за пределы нормированных значений;
продолжительность пребывания активной части на открытом воздухе Тоткр при определенной его влажности не превышает значений, приведенных в табл. 1.

Сушка изоляции осуществляется ее нагреванием в вакуумных шкафах, сухим горячим воздухом в специальных камерах, в собственном баке (без масла).

Ремонт вводов. Основные неисправности вводов (рис.4) следующие: трещины и сколы изоляторов, разрушение изоляторов, некачественная армировка и уплотнение, срыв резьбы контактного зажима при неправильном навинчивании и затягивании гайки. При значительных сколах и трещинах ввод заменяется.

Армирование фарфоровых изоляторов начинают с изготовления зажима из медных или латунных прутков соответствующего диаметра и длины; на концах зажима нарезается резьба по размерам заменяемого. На зажим навинчивают стальной или бронзовый колпак и закрепляют его контргайкой. С внутренней стороны колпак с зажимом скрепляют газосваркой. Сварку производят латунью с применением в качестве флюса буры, предварительно прокаленной в течение 3 ч при 700 °С. Качество сварки должно быть проверено. После сварки зажим лудят гальваническим способом и подвергают вторичному испытанию.

Ремонт поврежденных контактных зажимов . Поврежденную резьбу зажимов отрезают ножовкой заподлицо с плоскостью колпачка. Зажим высверливают на толщину тела колпачка (3-4 мм), после чего его можно свободно вынуть и заменить новым. Новый зажим приваривают от верхней плоскости колпачка

Ремонт пробивного предохранителя. После каждого пробоя предохранителя устанавливают новую слюдяную пластинку толщиной 0,25 мм, а контактные поверхности предохранителя тщательно зачитают от образовавшегося нагара.

Ремонт бака. Сравнительно распространенными случаями повреждения бака, вызывающими его течь, являются нарушения сварных швов и недостаточная плотность прокладки между баком и крышкой. Пустой бак очищают от осадков, грязи, промывают и ополаскивают теплым маслом. Проверяют исправность работы спускного крана. Места течи заваривают, предварительно тщательно очистив место сварки от масла и краски и просушив его постепенным и равномерным нагревом паяльной лампой.

Ремонт прокладок. Пришедшие в негодность уплотняющие прокладки заменяют новыми, изготовленными из маслостойкой резины.

Разметку отверстий в прокладках для прохода болтов делают по крышке или фланцу бака. Отверстия выполняют просечкой. Во избежание перекоса крышки дополнительно прокладывают проволочный ограничитель 5 (рис.5).

Ремонт расширителя. Ремонт расширителя (рис.6) чаше всего сводится к промывке его маслом. Но иногда необходимо очищать внутреннюю поверхность расширите ля от ржавчины, которая может быть обнаружена при разборке трансформатора в виде большого скопления крупинок на плоскости верхнего ярма, под отверстием патрубка расширителя или чаще под отверстием выхлопной трубы.

