domvpavlino.ru

Схемы котельных установок. Основное и вспомогательное оборудование котельной для эффективного функционирования Котельные установки и вспомогательные устройства

ОСНОВНОЕ ОБОРУДОВАНИЕ ТЕПЛОВЫХ

ЭЛЕКТРИЧЕСКИХ СТАНЦИЙ

Глава 7

КОТЕЛЬНЫЕ УСТАНОВКИ ТЕПЛОВЫХ ЭЛЕКТРОСТАНЦИЙ

Общие сведения

Котельная установка состоит из котла и вспомогательного оборудования. Устройства, предназначенные для получения пара или горячей воды повышенного давления за счет теплоты, выделяемой при сжигании топлива, или теплоты, подводимой от посторонних источников (обычно с горячими газами), называют котельными агрегатами. Они подразделяются соответственно на котлы паровые и котлы водогрейные. Котельные агрегаты, использующие (т.е. утилизирующие) теплоту отходящих из печей газов или других основных и побочных продуктов различных технологических процессов, называются котлами-утилизаторами.

В состав котла входят: топка, пароперегреватель, экономайзер, воздухоподогреватель, каркас, обмуровка, тепловая изоляция, обшивка.

К вспомогательному оборудованию относятся: тягодутьевые машины, устройства очистки поверхностей нагрева, оборудование топливоприготовления и топливоподачи, оборудование шлако- и золоудаления, золоулавливающие и другие газоочистительные устройства, газовоздухопроводы, трубопроводы воды, пара и топлива, арматура, гарнитура, автоматика, приборы и устройства контроля и защиты, водоподготовительное оборудование и дымовая труба.

К арматуре относятся регулирующие и запорные устройства, предохранительные и водопробные клапаны, манометры, водоуказательные приборы.

В гарнитуру входят лазы, гляделки, люки, шиберы, заслонки.

Здание, в котором располагаются котлы, называют котельной.

Комплекс устройств, включающий в себя котельный агрегат и вспомогательное оборудование, называется котельной установкой. В зависимости от вида сжигаемого топлива и других условий некоторые из указанных элементов вспомогательного оборудования могут отсутствовать.

Котельные установки, снабжающие паром турбины тепловых электрических станций, называются энергетическими. Для снабжения паром производственных потребителей и отопления зданий в ряде случаев создают специальные производственные и отопительные котельные установки.

В качестве источников теплоты для котельных установок используются природное и искусственное топливо (каменный уголь, жидкие и газообразные продукты нефтехимической переработки, природный и доменный газы и др.), отходящие газы промышленных печей и других устройств.

Технологическая схема котельной установки с барабанным паровым котлом, работающим на пылевидном угле, приведена на рис. 7.1. Топливо с угольного склада после дробления подается конвейером в бункер топлива 3, из которого направляется в систему пылеприготовления, имеющую углеразмольную мельницу 1 . Пылевидное топливо с помощью специального вентилятора 2 транспортируется по трубам в воздушном потоке к горелкам 3 топки котла 5, находящегося в котельной 10. К горелкам подводится также вторичный воздух дутьевым вентилятором 15 (обычно через воздухоподогреватель 17 котла). Вода для питания котла подается в его барабан 7 питательным насосом 16 избака питательной воды 11, имеющего деаэрационное устройство. Перед подачей воды в барабан она подогревается в водяном экономайзере 9 котла. Испарение воды происходит в трубной системе 6. Сухой насыщенный пар из барабана поступает в пароперегреватель 8 , затем направляется к потребителю.

Рис. 7.1. Технологическая схема котельной установки:

1 - углеразмольная мельница; 2 - мельничный вентилятор; 3 - бункер топлива; 7 - горелка; 5 - контур топки и газоходов котельного агрегата; 6 - трубная истема - экраны топки; 7 - барабан; 8 - пароперегреватель; 9 - водяной жономайзер; 10 - контур здания котельной (помещения котельного отделения); 11 - бак запаса воды с деаэрационным устройством; 12 - дымовая труба; 13 - плмосос; 14- золоулавливающее устройство; 15- вентилятор; 16- питательный cicoc; 17 - воздухоподогреватель; 18 - насос для откачки золошлаковой пульпы; / - водяной тракт; б – перегретый пар; в - топливный тракт; г - путь движения воздуха; д - тракт продуктов сгорания; е - путь золы и шлака

Топливно-воздушная смесь, подаваемая горелками в топочную камеру (топку) парового котла, сгорает, образуя высокотемпературный (1500 °С) факел, излучающий тепло на трубы 6, расположенные на внутренней поверхности стен топки. Это - испарительные поверхности нагрева, называемые экранами. Отдав часть теплоты экранам, топочные газы с температурой около 1000 °С проходят через верхнюю часть заднего экрана, трубы которого здесь расположены с большими промежутками (эта часть носит название фестона), и омывают пароперегреватель. Затем продукты сгорания движутся через водяной экономайзер, воздухоподогреватель и покидают котел с температурой, несколько превышающей 100 °С. Уходящие из котла газы очищаются от золы в золоулавливающем устройстве 14 и дымососом 13 выбрасываются в атмосферу через дымовую трубу 12. Уловленная из дымовых газов пылевидная зола и выпавший в нижнюю часть топки шлак удаляются, как правило, в потоке воды по каналам, а затем образующаяся пульпа откачивается специальными багерными насосами 18 и удаляется по трубопроводам.

Барабанный котельный агрегат состоит из топочной камеры и; газоходов; барабана; поверхностей нагрева, находящихся под давлением рабочей среды (воды, пароводяной смеси, пара); воздухоподогревателя; соединительных трубопроводов и воздуховодов. Поверхности нагрева, находящиеся под давлением, включают в себя водяной экономайзер, испарительные элементы, образованные в основном экранами топки и фестоном, и пароперегреватель. Все поверхности нагрева котла, в том числе и воздухоподогреватель, как правило, трубчатые. Лишь некоторые мощные паровые котлы имеют воздухоподогреватели иной конструкции. Испарительные поверхности подключены к барабану и вместе с опускными трубами, соединяющими барабан с нижними коллекторами экранов, образуют циркуляционный контур. В барабане происходит разделение пара и воды, кроме того, большой запас воды в нем повышает надежность работы котла.

Нижнюю трапециевидную часть топки котельного агрегата (см. рис. 7.1) называют холодной воронкой - в ней охлаждается выпадающий из факела частично спекшийся зольный остаток, который в виде шлака проваливается в специальное приемное устройство. Газомазутные котлы не имеют холодной воронки. Газоход, в котором расположены водяной экономайзер и воздухоподогреватель, называют конвективным (конвективная шахта), в нем теплота передается воде и воздуху в основном конвекцией. Поверхности нагрева, встроенные в этот газоход и называемые хвостовыми, позволяют снизить температуру продуктов сгорания от 500...700 °С после пароперегревателя почти до 100 °С, т.е. полнее использовать теплоту сжигаемого топлива.

Вся трубная система и барабан котла поддерживаются каркасом, состоящим из колонн и поперечных балок. Топка и газоходы защищены от наружных теплопотерь обмуровкой - слоем огнеупорных и изоляционных материалов. С наружной стороны обмуровки стенки котла имеют газоплотную обшивку стальным листом в целях предотвращения присосов в топку избыточного воздуха и выбивания наружу запыленных горячих продуктов сгорания, содержащих токсичные компоненты.

7.2. Назначение и классификация котельных агрегатов

Котельным агрегатом называется энергетическое устройство производительностью D (т/ч) для получения пара с заданным давлением р (МПа) и температурой t (°C). Часто это устройство называют парогенератором, ибо в нем происходит генерация пара, или просто паровым котлом. Если конечным продуктом является горячая вода заданных параметров (давления и температуры), используемая в промышленных технологических процессах и для отопления промышленных, общественных и жилых зданий, то устройство называют водогрейным котлом. Таким образом, все котлоагрегаты можно подразделить на два основных класса: паровые и водогрейные.

По характеру движения воды, пароводяной смеси и пара паровые котлы подразделяются следующим образом:

·барабанные с естественной циркуляцией (рис. 7.2,a);

·барабанные с многократной принудительной циркуляцией (рис. 7.2,б );

·прямоточные (рис. 7.2,в ).

В барабанных котлах с естественной циркуляцией (рис. 7.3) вследствие разности плотностей пароводяной смеси в левых трубах 2 и жидкости в правых трубах 4 будет происходить движение пароводяной смеси в левом ряду - вверх, а воды в правом ряду - вниз. Трубы правого ряда называются опускными, а левого - подъемными (экранными).

