domvpavlino.ru

Конструктивные свойства материалов. Контрольная работа: Свойства конструкционных материалов. Производство стали в кислородных конвертерах

Конструкционные материалы, материалы, из которых изготовляются детали конструкций (машин и сооружений), воспринимающих силовую нагрузку. Определяющими параметрами конструкционных материалов являются механические свойства, что отличает их от других технических материалов (оптических, изоляционных, смазочных, лакокрасочных, декоративных, абразивных и др.). В связи с тем, что детали современных механизмов работают при сложных знакопеременных нагрузках, повышенных температурах и др., к основным критериям качества конструкционных материалов относятся параметры сопротивления внешним нагрузкам: прочность, вязкость, надежность, ресурс. Основные конструкционные материалы - металлические сплавы на основе железа (чугуны и стали), меди (бронзы и латуни), свинца и олова.

Сплавы на основе железа. Чугуны. Стали. Классификация сталей, марки сталей. Применение в механических устройствах (валы, зубчатые колеса, крепеж).

Чугуны

Это сплавы железа с углеродом, содержащие постоянные примеси марганца, кремния, фосфора и серы, а также при необходимости легирующие элементы.

В зависимости от структуры и состояния, в котором находится углерод (свободный или химически связанный), различают серые, белые и ковкие чугуны. Чугуны также классифицируют в зависимости от назначения – на конструкционные и со специальными свойствами; и от химсостава – на легированные и нелегированные.

Как конструкционный материал наиболее широко применяются серые чугуны, в которых весь углерод находится в свободном состоянии в виде включений графита пластинчатой формы. Они обладают средней прочностью, хорошими литейными и другими технологическими свойствами (жидкотекучестью, малой линейной усадкой, обрабатываемостью резанием), малочувствительны к концентрации переменных напряжений, антифрикционны.

В белых чугунах избыточный углерод, не растворившийся в твердом растворе железа, присутствует в виде карбидов железа. Вследствие низких механических свойств – высокой хрупкости и твердости, плохой обрабатываемости резанием – белые чугуны не применяются в качестве конструкционных материалов.



Ковкий чугун получают из белого путем последующего отжига до распада графита в виде хлопьев. Детали из него могут подвергаться незначительным деформациям. Они обладают меньшей по сравнению с деталями из серого чугуна хрупкостью, но стоят на 30 … 100% дороже.

Высокопрочный чугун характеризуется шаровидной или близкой к ней формой включений графита, которую получают модифицированием жидкого чугуна присадками магния. Шаровидный графит в наименьшей мере ослабляет металлическую основу, что приводит к высоким механическим свойствам. Высокопрочный чугун обладает хорошими литейными и эксплуатационными свойствами.

Стали

Стали – это деформируемые сплавы железа с углеродом и другими элементами.

По химсоставу стали делят на углеродистые и легированные.

По назначению стали делят на конструкционные, инструментальные и с особыми свойствами. Наиболее

По качеству стали делят на обыкновенные, качественные, высоко и особо высококачественные.

По характеру застывания из жидкого состояния, степени раскисления различают спокойную, полуспокойную и кипящую стали.

Марки углеродистой стали обыкновенного качества обозначаются буквами
Ст (сталь) и цифрами от 0 до 6 , например Ст0 – Ст6 . Цифры соответствуют условному номеру марки в зависимости от химического состава и механических свойств. Чем больше число, тем больше содержание углерода в стали, выше прочность и ниже пластичность. Эти стали делят на три группы – А , Б и В . Сталь группы А имеет гарантированные механические свойства и не подвергается термообработке, в марке стали группа А не указывается . Для стали группы Б гарантируется химический состав, для стали группы В – химический состав и механические свойства.

Степень раскисления обозначается индексами, стоящими справа от номера марки: кп – кипящая, пс – полуспокойная, сп – спокойная. Например, сталь Ст2кп – сталь группы А , кипящая; БСт3пс – сталь группы Б , полуспокойная; ВСт5сп – сталь группы В , спокойная.

Углеродистые качественные стали маркируются двузначными цифрами (08, 10, 15, …, 70) , показывающими среднее содержание углерода в стали в сотых долях процента. Эти стали можно условно разделить на несколько групп. Стали 08, 10 обладают высокой пластичностью, хорошо штампуются и свариваются. Низкоуглеродистые стали 15, 20, 25 хорошо свариваются и обрабатываются резанием, после цементации и термообработки обладают повышенной износостойкостью.

Углеродистые инструментальные стали маркируют буквой У и цифрами, которые соответствуют содержанию углерода в десятых долях процента, например, сталь марки У9 содержит в среднем 0,9% углерода.

Маркируют легированные стали буквами и цифрами, указывающими ее химический состав. Первые цифры марок перед буквами указывают содержание углерода для конструкционных сталей в сотых долях процента (две цифры), а для инструментальных и специальных сталей – в десятых долях. Далее обозначение состоит из букв, указывающих, какие легирующие элементы входят в состав стали, и стоящих непосредственно за каждой буквой цифр, характеризующих среднее содержание легирующего элемента в процентах. Цифры за буквой не ставятся при содержании легирующего элемента менее 1,5%. Легирующие элементы обозначаются следующими буквами: Т – титан, С – кремний, Г – марганец, Х – хром, Н – никель, М – молибден, В – вольфрам и т.п. Например, нержавеющая сталь Х18Н10Т содержит 18% хрома, 10% никеля и до 1,5% титана; конструкционная легированная сталь 30ХГС содержит 0,30% углерода, а хрома, марганца и кремния до 1,5% каждого; инструментальная легированная сталь 9ХС содержит 0,9% углерода, а хрома и кремния до 1,5% каждого. В сталях 30ХГС и 9ХС кремния больше 0,8%, марганца в стали 30ХГС больше 1%.

Обозначения марок некоторых специальных сталей включают впереди букву, указывающую на назначение стали. Например, буква Ш –шарикоподшипниковая сталь (ШХ15 – с содержанием хрома ≈ 1,5%), Э – электротехническая и т.д.

Чаще всего в качестве материалов для валов и осей применяют следующие углеродистые и легированные стали: качественные стали 40, 45, 50 , сталь 40Х – для валов с термообработкой; стали 20, 20Х – для быстроходных валов на подшипниках скольжения с поверхностной цементацией цапф; углеродистые стали обыкновенного качества Ст4, Ст5 – для неответственных валов без термообработки; сталь Х18Н10Т – для коррозионно-стойких, немагнитных валов.

При изготовлении цилиндрических и конических колес основным материалом являются термически обрабатываемые стали. При окружных скоростях зубьев до 3 м/с применяют качественные стали 20, 30, 35 , а при более высоких окружных скоростях – стали 45, 50 , инструментальные стали У8А, У10А и легированные стали 20Х, 40Х, 40ХН, 30ХГСА, 12ХН3А с соответствующей термообработкой (нормализацией, закалкой, улучшением – закалкой с высоким отпуском). Рекомендуется твердость зубьев шестерни (они более нагружены) выбирать на (20 … 50)НВ больше твердости зубьев колеса. Поэтому материал шестерни стараются брать более прочным, чем материал для колес.

Болты, винты, гайки изготавливают из углеродистых и легированных сталей. Крепежные детали общего применения изготавливаются чаще всего из стали марок Ст3, Ст4, Ст5 без последующей термообработки. Более ответственные детали изготавливаются из сталей 35, 45, 40Х, 40ХН с поверхностной или общей термообработкой. Мелкие винты делают из латуни ЛС59-1 , дюралюминия Д1, Д16 . Для защиты поверхности крепежных деталей от коррозии, придания им необходимого цвета применяют цинкование, хромирование, кадмирование. Штифты изготавливают из сталей 45, А12, У8 . Шпонки изготавливают из среднеуглеродистых сталей 40, 45, Ст6 .

Сплавы на основе меди и алюминия. Классификация, обозначение, достоинства и недостатки. Применение сплавов как конструкционных материалов в механических устройствах (упругие элементы, опоры).

Медь и её сплавы

Медь в чистом виде характеризуется высокой электро- и теплопроводностью, хорошей обрабатываемостью давлением, небольшой прочностью и применяется для изготовления токопроводящих деталей. Более широкое применение получили медные сплавы: латунь и бронза. В латунях основным легирующим элементом является цинк, в бронзах – иные элементы.

Легирующие элементы в марках медных сплавов обозначают следующими буквами: А – алюминий, Н – никель, О – олово, Ц – цинк, С – свинец, Ж – железо, Мц – марганец, К – кремний, Ф – фосфор, Т – титан.

Латуни делят на двойные и многокомпонентные сплавы. В двойных содержание цинка может доходить до 50%. Марки таких латуней обозначают буквой Л и цифрой, показывающей содержание меди в процентах, например Л59 . Для улучшения механических, технологических и коррозийных свойств в латуни вводят кроме цинка в небольших количествах различные легирующие элементы (алюминий, кремний, марганец, олово, железо, свинец). В марках многокомпонентных латуней первые цифры указывают среднее содержание меди, а последующие – легирующих элементов. Например, латунь ЛКС80-3-3 содержит 80% меди, по 3% кремния и свинца, а остальное – цинк.

Марки бронз и медно-никелевых сплавов начинаются соответственно с букв Бр и М , а следующие буквы и цифры указывают на наличие легирующих элементов и соответственно их содержание в процентах. Например, бронза БрОЦС 5-5-5 содержит олова, цинка и свинца по 5% или медно-никелевый сплав мельхиор МН19 содержит 19% никеля.

Бронзы называют по основным легирующим элементам: оловянистые, алюминиевые, бериллиевые, кремнистые и т.д. Широко используются оловянистые бронзы, они характеризуются высокой стойкостью против истирания, низким коэффициентом трения скольжения. Все медные сплавы отличаются хорошей стойкостью против атмосферной коррозии.

Латуни и бронзы используют в качестве конструкционных материалов. В частности, латунь Л63, отличающуюся высокой пластичностью, используют для изготовления токопроводящих и конструктивных деталей типа наконечники, втулки, шайбы, а латунь ЛК80-3Л – для изготовления литых деталей. Безоловянистые бронзы БрАЖ9-4 , БРАМц9-2 обладают высокими механическими и антифрикционными свойствами, хорошо обрабатываются, поэтому используются при изготовлении небольших зубчатых и червячных колес, втулок подшипников скольжения, ходовых гаек в винтовых механизмах. Наилучшие антифрикционные свойства имеют оловянистые бронзы.

Особое место занимает при изготовлении упругих элементов из-за высокой прочности и упругости бериллиевая бронза марки БрБ2 . Она немагнитна, стойка к морозу, действию пресной и соленой воды, хорошо сваривается и обрабатывается резанием. Применяют ее для изготовления ответственных деталей типа токоведущих пружинящих контактов, пружин, мембран.

Прочность медных сплавов, особенно латуней, ниже, чем сталей, а коррозионная стойкость много больше. Все латуни и большинство бронз, за исключением алюминиевых, хорошо паяются.

Материал втулки должен быть износостойким, хорошо прирабатываться и иметь в паре с материалом цапфы минимальный коэффициент трения. Для стальных цапф этим условиям удовлетворяют: при высоких давлениях и малых окружных скоростях – бронза БрАЖ9-4 и латунь ЛС59-1 ; при высоких давлениях и скоростях – бронза БрОФ10-1 и БрОЦС-5-5-5 .

Контактные и моментные антимагнитные, коррозионно-стойкие пружины изготавливают из фосфористых БрОФ 6-0,15 , БрОФ 4-0,2 и бериллиевой БрБ2 бронз.

Трубчатые манометрические пружины, сильфоны, мембраны и мембранные коробки изготавливают из латуней Л62 , Л68 , Л80, бронзы БрОФ4–0,2 .

В качестве материала для спиральных пружин используют ленты из бронзы БрОФ 6,5-0,15 .

Металлические мембраны изготавливают из фосфористой и бериллиевой бронз.

Сильфоны изготавливаются цельнотянутыми или паяными из латуни Л80, беррилиевых бронз БрБ2 , БрБ2,5 .

Изготавливают трубчатые пружины из латуни Л80 или бронзы.

Алюминий и его сплавы

Чистый алюминий применяется редко, так как имеет низкую прочность. Чаще при изготовлении деталей применяют сплавы на основе алюминия. Они обладают малой плотностью, высокой электро- и теплопроводностью, коррозийной стойкостью и удельной прочностью. Алюминиевые сплавы в зависимости от технологических свойств делят на деформируемые и литейные.

Наибольшее распространение из деформируемых сплавов получили термически упрочняемые с помощью закалки и старения алюминиево-медно-магниевые и алюминиево-магниевые сплавы. Первые называют дюралюминами (марки Д1, Д16 ), из вторых наиболее часто применяется сплав марки АМг6 . Они обладают высокими механическими свойствами, выпускаются в виде прутков, листов, труб, фасонных профилей. Их применяют для средненагруженных деталей типа стоек, крышек, втулок и т.д. К деформируемым относится высокопрочный алюминиево-магниево-цинковый сплав В95 , который применяют для деталей с повышенными статическими нагрузками (валы, зубчатые колеса).