25 ВОПРОС

ЭКСПЛУАТАЦИЯ РАСПРЕДЕЛИТЕЛЬНЫХ УСТРОЙСТВ
7.1. ОБСЛУЖИВАНИЕ РАСПРЕДЕЛИТЕЛЬНЫХ УСТРОЙСТВ
Электрические соединения в ЭЭС осуществляются в распределительных устройствах (РУ), включающих в себя схемы соединения; измерительные аппараты; устройства защиты от перенапряжения; аппараты, формирующие информационную сеть; коммутационные аппараты; электрические агрегаты; устройства защиты и автоматики. Схемы соединения РУ зависят от их назначения. Схемы подстанций сравнительно просты, а схемы соединения электростанций и объектов, выполняющих роль узловых пунктов сети ЭЭС, значительно сложнее. На таких объектах используются устройства защиты и автоматики, охватывающие большое число присоединений (дифференциальная защита шин, устройства резервирования отказа выключателей и т. п.).
Эксплуатацию РУ осуществляет персонал . Работы, проводимые в электрических установках, связаны с необходимостью выполнения операций с коммутационными аппаратами и вторичными аппаратами РУ и с подготовкой рабочих мест для ремонтов. В больших РУ эти операции весьма сложны. Учитывая высокие требования к точности оперативных переключений, их выполняет персонал, имеющий специальную подготовку, - оперативный персонал. Поддержание электрических устройств в состоянии, пригодном к эксплуатации, производится ремонтным персоналом.
При эксплуатации РУ обслуживаются:
централизованно выездными оперативными бригадами;
при помощи домашнего дежурства;
постоянным оперативным персоналом.
В первом случае объект работает без персонала. Сигнализация о событиях, требующих вмешательства, поступает на диспетчерский пункт. Для их устранения, а также для подготовки рабочих мест ремонтному персоналу на объект выезжает оперативная бригада. Преимущество такого обслуживания заключается в том, что требуется меньшее число работников. Недостатком является обязательное ожидание, так как требуется время на поездку, а иногда и на освобождение оперативной бригады от предыдущего задания.
Во втором случае персонал, живя поблизости от объекта, находится на пассивном дежурстве и прибывает на него при первой необходимости. Учитывая, что в этом случае, как и в первом, обслуживаются объекты, имеющие простую схему коммутации, для лучшего использования рабочего времени персонал выполняет и простые ремонтные работы. Подобное обслуживание имеет определенные достоинства, но вызывает необходимость расположения жилья поблизости от объекта.
В третьем случае, как правило, обслуживаются сложные РУ, являющиеся узловыми пунктами ЭС и определяющие надежность ее работы.
Надежность работы ЭЭС в значительной мере зависит от надежности РУ, которая обусловлена надежностью действия персонала и характеристиками надежности технических устройств.
Наиболее сложные аварии вызываются при обесточении части или всего РУ. Общая статистика причин обесточения РУ приведена в табл. 7.1.
Таблица 7.1. Причины обесточения РУ и их доля в общем числе аварий

Из табл. 7.1 видно, что в 60% всех случаев аварии происходят из-за неправильных действий персонала, а в 40% -из-за ненадежности технических устройств. Число ошибок персонала зависит от сложности и обозримости технических систем, т. е. чем они сложнее и менее наглядны, тем больше ошибок допускает персонал. Стремление к повышению технической надежности приводит к усложнению схем первичной и, главным образом, вторичной коммутации. В результате этого положительный технический эффект уменьшается из-за роста ошибок оперативного персонала. Поэтому проблема повышения надежности действия персонала требует серьезного внимания.


Похожая информация.


Диагностика маслонаполненного оборудования в процессе эксплуатации.

Периодический контроль состояния трансформатора под рабочим напряжением.

В первую очередь, состояние изоляции трансформаторного оборудования может быть оценено путем проверки качества трансформаторного масла. Для этого его физико-химические характеристики периодически измеряются и сравниваются с допустимыми (ОиНИЭ ). Анализ характеристик масла выявляет его электрическую прочность как диэлектрика, герметичность конструкции по влагосодержанию и общему газосодержанию (для герметичных конструкций), наличие в масле продуктов старения бумажно-масляной изоляции, продуктов окисления и разложения масла и многое другое.

Периодический анализ проб масла и его физико-химический анализ позволяют отслеживать динамику процесса старения изоляции и своевременно принимать необходимые меры по поддержанию его работоспособности. Поэтому полученные результаты, прежде всего, должны сравниваться с предыдущими измерениями и с предельно допустимыми значениями. Отбор проб масла, его периодичность и критерии оценки установлены заводскими инструкциями по видам оборудования, объемом и нормами испытания электрооборудования, методическими указаниями по эксплуатации трансформаторных масел или определяются техническим руководителем энергопредприятия с учетом конкретных условий и технического состояния оборудования.

Комплекс показателей, характеризующий качество масла, в отечественной практике подразделяется на "сокращенный" и "полный" анализ. Наиболее важными характеристиками масла являются: пробивное напряжение, кислотное число, температура вспышки (при регулярном хроматографическом анализе масла эта характеристика теряет свою актуальность), влагосодержание, тангенс угла диэлектрических потерь, наличие механических примесей, содержание антиокислительной присадки - ИОНОЛ, реакция водной вытяжки. Нормативы на эти параметры, принятые у нас в стране, основаны на многолетнем практическом опыте и закреплены в ОиНИЭ .

Для диагностики состояния трансформатора наиболее важную роль играет физико-химический анализ трансформаторного масла, и в первую очередь, хроматографический анализ масла (ХАРГ), на наличие семи растворенных газов и фурановых соединений.