Отношение количества воды, проходящей через контур, к паропроизводительности контура D за тот же промежуток времени называется кратностью циркуляции K ц . Для котлов с естественной циркуляцией K ц колеблется от 10 до 60.

Рис. 7.2. Схемы генерации пара в паровых котлах:

а - естественная циркуляция; б - многократная принудительная циркуляция; в - прямоточная схема; Б - барабан; ИСП - испарительные поверхности; ПЕ - пароперегреватель; ЭК - водяной экономайзер; ПН - питательный насос; ЦН - циркуляционный насос; НК - нижний коллектор; Q - подвод тепла; ОП - опускные трубы; ПОД – подъемные трубы; D п - расход пара; D пв - расход питательной воды

Разность весов двух столбов жидкостей (воды в опускных и пароводяной смеси в подъемных трубах) создает движущий напор Dр, Н/м 2 , циркуляции воды в трубах котла

где h - высота контура, м; r в и r см - плотности (объемные массы) воды и пароводяной смеси, кг/м 3 .

В котлах с принудительной циркуляцией движение воды и пароводяной смеси (см. рис. 7.2,б )осуществляется принудительно с помощью циркуляционного насоса ЦН, движущий напор которого рассчитан на преодоление сопротивления всей системы.

Рис. 7.3. Естественная циркуляция воды в котле:

1 - нижний коллектор; 2 - левая труба; 3 - барабан котла; 4 - правая труба

В прямоточных котлах (см. рис. 7.2, в )нет циркуляционного контура, нет многократной циркуляции воды, отсутствует барабан, вода прокачивается питательным насосом ПН через экономайзер ЭК, испарительные поверхности ИСП и пароперереватель ПЕ, включенные последовательно. Следует отметить, что прямоточные котлы используют воду более высокого качества, вся вода, поступающая в испарительный тракт на выходе из него полностью превращается в пар, т.е. в этом случае кратность циркуляции K ц = 1.

Паровой котельный агрегат (парогенератор) характеризуется паропроизводительностью (т/ч или кг/с), давлением (МПа или кПа), температурой производимого пара и температурой питательной воды. Эти параметры указаны в табл. 7.1.

Таблица 7.1. Сводная таблица котельных агрегатов, выпускаемых отечественной промышленностью, с указанием области применения

Давление, МПа(ат) Паропроизво- дительность котла, т/ч Температура пара, °С Температура питательной воды, °С Область применения
0,88 (9) 0,2; 0,4; 0,7; 1,0 Насыщенный Удовлетворение технологических и отопительных нужд небольших промышленных предприятий
1,37 (14) 2,5 Насыщенный Удовлетворение технологических и отопительных нужд более крупных промышленных предприятий
4; 6,5; 10; 15; 20 Насыщенный или перегретый, 250 Квартальные отопительные котельные
2,35 (24) 4; 6,5; 10; 15; 20 Насыщенный или перегретый, 370 и 425 Удовлетворение технологических нужд некоторых промышленных предприятий
3,92 (40) 6,5; 10; 15; 20; 25; 35; 50; 75 Снабжение паром турбин мощностью от 0,75 до 12,0 МВт на электрических станциях малой мощности
9,80 (100) 60; 90; 120; 160; 220 Снабжение паром турбин мощностью от 12 до 50 МВт на электрических станциях
13,70 (140) 160; 210; 320; 420; 480 Снабжение паром турбин мощностью от 50 до 200 МВт на крупных электрических станциях
320; 500; 640
25,00 (255) 950; 1600; 2500 570/570 (со вторичным перегревом) Снабжение паром турбин мощностью 300, 500 и 800 МВт на крупнейших электрических станциях

По паропроизводительности различают котлы малой паропроизводительности (до 25 т/ч), средней паропроизводительности (от 35 до 220 т/ч) и большой паропроизводительности (от 220 т/ч и более).

По давлению производимого пара различают котлы: низкого давления (до 1,37 МПа), среднего давления (2,35 и 3,92 МПа), высокого давления (9,81 и 13,7 МПа) и закритического давления (25,1 МПа). Граница, отделяющая котлы низкого давления от котлов среднего давления, условна.

В котельных агрегатах производят либо насыщенный пар, либо пар, перегретый до различной температуры, величина которой зависит от его давления. В настоящее время в котлах высокого давления температура пара не превышает 570 °С. Температура питательной воды в зависимости от давления пара в котле колеблется от 50 до 260 °С.

Водогрейные котлы характеризуют по их теплопроизводительности (кВт или МВт, в системе МКГСС - Гкал/ч), температуре и давлению подогретой воды, а также по роду металла, из которого изготовлен котел.

7.3. Основные виды котельных агрегатов

Энергетические котельные агрегаты . Котельные агрегаты паропроизводительностью от 50 до 220 т/ч на давление 3,92... 13,7 МПа выполняют только в виде барабанных, работающих с естественной циркуляцией воды. Агрегаты паропроизводительностью от 250 до 640 т/ч на давление 13,7 МПа выполняют и в виде барабанных, и прямоточных, а котельные агрегаты паропроизводительностью от 950 т/ч и более на давление 25 МПа - только в виде прямоточных, так как при сверхкритическом давлении естественную циркуляцию осуществить нельзя.

Типичный котельный агрегат паропроизводительностью 50...220 т/ч на давление пара 3,97... 13,7 МПа при температуре перегрева 440...570 °С (рис. 7.4) характеризуется компоновкой его элементов в виде буквы П, в результате чего образуются два хода дымовых газов. Первым ходом является экранированная топка, определившая название типа котельного агрегата. Экранирование топки настолько значительно, что в ней экранным поверхностям передается полностью вся теплота, требующаяся для превращения воды, поступившей в барабан котла, в пар. Выйдя из топочной камеры 2, дымовые газы поступают в короткий горизонтальный соединительный газоход, где размещен пароперегреватель 4, отделенный от топочной камеры только небольшим фестоном 3. После этого дымовые газы направляются во второй - нисходящий газоход, в котором расположены в рассечку водяные экономайзеры 5 и воздухоподогреватели 6. Горелки 1 могут быть как завихривающие, располагающиеся на передней стене или на боковых стенах встречно, так и угловые (как показано на рис. 7.4). При П-образной компоновке котельного агрегата, работающего с естественной циркуляцией воды (рис. 7.5), барабан 4 котла обычно размещают сравнительно высоко над топкой; сепарацию пара в этих котлах обычно осуществляют в выносных устройствах - циклонах 5.

Рис. 7.4. Котельный агрегат паропроизводительностью 220 т/ч с давлением пара 9,8 МПа и температурой перегретого пара 540 °С:

1 - горелки; 2 - топочная камера; 3 - фестон; 4 - пароперегреватель; 5 - водяные экономайзеры; 6 - воздухоподогреватели

При сжигании антрацита применяют полуоткрытую полностью экранированную топку 2 с встречным расположением горелок 1 на передней и задней стенках и подом, предназначенным для жидкого шлакоудаления. На стенках камеры горения размещают шипованные, утепленные огнеупорной массой экраны, а на стенках камеры охлаждения - открытые экраны. Часто применяют комбинированный пароперегреватель 3, состоящий из потолочной радиационной части, полурадиационных ширм и конвективной части. В нисходящей части агрегата в рассечку, т. е. чередуясь, размещены водяной экономайзер 6 второй ступени (по ходу воды) и трубчатый воздухоподогреватель 7 второй ступени (по ходу воздуха), а за ними водяной экономайзер 8 ж воздухоподогреватель 9 первой ступени.

Рис. 7.5. Котельный агрегат паропроизводительностью 420 т/ч с давлением пара 13,7 МПа и температурой перегретого пара 570 °С:

1 - горелки; 2 - экранированная топка; 3 ~- пароперегреватели; 4 - барабан;

5 - циклон; 6, 8 - экономайзеры; 7, 9 - воздухоподогреватели

Котельные агрегаты паропроизводительностью 950, 1600 и 2500 т/ч на давление пара 25 МПа предназначаются для работы в блоке с турбинами мощностью 300, 500 и 800 МВт. Компоновка котельных агрегатов названной паропроизводительности П-образная с воздухоподогревателем, вынесенным за пределы основной части агрегата. Перегрев пара двойной. Давление его после первичного пароперегревателя составляет 25 МПа, температура 565 °С, после вторичного - 4 МПа и 570 °С соответственно.