Деформируемыми являются так называемые спеченные алюминиевые сплавы, отличающиеся очень высокими прочностными свойствами (модуль упругости, пределы прочности σ ut и текучести σ у). Они бывают двух видов: САП (спеченная алюминиевая пудра) и САС (спеченный алюминиевый сплав). САП упрочняется дисперсными частицами окиси алюминия Al 2 O 3 , образуемой в процессе помола алюминиевой пудры в атмосфере азота с регулируемой подачей кислорода. Пудру брикетируют, спекают и подвергают деформации – прессованию, прокатке, ковке. В зависимости от содержания Al 2 O 3 (прочность сплава возрастает при увеличении окиси алюминия до 20 – 22%) различают 4 марки САП (САП-1, САП-2, САП-3 и САП-4) . Сплавы САС содержат до 25% кремния и 5% железа. Их получают распылением жидкого сплава, брикетированием полученных гранул и последующей деформацией. Спеченные алюминиевые сплавы применяют для изготовления высоконагруженных деталей (корпусов блоков, каркасов, стоек и т.д.) и различных профилей.

Из литейных алюминиевых сплавов наибольше распространение получили сплавы алюминия с кремнием – силумины. Они обладают хорошими литейными и средними механическими свойствами. Силумины марок АЛ-2, АЛ-4, АЛ-9 применяют для изготовления литьем корпусов, крышек, кронштейнов и других сложных средненагруженных деталей.

Алюминий и его сплавы трудно паяются.

Конструкционные материалы

материалы, из которых изготовляются детали конструкций (машин и сооружений), воспринимающих силовую нагрузку. Определяющими параметрами К. м. являются механические свойства, что отличает их от других технических материалов (оптических, изоляционных, смазочных, лакокрасочных, декоративных, абразивных и др.). К основным критериям качества К. м. относятся параметры сопротивления внешним нагрузкам: прочность, вязкость, надежность, ресурс и др. Длительный период в своём развитии человеческое общество использовало для своих нужд (орудия труда и охоты, утварь, украшения и др.) ограниченный круг материалов: дерево, камень, волокна растительного и животного происхождения, обожжённую глину, стекло, бронзу, железо. Промышленный переворот 18 в. и дальнейшее развитие техники, особенно создание паровых машин и появление в конце 19 в. двигателей внутреннего сгорания, электрических машин и автомобилей, усложнили и дифференцировали требования к материалам их деталей, которые стали работать при сложных знакопеременных нагрузках, повышенных температурах и др. Основой К. м. стали металлические сплавы на основе железа (Чугун ы и стали (См. Сталь)), меди (бронзы (См. Бронза) и латуни (См. Латунь)), свинца и олова.

При конструировании самолётов, когда главным требованием, предъявляемым к К. м., стала высокая удельная прочность, широкое распространение получили древесные пластики (фанера), малолегированные стали, алюминиевые и магниевые сплавы. Дальнейшее развитие авиационной техники потребовало создания новых жаропрочных сплавов (См. Жаропрочные сплавы) на никелевой и кобальтовой основах, сталей, титановых, алюминиевых, магниевых сплавов, пригодных для длительной работы при высоких температурах. Совершенствование техники на каждом этапе развития предъявляло новые, непрерывно усложнявшиеся требования к К. м. (температурная стойкость, износостойкость, электрическая проводимость и др.). Например, судостроению необходимы стали и сплавы с хорошей свариваемостью и высокой коррозионной стойкостью, а химическому машиностроению - с высокой и длительной стойкостью в агрессивных средах. Развитие атомной энергетики связано с применением К. м., обладающих не только достаточной прочностью и высокой коррозионной стойкостью в различных теплоносителях, но и удовлетворяющих новому требованию - малому поперечному сечению захвата нейтронов.

К. м. подразделяются: по природе материалов - на металлические, неметаллические и Композиционные материалы , сочетающие положительные свойства тех и др. материалов; по технологическому исполнению - на деформированные (прокат, поковки, штамповки, прессованные профили и др.), литые, спекаемые, формуемые, склеиваемые, свариваемые (плавлением, взрывом, диффузионным сращиванием и т.п.); по условиям работы - на работающие при низких температурах, жаропрочные, коррозионно-, окалино-, износо-, топливо-, маслостойкие и т.д.; по критериям прочности - на материалы малой и средней прочности с большим запасом пластичности, высокопрочные с умеренным запасом пластичности.

Отдельные классы К. м., в свою очередь, делятся на многочисленные группы. Например, металлические сплавы различают: по системам сплавов - алюминиевые, магниевые, титановые, медные, никелевые, молибденовые, ниобиевые, бериллиевые, вольфрамовые, на железной основе и др.; по типам упрочнения - закаливаемые, улучшаемые, стареющие, цементируемые, цианируемые, азотируемые и др.; по структурному составу - стали аустенитные и ферритные, латуни и т.д.

Неметаллические К. м. подразделяют по изомерному составу, технологическому исполнению (прессованные, тканые, намотанные, формованные и пр.), по типам наполнителей (армирующих элементов) и по характеру их размещения и ориентации. Некоторые К. м., например сталь и алюминиевые сплавы, используются как строительные материалы и, наоборот, в ряде случаев строительные материалы, например Железобетон , применяются в конструкциях машиностроения.

Технико-экономические параметры К. м. включают: технологические параметры - обрабатываемость металлов давлением, резанием, литейные свойства (жидкотекучесть, склонность к образованию горячих трещин при литье), свариваемость, паяемость, скорость отверждения и текучесть полимерных материалов при нормальных и повышенных температурах и др.; показатели экономической эффективности (стоимость, трудоёмкость, дефицитность, коэффициент использования металла и т.п.).

К металлическим К. м. относится большинство выпускаемых промышленностью марок стали. Исключение составляют стали, не используемые в силовых элементах конструкций: инструментальные стали (См. Инструментальная сталь), для нагревательных элементов, для присадочной проволоки (при сварке) и некоторые другие с особыми физическими и технологическими свойствами. Стали составляют основной объём К. м., используемых техникой. Они отличаются широким диапазоном прочности - от 200 до 3000 Мн/м 2 (20-300 кгс/мм 2 ), пластичность сталей достигает 80%, вязкость - 3 МДж/м 2 . Конструкционные (в т. ч. нержавеющие) стали выплавляются в конверторах, мартеновских и электрических печах. Для дополнительной рафинировки применяются продувка аргоном и обработка синтетическим шлаком в ковше. Стали ответственного назначения, от которых требуется высокая надёжность, изготовляются вакуумно-дуговым, вакуумно-индукционным и электрошлаковым переплавом, вакуумированием, а в особых случаях - улучшением кристаллизации (на установках непрерывной или полунепрерывной разливки) вытягиванием из расплава.

Чугуны широко применяются в машиностроении для изготовления станин, коленчатых валов, зубчатых колёс, цилиндров двигателей внутреннего сгорания, деталей, работающих при температуре до 1200 °С в окислительных средах, и др. Прочность чугунов в зависимости от легирования колеблется от 110 Мн/м 2 (чугаль) до 1350 Мн/м 2 (легированный магниевый чугун).

Никелевые сплавы и Кобальтовые сплавы сохраняют прочность до 1000-1100 °С. Выплавляются в вакуумно-индукционных и вакуумно-дуговых, а также в плазменных и электроннолучевых печах (См. Электроннолучевая печь). Применяются в авиационных и ракетных двигателях, паровых турбинах, аппаратах, работающих в агрессивных средах, и др. Прочность алюминиевых сплавов (См. Алюминиевые сплавы) составляет: деформируемых до 750 Мн/м 2 , литейных до 550 Мн/м 2 , по удельной жёсткости они значительно превосходят стали. Служат для изготовления корпусов самолётов, вертолётов, ракет, судов различного назначения и др. Магниевые сплавы отличаются высоким удельным объёмом (в 4 раза выше, чем у стали), имеют прочность до 400 Мн/м 2 и выше; применяются преимущественно в виде литья в конструкциях летательных аппаратов, в автомобилестроении, в текстильной и полиграфической промышленности и др. Титановые сплавы начинают успешно конкурировать в ряде отраслей техники со сталями и алюминиевыми сплавами, превосходя их по удельной прочности, коррозионной стойкости и по жёсткости. Сплавы имеют прочность до 1600 Мн/м 2 и более. Применяются для изготовления компрессоров авиационных двигателей, аппаратов химической и нефтеперерабатывающей промышленности, медицинских инструментов и др.

Неметаллические К. м. включают пластики, термопластичные полимерные материалы (см. Полимеры), керамику (См. Керамика), Огнеупоры , стекла (См. Стекло), резины (См. Резина), древесину (См. Древесина). Пластики на основе термореактивных, эпоксидных, фенольных, кремнийорганических термопластичных смол и фторопластов (См. Фторопласты), армированные (упрочнённые) стеклянными, кварцевыми, асбестовыми и др. волокнами, тканями и лентами, применяются в конструкциях самолётов, ракет, в энергетическом, транспортном машиностроении и др. Термопластичные полимерные материалы - Полистирол , полиметилметакрилат, полиамиды, фторопласты, а также реактопласты используют в деталях электро- и радиооборудования, узлах трения, работающих в различных средах, в том числе химически активных: топливах, маслах и т.п.

Стекла (силикатные, кварцевые, органические), Триплекс ы на их основе служат для остекления судов, самолётов, ракет; из керамических материалов изготовляют детали, работающие при высоких температурах. Резины на основе различных каучуков, упрочнённые кордными тканями, применяются для производства покрышек или монолитных колёс самолётов и автомобилей, а также различных подвижных и неподвижных уплотнений.

Развитие техники предъявляет новые, более высокие требования к существующим К. м., стимулирует создание новых материалов. С целью уменьшения массы конструкций летательных аппаратов используются, например, многослойные конструкции, сочетающие в себе лёгкость, жёсткость и прочность. Внешнее армирование металлических замкнутых объёмов (шары, баллоны, цилиндры) стеклопластиком (См. Стеклопластики) позволяет значительно снизить их массу в сравнении с металлическими конструкциями. Для многих областей техники необходимы К. м., сочетающие конструкционную прочность с высокими электрическими, теплозащитными, оптическими и другими свойствами.

Т. к. в составе К. м. нашли своё применение почти все элементы таблицы Менделеева, а эффективность ставших уже классическими для металлических сплавов методов упрочнения путём сочетания специально подобранного легирования, высококачественной плавки и надлежащей термической обработки снижается, перспективы повышения свойств К. м. связаны с синтезированием материалов из элементов, имеющих предельные значения свойств, например предельно прочных, предельно тугоплавких, термостабильных и т.п. Такие материалы составляют новый класс композиционных К. м. В них используются высокопрочные элементы (волокна, нити, проволока, нитевидные кристаллы, гранулы, дисперсные высокотвёрдые и тугоплавкие соединения, составляющие армировку или наполнитель), связуемые матрицей из пластичного и прочного материала (металлических сплавов или неметаллических, преимущественно полимерных, материалов). Композиционные К. м. по удельной прочности и удельному модулю упругости могут на 50-100% превосходить стали или алюминиевые сплавы и обеспечивают экономию массы конструкций на 20-50%.

Наряду с созданием композиционных К. м., имеющих ориентированную (ортотропную) структуру, перспективным путём повышения качества К. м. является регламентация структуры традиционных К. м. Так, путём направленной кристаллизации сталей и сплавов получают литые детали, например лопатки газовых турбин, состоящие из кристаллов, ориентированных относительно основных напряжений таким образом, что границы зёрен (слабые места у жаропрочных сплавов) оказываются ненагруженными. Направленная кристаллизация позволяет увеличить в несколько раз пластичность и долговечность. Ещё более прогрессивным методом создания ортотропных К. м. является получение монокристальных деталей с определённой кристаллографической ориентацией относительно действующих напряжений. Весьма эффективно используются методы ориентации в неметаллических К. м. Так, ориентация линейных макромолекул полимерных материалов (ориентация стекол из полиметилметакрилата) значительно повышает их прочность, вязкость и долговечность.

При синтезировании композиционных К. м., создании сплавов и материалов с ориентированной структурой используются достижения материаловедения.

Лит.: Киселев Б. А., Стеклопластики, М., 1961; Конструкционные материалы, т. 1- 3, М., 1963-65; Тугоплавкие материалы в машиностроении. Справочник, под ред. А. Т. Туманова и К. И. Портного, М., 1967; Конструкционные свойства пластмасс, пер. с англ., М., 1967; Резина - конструкционный материал современного машиностроения. Сб. ст., М., 1967; Материалы в машиностроении. Выбор и применение. Справочник, под ред. И. В. Кудрявцева, т. 1-5, М., 1967-69; Химушин Ф. Ф., Жаропрочные стали и сплавы, 2 изд., М., 1969; Современные композиционные материалы, пер. с англ., М., 1970; Алюминиевые сплавы. Сб. ст., т. 1-6, М., 1963-69.