Хроматографический анализ газов.

Хроматографический анализ газов, растворенных в масле трансформаторов, в настоящее время широко применяется во всех развитых странах в качестве эффективного средства ранней диагностики медленно развивающихся дефектов. Существуют международные и отечественны нормы как по процедуре ХАРГ, так и по трактовке результатов анализа, которые довольно близки.

ХАРГ включает несколько этапов:

Отбор пробы масла в маслоотборное устройство (шприц),

Транспортировку и правильное хранение пробы,

Выделение растворенных газов по специальной методике,

Определение содержания газов в газовом анализаторе (хроматографе),

Диагностика дефекта по составу газов, скорости их роста.

Хроматографический анализ газов, растворенных в трансформаторном масле, проводится в специальных лабораториях и является узко профессиональной задачей. Для более детального изучения вопроса можно рекомендовать работу или другие специальные издания.

Первым этапом ХАРГ является выделение газов из масла. Наиболее распространен метод равновесного выделения газов в шприце. Для этого в шприц вместимостью 20 мл набирают масло и газ-носитель (гелий или аргон) в определенных, установленных принятой методикой соотношениях, затем полученную смесь барботируют. При этом происходит процесс газообмена и часть газов из масла переходит в газ в соответствии с известными коэффициентами растворимости. Полученная смесь газа-носителя и газов, растворенных в масле, анализируется на количественный состав в специальных приборах – хроматографах.

В хроматографах применяется газоадсорбционный метод разделения анализируемой газовой смеси в специальных колонках (рис.3), заполненных адсорбентом (пористые вещества представляющие собой "молекулярные сита"). Различия в физико-химических свойствах отдельных газов смеси приводят к различным скоростям их движения по разделительной колонке. Поэтому на выходе колонки они будут появляться в различные моменты времени:

C 2 Н 2 , C 2 Н 4 , C 2 Н 6 C 2 Н 4 C 2 Н 2

C 2 Н 6

смесь газов разделенные газы

Рисунок 3 - Принцип разделение газов в колонке хроматографа

По свойствам газов их количественные концентрации определяются специальными устройствами, получившими название детекторов, и регистрируются в виде хроматограмм на дисплее ЭВМ. Результаты обрабатываются на ЭВМ с помощью специальных программ, анализируются и хранятся в базе данных по маслонаполненному оборудованию.

Плановый отбор масла на ХАРГ с периодичностью 1 раз в 6 месяцев в большинстве случаев позволяет:

Следить за развитием дефектов,

Предвидеть повреждения, не обнаруживаемые традиционными методами,

Определять ориентировочный характер повреждения – разряды, горячая точка (образование замкнутых контуров тока через стяжные болты,

Обнаружить дефекты контактов избирателя РПН, дефекты межлистовой изоляции, перегревы твердой изоляции, частичные разряды вследствие недопропитки изоляции, ее чрезмерного увлажнения, дефекты потенциальных соединений экранирующих колец и других деталей с образованием плавающего потенциала и искрения, и т.д.

Однако не следует считать, что хроматография выявляет все виды дефектов. Существуют определенные виды дефектов, которые развиваются столь стремительно, что отбор проб масла с интервалом в несколько месяцев не позволяет своевременно обнаружить их развитие (мгновенно развивающиеся дуговые перекрытия, витковые и межкатушечные замыкания, ползущие разряды, внезапные пробои главной изоляции или каналов за счет концентрации примесей, влаги или оставленных при ремонтах посторонних предметов).

Основные газы (основным считается газ с наибольшей, относительно граничной, концентрацией), по опыту хроматографии, наиболее характерные для различных дефектов:

Н 2 (водород) – дефекты электрического характера (частичные разряды невысоких энергий, искровые дуговые разряды, горячая точка),

С 2 Н 2 (ацетилен) – разряды высокой энергии (искрения, дуга) нагрев выше 700 °С,

СН 4 (метан) – нагрев масла и изоляции в диапазоне температур 250-400°С (перегрузка трансформатора или дефект системы охлаждения), частичные разряды невысокой энергии,

С 2 Н 6 (этан) – термический нагрев масла и Б-М изоляции в диапазоне более 300 °С,

С 2 Н 4 (этилен)- высокотемпературный (более 600°С) нагрев масла и Б-М изоляции,

СО (оксид углерода) – старение и увлажнение масла (или твердой изоляции), перегрев изоляции по всей массе,

СО 2 (диоксид углерода) – нагрев и старение твердой изоляции (бумаги, картона).