Все конвективные поверхности нагрева выполнены в виде пакетов из горизонтальных змеевиков. Наружный диаметр труб поверхностей нагрева равен 32 мм.

Паровые котлы производственных котельных. Промышленные котельные, снабжающие промышленные предприятия паром низкого давления (до 1,4 МПа), оборудуются изготавливаемыми отечественной промышленностью паровыми котлами, производительностью до 50 т/ч. Котлы выпускаются для сжигания твердого, жидкого и газообразного топлива.

На ряде промышленных предприятий при технологической необходимости применяют котлы среднего давления. Однобарабанный вертикальноводотрубный котел БК-35 (рис. 7.6) производительностью 35 т/ч при избыточном давлении в барабане 4,3 МПа (давление пара на выходе из пароперегревателя 3,8 МПа) и температуре перегрева 440 °С состоит из двух вертикальных газоходов - подъемного и опускного, соединенных в верхней части небольшим горизонтальным газоходом. Такая компоновка котла называется П-образной.

В котле сильно развитая экранная поверхность и сравнительно небольшой конвективный пучок. Экранные трубы 60 х 3 мм выполнены из стали марки 20. Трубы заднего экрана в верхней части разводятся, образуя фестон. Нижние концы экранных труб развальцованы в коллекторах, а верхние ввальцованы в барабан.

Основным типом паровых котлов малой производительности, широко распространенных в различных отраслях промышленности, на транспорте, в коммунальном и сельском хозяйстве (пар используется для технологических и отопительно-вентиляционных нужд), а также на электростанциях малой мощности, являются вертикально-водотрубные котлы ДКВР. Основные характеристики котлов ДКВР приведены в табл. 7.2.

Водогрейные котлы. Ранее указывалось, что на ТЭЦ с большой тепловой нагрузкой взамен пиковых подогревателей сетевой воды устанавливаются водогрейные котлы большой мощности для централизованного теплоснабжения крупных промышленных предприятий, городов и отдельных районов.

Рис. 7.6. Паровой однобарабанный котел БК-35 с газомазутной топкой:

1 - газомазутная горелка; 2 - боковой экран; 3 - фронтовой экран; 4 - подвод газа; 5 - воздухопровод; 6 - опускные трубы; 7 - каркас; 8 - циклон; 9 - барабан котла; 10 - подвод воды; 11 - коллектор пароперегревателя; 12 - выход пара; 13 - поверхностный охладитель пара; 14 - пароперегреватель; 15 - змееви-ковый экономайзер; 16 - выход дымовых газов; 17 - трубчатый воздухоподогреватель; 18 - задний экран; 19 - топочная камера

Таблица 7.2. Основные характеристики котлов ДКВР, производства

«Уралкотломаш» (на жидком и газообразном топливе)

Марка Паропроизводительность, т/ч Давление пара, МПа Температура, °С КПД, % (газ/мазут) Размеры, мм Масса, кг
Длина Ширина Высота
ДКВР-2,5-13 2,5 1,3 90,0/883
ДКВР-4-13 4,0 1,3 90,0/888
ДКВР-6 ; 5~13 6,5 1,3 91,0/895
ДКВР-10-13 10,0 1,3 91,0/895
ДКВР-10-13 10,0 1,3 90,0/880
ДКВР-Ю-23 10,0 2,3 91,0/890
ДКВР-10-23 10,0 2,3 90,0/890
ДКВР-10-39 10,0 3,9 89,0
ДКВР-10-39 10,0 3,9 89,0
ДКВР-20-13 20,0 1,3 92,0/900 43 700
ДКВР-20-13 20,0 1,3 91,0/890
ДКВР-20-23 20,0 2,3 91,0/890 44 4001

Водогрейные котлы предназначены для получения горячей воды заданных параметров, главным образом для отопления. Они работают по прямоточной схеме с постоянным расходом воды. Конечная температура нагрева определяется условиями поддержания стабильной температуры в жилых и рабочих помещениях, обогреваемых отопительными приборами, через которые и циркулирует вода, нагретая в водогрейном котле. Поэтому при постоянной поверхности отопительных приборов температуру воды, подаваемой в них, повышают при снижении температуры окружающей среды. Обычно воду тепловой сети в котлах подогревают от 70... 104 до 150... 170 °С. В последнее время имеется тенденция к повышению температуры подогрева воды до 180... 200 °С.

Во избежание конденсации водяных паров из уходящих газов и связанной с этим наружной коррозии поверхностей нагрева температура воды на входе в агрегат должна быть выше точки росы для продуктов сгорания. В этом случае температура стенок труб в месте ввода воды также будет не ниже точки росы. Поэтому температура воды на входе не должна быть ниже 60 °С при работе на природном газе, 70 °С при работе на малосернистом мазуте и 110 °С при использовании высокосернистого мазута. Поскольку в теплосети вода может охлаждаться до температуры ниже 60 °С, перед входом в агрегат к ней подмешивается некоторое количество уже нагретой в котле (прямой) воды.

Рис. 7.7. Газомазутный водогрейный котел типа ПТВМ-50-1


Газомазутный водогрейный котел типа ПТВМ-50-1 (рис. 7,7) теплопроизводительностью 50 Гкал/ч хорошо зарекомендовал себя в эксплуатации.

7.4. Основные элементы котельного агрегата

Основными элементами котла являются: испарительные поверхности нагрева (экранные трубы и котельный пучок), пароперегреватель с регулятором перегрева пара, водяной экономайзер, воздухоподогреватель и тягодутьевые устройства.

Испарительные поверхности котла. Парогенерирующие (испарительные) поверхности нагрева отличаются друг от друга в котлах различных систем, но, как правило, располагаются в основном в топочной камере и воспринимают теплоту излучением - радиацией. Это - экранные трубы, а также устанавливаемый на выходе из топки небольших котлов конвективный (котельный) пучок (рис. 7.8, а ).

Рис. 7.8. Схемы расположения испарительных (а) и пароперегревательных {б) поверхностей барабанного котельного агрегата:

/ - контур обмуровки топки; 2, 3, 4 - панели бокового экрана; 5 - фронтовой экран; 6, 10, 12 - коллекторы экранов и конвективного пучка; 7 - барабан; 8 - фестон; 9 - котельный пучок; 11 - задний экран; 13 - настенный радиационный перегреватель; 14 - ширмовый полурадиационный перегреватель; 15 ~~ потолочный радиационный перегреватель; 16 ~ регулятор перегрева; 17 - отвод перегретого пара; 18 - конвективный перегреватель

Экраны котлов с естественной циркуляцией, работающих под разрежением в топке, выполняются из гладких труб (гладкотрубные экраны) с внутренним диаметром 40...60 мм. Экраны представляют собой ряд параллельно включенных вертикальных подъемных труб, соединенных между собой коллекторами (см. рис. 7.8,а ). Зазор между трубами обычно составляет 4...6 мм. Некоторые экранные трубы введены непосредственно в барабан и не имеют верхних коллекторов. Каждая панель экранов вместе с опускными трубами, вынесенными за пределы обмуровки топки, образует независимый контур циркуляции.

Трубы заднего экрана в месте выхода продуктов сгорания из топки разводятся в 2-3 ряда. Такая разрядка труб называется фестонированием. Она позволяет увеличить сечение для прохода газов, снизить их скорость и предотвращает забивание зазоров между трубами, затвердевшими при охлаждении расплавленными частицами золы, выносимыми газами из топки.

В парогенераторах большой мощности, кроме настенных, устанавливаются дополнительные экраны, делящие топку на отдельные отсеки. Эти экраны освещаются факелами с двух сторон и называются двусветными. Они воспринимают вдвое больше теплоты, чем настенные. Двусветные экраны, увеличивая общее тепловосприятие в топке, позволяют уменьшить ее размеры.

Пароперегреватели. Пароперегреватель предназначен для повышения температуры пара, поступающего из испарительной системы котла. Он является одним из наиболее ответственных элементов котельного агрегата. С увеличением параметров пара тепловосприятие пароперегревателей возрастает до 60 % всего тепловосприятия котлоагрегата. Стремление получить высокий перегрев пара вынуждает располагать часть пароперегревателя в зоне высоких температур продуктов сгорания, что, естественно, снижает прочность металла труб. В зависимости от определяющего способа передачи теплоты от газов пароперегреватели или отдельные их ступени (рис. 7.8,б )разделяются на конвективные, радиационные и полурадиационные.