А. Т. Туманов, Н. С. Скляров.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Конструкционные материалы" в других словарях:

    Материалы, из которых изготовляются различные конструкции, детали машин, элементы сооружений, воспринимающих силовую нагрузку. Определяющими параметрами таких материалов являются механические свойства, что отличает их от других технических… … Википедия

    КОНСТРУКЦИОННЫЕ МАТЕРИАЛЫ - материалы, применяемые для изготовления узлов и деталей машин и механизмов, зданий, транспортных средств и сооружений, приборов, аппаратов и др. технических объектов. Наряду с конструкционной сталью и др. сплавами в современной технике в качестве …

    конструкционные материалы - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN materials of construction …

    Материалы, применяемые для изготовления конструкций (деталей машин и механизмов, зданий, трансп. средств, сооружений, приборов, аппаратов и т. п.), воспринимающих силовую нагрузку. К. м. подразделяют на металлич. (сплавы на основе железа, никеля … Большой энциклопедический политехнический словарь

    Материалы, используемые для изготовления конструкций, воспринимающих силовую нагрузку (деталей машин и механизмов, зданий, транспортных средств, приборов, аппаратов и т. п.). Подразделяются на металлические (металлы и сплавы), неметаллические… … Энциклопедия техники

    расплав активной зоны ядерного реактора, включающий Corium-А и конструкционные материалы корпуса реактора - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN Corium A+R … Справочник технического переводчика

    МАТЕРИАЛЫ - (1) необработанные вещества (сырьё), из которых изготовляют разного рода смеси, массы, заготовки, изделия и др., а также предметы, вещества и информационные данные, используемые в различных технологических процессах с целью получения необходимых… … Большая политехническая энциклопедия

    Материалы органические - – материалы, полученные из живой природы: растительного или животного мира. В области строительства применяют конструкционные материалы из дерева и пластмассы, вяжущие из битума, дегтя и полимеров, наполнители из отходов древесины и других… … Энциклопедия терминов, определений и пояснений строительных материалов

    Понятие конструкционных и строительных материалов охватывает множество различных материалов, применяемых для изготовления деталей конструкций, зданий, мостов, дорог, транспортных средств, а также бесчисленных других сооружений, машин и… … Энциклопедия Кольера

    МАТЕРИАЛЫ СУДОСТРОИТЕЛЬНЫЕ - технические материалы, показатели свойств которых отвечают требованиям классификационных норм и правил к материалам для строительства судов или требованиям норм и стандартов (ТУ, ОСТ, ГОСТ) к материалам, используемым в технологических процессах… … Морской энциклопедический справочник

Книги

  • Конструкционные материалы: металлы, сплавы, полимеры, керамика, композиты , Болтон Уильям , 320 стр В справочнике представлен весь спектр материалов, применяемых в машиностроении и электротехнике: железо, алюминий, медь, магний, никель, титан, сплавы на их основе, полимерные,… Категория:

1.

2. Исходные материалы и способы получения алюминия .

3. Свойства и применение древесины.

4.

1. Классификация свойств конструкционных материалов. Эксплуатационные свойства, их показатели.

Конструкционными материалами называют материалы, из которых изготовляются детали конструкций (машин и сооружений), воспринимающих силовую нагрузку. Определяющими параметрами конструкционных материалов являются механические свойства, что отличает их от других технических материалов (оптических, изоляционных, смазочных, лакокрасочных, декоративных, абразивных и др.). К основным критериям качества конструкционных материалов относятся параметры сопротивления внешним нагрузкам: прочность, вязкость, надежность, ресурс и др.

Конструкционные материалы подразделяются (рис. 1): по природе материалов - на металлические, неметаллические и композиционные материалы, сочетающие положительные свойства тех и других материалов; по технологическому исполнению - на деформированные (прокат, поковки, штамповки, прессованные профили и др.), литые, спекаемые, формуемые, склеиваемые, свариваемые (плавлением, взрывом, диффузионным сращиванием и т. п.); по условиям работы - на работающие при низких температурах, жаропрочные, коррозионно-, окалино-, износо-, топливо-, маслостойкие и т. д.; по критериям прочности - на материалы малой и средней прочности с большим запасом пластичности, высокопрочные с умеренным запасом пластичности.

Развитие техники предъявляет новые, более высокие требования к существующим Конструкционным материалам, стимулирует создание новых материалов. С целью уменьшения массы конструкций летательных аппаратов используются, например, многослойные конструкции, сочетающие в себе лёгкость, жёсткость и прочность. Внешнее армирование металлических замкнутых объёмов (шары, баллоны, цилиндры) стеклопластиком позволяет значительно снизить их массу в сравнении с металлическими конструкциями . Для многих областей техники необходимы Конструкционные материалы, сочетающие конструкционную прочность с высокими электрическими, теплозащитными, оптическими и другими свойствами.

Рис. 1. Схема классификации конструкционных материалов

При выборе материала для того или иного изделия или конструкции учитывают экономическую целесообразность его применения (соответствие цены и качества), сохранение конструкционных критериев (требуемые долговечность, прочность, надежность) и возможность переработки в изделие (технологические критерии – обрабатываемость резанием, свариваемость, ковкость и т. п.). С учетом данных критериев выбирают материал той или иной природы.

Металлические материалы. К ним относятся металлы и сплавы на их основе. Они в свою очередь подразделяются на несколько групп, отличающихся друг от друга по свойствам:

1. Черные металлы. Это железо и сплавы на его основе – стали и чугуны;

2. Цветные металлы. В эту группу входят металлы и их сплавы, такие как медь, алюминий, титан, никель и др.;

3. Благородные металлы. К ним относятся золото, серебро, платина; 4. Редкоземельные металлы. Это лантан, неодим, празеодим.

Неметаллические материалы. Они также подразделяются на несколько групп:

1. Пластмассы. Это материалы на основе высокомолекулярных соединений – полимеров, в основном, с наполнителями;

2. Керамические материалы (керамика). Их основой являются порошки тугоплавких соединений типа карбидов, боридов, нитридов и оксидов. Например: TiC, SiC, Cr7C3, CrB, Ni3B, TiB2, BN, TiN, Al2O3, SiO2, ZrO2 и др.;

3. Металлокерамические материалы (металлокерамика). В этих материалах основой является керамика, в которую добавляется некоторое количество металла, являющегося связкой и обеспечивающего такие свойства, как пластичность и вязкость;

4. Стекло. Оно представляет собой систему, состоящую из оксидов различных элементов, в первую очередь оксида кремния SiO2;

5. Резина. Это материалы на основе каучука - углеродноводородного полимера с добавле-нием серы и других элементов;

6. Дерево. Сложная органическая ткань древесных растений.

Композиционные материалы. Они представляют собой материалы, полученные искусственным путем из двух и более различных материалов, сильно отличающихся друг от друга по свойствам. В результате композиция по своим свойствам существенно отличается от свойств составляющих компонентов, т. е. получаемый материал имеет новый комплекс свойств. В состав композиционных материалов могут входить как металлические, так и неметаллические составляющие.

Классификация свойств конструкционных материалов

1. Механические свойства характеризуются способностью материала сопротивляться деформированию и разрушаться под действием внешних воздействующих факторов.

· Прочность – это способность материала сопротивляться разрушению и пластично деформироваться под воздействием внешних нагрузок;

· Твердость – это способность материалов сопротивляться деформированию в поверхностном слое при местном, контактном и силовом воздействии;

· Упругость - это способность материала восстанавливать свою форму и размеры, под действием внешних сил без разрушения;

· Вязкость - способность материала поглощать механическую энергию и при этом испытывать значительную пластическую деформацию до разрушения;

· Хрупкость – это способность материала разрушаться под действием внешних сил, сразу после упругой деформации.

2. Физические свойства характеризуют поверхность материала в тепловых, гравитационных, электромагнитных и радиоактивных полях.

· Свет – это способность материала отражать световые лучи с определенной длиной световой волны;

· Плотность – это масса единицы объема вещества;

· Температура плавления – это температура, при которой вещество переходит из твердой фазы в жидкую;

· Электропроводность – это способность материала хорошо и без потерь проводить электрический ток;

· Теплопроводность – это способность материала переносить Тепловую энергию от более нагретого участка к менее нагретому;

· Теплоёмктсть - это способность материала поглощать определенное количество теплоты;

· Магнитные свойства - способность материалахорошо намагничиваться;

· Коэффициент объемного и линейного расширения – характеризует изменение размеров тела при изменении температуры.

3. Технологические свойства характеризуются способностью материала подвергаться различным видам горячей и холодной обработки.

Литейные свойства; К ней относятся жидкотекучесть - способность металлов и сплавов течь по каналам формы и заполнять ее. Заполняемость - она характеризует способность металлов и сплавов воспроизводить контур отливок в особо тонких сечениях, где в значительной степени проявляется действие капиллярных сил. Объемная усадка - характеризует изменение объема металла при понижении температуры в жидком состоянии, в процессе затвердевания и при охлаждении твердого металла. Линейная усадка - отражает изменение линейных размеров отливки после образования на ее поверхности жесткого кристаллического скелета и охлаждения до комнатной температуры.

· Ковкость (важно при обработке давлением) - это способность металлов и сплавов подвергаться ковке и другим видам обработки давлением (прокатка, волочение, прессование, штамповка);

· Свариваемость (это показатель того, на сколько материал может показать свариваемые соединения);

· Обработка резанием;

· Прокаливаемость;

· Закаливаемость.

4. Эксплуатационные свойства, характеризуют способность материалов обеспечивает надежную и долговечную работу изделий в конкретных условиях и эксплуатации, базируются на механических, физических и химических свойствах.
Эксплуатационные свойства. Эти свойства определяют в зависимости от условий работы машины специальными испытаниями. Одним из важнейших эксплуатационных свойств является износостойкость, хладостойкость, жаропрочность, антифрикционность и др.

Износостойкость - свойство материала оказывать сопротивление износу, т. е. постепенному изменению размеров и формы тела вследствие разрушения поверхностного слоя изделия при трении. Испытание металлов на износ проводят на образцах в лабораторных условиях, а деталей - в условиях реальной эксплуатации. При испытаниях образцов моделируются условия трения, близкие к реальным. Величину износа образцов или деталей определяют различными способами: измерением размеров, взвешиванием образцов и другими методами.

Хладостойкость - способность материалов, элементов, конструкций и их соединений сопротивляться хрупким разрушениям при низких температурах окружающей среды.

Жаропрочность - это способность металла сопротивляться пластической деформации и разрушению при высоких температурах. Жаропрочные материалы используются для изготовления деталей, работающих при высоких температурах, когда имеет место явление ползучести. Критериями оценки жаропрочности являются кратковременная и длительная прочности, ползучесть.

Антифрикционность - это способность материала обеспечивать низкий коэффициент трения скольжения и тем самым низкие потери на трение и малую скорость изнашивания сопряженной детали.

5. Химические свойства характеризуют способность материала вступать в химическое взаимодействие с другими веществами.

· Растворимость (способность материала образовывать с одним или несколькими веществами однородные системы, называющихся растворами);

· Жаростойкость (способность материала противостоять химическому разрушению поверхности под действием воздуха или другой окислительной атмосферой при высоких температурах);

· Коррозионостойкость (способность металлических материалов противостоять разрушению в результате химического или электрохимического воздействия на их поверхности внешней агрессивной среды (аналогичное свойство для неметаллических материалов - химикостойкость ));

· Окисление (способность материалов отдавать электроны, то есть окисляться при химическом взаимодействии с окружающей средой или другой материей).

2. Исходные материалы и способы получения алюминия.

Алюминий – это один из важнейших металлов, причем количество его производства намного опережает объем выпуска всех остальных цветных металлов и уступает только производству стали. Высокая популярность алюминия обусловлена его уникальными физико - химическими свойствами, благодаря которым он нашел широкое применение в электротехнике , авиа - и автостроении, транспорте, производстве бытовой техники , строительстве, упаковке пищевых продуктов и пр.

В последнее время машиностроение во все большей мере требует легких металлов, особенно в авиастроении, ракетостроении, атомной промышленности и железнодорожном транспорте . Поэтому развитие новых и более экономичных методов получения алюминия и усовершенствование уже существующих методов имеет большое значение.

Электролиз криолитоглиноземных расплавов является основным способом получения алюминия, хотя некоторое количество алюминиевых сплавов получается электротермическим способом.

Первые промышленные электролизеры были на силу тока до 0,6 кА и за последующие 100 лет она возросла до 300 кА. Тем не менее, это не внесло существенных изменений в основы производственного процесса.

Общая схема производства алюминия представлена на рис. 2. Основным агрегатом является электролизер. Электролит представляет собой расплав криолита с небольшим избытком фторида алюминия, в котором растворен глинозем. Процесс ведут при переменных концентрациях глинозема приблизительно от 1 до 8 % (масс.). Сверху в ванну опущен угольный анод , частично погруженный в электролит. Существуют два основных типа расходуемых анодов: самообжигающиеся и предварительно обожженные. Первые используют тепло электролиза для обжига анодной массы, состоящей из смеси кокса-наполнителя и связующего – пека. Обожженные аноды представляют собой предварительно обожженную смесь кокса и пекового связующего.