Для иллюстрации (рис.4) ниже приведена качественная диаграмма динамики газов, содержащихся в трансформаторном масле, в зависимости от температуры "горячей точки"




Рисунок 4 - Диаграмма динамики газов при наличии "горячей точки»

В таблице 1, в качестве примера, приведены граничные значения газов нормально работающих трансформаторов принятые, как в России, так и за рубежом.

Таблица 1- Граничные концентрации газов для силовых трансформаторов

* Для трансформаторов с РПН, имеющих общий расширитель по опыту ОАО «Ленэнерго».

Для диагностики состояния маслонаполненного оборудования по результатам ХАРГ используются 3 критерия:

1. Критерий превышения граничных (предельных) концентраций. Граничные концентрации определяются путем статистической обработки результатов ХАРГ нормально работающих трансформаторов в энергосистеме по классам напряжения, типам защиты масла, срокам эксплуатации. При отсутствии таких данных ориентируются на граничные концентрации, приведенные в РД 153-34.46.302-00 (первая строка таблицы 1).

2. Критерий скорости нарастания газов используется для обнаружения тенденции роста газов. Увеличение скорости роста более 10% в месяц считается "сигналом тревоги" и трансформатор ставится на учащенный контроль, даже если концентрации еще не превысили граничных значений. При этом нужно тщательно проанализировать режим эксплуатации оборудования (рост нагрузки, температуры масла и атмосферы, рабочее напряжение, внешние к.з. и т.д.) Следует также учесть возможность случайной погрешности, особенно по водороду и СО, из-за потери газа при отборе и транспортировке пробы. Поэтому, в первую очередь, нужно повторить отбор пробы масла и убедиться в устойчивости (достоверности) результата.

3. Критерии отношений пар газов позволяет, в первую очередь, разделить на дефекты электрического характера когда С 2 Н 2 /С 2 Н 4 больше 0,1 (дополнительно СН 4 /Н 2 менее 1) и дефекты термического характера С 2 Н 2 /С 2 Н 4 много меньше 0,1 (подтверждение данного факта - СН 4 /Н 2 более 1). Отношение С 2 Н 4 /С 2 Н 6 характеризует температуру горячей точки. Критерий отношения газов используют только в случае, если хотя бы один газ, входящий в отношение, превысил граничную концентрацию. По соотношению СО 2 /СО судят о вовлечении в дефект твердой изоляции (при наличии признаков нагрева или разряда). ПриСО 2 /СО более десяти имеет место перегрев целлюлозы. Отношение меньше трех свидетельствует о старении целлюлозы под действием дефектов электрического характера. Более подробно вопросы уточнения видов дефекта изложены в РД 153-34.46.302-00.

На рис. 5 приведена структурно-логическая схема процесса анализа результатов ХАРГ и принятия решения. Вид развивающего дефекта можно ориентировочно определить и графически по "портрету" основных газов. Графики строятся следующим образом (рис.6 рис.16):

- по результатам ХАРГ рассчитываются относительные концентрации (а i) газов (по отношению к граничным),

- за основной газ принимается компонент с наибольшей относительной концентрацией (а макс),

- определяют величину по углеводородным газам и водороду,

По оси Х откладывают пять равных отрезков и обозначают полученные точки в следующей последовательности: H2, СН4, С2Н6, С2Н4, С2Н2,

По оси Y откладывают соответствующее значение отношения (а i)/ (а макс) для каждого газа,

Полученные точки соединяют прямыми линиями,

Построенный график сравнивают с "типовыми портретами" и находят наиболее близкий.



1 – отбор проб по графику

2- учащенный отбор

Рисунок 5 - Структурно-логическая схема диагностики по результатам ХАРГ.

На рисунках (рис.6 – рис. 9) представлены «графические партреты» по результатам ХАРГ , соответствующие дефектам электрического характеравызванные разрядами (преобладает водород).

На рисунках (рис.10 – рис. 12) представлены «графические партреты», соответствующие дефектам термического характера в диапазоне средних температур (преобладает газ – метан) , переходящие в ЧР.