Радиационные пароперегреватели выполняются обычно из труб диаметром 22...54 мм. При высоких параметрах пара их размещают в топочной камере, и большую часть теплоты они получают излучением от факела.

Конвективные пароперегреватели располагаются в горизонтальном газоходе или в начале конвективной шахты в виде плотных пакетов, образованных змеевиками с шагом по ширине газохода, равным 2,5...3 диаметрам трубы.

Конвективные пароперегреватели в зависимости от направления движения пара в змеевиках и потока дымовых газов могут быть противоточными, прямоточными и со смешанным направлением потоков.

Температура перегретого пара должна поддерживаться постоянной всегда, независимо от режима работы и нагрузки котлоагрегата, поскольку при ее понижении повышается влажность пара в последних ступенях турбины, а при повышении температуры сверх расчетной появляется опасность чрезмерных термических деформаций и снижения прочности отдельных элементов турбины. Поддерживают температуру пара на постоянном уровне с помощью регулирующих устройств - пароохладителей. Наиболее широко распространены пароохладители впрыскивающего типа, в которых регулирование производится путем впрыскивания обессоленной воды (конденсата) в поток пара. Вода при испарении отнимает часть теплоты у пара и снижает его температуру (рис. 7.9,а ).

Обычно впрыскивающий пароохладитель устанавливают между отдельными частями пароперегревателя. Вода впрыскивается через ряд отверстий по окружности сопла и разбрызгивается внутри рубашки, состоящей из диффузора и цилиндрической части, защищающей корпус, имеющий более высокую температуру, от попадания из него брызг воды во избежание образования трещин в металле корпуса из-за резкого изменения температуры.

Рис. 7.9. Пароохладители: а - впрыскивающий; б - поверхностный с охлаждением пара питательной водой; 1 – лючок для измерительных приборов; 2 – цилиндрическая часть рубашки; 3 - корпус пароохладителя; 4 - диффузор; 5 - отверстия для распыления воды в паре; 6 - головка пароохладителя; 7- трубная доска; 8 - коллектор; 9 - рубашка, препятствующая омыванию паром трубной доски; 10, 14 - трубы, подводящие и отводящие пар из пароохладителя; 11 - дистанционные перегородки; 12 - водяной змеевик; 13 - продольная перегородка, улучшающая омываниепаром змеевиков; 15, 16 - трубы, подводящие и отводящие питательную воду

В котлах средней паропроизводительности применяются поверхностные пароохладители (рис. 7.9,б ), которые обычно размещают при входе пара в пароперегреватель или между его отдельными частями.

К коллектору пар подводится и отводится через змеевики. Внутри коллектора расположены змеевики, по которым течет питательная вода. Температура пара регулируется количеством воды, поступающей в пароохладитель.

Водяные экономайзеры. Эти устройства предназначены для подогрева питательной воды перед ее поступлением в испарительную часть котлоагрегата за счет использования теплоты уходящих газов. Они расположены в конвективном газоходе и работают при относительно невысоких температурах продуктов сгорания (дымовых газов).

Рис. 7.10. Стальной змеевиковый экономайзер:

1 - нижний коллектор; 2 - верхний коллектор; 3 - опорная стойка; 4 - змеевики; 5 -- опорные балки (охлаждаемые); 6 - спуск воды

Наиболее часто экономайзеры (рис. 7.10) выполняют из стальных труб диаметром 28...38 мм, согнутых в горизонтальные змеевики и скомпонованных в пакеты. Трубы в пакетах располагаются в шахматном порядке довольно плотно: расстояние между осями соседних труб поперек потока дымовых газов составляет 2,0... 2,5 диаметра трубы, вдоль потока - 1,0... 1,5. Крепление труб змеевиков и их дистанционирование осуществляются опорными стойками, закрепленными в большинстве случаев на полых (для воздушного охлаждения), изолированных со стороны горячих газов балках каркаса.

В зависимости от степени подогрева воды экономайзеры делят из некипящие и кипящие. В кипящем экономайзере до 20 % воды может превращаться в пар.

Общее число параллельно работающих труб выбирают исходя из скорости воды не менее 0,5 м/с для некипящих и 1 м/с длякипящих экономайзеров. Эти скорости обусловлены необходимостью смывания со стенок труб пузырьков воздуха, способствующих коррозии и предотвращения расслоения пароводяной смеси, что может привести к перегреву слабо охлаждаемой паром верхней стенки трубы и ее разрыву. Движение воды в экономайзере - обязательно восходящее. Число труб в пакете.в горизонтальной плоскости выбирают исходя из скорости продуктов сгорания 6...9 м/с. Скорость эта определяется стремлением, с одной стороны, предохранить змеевики от заноса золой, а с другой - не допустить чрезмерного золового износа. Коэффициенты теплопередачи при этих условиях составляют обычно 50... 80 Вт/(м 2 - К). Для удобства ремонта и очистки труб от наружных загрязнений экономайзер разделяют на пакеты высотой 1,0... 1,5 м с зазорами между ними до 800 мм.

Наружные загрязнения с поверхности змеевиков удаляют путем периодического включения в работу системы дробеочистки, когда металлическая дробь пропускается (падает) сверху вниз через конвективные поверхности нагрева, сбивая налипшие на трубы отложения. Налипание золы может быть следствием выпадения росы из дымовых газов на относительно холодной поверхности труб. Это является одной из причин предварительного подогрева питательной воды, подаваемой в экономайзер, до температуры, превышающей точку росы паров воды или паров серной кислоты в топочных газах.

Верхние ряды труб экономайзера при работе котла на твердом топливе даже при относительно невысоких скоростях газов подвержены заметному золовому износу. Для предотвращения золового износа на эти трубы крепятся различного рода защитные накладки.

Воздухоподогреватели . Они устанавливаются для подогрева направляемого в топку воздуха в целях повышения эффективности горения топлива, а также в углеразмольные устройства.

Оптимальная величина подогрева воздуха в воздухоподогревателе зависит от пола сжигаемого топлива, его влажности, типа топочного устройства и составляет 200 °С для каменных углей, сжигаемых на цепной решетке (во избежание перегрева колосников), 250 °С для торфа, сжигаемого на тех же решетках, 350 ...450 °С для жидкого или пылевидного топлива, сжигаемого в камерных топках.

Для получения высокой температуры подогрева воздуха применяется двухступенчатый подогрев. Для этого воздухонагреватель делится на две части, между которыми («в рассечку») устанавливается часть водяного экономайзера.

Температура воздуха, поступающего в воздухоподогреватель, должна быть на 10... 15 °С выше точки росы дымовых газов во избежание коррозии холодного конца воздухоподогревателя в результате конденсации водяных паров, содержащихся в дымовых газах (при их соприкосновении с относительно холодными стенками воздухоподогревателя), а также забивания при этом проходных каналов для газов налипающей на влажные стенки золой. Эти условия можно соблюсти двумя путями: либо повышением температуры уходящих газов и потерей тепла, что экономически невыгодно, либо установкой специальных устройств для подогрева воздуха перед его поступлением в воздухоподогреватель. Для этого применяются специальные калориферы, в которых воздух подогревается отборным паром от турбин. В некоторых случаях подогрев воздуха осуществляется путем рециркуляции, т.е. часть нагретого в воздухоподогревателе воздуха возвращается через всасывающий патрубок к дутьевому вентилятору и смешивается с холодным воздухом.

По принципу действия воздухоподогреватели разделяются на рекуперативные и регенеративные. В рекуперативных воздухоподогревателях теплота от газов к воздуху передается через неподвижную разделяющую их металлическую стенку трубы. Как правило, это - стальные трубчатые воздухоподогреватели (рис. 7.11) с диаметром трубок 25...40 мм. Трубки в нем расположены обычно вертикально, внутри них движутся продукты сгорания; воздух омывает их поперечным потоком в несколько ходов, организуемых за счет перепускных воздуховодов (коробов) и промежуточных перегородок.

Газ в трубках движется со скоростью 8... 15 м/с, воздух между трубками - вдвое медленнее. Это позволяет иметь примерно равные коэффициенты теплоотдачи с обеих сторон стенки трубы.

Тепловое расширение воздухоподогревателя воспринимается линзовым компенсатором 6 (см. рис. 7.11), который устанавливается над воздухоподогревателем. С помощью фланцев он прикрепляется болтами снизу к воздухоподогревателю, а сверху - к переходной раме предыдущего газохода котлоагрегата.