Рис. 2 Схема производства алюминия из глинозема.

Расплавленный алюминий при температуре электролиза (950 – 960°С) тяжелее электролита и находится на подине электролизера. Криолитоглиноземные расплавы – очень агрессивны, противостоять которым могут углеродистые и некоторые новые материалы. Из них и выполняется внутренняя футеровка электролизера.

Для преобразования переменного тока в постоянный на современных заводах применяются полупроводниковые выпрямители с напряжением 850В и коэффициентом преобразования 98,5%, установленные в кремниевой преобразовательной подстанции (КПП). Один выпрямительный агрегат дает ток силой до 63 кА. Число таких агрегатов зависит от необходимой силы тока, так как все они включены параллельно.

Процесс, протекающий в электролизере, состоит в электролитическом разложении глинозема, растворенного в электролите. На жидком алюминиевом катоде выделяется алюминий, который периодически выливается с помощью вакуум-ковша и направляется в литейное отделение на разливку или миксер, где в зависимости от дальнейшего назначения металла готовятся сплавы с кремнием, магнием, марганцем, медью или проводится рафинирование. На аноде происходит окисление выделяющимся кислородом углерода. Отходящий анодный газ представляет собой смесь СО2 и СО.

Электролизеры обычно снабжены укрытиями, отводящими отходящие газы, и системой очистки. Это снижает выделение вредных веществ в атмосферу. Технологический процесс требует, чтобы укрытие было герметично для обеспечения отсоса газа в коллектор с помощью вентиляторов . В удаляемых газах от электролизеров преобладают диоксид углерода (большая часть оксида углерода дожигается либо над электролитом, либо в специальных горелках после газосборного колокола), азот , кислород, газообразные и твердые фториды и частицы глиноземной пыли. Для их удаления и возвращения в процесс применяются различные технологические схемы.

Современные электролизеры оборудованы системой автоматического питания глиноземом (АПГ) с периодом загрузки 10 – 30 мин.

Суммарная реакция, происходящая в электролизере, может быть представлена уравнением

Таким образом, теоретически на процесс электролиза расходуются глинозем и углерод анода, а также электроэнергия, необходимая не только для осуществления электролитического процесса – разложения глинозема, но и для поддержания высокой рабочей температуры. Практически расходуется и некоторое количество фтористых солей, которые испаряются и впитываются в футеровку. Для получения 1 т алюминия необходимо:

Производство алюминия является одним из самых энергоемких процессов, поэтому алюминиевые заводы строят вблизи источников энергии.

Все материалы, поступающие на электролиз, должны иметь минимальное количество примесей более электроположительных, чем алюминий (железо, кремний, медь и др.), так как эти примеси при электролизе практически полностью переходят в металл.

Электротермическое получение алюминиево-кремниевых сплавов.

Получить чистый алюминий непосредственным восстановлением его оксида невозможно. Карботермические процессы требуют высоких температур (около 2000°С) для восстановления глинозема и при отсутствии сплавообразующих компонентов металл связывается с углеродом, давая карбид алюминия (А14С3). Известно, что карбид алюминия и алюминий растворимы друг в друге и образуют весьма тугоплавкие смеси. Кроме того, А14С3 растворяется в А12О3, поэтому в результате восстановления оксида алюминия углеродом получаются смеси алюминия, карбида и оксида, имеющие высокие температуры плавления. Выпустить такую массу из печи обычно не представляется возможным. Даже если это и удается сделать, потребуются большие затраты на разделение.

Общая технологическая схема производства алюминиево-кремниевых сплавов представлена на рис. 3. В качестве исходного сырья, кроме каолинов (Al2O3×2SiO2×2H2O), могут быть использованы кианиты (Al2O3×SiO2), дистенсиллиманиты (Al2O3×SiO2) и низкожелезистые бокситы.

Сплав после электроплавки поступает на очистку от неметаллических примесей. Для этого подают флюс, состоящий из смеси криолита и хлорида натрия, который смачивает эти примеси и "собирает" их. Рафинированный силикоалюминий имеет средний состав (%): А1 – 61; Si – 36; Fe – 1,7; Ti – 0,6; Zr – 0,5; Ca – 0,7. Этот сплав не годится для производства силумина и требует очистки от железа. Наиболее распространен способ очистки марганцем, который образует с железом тугоплавкие интерметаллиды.

Рис. 3. Общая схема производства алюминиево-кремниевых сплавов.

Полученный сплав разбавляют техническим электролитическим алюминием или вторичным алюминием до состава, отвечающего различным сортам силуминов, и разливают в слитки.

Преимущества такого способа получения силумина перед сплавлением электролитического алюминия с кристаллическим кремнием состоят в следующем: большая мощность единичного агрегата – современные печи имеют мощность 22,5 MB×A, что примерно в 30 раз выше мощности электролизера на 160 кА, а, следовательно, уменьшение грузопотоков , снижение капитальных затрат и затрат труда; применение сырья с низким кремниевым модулем, запасы которого в природе достаточно велики.

Теоретически из алюминиево-кремниевого сплава можно выделить различными приемами чистый алюминий. Однако из-за сложности аппаратурного и технологического оформления в промышленности эти способы в настоящее время не реализуются.

Тот-процесс

Схема получения алюминия по способу Тота представлена на рис. 4. Алюминийсодержащее сырье после соответствующей подготовки хлорируют в кипящем слое в присутствии кокса и SiCl4. Последний используется для подавления реакции хлорирования SiO2. В результате хлорирования в печах кипящего слоя (КС) получается парогазовая смесь (ПГС), в состав которой входят А1С13, FeCl3, TiCl4 и SiCl4. В первом конденсаторе из ПГС выделяется около 75 % FeCl3 в твердом состоянии и направляется в реактор-окислитель, где взаимодействует с кислородом воздуха, в результате чего образуются Fe2O3 и С12. Хлор возвращается на хлорирование. Во втором конденсаторе выделяется оставшийся FeCl3 и происходит конденсация А1С13. Хлориды титана и кремния конденсируются в третьем конденсаторе. Разделение этих хлоридов осуществляется в ректификационной колонне.

Рис. 4. Схема получения алюминия по методу Тота.

Хлориды алюминия и железа, выгруженные из второго конденсатора, нагреваются, перекачиваются в контактный очиститель, где контактируют в противотоке с подвижным слоем твердых частиц алюминия. При этом идет реакция:

Очищенный хлорид алюминия поступает на металлотермическое восстановление. Технически доступными восстановителями, имеющими большее сродство к хлору, чем алюминий, являются натрий, магний и марганец. Однако первые два элемента дороги и их производство весьма энергоемко. Поэтому, по мнению разработчиков процесса, определенные преимущества имеет использование марганца, который можно регенерировать из хлорида карботермическим методом со значительно меньшими энергозатратами. При восстановлении хлорида алюминия марганцем протекают реакции:

Алюминий из смеси МпС12 с непрореагировавшим А1С13, выделяется в циклонных сепараторах, а хлориды марганца и алюминия разделяются в выпарном аппарате. Хлорид алюминия возвращается в реактор для получения алюминия, а хлорид марганца взаимодействует с кислородом с образованием твердых оксидов марганца и хлора. Оксид марганца восстанавливается до металла карботермическим методом в шахтных печах, куда загружают кокс и известняк. Марганец в печь добавляется для восполнения потерь его в ходе процесса.

К недостаткам данного процесса, как и других металлотермических методов, относятся загрязнение получаемого продукта металлом-восстановителем, необходимость организации производства по регенерации восстановителя и увлечение капитальных затрат.

Электролиз хлоридных расплавов

В январе 1973 г. фирма "Alcoa", один из мировых лидеров по производству и переработке алюминия, заявила о разработке нового способа получения алюминия.

Принципиальная технологическая схема представлена на рис. 5.

Хлорид алюминия имеет высокое сродство к воде и тенденцию к образованию оксидов и гидрооксихлоридов. В связи с этим получение его в чистом виде является трудной задачей. Присутствие влаги вызывает коррозию, а присутствие кислородсодержащих соединений приводит к выделению осадков и окислению анодов. Фирмой "Alcoa" предложено хлорирование очищенного глинозема, что частично решает названные проблемы. Тем не менее, необходимо соблюдать повышенные требования к чистоте углерода при хлорировании в отношении водорода или влаги.

Рис. 5. Технологическая схема получения алюминия из хлорида.

Полученный хлорид алюминия в гранулированном или парообразном состоянии поступает на электролиз. Электролизер, используемый в данной технологии, состоит из стального кожуха, футерованного шамотным и в нижней части дополнительно диатомовым кирпичом, т. е. теплоизоляционным непроводящим огнеупорным материалом, который слабо взаимодействует с хлоридными расплавами. На дне ванны распо­ложен графитовый отсек для сбора жидкого алюминия. На крышке электролизера имеются отверстия для загрузки хлорида алюминия, периодического отсоса алюминия и непрерывного вывода газообразного хлора, используемого в производстве хлорида алюминия. Боковые стенки и крышка электролизера – водоохлаждаемые.

При электролизе используются графитовые нерасходуемые электроды. Это преимущество (по сравнению с электролизом криолитоглиноземных расплавов) вместе с относительно низкой температурой процесса (около 700ºС) дает возможность полной герметизации электролизеров.

Электролитическое разложение хлорида алюминия теоретически требуют более высокого напряжения, чем электролиз криолитоглиноземных расплавов, так как напряжение разложения хлорида алюминия много больше. Таким образом, к недостаткам процесса можно было бы отнести необходимость подвода в электролизер большого количества тепла и значительные потери напряжения. Однако высокие омические и тепловые потери значительно снижаются при использовании системы биполярных электродов. В электролизере верхний электрод является анодом, нижний – катодом, а между ними располагаются графитовые электроды, верхняя часть которых является катодом, а нижняя – анодом. В то же время результаты расчетов показывают, что с ростом числа биполярных электродов и снижением площади их сечения возрастают токи утечки, т. е. часть тока протекает по пропитанной электролитом части футеровки и каналам между футеровкой и биполями, не совершая электрохимическую работу. Эти токи утечки приводят к снижению выхода по току.

Вследствие близости температур плавления и кипения при атмосферном давлении хлорид алюминия возгоняется практически не плавясь. Температура сублимации составляет 180,2°С. Тройная точка соответствует температуре 192,6°С и абсолютному давлению 0,23 МПа. В связи с этим в качестве электролита используется расплавленная смесь хлорида алюминия (5 ± 2 % (масс.)), хлорида лития (~28% (масс.)) и хлорида натрия (67% (масс.)). В указанных расплавах снижается активность А1С13. Это в значительной степени обусловлено тем, что в расплавленных смесях хлоридов А1С13 связывается в комплексные анионы.

Основные прогнозируемые и подтвержденные при промышленном внедрении в США преимущества предложенного фирмой «Alcoa» способа производства алюминия электролизом его хлорида по сравнению с электролизом криолитоглиноземных расплавов заключаются в возможности использования низкокачественного алюминийсодержащего сырья, снижении примерно на 30 % удельного расхода электроэнергии при электролизе, исключении расхода высококачественных углеродсодержащих электродных материалов, применении менее дефицитных и агрессивных хлоридов вместо фторидов, повышении производительности труда, снижении капитальных вложений , приведенных затрат, стоимости конечной продукции и вредных выбросов в окружающую среду.

Таким образом, наиболее перспективным из альтернативных способов получения алюминия является электролиз хлорида алюминия в электролизерах с биполярными электродами.

3. Свойства и применение древесины .

Огромные пространства нашей планеты покрывают леса, они занимают около одной трети суши. Основным продуктом леса является древесина. По типу лесной растительности различают хвойные леса теплого умеренного климата, экваториальные дождевые леса, тропические влажные лиственные леса, леса сухих областей.

Древесина с древних времен используется для строительства жилищ , изготовления предметов домашнего обихода, для средств транспорта и разных изделий. Со временем наряду с древесиной в строительстве стали применяться металл, цемент, черепица, стекло, пластические массы.

Надо отметить, что древесина имеет и ряд недостатков: изменчивость свойств в направлении вдоль оси ствола и поперек; обладает гигроскопичностью, что приводит к увеличению ее массы и уменьшению прочности, а при высыхании древесина уменьшается в размерах (происходит усушка); она растрескивается и коробится; поражается грибами, что приводит к гниению; древесина способна гореть. Перечисленные недостатки в значительной мере устраняются путем химической и химико-механической переработки древесины в листовые и плитные материалы – бумагу, картон, древесностружечные и древесноволокнистые плиты, фанеру и др.