Рисунок 10. Дефект термического характера Рисунок 11. Дефект термического характера

На рисунках (рис.13 – рис. 15) представлены «графические партреты» газов, соответствующие дефектам термического характера в диапазоне высоких температур (преобладает газ - этилен).

Рисунок 12. Дефект термического характера Рисунок 13. Высокотемпературный нагрев
Рисунок 14. Высокотемпературный нагрев Рисунок 15 - Высокотемпературный нагрев, переходящий в дугу

Рассмотрим на примере определение дефекта по результатам ХАРГ. При построении графика учитывалось отсутствие эксплуатационных факторов, способствующих росту растворенных в масле газов (п.3.2 РД).

Граничные концентрации растворенных в масле газов РД.

В трансформаторе ТРДЦН-63000/110 по результатам АРГ получили следующие концентрации растворенных в масле газов:

Н 2 = 0.004%об, СН 4 = 0.084%об, С 2 Н 2 = 0%об, С 2 Н 4 = 0.02%об, С 2 Н 6 = 0.011%об,

СО = 0.05%об, СО 2 = 0.48%об.

1. Определяем относительные концентрации (а i) для каждого газа:

а н2 = 0.004/0.01=0.4, а СН4 = 0.084/0.01=8.4, а С2Н2 = 0, а С2Н4 = 0.02/0.01=2.0,

а С2Н6 = 0.011/0.005=2.2

2. По полученным относительным концентрациям определяем основной газ:

8.4 = а СН4 > а С2Н6 > а С2Р4 > а Н2 , т.е. основной газ - метан

3. Определяем величины отрезков по оси Y для каждого газа:

СН 4 = 1, Н 2 =0.4/8.4=0.05, С 2 Н 4 =2/8.4=0.24, С 2 Н 2 =0, С 2 Н 6 = 2.2/8.4 = 0.26

4. Строим график (рис.16).

5. По основному газу СН 4 находим график похожий на построенный график (рис.10). При сравнении делаем заключение: в трансформаторе, по данным АРГ прогнозируется дефект термического характера в диапазоне средних температур.

6. Для решения вопроса, затронута ли дефектом твердая изоляция, определим отношение концентраций СО 2 /СО:

СО 2 /СО=0.48/0.05 = 9.6< 13 (см. П.5.3.РД), следовательно, твердая изоляция дефектом не затронута.

7. Для проверки диагноза (в последующих примерах эта проверка не приведена) определим прогнозируемый в трансформаторе дефект по критерию отношения (п.5.2, табл.3 РД):

Рассчитываем величины отношения концентраций газов:

На основании полученных данных прогнозируется дефект термического характера – "термический дефект в диапазоне средних температур (300-700)°С".

Так как СО 2 /СО=0.16/0.02=8 < 13 (см. П.5.3.РД), делаем вывод, что дефект не затрагивает твердую изоляцию и относится к группе 1 (п.2.1).

Таким образом, получили совпадение характера прогнозируемого дефекта, определенного графическим способом и по критерию отношения газов.

Рисунок 16 - График дефекта термического характера в диапазоне средних температур, вызванного подгаром контактов избирателя

Физико-химический анализ масла. Качество трансформаторного масла оценивается сравнением результатов испытаний с нормативными значениями в зависимости от типа, вида и класса напряжения электрооборудования, а также их динамикой. Нормативные значения показателей качества масла и периодичность испытаний регламентируются действующими ОиНИЭ и "Методическими указаниями по эксплуатации трансформаторных масел" (РД 34.43.105-89) . Особенностью новых нормативов, является: во-первых то, что ФХАМ поставлен на первый план при оценке состояния маслонаполненного оборудования , во-вторых, выделение двух областей эксплуатации масла:

- область "нормального состояния масла", когда состояние качества масла гарантирует надежную работу электрооборудования,

- область "риска", когда ухудшение даже одного показателя качества масла приводит к снижению надежности и требуется учащенный и расширенный контроль для прогнозирования срока службы или принятия специальных мер по восстановлению его эксплуатационных свойств или его замены.