Рис. 7.11. Трубчатый воздухоподогреватель:

1 – колонна; 2 – опорная рама; 3, 7 –воздухоперепускные короба; 4 –стальные

трубы 40´1,5 мм; 5, 9 –верхняя и нижняя трубные доски толщиной 20...25 мм;

6 – компенсатор тепловых расширений; 8 –промежуточная трубная доска

В регенеративном воздухоподогревателе теплота передается металлической насадкой, которая периодически нагревается газообразными продуктами сгорания, после чего переносится в поток воздуха и отдает ему аккумулированную теплоту. Регенеративный воздухоподогреватель котла представляет собой медленно вращающийся (3...5 об/мин) барабан (ротор) с набивкой (насадкой) из гофрированных тонких стальных листов, заключенный в неподвижный корпус. Секторными плитами корпус разделен на две части - воздушную и газовую. При вращении ротора набивка попеременно пересекает то газовый, то воздушный поток. Несмотря на то, что набивка работает в нестационарном режиме, подогрев идущего сплошным потоком воздуха осуществляется непрерывно без колебаний температуры. Движение газов и воздуха - противоточное.

Регенеративный воздухоподогреватель отличается компактностью (до 250 м 2 поверхности в 1 м 3 набивки). Он широко распространен на мощных энергетических котлоагрегатах. Недостатком его являют большие (до 10 %) перетоки воздуха в тракт газов, что ведет к перегрузкам дутьевых вентиляторов и дымососов и увеличению потерь с уходящими газами.

Тяго-дутьевые устройства котельного агрегата. Для того чтобы в топке котельного агрегата могло происходить горение топлива, в нее необходимо подавать воздух. Для удаления же из топки газообразных продуктов сгорания и обеспечения их прохождения через всю систему поверхностей нагрева котельного агрегата должна быть создана тяга.

В настоящее время различают четыре схемы подачи воздуха и отвода продуктов сгорания в котельных установках:

·с естественной тягой, создаваемой дымовой трубой, и естественным засасыванием воздуха в топку в результате разрежения в ней, создаваемого тягой трубы;

·искусственной тягой, создаваемой дымососом, и засасыванием воздуха в топку, в результате разрежения, создаваемого дымососом;

·искусственной тягой, создаваемой дымососом, и принудительной подачей воздуха в топку дутьевым вентилятором;

·наддувом, при котором вся котельная установка герметизируется и ставится под некоторое создаваемое дутьевым вентилятором избыточное давление, которого хватает на преодоление всех сопротивлений воздушного и газового трактов, что снимает необходимость установки дымососа.

Дымовая труба во всех случаях искусственной тяги или работы под наддувом сохраняется, но при этом основным назначением трубы становится вывод дымовых газов в более высокие слои атмосферы, чтобы улучшить условия рассеяния их в пространстве.

В котельных установках большой паропроизводительности повсеместно применяется искусственная тяга с искусственным дутьем.

Дымовые трубы бывают кирпичными, железобетонными и железными. Из кирпича обычно сооружают трубы высотой до 80 м. Более высокие трубы выполняют железобетонными. Железные трубы устанавливают только на вертикально-цилиндрических котлах, а также на мощных стальных водогрейных котлах башенного типа. Для уменьшения затрат обычно сооружают одну общую дымовую трубу для всей котельной или для группы котельных установок.

Принцип действия дымовой трубы остается одинаковым в установках, работающих с естественной и искусственной тягой, с той особенностью, что при естественной тяге дымовая труба должна преодолеть сопротивление всей котельной установки, а при искусственной ею создается дополнительная тяга к основной создаваемой дымососом.

На рис. 7.12 представлена схема котла с естественной тягой, создаваемой дымовой трубой 2 . Она заполнена дымовыми газами (продуктами сгорания) с плотностью r г, кг/м 3 , и сообщается через газоходы котла 1 с атмосферным воздухом, плотность которого r в, кг/м 3 . Очевидно, что r в > r г.

При высоте дымовой трубы Н разность давлений столбов воздуха gH r в и газов r г на уровне основания трубы, т. е. величина тяги DS, Н/м 2 , имеет вид

где р и Рг - плотности воздуха и газа при нормальных условиях, кг/м; В - барометрическое давление, мм рт. ст. Подставляя значения r в 0 и r г 0 , получаем

Из уравнения (7.2) следует, что естественная тяга тем больше чем больше высота трубы и температура дымовых газов и чем ниже температура окружающего воздуха.

Минимальная допустимая высота трубы регламентируется по санитарным соображениям. Диаметр трубы определяют по скорости истечения дымовых газов из нее при максимальной паропроизводительности всех подключенных к трубе котельных агрегатов. При естественной тяге эта скорость должна находиться в пределах 6... 10 м/с, не становясь менее 4 м/с во избежание нарушения тяга ветром (задувания трубы). При искусственной тяге скорость истечения дымовых газов из трубы обычно принимают равной 20...25м/с.

Рис. 7.12. Схема котла с естественной тягой, создаваемой дымовой трубой:

1 - котел; 2 - дымовая труба

К котельным агрегатам устанавливают центробежные дымососы и дутьевые вентиляторы, а для парогенераторов производительностью 950 т/ч и более - осевые многоступенчатые дымососы.

Дымососы размещают за котельным агрегатом, причем в котельных установках, предназначенных для сжигания твердого топлива, дымососы устанавливают после золоудаления, чтобы уменьшить количество летучей золы, проходящей через дымосос, и тем самым снизить истирание золой крыльчатки дымососа. н

Разрежение, которое должно быть создано дымососом, определяется суммарным аэродинамическим сопротивлением газового тракта котельной установки, которое должно быть преодолено при условии, что разрежение дымовых газов вверху топки будет равно 20...30 Па и будет создано необходимое скоростное давление на выходе дымовых газов из дымовой трубы. В небольших котельных установках разрежение, создаваемое дымососом, обычно составляет 1000...2000 Па, а в крупных установках 2500... 3000 Па.

Дутьевые вентиляторы, устанавливаемые перед воздухоподогревателем, предназначены для подачи в него неподогретого воздуха. Давление, создаваемое вентилятором, определяется аэродинамическим сопротивлением воздушного тракта, которое должно быть преодолено. Обычно оно складывается из сопротивлений всасывающего воздуховода, воздухоподогревателя, воздуховодов между воздухоподогревателем и топкой, а также сопротивления решетки и слоя топлива или горелок. В сумме эти сопротивления составляют 1000... 1500 Па для котельных установок малой производительности и возрастают до 2000...2500 Па для крупных котельных установок.

7.5. Тепловой баланс котельного агрегата

Тепловой баланс парового котла. Этот баланс заключается в установлении равенства между поступившим в агрегат при сжигании топлива количеством теплоты, называемым располагаемой теплотой Q р р , и суммой использованной теплоты Q 1 и тепловых потерь. На основе теплового баланса находят КПД и расход топлива.

При установившемся режиме работы агрегата тепловой баланс для 1 кг или 1 м 3 сжигаемого топлива следующий:

где Q р р - располагаемая теплота, приходящаяся на 1 кг твердого или жидкого топлива или 1 м 3 газообразного топлива, кДж/кг или кДж/м 3 ; Q 1 - использованная теплота; Q 2 - потери теплоты с уходящими из агрегата газами; Q 3 - потери теплоты от химической неполноты сгорания топлива (недожога); Q 4 - потери теплоты от механической неполноты сгорания; Q 5 - потери теплоты в окружающую среду через внешнее ограждение котла; Q 6 - потери теплоты со шлаком (рис. 7.13).

Обычно в расчетах используется уравнение теплового баланса, выраженное в процентах по отношению к располагаемой теплоте, принимаемой за 100 % (Q р р = 100):

где q 1 = Q 1 × 100/ Q р р; q 2 = Q 2 × 100/ Q р р и т.д.

Располагаемая теплота включает все виды теплоты, внесенной в топку вместе с топливом:

где Q н р низшая рабочая теплота сгорания топлива; Q фт - физическая теплота топлива, включая полученную при подсушке и подогреве; Q в.вн - теплота воздуха, полученная им при подогреве вне котла; Q ф - теплота, вносимая в топку с распыливающим форсуночным паром.