Взрослое дерево имеет ствол, крону и корни. Ствол связывает корневую систему с кроной дерева. Ствол дает основную массу древесины (от 50 до 90% объема всего дерева) и имеет главное промышленное значение. Верхняя тонкая часть ствола называется вершиной, нижняя толстая часть – комлем. Древесина занимает наибольшую часть объема ствола. Диаметр ствола изменяется в широких пределах, примерно от 6-8 до 100 см. Форма поперечного сечения ствола и, следовательно, древесины чаще всего близка к окружности, но иногда сечение приобретает форму эллипса. Диаметр уменьшается по высоте ствола. В верхней части ствола древесину пронизывают сучки, представляющие собой остатки ветвей. Снаружи древесину покрывает кора, относительный объем которой для основных пород приведен в таблице:

Порода

Объем коры, %

Лиственница

ОСНОВНЫЕ СВОЙСТВА ДРЕВЕСИНЫ

1. Химические свойства древесины

Химический состав древесины и коры. Древесина в основном состоит из органических веществ. Элементарный химический состав древесины всех пород практически одинаков. Органическая часть абсолютно сухой древесины (высушенной при 103оС) содержит в среднем 49-50 % углерода, 43-44 % кислорода, около 6 % водорода и 0,1-0,3 % азота.

Неорганическая часть может быть выделена в виде золы путем сжигания древесины. Количество золы в древесине около 0,2-1 %. В состав золы входят кальций, калий, натрий, магний, в меньших количествах фосфор, сера и другие элементы. Они образуют минеральные вещества, большая часть которых нерастворима в воде. Среди растворимых первое место занимают щелочные – поташ и сода, а из нерастворимых – соли кальция.

Химические элементы образуют сложные органические соединения. Главные из них – целлюлоза, лигнин, гемицеллюлоза, входящие в состав клеточных стенок древесины. Остальные вещества называются экстрактивными. Это смолы, дубильные и красящие вещества.

2. Физические свойства древесины

Физическими свойствами древесины называются такие, которые определяют без нарушения целостности испытываемого образца и изменения ее химического состава, т. е. выявляют путем осмотра, взвешивания, измерения, высушивания.

К физическим свойствам древесины относятся: внешний вид и запах, плотность, влажность и связанные с ней изменения – усушка, разбухание, растрескивание и коробление.

Внешний вид древесины определяется ее цветом, блеском, текстурой и макроструктурой.

Запах древесины зависит от находящихся в ней смол, эфирных масел, дубильных и других веществ. Характерный запах скипидара имеют хвойные породы – сосна, ель. Дуб имеет запах дубильных веществ, бакаут и палисандр – ванили. Приятно пахнет можжевельник, поэтому его ветви применяют при запаривании бочек. Большое значение имеет запах древесины при изготовлении тары. В свежесрубленном состоянии древесина имеет более сильный запах, чем после высыхания.

Влажность древесины. В растущем дереве вода необходима для его жизни и роста, в срубленной древесине наличие воды нежелательно, так как приводит к ряду отрицательных явлений.

Влажностью (абсолютной) древесины называется отношение массы воды к массе абсолютно сухой древесины, выраженное в процентах.

Усушка. Усушкой называется уменьшение линейных размеров и объема древесины при высыхании. Она начинается после полного удаления из древесины свободной влаги и с начала удаления связанной влаги, т. е. когда ее влажность снизится за предел насыщения клеточных стенок.

Разбухание – это свойство древесины обратное усушке и подчиняется тем же закономерностям. Разбуханием называется увеличение линейных размеров и объема древесины при повышении содержания связанной воды.

3 Механические свойства древесины

Механические свойства характеризуют способность древесины сопротивляться действию усилий. К механическим свойствам древесины относятся прочность и деформативность, а также некоторые эксплуатационные и технологические свойства.

Прочность – способность древесины сопротивляться разрушения под действием механических усилий; характеристикой ее является предел прочности – максимальное напряжение, которое выдерживает древесина без разрушения. Показатели пределов прочности устанавливают при испытании древесины на сжатие, растяжение, изгиб, сдвиг и редко при кручении.

Деформативностью называется изменение формы и размеров древесины под действием внешних сил.

Твердость – это свойство древесины сопротивляться внедрению тела определенной формы.

Ударная вязкость характеризует способность древесины поглощать работу при ударе без разрушения. Определяется при испытаниях на изгиб. Чем больше требуется затратить работы на разрушение образца, тем выше вязкость.

Износостойкость древесины – способность поверхностных слоев противостоять износу, т. е. разрушению в процессе трения.

Древесина используется для получения различных древесных материалов. К этим материалам относятся: круглые материалы, пиленые, строганные, лущеные, колотые лесоматериалы, измельченная древесина, композиционные древесные материалы. Все эти материалы широко используются в мебельной промышленности, судостроении, вагоностроении, машиностроении, электротехнике, строительстве, при изготовлении стандартных деревянных домов , в производстве автомобилей , пластмасс, линолеума, промышленных взрывчатых веществ, для упаковки продовольственных и промышленных товаров, для изготовления фибриловых плит и др., а также в других отраслях промышленности в качестве конструкционного, изоляционного и отделочного материала .

4. Чугун. Маркировка, свойства и применение серого чугуна.

К чугунам относятся сплавы железа с углеродом, содержащие более 2,14 %С (рис. 6).

Практическое применение находят чугуны с содержанием углерода до 4.0 – 4,5 %. При большем количестве углерода, механические свойства существенно ухудшаются.

Промышленные чугуны не являются двойными сплавами, а содержат кроме Fe и С, такие же примеси, как и углеродистые стали Мn, Si, S, P и др. Однако в чугунах этих примесей больше и их влияние иное, чем в сталях. Если весь имеющийся в чугуне углерод находится в химически связанном состоянии, в виде карбида железа (F3C - цементит), то такой чугун называется белым. Чугуны, в которых весь углерод или большая часть, находится в свободном состоянии в виде графитных включений той или иной формы, называются графитизированными.

Рис. 6. Структурная диаграмма состояния системы железо-цементит

В зависимости от формы графитных включений графитизированный чугун бывает серым, высокопрочным, ковким чугуны и с вермикулярным графитом.

Серые чугуны получают при меньшей скорости охлаждения отливок, чем белые. Они содержат 1 – 3 %Si – обладающего сильным графитизирующим действием.

Серый чугун хорошо обрабатывается режущим инструментом. Из него производят станины станков, блоки цилиндров, фундаментные рамы, цилиндровые втулки, поршни и т. д.

Механические свойства серого чугуна

Марка чугуна

Предел прочностипри растяжении, кгс/мм2, не менее

Предел прочностипри изгибе, кгс/мм2, не менее

Стрела прогиба, мм, при расстоянии между опорами, мм

Твердость по Бринеллю, НВ

Испытания не производятся

Графит в сером чугуне наблюдается в виде темных включении на светлом фоне нетравленного шлифа. По нетравленному шлифу оценивают форму и дисперсность графита, от которых в сильной степени зависят механические свойства серого чугуна.

Серые чугуны подразделяют по микроструктуре металлической основы в зависимости от полноты графитизации. Степень или полноту графитизации оценивают по количеству свободно выделившегося (несвязанного) углерода (рис. 7).

Полнота графитизации зависит от многих факторов, из которых главными являются скорость охлаждения и состав сплава. При быстром охлаждении кинетически более выгодно образование цементита, а не графита. Чем медленнее охлаждение, тем больше степень графитизации. Кремний действует в ту же сторону, что и замедление охлаждения, т. е. способствует графитизации, а марганец – карбидообразующий элемент – затрудняет графитизацию.

Рис. 7. Классификация чугунов по структуре металлической основы и в форме

графитовых включений

Если графитизация в твердом состоянии прошла полностью, то чугун содержит две структурные составляющие – графит и феррит. Если же эвтектоидный распад аустенита прошел в соответствии с метастабильной системой

эвтектоид (перлит), то структура чугуна состоит из графита и перлита. Такой сплав называют серым чугуном на перлитной основе. Также возможен промежуточный вариант, когда аустенит частично распадается по эвтектоидной реакции на феррит и графит, а частично с образованием перлита. В этом случае чугун содержит три структурные – графит, феррит и перлит. Такой сплав называют серым чугуном на феррито-перлитной основе.

Феррит и перлит в металлической основе чугуна имеют те же микроструктурные признаки, что и в сталях. Серые чугуны содержат повышенное количество фосфора, увеличивающего жидкотекучесть и дающего тройную эвтектику.

В металлической основе серого чугуна фосфидная эвтектика обнаруживается в виде светлых, хорошо очерченных участков.

При выборе материалов в первую очередь требуется всесторонне рассмотреть условия его работы и разграничить факторы, воздействующие на материал, по степени их влияния на надежность машины или механизма. Определяющие факторы должны быть учтены обязательно, менее определяющие - по возможности.

Следующим этапом выбора материала должен быть процесс определения комплекса необходимых свойств материала, обеспечивающих надежную и долговечную работу конструкций, машин и оборудования в заданных условиях эксплуатации. Так как конструкционные материалы характеризуются механическими, физикохимическими и технологическими свойствами, то рассматривать необходимо всю гамму свойств, особенно, если в конструкции должны работать разные материалы.

Более правильным является формирование технических требований к материалу на основании моделирования условий работы изделия в реальных условиях эксплуатации с использованием специальных стендов, на которых с помощью тензометрирования можно определить уровень локальных пиковых напряжений изделия. В том случае, когда не имеется возможности использовать стенд для измерения рабочего напряжения, возникающего в изделии при его эксплуатации, следует использовать расчетные методы.

Физико-химические свойства. Физические свойства определяют поведение материалов в тепловых, гравитационных, электромагнитных и радиационных полях. Из важных физических свойств можно выделить теплопроводность, плотность, коэффициент линейного расширения. Применение в соединениях деталей из различных материалов обусловливает необходимость учета их коэффициентов линейного расширения.

Под химическими свойствами понимают способность материалов вступать в химическое взаимодействие с другими веществами, сопротивляемость окислению, проникновению газов и химически активных веществ. Детали любого изделия должны быть совместимы с рабочей средой. Коррозия, коррозионная усталость, коррозия под напряжением, водородное охрупчивание и т.д. могут вызвать повреждение в металле и привести к хрупкому разрушению конструкции. Такие химически активные металлы, как титан и его сплавы, магниевые сплавы, алюминиевые сплавы, при ударном нагружении могут самопроизвольно загораться при контакте с жидким кислородом.

Механические свойства. Основой выбора материалов для создания надежной и работоспособной техники являются их механические свойства, в первую очередь, прочностные, которые характеризуют способность материалов сопротивляться деформации и разрушению под действием различного рода нагрузок, в разных средах и при различных температурных условиях.

Расчет конструкции на прочность производят по допустимым напряжениям [о], определяемым из условий прочности при статическом нагружении или долговечности при циклическом нагружении. При статическом нагружении допускаемое напряжение равно отношению предельного для данного материала напряжения к коэффициенту безопасности , т.е. к коэффициенту запаса прочности п. Для пластичных материалов за предельное напряжение принимают предел текучести, для квазихрупких - временное сопротивление:

[ = а Т /п Т или [а] = а в /я в. (2.1)

Значение коэффициента запаса прочности зависит от многих факторов: разброса характеристик прочности; присутствия в материале дефектов, допускаемых техническими условиями; степени схематизации расчетной процедуры и т.д.

В России за допускаемое принимается минимальное напряжение, определяемое по пределу текучести или временному сопротивлению. Такая же методика принята во многих странах. Однако в некоторых странах, например в Чехии, Словакии, Германии, Польше, для определения допускаемых напряжений расчет ведется только по пределу текучести, а в Японии - только по временному сопротивлению.

Коэффициент запаса может меняться в широких пределах в зависимости от условий работы оборудования и опыта работы с данным материалом.

Для сосудов и аппаратов, работающих под давлением, коэффициент запаса по пределу текучести находится в пределах от 1,5 до 1,65, а по временному сопротивлению - от 2,35 до 4.

Однако расчеты на прочность конструкций по номинальным напряжениям с учетом коэффициентов запаса не всегда гарантируют необходимый ресурс их работы. Это связано с тем, что назначаемые запасы прочности не учитывают ряда факторов, которые способствуют возникновению повреждений и разрушений несущих элементов конструкций и машин. К этим факторам относятся: присутствие в металле дефектов типа трещин, как исходных, так и возникающих в процессе эксплуатации; наличие микро- и макронеоднородностей металла по толщине, в зонах сварных швов и т.д.; появление локальных напряжений вследствие их концентрации, а также остаточных технологических напряжений; нестабильность эксплуатационного нагружения из-за статических и импульсных перегрузок, стационарных и нестационарных циклических нагрузок. Для учета этих факторов необходим переход от расчета по номинальным напряжениям к анализу локальных напряжений, возникающих в отдельных зонах изделия.

Для высокопрочных и среднепрочных материалов расчет допустимых значений следует проводить на основе принципов механики разрушения с учетом максимальных размеров дефектов. Это связано с тем, что повышение прочности обычно сопровождается уменьшением пластичности и вязкости материала.