Начинают контроль масла с визуального осмотра масла: анализируют его цвет, наличие загрязнения, прозрачность. Свежее масло имеет, как правило, светло-желтый цвет, а его темный цвет указывает на старение и возможный перегрев в эксплуатации. На основании результатов визуального осмотра принимается решение о проведении дополнительных испытаний:

Электрическая прочность трансформаторного масла 40-70 кВ определяется по ГОСТ 6581-75 в стандартном разряднике с использованием аппаратов АИМ-80, АИМ-90 и, как правило, затруднений не вызывает. Электрическая прочность является основной изоляционной характеристикой масла, определяющей его работоспособность. Электрическая прочность снижается при значительном увлажнении масла (вода в виде эмульсии) и загрязнении его механическими примесями, особенно при повышенной влажности.

Наиболее значительное снижение электрической прочности с ростом влагосодержания наблюдается при содержании воды более 25-30 г/т. Механические примеси снижают электрическую прочность в зависимости от их фракционного состава и их проводимости. Наиболее заметное снижение прочности происходит при размерах частиц более 100 мкм.

Количественное содержание воды . Вода в масле, как уже отмечалось, может находиться в следующих состояниях: связанная, растворенная, эмульгированная, слоевая (осажденная). Связанная вода определяется фракционным составом масла и примесей, находится в сольватированной форме и, как правило, обычными методами анализа масла не выявляется.

Влажность масла в энергосистемах до настоящего времени определялась, в основном, гидрит-кальциевым методом с помощью прибора ПВН по ГОСТ7822-75, Принцип основан на реакции гидрида кальция с водой при которой выделяется водород:

СаН 2 + Н 2 О = Са(ОН) 2 + 2Н 2

По количеству выделившегося газообразного водорода рассчитывается содержания растворенной в масле воды.

В последние годы внедряются методы определения воды по методике публикации МЭК 814 (кулонометрическое титрирование в реактиве Карла Фишера). Влагосодержание жидких диэлектриков по данной методике определяется по количеству электричества, затраченного на генерацию йода, вступившего в реакцию с водой

Влагомер трансформаторного масла ВТМ-2, выпускаемый Ангарским ОКБА, реализует кулонометрический метод измерения влаги. Сущность метода заключается в поглощении влаги пленкой сорбента из потока газа носителя (воздуха), протекающего через масло, и извлекающего из масла влагу. Поглощенная пленкой влага подвергается электролизу и по количеству электричества определяется влагосодержание.

Во ВНИИЭ разработана методика хроматографического определения влагосодержания трансформаторного масла на газовых хроматографах. По методике ВНИИЭ, малая проба масла (25-100 мкл) вводится в испаритель. Температура испарителя порядка 180 градусов, поэтому вся вода, присутствующая в масле, переходит в газообразное состояние и вместе с выделившимися газами поступают в хроматографическую колонку, в которой происходит разделение газов. Затем детектор по теплопроводности регистрирует количество воды.

Кислотное число (КОН) определяется по ГОСТ 5985-79 методом титрирования спиртовым раствором. КОН – это количество едкого калия в миллиграммах, которое необходимо для нейтрализации свободных кислот в 1 г масла. Значение кислотного числа масла, превышающее 0,15 мг/г, является признаком его старения и окисления (содержания в нем кислых соединений) и служит основанием для оценки состояния масла: необходимости замены силикагеля в термосифонных (адсорбционных) фильтрах, регенерации масла, проверки содержания атиокислительной присадки ионол (агидол) в масле. Чем выше кислотное число масла, тем, как правило, выше его проводимость и диэлектрические потери. Кислотное число не должно превышать 0,15-0,25 мг/г.

Тангенс угла диэлектрических потерь масла характеризует свойства трансформаторного масла как диэлектрика. Диэлектрические потери свежего масла характеризуют его качество и степень очистки, а в эксплуатации - степень загрязнения и старения масла (повышение электропроводности, образования коллоидных образований, растворимых металлоорганических соединений (мыл), смолистых веществ). Ухудшение диэлектрических свойств (увеличение tgd м) приводит к снижению изоляционных характеристик трансформатора в целом.

Для определения tgd м масло заливают в специальный сосуд (по ГОСТ 6581-75) с цилиндрическими или плоскими электродами. Отбор проб масла осуществляют в соответствии с требованиями ГОСТ 6433.5-84. Измерение производят с применением моста переменного тока Р5026 или другого типа.