Тепловой баланс котельного агрегата составляют относительно некоторого температурного уровня или, другими словами, относительно некоторой отправной температуры. Если в качестве этой температуры принять температуру воздуха, поступающего в котельный агрегат без подогрева вне котла, не учитывать теплоту парового дутья в форсунках и исключить величину Q фт, так как она пренебрежимо мала по сравнению с теплотой сгорания топлива, то можно принять

В выражении (7.5) не учитывается теплота, вносимая в топку горячим воздухом собственного котла. Дело в том, что это же количество теплоты отдается продуктами сгорания воздуху в воздухоподогревателе в пределах котельного агрегата, т. е. осуществляется своего рода рециркуляция (возврат) теплоты.

Рис. 7.13. Основные потери теплоты котельного агрегата

Использованная теплота Q 1 воспринимается поверхностями нагрева в топочной камере котла и его конвективных газоходах, передается рабочему телу и расходуется на подогрев воды до температуры фазового перехода, испарение и перегрев пара. Количество использованной теплоты, приходящейся на 1 кг или 1 м 3 сожженного топлива,

где D 1 , D н, D пр,- соответственно производительность парового котла (расход перегретого пара), расход насыщенного пара, расход котловой воды на продувку, кг/с; В - расход топлива, кг/с или м 3 /с; i пп, i ", i ", i пв - соответственно энтальпии перегретого пара, насыщенного пара, воды на линии насыщения, питательной воды, кДж/кг. При доле продувки и отсутствии расхода насыщенного пара формула (7.6) принимает вид

Для котельных агрегатов, которые служат для получения горячей воды (водогрейные котлы),

где G в - расход горячей воды, кг/с; i 1 и i 2 - соответственно удельные энтальпии воды, поступающей в котел и выходящей из него, кДж/кг.

Тепловые потери парового котла. Эффективность использования топлива определяется в основном полнотой сгорания топлива и глубиной охлаждения продуктов сгорания в паровом котле.

Потери теплоты с уходящими газами Q 2 являются наибольшими и определяются по формуле

где I ух - энтальпия уходящих газов при температуре уходящих газов q ух и избытке воздуха в уходящих газах α ух, кДж/кг или кДж/м 3 ; I хв - энтальпия холодного воздуха при температуре холодного воздуха t хв и избытке воздуха α хв; (100–q 4)- доля сгоревшего топлива.

Для современных котлов величина q 2 находится в пределах 5...8 % располагаемой теплоты, q 2 возрастает при увеличении q ух, α ух и объема уходящих газов. Снижение q ух примерно на 14... 15 °С приводит к уменьшению q 2 на 1 %.

В современных энергетических котельных агрегатах q ух составляет 100... 120 °С, в производственно-отопительных – 140 ... 180 °С.

Потери теплоты от химической неполноты сгорания топлива Q 3 - это теплота, которая осталась химически связанной в продуктах неполного сгорания. Ее определяют по формуле

где СО, Н 2 , СН 4 - объемное содержание продуктов неполного сгорания по отношению к сухим газам, %; цифры перед СО, Н 2 , СН 4 - уменьшенная в 100 раз теплота сгорания 1 м 3 соответствующего газа, кДж/м 3 .

Потери теплоты от химической неполноты сгорания обычно зависят от качества смесеобразования и локальных недостаточных количеств кислорода для полного сгорания. Следовательно, q 3 зависит от α т. Наименьшие значения α т , при которых q 3 практически отсутствуют, зависят от вида топлива и организации режима горения.

Химическая неполнота сгорания сопровождается всегда сажеобразованием, недопустимым в работе котла.

Потери теплоты от механической неполноты сгорания топлива Q 4 - это теплота топлива, которая при камерном сжигании уносится вместе с продуктами сгорания (унос) в газоходы котла или остается в шлаке, а при слоевом сжигании - и в продуктах, проваливающихся через колосниковую решетку (провал):

где a шл+пр, a ун – соответственно доля золы в шлаке, провале и уносе, определяется взвешиванием из золового баланса а шл+пр + a ун = 1 в долях единицы; Г шл+пр, Г ун – содержание горючих соответственно в шлаке, провале и уносе, определяется взвешиванием и дожиганием в лабораторных условиях проб шлака, провала, уноса, %; 32,7 кДж/кг - теплота сгорания горючих в шлаке, провале и уносе, по данным ВТИ; А р - зольность рабочей массы топлива, %. Величина q 4 зависит от метода сжигания и способа удаления шлака, а также свойств топлива. При хорошо отлаженном процессе горения твердого топлива в камерных топках q 4 » 0,3...0,6 для топлив с большим выходом летучих веществ, для антрацитового штыба (АШ) q 4 > 2%. При слоевом сжигании для каменных углей q 4 = 3,5 (из них 1 % приходится на потери со шлаком, а 2,5 % - с уносом), для бурых - q 4 = 4%.

Потери теплоты в окружающую среду Q 5 зависят от площади наружной поверхности агрегата и разности температур поверхности и окружающего воздуха (q 5 » 0,5... 1,5 %).

Потери теплоты со шлаком Q 6 происходят в результате удаления из топки шлака, температура которого может быть достаточно высокой. В пылеугольных топках с твердым шлакоудалением температура шлака 600...700°С, а с жидким - 1500... 1600°С.

Эти потери рассчитывают по формуле

где с шл - теплоемкость шлака, зависящая от температуры шлака t шл. Так, при 600°С с шл = 0,930 кДж/(кг×К), а при 1600°С с шл = 1,172 кДж/(кг×К).

Коэффициент полезного действия котла и расход топлива. Совершенство тепловой работы парового котла оценивается коэффициентом полезного действия брутто h к бр, %. Так, по прямому балансу

где Q к - теплота, полезно отданная котлу и выраженная через тепловосприятие поверхностей нагрева, кДж/с:

где Q ст - теплосодержание воды или воздуха, подогреваемых в котле и отдаваемых на сторону, кДж/с (теплота продувки учитывается только для D пр > 2 % от D ).

Коэффициент полезного действия котла можно рассчитывать и по обратному балансу:

Метод прямого баланса менее точен в основном из-за трудностей при определении в эксплуатации больших масс расходуемого топлива. Тепловые потери определяются с большей точностью, поэтому метод обратного баланса нашел преимущественное распространение при определении КПД.

Кроме КПД брутто, используется КПД нетто, показывающий эксплуатационное совершенство агрегата:

где q с.н - суммарный расход теплоты на собственные нужды котла, т. е. расход электрической энергии на привод вспомогательных механизмов (вентиляторов, насосов и т.д.), расход пара на обдувку и распыл мазута, подсчитанные в процентах от располагаемой теплоты.

Из выражения (7.13) определяется расход подаваемого в топку топлива B кг/с,

Так как часть топлива теряется из-за механического недожога, то при всех расчетах объемов воздуха и продуктов сгорания, а также энтальпий используется расчетный расход топлива B р , кг/с, учитывающий механическую неполноту сгорания:

При сжигании в котлах жидкого и газообразного топлив Q 4 = 0

Контрольные вопросы

1. Как классифицируются котельные агрегаты и каково их назначение?

2. Назовите основные виды котельных агрегатов и перечислите их основные элементы.

3. Опишите испарительные поверхности котла, перечислите виды пароперегревателей и способы регулирования температуры перегретого пара.

4. Какие виды водяных экономайзеров и воздухоподогревателей используются в котлах? Расскажите о принципах их устройства.

5. Как осуществляются подача воздуха и удаление дымовых газов в котельных агрегатах?

6. Расскажите о назначении дымовой трубы и об определении ее самотяги; укажите виды дымососов, применяемых в котельных установках.

7. Что такое тепловой баланс котельного агрегата? Перечислите потери теплоты в котле и укажите их причины.

8. Как определяется КПД котельного агрегата?


Современная котельная установка представляет собой сложное техническое сооружение и состоит из котла и вспомогательного котельного оборудования, размещенного в помещении котельной или вне ее границ и предназначенного для производства пара с необходимыми параметрами или для подогрева горячей воды, или того и другого одновременно.

В состав котла входят: топка, водяной экономайзер, воздухоподогреватель, обмуровка и каркас с лестницами и площадками, а также арматура и гарнитура.

К вспомогательному оборудованию для отопительного котла относятся: тягодутьевые и питательные устройства, оборудование водоподготовки, топливодоподачи, а также контрольно-измерительные приборы и системы автоматизации.
Технологический процесс получения пара в отопительном котле осуществляется в следующей последовательности. Топливо в котле при помощи горелочных устройств вводится в топку котла, где и сгорает. Воздух, необходимый для сгорания топлива, подается в топку дутьевым вентилятором или подсасывается через колосниковую решетку — при естественной тяге.