Пластичность характеризует способность материала к пластическому течению при превышении предела текучести, а вязкость - способность поглощать энергию внешних сил при разрушении.

У разных материалов соотношение пластичности и вязкости может очень сильно различаться. Например, алюминий имеет малую вязкость при высоком относительном удлинении. Наоборот, термообработанная (улучшенная), легированная сталь при сравнительно небольшом относительном удлинении может иметь высокую вязкость.

Пластичность и вязкость в конструкционные расчеты не входят и являются качественными показателями.

Пластичность показывает способность металла к перераспределению напряжений в зонах концентрации (пиков). Пластическая деформация как бы предохраняет металл от резких локальных перегрузок вблизи концентраторов напряжений.

Широко принятым критерием работоспособности металлических сплавов и сварных соединений, особенно используемых при низких температурах, является ударная вязкость, определенная на образцах с надрезом. При этом сложность представляет выбор необходимого уровня вязкости и вида образцов для ее оценки. В разных странах принят различный гарантированный уровень ударной вязкости. За рубежом сталь обычно допускается к эксплуатации, если ее ударная вязкость, определенная на образцах типа Шарли размером 10 х 10 х 55 мм с надрезом радиусом 0,25 мм, составляет КСУ> 0,30 МДж/м 2 .

Надежность конструкций, работающих в условиях многократного подъема и сброса давления, зависит от сопротивления материалов усталостному разрушению. Поэтому для таких изделий проводятся имитирующие циклические испытания стандартных образцов либо циклические стендовые испытания. База испытаний выбирается в зависимости от условий эксплуатации оборудования.

Металл установок или изделий, подвергаемых многократному нагреву или охлаждению, испытывается на сопротивление термической усталости.

В случае длительного нагружения конструкций при высоких температурах производятся испытания ползучести и длительной прочности материала.

При циклическом или длительном статическом нагружении номинальные эксплуатационные напряжения выбираются с введением коэффициентов запаса п а и п п по пределам длительной прочности и ползучести.

Коэффициенты Яд и л п обычно имеют значения в пределах 2,0-3,5.

Технологические свойства (литейные свойства у литейных сплавов; обрабатываемость давлением у деформируемых сплавов, обрабатываемость резанием, свариваемость) весьма важны и могут быть решающими при выборе материала для изготовления высококачественных изделий в производственных условиях. Например, нельзя изготовить литьем тонкостенные протяженные детали из сплава с низкой жидкотекучестью и плохой заполняемостью. Нельзя также изготавливать сварные конструкции из сталей с высоким содержанием углерода (высоким углеродным эквивалентом), так как в зоне сварного шва всегда будут образовываться сварные трещины.

При рассмотрении обрабатываемости материалов следует исходить из условий серийности изготавливаемого изделия и необходимости применения смягчающей термообработки. Так, при изготовлении изделий крупносерийного или массового производства следует ориентироваться на их механическую обработку с использованием станков с ЧПУ и обрабатывающих центров. В этом случае твердость обрабатываемых деталей должна быть невысокой (до 250 НВ). Для обеспечения низкой твердости для этих деталей может применяться предварительная термообработка: отжиг, нормализация, высокий отпуск.

Оценка свариваемости конструкционных материалов должна включать анализ уровня механических свойств сварного соединения и основного металла, определение склонности к образованию дефектов, прежде всего трещин в металле шва и зоне термического влияния, определение чувствительности сварного соединения к концентраторам напряжений и склонности к хрупкому разрушению. Для получения бездефектных равнопрочных сварных соединений, обладающих высоким сопротивлением хрупкому разрушению, необходима разработка специальной системы легирования сварного шва.

Приняты следующие термины, характеризующие свариваемость металлов: хорошая, удовлетворительная, ограниченная, неудовлетворительная. Хорошая свариваемость характерна для металлических материалов, не имеющих ограничений в проведении процесса сварки при температуре окружающей среды по массе и сложности конструкций. Такие материалы не требуют предварительного подогрева. При удовлетворительной свариваемости на морозе сварка не допускается и должна производиться при комнатной температуре. В сварных элементах должны отсутствовать жесткие стыки; для сложных узлов необходим предварительный сопутствующий подогрев; после сварки при большом объеме наплавленного металла необходим отпуск; при вваривании вкладышей рекомендуется проводить промежуточную термическую обработку. Ограниченная свариваемость подразумевает возможность сварки небольших деталей простой формы с подогревом до 300-400 °С и проведении отпуска после сварки; в случае жестких контуров температура подогрева должна быть увеличена до 600 °С. Неудовлетворительная свариваемость характерна для материалов, нуждающихся в отжиге перед сваркой; даже при сварке простых узлов их необходимо подогревать до температур более 450 °С с обязательным проведением высокого отпуска после сварки.

Выбранные материалы и технологии изготовления из них изделий обязательно должны быть привязаны к возможностям конкретного производства. Например, не следует ориентироваться на лазерную термообработку изделий массового производства, так как это окажется технически невыполнимым, а следует выбрать один из видов химико-термической обработки, который используется на предприятии - изготовителе изделий.

Важный этап выбора материала - оценка его стоимости и дефицитности. Выбранный материал должен быть по возможности дешевым, с учетом всех затрат, включающих как стоимость самого материала, так и стоимость изготовления из него деталей, а также эксплуатационную стойкость. Необходимо учитывать также наличие дефицитных составляющих материала. Например, в последние годы такие элементы в стали, как вольфрам, кобальт, никель являются дефицитными и их использование в качестве легирующих добавок в сталях должно быть ограничено. Однако в тех случаях, когда без них нельзя обеспечить необходимые служебные свойства, их применение оправдано (быстрорежущие стали, жаропрочные стали и сплавы).

Таким образом, основой при выборе материалов являются назначение и условия работы изделия или конструкции. При ЭТОМ КОНструктор опирается на опыт изготовления и эксплуатации изделий и конструкций данного профиля, уровень технологии производства и контроля, а также учитывает экономические соображения. При выборе материалов большую роль могут сыграть результаты стендовых и натурных испытаний изделий.

Использование при выборе материалов, ранее хорошо зарекомендовавших себя в подобных конструкциях и изделиях, вполне оправдано, но может привести, с одной стороны, к отказу от совершенствования конструкций и изделий, а с другой - к повторению уже сделанных ошибок.

Основные понятия о технологических процессах в машиностроительных производствах

Целью современного машиностроительного производства является реализация про­цесса превращения сырья, материалов, полуфабрикатов и других предметов труда в готовую машину, удовлетворяющую потреб­ностям общества (рис.1.1).

Рис.1.1. Схема процесса производства

Машина является технической системой, которая создается для выполнения определенных функций, т.е. имеет определенное служебное назначение.

Служебное назначение машины – это совокупность ее потребительских свойств и технических требований.

Технические требования – это система качественных показателей машины с установленными на них количественными значениями.

По назначению и характеру рабочего процесса машины делятся на энергетические, технологические, транспортные.

Энергетические машины предназначены для преобразования того или иного вида энергии в механическую работу.

Технологические машины - это машины, использующие механическую работу, получаемую от энергетических машин для изменения свойств, формы и состояния обрабатываемых объектов.

Транспортные машины, предназначенные для изменения положения и направления перемещения предметов и материалов в пространстве.

Каждая машина обладает определенной структурой и состоит из ряда функциональных компонентов. Функциональными компонентами машины называют сборочные единицы (узлы) различных уровней сложности, детали и части деталей (рис. 1.2).

· Деталью машины называется изделие, изготовленное из однородного по наименованию и марке материала без применения сборочных операций. Деталь, как правило, имеет определенную геометрическую форму и выполняет хотя бы одну функцию по обеспечению работы машины. Деталь это простейший элемент машины (например: вал, втулка, зубчатое колесо и т.п.).

Детали машин классифицируют по четырем основным признакам:

По виду поверхности (геометрической форме);

По размеру;

По точности;

По материалу, из которого они изготовлены.

Геометрическая форма детали предопределяется ее функцией и вместе с габаритными размерами, показателями точности, материалом и его свойствами предопределяет процесс ее изготовления для конкретного производства.

· Сборочной единицей называется изделие, составные части которого подлежат соединению на предприятии-изготовителе посредством сборочных операций (свинчиванием, сочленением, клепкой, сваркой, пайкой, склеиванием и т.д.). В зависимости от степени сложности и других технологических параметров, в машиностроении принято делить сборочные единицы на порядки (самые сложные - это сборочные единицы первого порядка).

Рис.1.2. Структура машины

Производство машин осуществляется в результате выполнения производственного процесса, под которым понимают совокупность всех этапов, которые проходят исходные продукты на пути их превращения в готовую машину.

По отношению к изделию различные этапы производственного процесса проявляют себя по-разному (рис. 1.3).

Одни из них изменяют качественное состояние изделия:

Размеры;

Структуру и химический состав материала;

Такие процессы называются основными производственными процессами. Совокупность основных производственных процессов образует основное производство предприятий.

Производственные процессы, обеспечивающие бесперебойное протекание основных процессов называются вспомогательными. Их результатом явля­ется продукция, используемая на самом предприятии.

Другие процессы, как, например, транспортирование, контроль, хранение на складах, не оказывают никаких воздействий, хотя без них производственный процесс не смог бы быть осуществлен. Такие процессы называются обслуживающими.

Рис. 1.3. Виды производственных процессов по отношению к изделию

В каждый производственный процесс входят основные и вспомогательные технологические процессы.

· В машиностроении под технологическим процессом обычно понимают часть производственного процесса, содержащую целенаправленные действия по изменению качественного состояния объекта с целью получения деталей или изделий заданной формы, размеров и физико-химических свойств.

Технологические процессы, обеспечивающие превращение сырья и материалов в готовую продукцию, называются основными.

Вспомогательные технологические процессы обеспечивают изготовление продукции, используемой для обслуживания основного производства.

По применяемым методам и способам производства, организационному построению и другим признакам технологические процессы делятся на три фазы (рис. 1.4).

Рис. 1.4. Фазная структура технологических процессов

Фаза - это комплекс работ, выполнение которых характеризует завершение определенной части технологического процесса и связано с переходом предмета труда из одного качественного состояния в другое.

На рисунке 1.5 в качестве примера показаны некоторые технологические процессы заготовительной фазы.

Рис. 1.5. Технологические процессы заготовительной фазы

На рисунке 1.6 показаны некоторые технологические процессы обрабатывающей фазы.

Рис. 1.6. Технологические процессы обрабатывающей фазы.

С целью организации и нормирования труда технологические процессы расчленяют на операции, которые выполняются в определенной последовательности.

Степень пооперационной расчлененности технологического процесса зависит от:

Объема работы по изготовлению данного изделия;

Количества рабочих, занятых изготовлением изделия;

Размеров производственного помещения (рабочей площади);

Характера оборудования рабочих мест и других условий производства.

· Под операцией следует понимать часть технологического процесса, выполняемую над определенным предметом труда на одном рабочем месте одним или группой рабочих.

Одна и та же работа может быть представлена различным числом операций. Если, например, необходимо обточить пруток, просверлить продольное отверстие (рис. 1.7), и все это выполняется одним рабочим на одном станке, то это будет одна операция. Если обточка, сверление и нарезка резьбы производятся на разных станках, то это будут три операции. По технологическим признакам операции расчленяются на переходы, установки, и проходы.

· Установка – это часть технологической операции, выполняемая при неизменном закреплении обрабатываемых заготовок или сборочной единицы. Одна установка может содержать в себе один или несколько переходов.

· Технологический переход - это законченная технологически однородная часть операции, выполняемая при одном режиме работы оборудования и неизменном инструменте (рис.1.7. позиции 2 и 3).

Рис. 1.7. Операция изготовления втулки на одном станке, одним рабочим за одну установку

· Вспомогательный переход – это законченная часть технологической операции, состоящая из действий человека и (или) оборудования, которые не сопровождаются изменением предмета труда, но необходимы для выполнения технологического перехода (например, установка заготовки, смена инструмента и т.д.).

Каждый технологический процесс разрабатывают применительно к определенному типу производства. Тип производства - это классификационная категория, определяемая следующими принципами:

· объемом годового выпуска продукции (числом изделий, подлежащих изготовлению в установленную календарную единицу времени);

· широтой номенклатуры производства изделий;

· производственной мощностью (максимально возможному выпуску продукции установленной номенклатуры и количества при полном использовании возможностей предприятия).

Технологический процесс, прогрессивный для одного типа производства, может быть совершенно неприемлемым для другого типа производства. Различают три основных типа производства (рис. 1.8):

Рис. 1.8. Типы производства

· Единичное производство характеризуется малым объемом выпуска одинаковых деталей, повторное изготовление которых не предусматривается. К основным особенностям единичного производства относятся:

Широкая и разнообразная номенклатура изделий;

Отсутствие повторяемости операций на рабочих местах;

Универсальность оборудования, приспособлений и инструмента;

Высокая квалификация рабочих.