Нормируется tgd м при температуре 20 о С и 90 о С. В эксплуатации целесообразно измерять его значение при температуре 70 о С как на подъеме, так и спаде температуры. "Гистерезисный" характер темперературной зависимости tgd м - признак глубокого старения масла (снижение tg d м при температуре 70 о С на спаде температуры после длительной выдержки при 90-100 о С может происходить либо из-за коагуляции и выпадении осадка, либо при сильном увлажнении масла).

Водорастворимые кислоты и щелочи , содержащиеся в масле (более 0,014 мг/г), свидетельствуют о низком качестве масла. Они могут образовываться в процессе изготовления масла при нарушении технологии производства, а также в результате окисления при эксплуатации. Эти кислоты вызывают коррозию металла и способствуют старению твердой изоляции. Для качественного обнаружения водорастворимых кислот (ВРК), по ГОСТ 6307-75, применяют 0,02% водный раствор метилоранжа, а для обнаружения щелочи и мыл – 1% спиртовой раствор фенолфталеина. Данные реактивы меняют свой цвет в присутствии нежелательных компонентов. Определение ВРК в масле заключается в их извлечении из испытуемого масла дистиллированной водой и определения реакции водной вытяжки рН- метром.

Температура вспышки масла в закрытом тигле характеризует степень испаряемости масла и насыщенности его легкими углеводородами. Для товарных масел температура вспышки должна находиться в пределах 130-150°С. Нормами допускается снижение температуры вспышки не более чем на 5°С, по сравнению с предыдущими испытаниями.

Определение содержания антиокислительной присадки (ИОНОЛ). В присутствии ионола процесс термоокислительного старения масла происходит относительно медленно и масло длительное время имеет показатели, соответствующие нормам. При эксплуатации масла идет процесс непрерывного расхода ионола и при снижении его ниже определенного предела (0,1%) начинается процесс интенсивного старения масла, сопровождающийся образованием шлама, ростом кислотного числа, ухудшением эксплуатационных характеристик масла . Замена силикагеля в термосифонных фильтрах, как правило, дает только кратковременный результат. Определение содержания присадки ионол осуществляется в настоящее время методами тонкослойной хроматографии на специальных пластинах (РД 34.43.105-89), методами жидкостной хроматографии на жидкостных хроматографах (РД 34.43.208-95), на газовых хроматографах по методике ВНИИЭ или методами ИК спектроскопии. В свежих товарных маслах содержание ионола составляет 0,25-0,3%. При снижении его в процессе эксплуатации ниже 0,1 % требуется регенерация масла и добавка ионола.

Количественное содержание механических примесей. Появление механических примесей в масле свидетельствует либо о грубых дефектах при производстве изоляции, либо о наличии истирания и расслоения материалов в процессе эксплуатации. Механические примеси приводят к сильному снижению электрической прочности масла. Поэтому их наличие определяются вначале визуально и при необходимости - количественно. При количественном анализе определяется количество частиц и производится распределение их по размерным диапазонам. Эти сведения позволяют определить класс чистоты масла по ГОСТ 17216-2001. Для количественного определения механических примесей применяются приборы АЗЖ-975 (г. Самара), ПКЖ-904 (г. Саратов), ГРАН-152 (Техноприбор). В ряде случаев наряду с количественным определением примесей, полезным бывает изучение под микроскопом качественного состава примесей для поиска источника их происхождения. Например, наличие металлических частиц свидетельствует о разрушении циркуляционных насосов трансформатора.

Основные показатели качества эксплуатационного масла приведены в табл. 2

Таблица 2 - Области эксплуатации (состояния) трансформаторного масла

Показатель качества масла (основные) Область «нормального состояния масла Область «Риска»
от до от до
Электрическая прочность Uпр, кВ Оборудов. до 35 кВ До 150 кВ 220-500 кВ и выше и ниже
Кислотное число (КОН), в % До 220 кВ Выше 220 кВ 0,02 0,01 0,1 0,1 0,1 0,25
Влагосодержание в Г/Т С защитой масла Без защиты -
Механические примеси в г/т (класс чистоты) До 220 кВ Выше 220 кВ Отсутств. 10 (10) (12) 20 (11) Отсут. 20(11) (13) 30 (12)
Тангенс потерь при 90град, % До 220 кВ Выше 220 кВ 0,7
Содержание «Ионола», % 0,18 0,1 Менее 0,1
Загрузка...