Для улучшения процесса сгорания топлива в отопительном котле и повышения экономичности работы котла воздух перед подачей в топку может предварительно подогреваться дымовыми газами в воздухоподогревателе.
Дымовые газы в отопительном котле, отдав часть своего тепла радиационным поверхностям нагрева, размещенным в топочной камере, поступают в конвективную поверхность нагрева, охлаждаются и дымососом удаляются через дымовую трубу в атмосферу.

Сырая водопроводная вода отопительного котла проходит через катионитовые фильтры, умягчается и далее поступает в деаэратор, где из нее удаляются коррозионно-активные газы (02 и С02) и стекает в бак деаэрованной воды. Из бака питательная вода забирается питательным насосом и подается в паровой котел.
Пройдя по поверхностям нагрева, вода нагревается, испаряется и собирается в верхнем барабане. Из котла пар направляется в общекотельный паровой коллектор и затем подается потребителям.

По назначению котельные установки разделяются на отопительные, производственно-отопительные и энергетические.

Котел — тепловой баланс

При сжигании топлива в котле не все количество тепла, которое выделилось в топке, полезно используется для нагрева воды или получения пара. Часть тепла теряется с уходящими из котла газами, с химическим и механическим недожогом и пр. Основная задача при эксплуатации котла заключается в снижении этих потерь до минимума.

Тепловым балансом котла называется равенство введенного в котел тепла и использованного, которое складывается из полезно использованного тепла, пошедшего на выработку пара (горячей воды), и тепловых потерь, возникающих в процессе работы котельной установки. Тепловой баланс составляется на 1 кг твердого (жидкого) топлива или 1 м3 газообразного топлива.

Упрощенный тепловой баланс котла записывается в виде уравнения;
при сжигании твердого топлива, кДж/кгт
Qph = Q1 + Q2 +Q3 +Q4 +Q5 +Q6,
при сжигании жидкого и газообразного топлива, кДж/кг(м3)т
Qph = Q1 + Q2 +Q3 +Q4 +Q5

Если обе части уравнений разделить на Qph и умножить на 100, то получим уравнения баланса, выраженные в процентах:
100 = д1 + д2 + д3 + д4 + д5 + д6,
100 = д1 + д2 + д3 + д4
В формулах Q1 ;q1 полезно использованное тепло.
Потери тепла:
Q1; д2 — с уходящими дымовыми газами;
Q2; д3 — от химической неполноты сгорания;
Q3; д4 — от механической неполноты сгорания;
Q4; д5 — через наружные ограждения обмуровки в окружающую среду:
Q5; д6 — с физическим теплом шлака.
Коэффициент полезного действия — полезно использованное в котле тепло:
Л = д1 = 100 — д2 — д3 — д4 — д5 – д6;
Л = д1 = 100 — д2 — д3 — д4
КПД котла зависит от величины тепловых потерь: чем потери меньше, тем КПД выше. Значение КПД может находиться в пределах Л = 0,93 — 0,7 (93-70 %),. а величина тепловых потерь для котлов малой мощности составляет: д2 = 12-15 %; д3 = 2-7 %; д4 = 1-6 %; д5 = 0,4-3,5 %; д6 = 0,5-1,5 %.

Сепарационные устройства. Влажный насыщенный пар, получаемый в барабане котлоагрегатов низкого и среднего давлений, может уносить с собой капли котловой воды, содержащей растворенные в ней соли. В котлоагрегатах высокого и сверхвысокого давлений загрязнение пара обусловливается еще и дополнительным уносом солей кремниевой кислоты и соединений натрия, которые растворяются в паре.

Примеси, уносимые с паром, откладываются в пароперегревателе, что крайне нежелательно, так как может привести к пережогу труб пароперегревателя. Поэтому пар перед выходом из барабана котла подвергается сепарации, в процессе которой капли котловой воды отделяются и остаются в барабане. Сепарация пара осуществляется в специальных сепарирующих устройствах, в которых создаются условия для естественного или механического разделения воды и пара.

Естественная сепарация происходит вследствие большой разности плотностей воды и пара. Механический инерционный принцип сепарации основан на различии инерционных свойств водяных капель и пара при резком увеличении скорости и одновременном изменении направления или закручивания потока влажного пара.

На рис. 19.22 показаны принципиальные схемы сепарирующих устройств. На рис. 19.22,а показан принцип естественной сепарации. Гашение большой скорости потока пароводяной смеси, вытекающей из подводящих экранных труб, происходит в объеме воды, которая находится в барабане. Скорость пара в барабане над уровнем воды незначительна (0,3 - 0,5 м/с), что способствует сепарации капель воды и пара.

В схеме, показанной на рис. 19.22,б, пароводяная смесь направляется на сплошной отбойный щит. Вода стекает по листу, а пар поступает в паровое пространство и, проходя через пароприемный дырчатый лист, выводится из барабана. В этой схеме механическая сепарация сочетается с естественной в паровом объеме барабана.

Внутри барабанный циклон, показанный на рис. 19.22,г, служит для интенсивного закручивания потока пароводяной смеси. Под действием центробежных сил вода отбрасывается на стенку сепаратора и в виде пленки стекает в водяной объем.

Циклонный принцип сепарации отличается высокой эффективностью. При большой нагрузке парового объема барабана применяют выносные циклоны , к которым подключается часть труб испарительной поверхности котлоагрегата.

Рис. 19.22. Схемы сепарационных устройств.

а - погружной дырчатый щит: 1 - дырчатый щит; 2 - пароприемный дырчатый щит; б - отбойные и распределительные щиты; 1 - отбойный щит; 2 - пароприемный дырчатый щит; в - жалюзийный сепаратор; 1 - отбойный щит; 2 - жалюзийный сепаратор; 3 - пароприемный дырчатый щит; г - циклонный сепаратор; 1 - циклон; 2 - пароприемный дырчатый щит.

Рис. 19.23. Схема промывки пара питательной водой.

1 - щит с промывочными корытами; 2 - жалюзийный сепаратор; 3 - пароприемный щит; 4 - место отвода пара; 5 - место подвода питательной воды (5а - на промывку; 5б - под уровень); 6 - место подвода пароводяной смеси из испарительных труб; 7 - опускные трубы; 8 - дырчатый щит.

Выносные циклоны размещаются вне котлоагрегата (см. рис. 19.18).

Высокая степень очистки пара достигается при пленочной сепарации. Принцип пленочной сепарации основан на образовании устойчивой пленки при слиянии мельчайших капель воды в момент соприкасания потока влажного пара с каким - либо препятствием (вертикальная или горизонтальная плоскости и т.п.). Схема пленочного жалюзийного сепаратора, показанного на рис. 19.22,в, дает представление о методе пленочной сепарации. На стенках волнистых каналов образуется пленка воды, через потолочный дырчатый лист которая стекает вниз, а пар направляется к выходу из барабана.

Рассмотренные схемы методов получения чистого пара обеспечивают степень сухости х = 0,98 - 0,99. Для более тонкой очистки пара от примесей его очищают питательной водой. Схема промывки пара показана на рис. 19.23.

Перед промывкой пар проходит естественную сепарацию в паровом объеме, а затем барботирует через слой питательной воды, в которой содержится очень мало солей. В результате интенсивного массообмена соли задерживаются питательной водой. Унос капель питательной воды не представляет уже большой опасности для работы пароперегревателя.

Вспомогательное оборудование котельной установки - тягодутьевые устройства . Для нормальной работы котельного агрегата необходимы непрерывная подача воздуха для горения топлива и непрерывное удаление продуктов сгорания.

В современных котельных установках широко распространена схема с разрежением по газоходам. К недостаткам этой схемы следует отнести наличие присосов воздуха в газоходы через неплотности в ограждениях и работу дымососов на запыленных газах. Достоинство такой схемы - отсутствие выбивания и утечек дымовых газов в помещение котельной, так как воздух в топку нагнетает вентилятор, а дымовые газы удаляет дымосос. В последнее время в мощных энергетических котельных установках широко применяется схема с наддувом. Топка и весь газовый тракт находятся под давлением 3 - 5 кПа. Давление создается мощными вентиляторами ; дымосос отсутствует. Основной недостаток этой схемы - трудности, связанные с обеспечением надлежащей герметичности топки и газоходов котельного агрегата.