Перечисленные особенности единичного производства определяют более высокую себестоимость выпускаемых изделий.

Единичное производство существует в тяжелом машиностроении, судостроении, опытном производстве любых машин и т. п. (Например: на станкостроительном заводе изготавливается сложный специальный станок для обработки длинномерных валов по специальному заказу судостроительного предприятия).

· Серийное производство характеризуется тем, что изделия изготавливают сериями или партиями. В серийном производстве станки периодически переналаживают с одной операции на другую.

К особенностям серийного производства относятся следующие признаки:

Периодическая смена операций на рабочих местах,

Высокая специализация оборудования, приспособлений, инструментов.

С экономической точки зрения серийное производство более выгодно, чем единичное. Серийное производство - наиболее характерный вид производства для среднего машиностроения. К этому виду производства относят многие разновидности сельскохозяйственного машиностроения, станкостроение, производство насосов, компрессоров, текстильных машин и т.п.

· Массовым производством называется такое производство, при котором изделия изготовляют путем выполнения на рабочих местах одних и тех же постоянно повторяющихся операций. Массовому производству свойственны следующие признаки:

Установившийся объем и характер работы на рабочих местах;

Расположение рабочих мест в порядке выполнения операций.

Применение специальных высокопроизводительных станков, приспособлений и инструментов;

К продукции массового производства относятся автомобили, сельскохозяйственные машины, велосипеды, бытовая техника машины и др.

Современное машиностроительное предприятие является сложной системой, состоящей из организационных и производственных единиц - управленческих, маркетинговых, технологических, производственных, обслуживающих. Различают следующие производственные единицы предприятия.

· Цех – это основное производственное подразделение
предприятия, выполняющее возложенную на него определенную
часть производственного процесса.

· Участок - это самостоятельное структурное подразделение цеха, где выполняются конкретные работы из тех, что закреплены за цехом. Участок является первичным производственным подразделением предприятия. Первичным звеном каждого производственного участка является рабочее место.

· Рабочее место – это часть производственной площади участка (цеха), закрепленная за одним или бригадой рабочих и оснащенная оборудованием, инструментом и вспомогательными устройствами, соответствующими характеру выполняемых работ.

В основу организации цехов и участков положены принципы концентрации и специализации. Специализация цехов и производ­ственных участков может быть осуществлена по видам работ (технологическая специализация) или по видам изготовленной продукции (предметная специализация).

Пример технологической специализации: литейный, термический или гальванический цехи, токарный и шлифовальный участок в механическом цехе.

Пример предметной специализации: цех корпус­ных деталей, участок валов, цех по изготовлению редукторов и др.

Контрольные вопросы к лекции 1:

1. Дайте определение понятию «деталь». Самостоятельно определите детали в конкретной модели машины.

2. Дайте определение понятию «сборочная единица». Самостоятельно определите сборочные единицы в конкретной модели машины.

3. Определите цели и задачи основных производственных процессов. Что включают в себя основные производственные процессы.

4. Дайте определение понятию «технологический процесс».

5. Дайте определение понятию «операция технологического процесса».

6. Опишите структуру машиностроительного предприятия.

7. Дайте характеристику основных цехов предприятия.

8. Охарактеризуйте особенности серийного производства. Приведите самостоятельные примеры.

9. Охарактеризуйте особенности массового производства. Приведите самостоятельные примеры.

Лекция 2. Основные понятия о проектировании технологических процессов

Процесс создания любой новой машины включает в себя ряд последовательных этапов (рис. 2.1).

Рис. 2.1. Этапы создания машины

Этап 1 . Поисковое проектирование.

На этом этапе производится анализ потребности рынка в данном изделии, исследуются конкурирующие аналоги, оцениваются временные и финансовые затраты для начала производства изделия, планируется серийность (годовой объем выпуска) изделия и устанавливаются его основные технические характеристики, оценивается возможная прибыль предприятия.

Этап 2 . Конструирование.

На данном этапе осуществляется детальная разработка конструкции изделия. Структура, состав и геометрические параметры изделия должны соответствовать техническому заданию и обеспечивать требуемые эксплуатационные характеристики изделия.

Важно спроектировать изделие так, чтобы его можно было изготовить наиболее простым образом и с минимальными затратами. Если это требование выполнено, то говорят о технологичности изготовления изделия.

Результаты конструирования оформляются в виде комплекта конструкторской документации. Он включает в себя деталировочные и сборочные чертежи, спецификации и другие документы. В настоящее время в конструкторскую документацию могут включаться компьютерные модели деталей и сборочных единиц изделия.

Этап 3. Проектирование технологических процессов.

Данный этап состоит в обеспечении технологической готовности предприятия к выпуску данного изделия, при соблюдении требований к качеству, срокам и объемам выпуска, а также с учетом запланированных затрат.

Рис. 2.2. Элементы содержания работ по проектированию технологических процессов

· Выбора вида заготовок (процессов их получения). Например, для детали «втулка» в качестве заготовки выбираем пруток из стали определенной марки диаметром 20 мм. Такой пруток является стандартной продукцией металлургического производства и широко представлен на рынке черных металлов (рис. 2.3).

Рис 2.3. Выбор заготовки

· Разработки межцеховых маршрутов (определение пути, который пройдет заготовка, прежде чем превратится в деталь и станет частью сборочной единицы или изделия). Например: склад материалов → заготовительный участок механического цеха → токарный участок механического цеха → сборочный цех → склад готовой продукции.

· Опреде­ления последовательности и содержания технологических операций. Например:

Операция 1 слесарная: разрезка прутка на мерные заготовки;

Операция 2 транспортировка на токарный участок;

Операция 3 токарная, состоящая из нескольких установок и переходов;

Операция 4 транспортировка на сборочный участок;

· Определения, выбора и заказа средств технологи­ческого оснащения. Например, для токарной операции потребуется: станок токарно-винторезный 16К20 → патрон трехкулачковый → задний центр → резцы проходной, подрезной, отрезной и.т.д. → сверло Ø 6,9 мм → метчик М 8 и т.п.

· Установления порядка, методов и средств технического контроля качества. Например: ручной контроль с использованием штангенциркуля

· Назначения и расчета режимов резания. Например: с учетом обрабатываемого и инструментального материалов и припусков на обработку устанавливают скорость резания (частоту вращения шпинделя станка), величины подач инструмента, глубину резания и т.п. Например, V = 150 м/мин, S = 0,07 мм/об, t = 0, 2 мм.

· Технического нормирования операций производственного процесса. Производят расчет времени, затраченного на данную операцию.

· Определения профессий и квалификации исполнителей. Например: токарь 1 разряда.

· Организации производственных участков (поточных линий). Предлагается рациональная расстановка оборудования в помещении цеха, с целью сокращения времени на транспортировку.

· Формирования рабочей документации на технологические процессы в соответствии с ЕСТД (Единая система технологической документации).

Технологическая документация - основной источник информации для организации, управления и регулирования производственного процесса на каждом предприятии. Она сопровождает изделие в течение всего жизненного цикла и заканчивает свое существование при списании изделия.

В машиностроении технологическая документация решает две основные задачи (рис. 2.4).

Рис. 2.4. Задачи технологической документации

Решая информационную задачу, технологическая документация:

· обеспечивает изготовление деталей и сборочных единиц;

· служит средством организации труда рабочих;

· несет информацию для служб управления производством для определения себестоимости изделия и его сборочных единиц, производительности труда, производственной мощности и загрузки оборудования участков, цехов и предприятий в целом;

· является носителем информации о нормах расхода материалов;

· обеспечивает планирование и подготовку производства и т.д.

При решении организационной задачи технологическая документация:

· связывает определенным образом участников производства;

· устанавливает определенные отношения между различными участками производства;

· выполняет функцию организационной документации.

Рис. 2.5. Фрагменты технологической документации: маршрутной карты (а ), операционной карты (б )

Стадии разработки и виды документов, применяемых для технологических процессов изготовления (сборки) изделий машиностроения устанавливаются ГОСТом. Состав применяемых видов документов определяется разработчиком документов в зависимости от стадий разработки, типа и характера производства. Из всего перечня документов, регламентируемого стандартом, применяют:

- маршрутные карты (МК),

- операционные карты (ОК),

- карты технологического процесса (КТП),

· Маршрутная карта (рис. 2.5, а ) – это документ, указывающий последовательность прохождения заготовок, деталей или сбо­рочных единиц по цехам и производственным участкам пред­приятия.

· Операционная карта (рис. 2.5, б ) – это документ, указывающий последовательность прохождения заготовки, детали или сбо­рочной единицы по переходам в рамках одной операции на рабочем месте в цехе участкам пред­приятия.

Этап 4. Создание опытного образца. Этот этап имеет своей целью проверку качества принятых конструкторских и технологических решений путем испытаний опытного образца изделия.

По результатам испытаний могут быть внесены изменения как в конструкторскую документацию (то есть в конструкцию изделия), так и в разработанные технологические процессы.

Этап 5 . Освоение производства. На данном этапе предприятие должно выйти на намеченные объемы выпуска изделия, стабилизировать качество продукции и добиться заданной трудоемкости на всех стадиях производства. Здесь может понадобиться освоение дополнительных производственных мощностей, совершенствование технологических процессов, повышение численности и квалификации персонала.

Этапы создания нового изделия являются элементами Жизненного Цикла Изделия (ЖЦИ), который охватывает все стадии жизни изделия - от изучения рынка перед проектированием до утилизации изделия после использования.

Контрольные вопросы к лекции 2:

1. Перечислите этапы создания машины.

2. Что представляет собой этап поискового проектирования. Цель этапа.

3. Что представляет собой этап конструирования. Цель этапа.

4. Перечислите содержание основных работ по проектированию технологических процессов.

5. Роль и задачи технологической документации в процессе технологической подготовки производства.

6. Что отражают в маршрутной карте.

7. Что отражают в операционной карте.

8. Что представляет собой этап создания опытного образца. Цель этапа.

9. Что представляет собой этап освоения производства. Цель этапа.

10. Как вы понимаете термин «жизненный цикл изделия»

Лекция 3. Современные конструкционные материалы в машиностроительном производстве

Любая машина и составляющие ее детали изготавливаются из конструкционных материалов, которые обеспечивают выполнение ею служебного назначения. В современном машиностроении к конструкционным материалам предъявляют следующие основные требования:

Эксплуатационные,

Технологические,

Экономические,

Экологические и др.

На примере редуктора машины показано многообразие материалов, из которых выполнены его детали (рис. 3.1). Корпус редуктора (1 ) изготовлен из серого чугуна; зубчатое колесо (2 ) из ковкого чугуна; вал (3 ) из легированной стали; подшипник (4 ) из подшипниковой стали (композита, сплава цветного металла); крышка подшипника (5 ) из полимерного материала; уплотнительные кольца (6 ) из материала на основе резины.

Рис. 3.1. Редуктор машины и его детали, выполненные из различных конструкционных материалов: 1 - корпус редуктора, 2 - зубчатое колесо, 3 - вал, 4 - подшипник, 5 - крышка подшипника, 6 - уплотнительные кольца

По принципиальной классификации все конструкционные материалы принято делить на следующие виды (рис. 3.2).

Рис. 3.2. Принципиальная классификация конструкционных материалов

· Металлические материалы наиболее распространены в машиностроении, к этой группе материалов относятся все металлы и их сплавы.

Среди них можно выделить несколько групп, отличающихся друг от друга по свойствам:

1. Черные металлы. Это железо и сплавы на его основе – стали и чугуны.

2. Цветные металлы. В эту группу входят металлы и их сплавы, такие как медь, алюминий, титан, никель и др.

3. Благородные металлы. К ним относятся золото, серебро, платина

4. Редкоземельные металлы. Это лантан, неодим, празеодим.

Под чистыми металлами понимают твёрдые вещества, состоящие только из одного компонента. Чистые металлы редко используют в машиностроении. Наиболее распространено использование металлических конструкционных материалов в виде сплавов.

Под сплавами понимают твёрдые вещества, образованные сплавлением двух или более металлических компонентов. Сплавы на основе железа называются черными, а на основе других металлов – цветными.

Легкими цветными сплавами называют сплавы на основе алюминия, магния, титана и бериллия, имеющие малую плотность. Тяжелыми цветными сплавами называют сплавы на основе меди, олова.

Легкоплавкими цветными сплавами называют сплавы на основе цинка, кадмия, олова, свинца, висмута. Тугоплавкими цветными сплавами называют сплавы на основе молибдена, ниобия, циркония, вольфрама, ванадия и др.

· Неметаллические материалы являются не только заменителями металлов, но и применяются как самостоятельные материалы. Среди них также можно выделить несколько групп (рис. 3.3):

Рис. 3.3. Группы неметаллических материалов

1. Пластмассы – это материалы на основе высокомолекулярных соединений (полимеров), как правило, с наполнителями. Наполнителями пластмасс называют порошкообразные, кристаллические, волокнистые листовые, газообразные материалы, которые определяют свойства пластмасс. Различают пластмассы с твердым наполнителем (полиэтилены, полистиролы, поликарбонаты и т.п.), а также с газофазовым наполнителем (пенопласты, поропласты и т.п.)

2. Керамика – это материал на основе порошков тугоплавких соединений типа карбидов, боридов, нитридов и оксидов. Например: TiC, SiC, Si 3 N 4 , Al 2 O 3 , SiO 2 , ZrO 2 и др.

3. Стекло – это материал на основе оксидов различных элементов, в первую очередь оксида кремния SiO 2 .

4. Резина – это материалы на основе каучука - углеродноводородного полимера с добавлением серы и других элементов.

5. Дерево – это сложная органическая ткань древесных растений.

· Композиционные материалы получают путем введения в основной материал определенного количества другого материала в целях получения специальных свойств. Композиционный материал может состоять из двух, трех и более компонентов. Различают элементы композиционного материала:

Основной конструкционный компонент, который называется матрицей.

Усиливающие элементы в виде нитей, волокон или хлопьев более прочного материала, который называется армирующий элементом.

На рисунке 3.4. показаны виды и структуры армирующего элемента в матрице композиционного материала.

Рис. 3.4. Виды и структуры армирующего элемента в матрице: непрерывные волокна (а ), дисперсные частицы (б ), прерывистые волокна (в ); тканевая структура (г ), пространственная структура (д, е )

Конструктор подбирает конструкционный материал с учетом его механических, физических, химических и тех­нологических и эксплуатационных свойств.

К основным механическим свойствам конструкционных материалов относятся следующие свойства:

· Прочность - способность материала сопротивляться пластической де­формации и разрушению под действием внешних нагрузок.

· Пластичность - способность материала необратимо изме­нять форму и размеры без разрушения под действием нагрузки.

· Вязкость - способность материала, пластически деформиру­ясь, необратимо поглощать энергию внешних сил.

· Упругость - способность материала восстанавливать фор­му и размеры после снятия нагрузки, вызвавшей деформацию.

· Твердость - способность материала сопротивляться внедрению в него другого более твердого тела.

· Хрупкость - способность материала разрушаться под воз­действием внешних сил без видимой пластической деформации.

Физические свойства - это свойства материала, зависящие от внутреннего строения вещества, его атомно-электронной структуры. К физическим свойствам относятся следующие свойства (рис.3.5).

Химические свойства зависят от химического состава вещества и его атомно-электронного строения. Химические свойства материала про­являются в его способности к химическому взаимодействию с окружаю­щей средой, в возможности образования химических соединений и хими­ческих превращений.

Рис. 3.5. Основные физические свойства конструкционных материалов

Технологические свойства - это свойства материала поддаваться различным способам горячей и холодной обработки и дающие возможность получать заготовки, а из заготовок - детали машин. К технологическим свойствам относят следующие свойства:

· Ковкость – это способность металла подвергаться деформированию в горячем или холодном состоянии и принимать требуемую форму, под внешним воздействием не разрушаясь.

· Свариваемость – это способность металлов и сплавов образовывать неразъемное соединение (сварочный шов) с другими сплавами и материалами, обладающее требуемым уровнем прочностных и эксплуатационных свойств.

· Обрабатываемость резанием – это способность металлов и сплавов в отделении поверхностных слоев материала в виде стружки под воздействием режущего инструмента.

· Склонность к термической обработке – способность металлов изменять свою структуру под влиянием различных воздействий (тепло, давление, излучения и поля различной природы) с приобретением требуемого комплекса свойств.

· Литейные свойства – определяются способностью материала обладать в расплавленном состоянии технологической жидкотекучестью, обладать минимальной объемной и линейной усадкой при затвердевании.

Эксплуатационные свойства . К эксплуатационным (служебным) свойствам относятся:

· Жаростойкость и жаропрочность - эти свойства характеризует способность материала сохранять механические свойства при высокой температуре,

· Износостойкость – это способность материала сопротивляться разрушению его поверхностных слоев при трении.

· Коррозионная стойкость – это свойство характеризует способность металлов сопротивляться коррозии в различных средах.

Контрольные вопросы к лекции 3:

1. Классифицируйте металлические конструкционные материалы.

2. Классифицируйте неметаллические конструкционные материалы.

3. Классифицируйте композиционные конструкционные материалы.

4. Перечислите механические свойства материалов.

5. Перечислите технологические свойства материалов.

6. В чем заключается способность материалов к обработке резанием.

7. В чем заключаются литейные свойства материалов.

8. Охарактеризуйте эксплуатационные свойства материалов

Лекция 4. Основные понятия о металлургических процессах. Производства чугуна.

По масштабам металлургического производства России занимает одно из ведущих мест в мире. Отечественный металлургический комплекс объединяет все стадии технологических процессов: от добычи и обогащения сырья до получения готовой продукции в виде черных и цветных металлов и их сплавов (рис.4.1).

Рис. 4.1. Структура металлургической отрасли

Для производства металлургической продукции используют следующие исходные материалы (рис.4.2).

Рис.4.2. Исходные материалы металлургического производства

· Руда – это горная порода, из которой целесообразно извлекать металлы и их соединения. Руду называют по одному или нескольким металлам, входящим в ее состав, например: железная руда, медно-никелевая руда и т.п. В зависимости от содержания добываемого элемента различают руды богатые и бедные.

Важнейшим этапом в технологической цепи металлургического производства является процесс подготовки руд к плавке.

Подготовка руд к доменной плавке осуществляется для повышения производительности оборудования, снижения расхода топлива и улучшения качества продукции. Различают следующие процессы подготовки руды:

1. Дробление и сортировка руд по крупности служат для получения кусков оптимальной величины, осуществляются с помощью дробилок и классификаторов.

2. Обогащение руды основано на различии физических свойств минералов, входящих в ее состав. Обогащение включает следующие процессы:

Промывка – это процесс отделение плотных составляющих от пустой рыхлой породы.

Гравитация – это процесс отделение руды от пустой породы при пропускании струи воды через дно вибрирующего сита: пустая порода вытесняется в верхний слой и уносится водой, а рудные минералы остаются.

Магнитная сепарация – это процесс, когда измельчённую руду подвергают действию магнита, притягивающего железосодержащие минералы и отделяющего их от пустой породы.

3. Окусковывание производят для переработки руды в кусковые материалы необходимых размеров. Применяют два способа окусковывания: - агломерация,

Окатывание.

· Флюсы – это материалы, загружаемые в плавильную печь для образования легкоплавкого соединения с пустой породой руды и золой топлива. Такое соединение называется шлаком. Обычно шлак имеет меньшую плотность, чем металл, поэтому он располагается над металлом и может быть удален в процессе плавки. Шлак защищает металл от печных газов и воздуха. Для флюсов в металлургии используют следующие материалы, которые подвергают окускованию и вводят в виде агломерата и окатышей (рис. 4.3).

Рис. 4.3. Материалы для флюсов

· Топливо – это природные или неприродные горючие вещества, выделяющие при сгорании высокую температуру. В металлургии используются следующие виды топлива:

Природный газ,

Доменный газ.

Кокс получают из каменного угля коксующихся сортов. Он служит не только горючим для нагрева, но и химическим реагентом для восстановления железа из руды.

· Огнеупоры – это материалы для изготовления внутреннего облицовочного слоя металлургических печей и другого оборудования. Они способны выдержать тепловые нагрузки, противостоять химическому воздействию шлака и печных газов.

Всю продукцию металлургического производства по принципиальной квалификации принято делить на продукцию черной и цветной металлургии.

Черная металлургия представляет собой комплекс предприятий для производства чугуна, стали и проката. Основная продукция чёрной металлургии показана на рисунке 4.4.

Рис. 4.4. Основная продукция чёрной металлургии

· Чугун передельный используется для передела на сталь.

· Чугун литейный используется для производства фасонных чугунных отливок на машиностроительных заводах.

· Ферросплавы – это сплавы железа с повышенным содержанием марганца, кремния, ванадия, титана используются для производства легированных сталей.

· Стальные слитки используются для производства сортового проката (рельсов, балок, прутков, полос, проволоки, листа, труб и т, д) на прокатных производствах

Цветная металлургия представляет собой комплекс предприятий для добычи, обогащения, производства цветных металлов и сплавов.

Рис. 4.5. Основная продукция цветной металлургии

Цветная металлургия акцентирует свое внимание на следующих видах промышленности: медной, никелевой и алюминиевой. Основная продукция цветной металлургии показана на рисунке 4.5.

· Лигатурами называются сплавы цветных металлов с легирующими элементами для производства сложных легированных сплавов.

Рассмотрим более подробно технологические процессы производства основного продукта черной металлургии – чугуна.

Чугуном называют сплав железа с углеродом, где углерод содержится в количестве от 2 до 6,7%. Кроме железа и углерода, в чугуне имеются примеси кремния, марганца, фосфора, серы и других элементов. Эти примеси переходят в чугун из исходных материалов.

Основным производством для получения чугунов является доменное производство. Оборудованием для выплавки чугуна служат доменные печи (рис. 4.6). Доменная печь представляет собой высокую шахту круглого сечения, опирающуюся на железобетонный фундамент обычно многогранной формы. Нижняя часть фундамента находится на глубине 6 – 7 м. Надземная часть фундамента выложена из огнеупорного бетона.

Рис. 4.6. Доменное производство для выплавки чугуна: вид снаружи (а ), вид внутри (б ).

Сущность процесса получения чугуна в доменных печах заключается в восстановлении оксидов железа, входящих в состав руды различными восстановителями.

Восстановление твердым углеродом С называется прямым восстановлением и происходит в нижней части печи при высоких температурах по реакции:

Восстановление газами СО и Н 2 называется косвенным восстановлением, протекает в верхней части печи при сравнительно низких температурах, по реакциям:

Процесс доменной плавки является непрерывным. Сверху в печь при помощи загрузочных устройств загружают исходные материалы (руда, флюсы, кокс), а в нижнюю часть подают нагретый воздух и газообразное, жидкое или пылевидное топливо (рис. 4.7).

Внутри печи образуется шихта - смесь исходных материалов и топлива. Газы, полученные от сжигания топлива, проходят через столб шихты и отдают ей свою тепловую энергию. Для отвода газа в куполе печи предусмотрены четыре боковых восходящих газоотвода.

Доменный газ после очистки используется как топливо для нагрева воздуха, вдуваемого в печь.

Шихта нагревается, восстанавливается, а затем плавится. При работе печи шихтовые материалы, проплавляясь, опускаются вниз печи, а через загрузочное устройство подают новые порции шихты, чтобы весь полезный объем был заполнен.В нижней части доменной печи образуется шлак в результате сплавления окислов пустой породы руды, флюсов и золы топлива.

Рис. 4.7. Доменная печь и ее процессы

Шлак скапливается на поверхности жидкого чугуна, благодаря меньшей плотности. Это дает возможность разделить чугун от шлака. Сливают чугун и шлак в чугуновозные ковши, и шлаковозные чаши.

Доменная печь является мощным и высокопроизводительным агрегатом, в котором расходуется огромное количество материалов. Современная доменная печь расходует около 20000 тонн шихты в сутки и выдает ежесуточно около 12000 тонн чугуна.

Доменная печь снаружи заключена в металлический кожух, сваренный из стальных листов толщиной 25 – 40 мм. С внутренней стороны кожуха находится огнеупорная охлаждаемая футеровка.

Внутреннее очертание вертикального разреза доменной печи называют профилем печи. Полезная высота доменной печи (Н ) достигает 35 м, а полезный объем – 2000-5000 м 3 .

Эффективность работы печи оценивается следующими показателями:

· Коэффициент использования полезного объёма доменной печи (КИПО):

КИПО = V / P

где V - полезный объем печи (м 3), а Р - количество чугуна, выплавляемого в сутки (тонны). Чем ниже КИПО, тем выше производительность печи. Для большинства современных доменных печей КИПО = 0,45.

· Удельный расход кокса:

К = А / Р

где А - расход кокса за сутки (тонны), а Р - количество чугуна, выплавляемого в сутки (тонны). Удельный расход кокса в современных доменных печах составляет 0,35-0,4. Это важный показатель, так как стоимость кокса составляет более 50% стоимости чугуна. Улучшение технико-экономических показателей работы доменных печей является важнейшей задачей доменного производства.

Контрольные вопросы к лекции 4:

1. Перечислите предприятия металлургического комплекса. Как эти предприятия взаимосвязаны между собой

2. Перечислите основную продукцию выпускаемую предприятиями черной металлургии

3. Перечислите основную продукцию выпускаемую предприятиями цветной металлургии

4. Перечислите исходные материалы для металлургического производства

5. Что такое флюсы. Классификация и назначение флюсов.

6. Перечислите основные способы подготовки руды перед плавкой

7. Что является основной и побочной продукцией доменного производства.

8. Что является сырьем для доменного производства.

9. Какие химические реакции происходят при доменной плавке чугуна. В какой последовательности.

10. Какими показателями оценивается эффективность работы доменной печи.

Загрузка...