При движении газов по газоходам возникают потери напора вследствие аэродинамического сопротивления трению и местных сопротивлений (трубные пучки, сужения, повороты и т. д.). Суммарная потеря напора на отдельном участке складывается из потери на трение ∆h тр и потери на преодоление местного сопротивления ∆ h мест, т. е.

здесь λ - коэффициент трения; l,d экв - длина и эквивалентный диаметр участка; р - плотность газа; w - скорость газа; § м - коэффициент местного сопротивления.

При движении газов в вертикальных газоходах необходимо учитывать естественный напор, возникающий вследствие разности плотностей горячих дымовых газов и окружающего воздуха. Этот напор, называемый самотягой (∆h сам), в подъемных газоходах направлен на преодоление сопротивлений, а в опускных препятствует движению и является отрицательной величиной.

В целом для котельной установки потери напора составляют

∆Н = ∆h т + ∑∆h тр + ∑∆h мест + ∆h сам (19.25)

где ∆h т - разрежение, поддерживаемое в верхней части топки (20 - 40 Па).

Величину ∆Н определяют по нормам аэродинамического расчета котельных агрегатов. Преодоление ∆Н осуществляется тягой, которая может быть естественной и искусственной. Естественная тяга создается дымовыми трубами, а искусственная - с помощью специальных центробежных вентиляторов (дымососов). Для мощных котлоагрегатов используют дымососы осевого типа. Естественная тяга обусловливается разностью плотностей горячих дымовых газов и холодного окружающего воздуха. Высота столбов горячих газов и холодного воздуха при этом принимается одинаковой (рис. 19.24).

Рис. 19.24. К расчету естественной таги, создаваемой дымовой грубой.

Максимальная тяга, создаваемая трубой, должна быть на 20% выше суммарной потери напора. Дымовые трубы бывают кирпичными, железобетонными и стальными. При высоте до 80 м наибольшее распространение получили кирпичные трубы, так как они дешевле, устойчивее по отношению к температурным колебаниям (по сравнению с бетонными) и не подвержены вредному влиянию сернистых газов, как стальные.

Высота трубы должна отвечать санитарно - техническим требованиям, которыми предусматривается определенный радиус рассеяния дымовых газов во избежание превышения допустимой запыленности ими атмосферы.

Для получения тяги необходимо увеличивать высоту трубы или температуру уходящих газов. Однако при использовании любого из этих способов необходимо иметь в виду, что высота трубы ограничена ее стоимостью и прочностью, а температура газов - оптимальным значением КПД котельной установки. Поэтому большинство современных котельных установок оборудуют искусственной тягой, для создания которой применяют дымосос, преодолевающий сопротивление газового тракта. В этом случае высоту трубы выбирают в соответствии с санитарно - техническими требованиями.

Мощность привода дымососа, кВт, можно рассчитать по формуле

где V д - производительность дымососа,м 3 /с; Н д - (∆Н - ∆h caм) β 2 - разрежение, создаваемое дымососом, Па (здесь ∆Н - сопротивление газового тракта, Па; ∆h сам - самотяга дымовой трубы, Па); β 2 = 1,1 ÷ 1,2 - коэффициент запаса по создаваемому разрежению; β 3 - коэффициент запаса по мощности, равный 1,1; ȵ д - КПД дымососа.

Величина V д определяется по равенству

V д - V r В р Т д.тр β 1 /273, (19.27)

где Vr - расход газов, м 3 /м 3 ; В р - расход топлива, м 3 /с (кг/с); Т д.тр - температура газов на входе в дымовую трубу, К; β 1 - 1,05 ÷ 1,1 - коэффициент запаса по производительности.

Напор воздуха, создаваемый вентилятором, также следует определять на основании аэродинамического расчета воздушного тракта (воздуховодов, воздухоподогревателя, горелочного устройства и т.д.).

Максимальный напор вентилятора должен быть на 10% больше β2 = 1,1) потерь напора в воздушном тракте котельного агрегата. Мощность привода дутьевого вентилятора , кВт, определяют по формуле

N в = V вз Н в β 3 10 -3 /ȵ в (19.28)

где V вз - расход воздуха, м 3 /с; Н в = ∆Нβ 2 - напор вентилятора, Па (здесь ∆ Н - потеря напора в воздушном тракте, Па; β 2 = 1,1 - коэффициент запаса по создаваемому напору); β 3 = 1,1 - коэффициент запаса по мощности.

Величина V вз определяется по равенству

где β 1 = 1,05 - коэффициент запаса по производительности; V 0 - теоретическое количество воздуха, м 3 /м 3 (м 3 /кг); α т + α а = α вз - коэффициент избытка воздуха; Т вз - температура воздуха перед вентилятором; Н баром - барометрическое давление, кПа.

Вспомогательное оборудование котельной установки - основы водоподготовки . Одной из основных задач безопасной эксплуатации котельных установок является организация рационального водного режима, при котором не образуется накипь, на стенках испарительных поверхностей нагрева, отсутствует их коррозия и обеспечивается высокое качество вырабатываемого пара. Пар, вырабатываемый в котельной установке, возвращается от потребителя в конденсированном состоянии; при этом количество возвращаемого конденсата обычно бывает меньше, чем количество выработанного пара.

В производственных котельных основная безвозвратная потеря - это загрязненный конденсат пара, потребляемого в технологических процессах. Очистка этого конденсата от попавших в него примесей органических и минеральных веществ экономически невыгодна. Величина этой потери зависит от характера производства, где используется пар. Например, потеря конденсата на предприятиях машиностроительной промышленности составляет 20%, промышленности строительных материалов - 30, химической - 40, нефтеперерабатывающей - 50%. В отопительных котельных доля конденсата, не возвращаемого потребителем тепла, может меняться в широких пределах - от нескольких процентов до 100% в зависимости от схемы теплоснабжения и характера теплового потребления. Другая часть потери конденсата утечки в теплотрассах (0,5 - 1%). Кроме того, определенная часть воды (5 - 7%) выводится из котлоагрегата при непрерывной продувке.

Потери конденсата и воды при продувке восполняются за счет добавки воды из какого - либо источника. Эта вода должна быть соответствующим образом подготовлена до поступления в котельный агрегат. Вода, прошедшая предварительную подготовку, называется добавочной, смесь возвращаемого конденсата и добавочной воды - питательной, а вода, которая циркулирует в контуре котла, - котловой.

От качества питательной воды зависит нормальная работа котельных агрегатов. Физико - химические свойства воды характеризуют следующие показатели: прозрачность, содержание взвешенных веществ, сухой остаток, солесодержание, окисляемость, жесткость, щелочность, концентрация растворенных газов (СО 2 и О 2).

Прозрачность характеризуется наличием взвешенных механических и коллоидных примесей, а содержание взвешенных веществ определяет степень загрязнения воды твердыми нерастворимыми примесями. Содержание взвешенных веществ измеряется в мг/л. Сухой остаток является одним из основных показателей, по которому судят о пригодности воды для питания котельных агрегатов. Сухой остаток - это остаток после выпаривания лабораторной пробы воды, высушенный при 110 - 120 °С. Он содержит коллоидные и растворенные неорганические и органические примеси в воде. Единица измерения сухого остатка - мг/кг.

Солесодержание воды характеризуется общей концентрацией в воде катионов (Na+; К+; Mg 2 +) и анионов (НСО 3 ; SO 2 4 ; Cl; SiO 2 3). Солесодержание определяет степень минерализации воды в мг/л. Окисляемость характеризует концентрацию находящихся в воде органических примесей. Подсчитывают окисляемость по количеству кислорода (мг/л), необходимого для окисления (при определенных условиях) органических примесей, содержащихся в 1 кг воды. Жесткость воды - весьма важный показатель ее качества. Она характеризуется содержанием в ней ионов кальция и магния (Са 2 +; Mg 2 +). Различают жесткость общую Ж 0 , карбонатную Ж к и некарбонатную Ж нк. Общая жесткость Ж 0 характеризуется суммарной концентрацией ионов Са и Mg, т.е. Ж 0 = ЖCа + ЖMg. Карбонатная жесткость Ж к обусловлена присутствием бикарбонатов Са(НСО 3) 2 и Mg(HCO 3) 2 . Карбонатная жесткость - временная, так как при кипячении бикарбонаты разлагаются с выделением СO 2 и твердых осадков СаСO 3 и Mg(OH) 2 (шламов). Некарбонатная жесткость обусловлена наличием в воде всех остальных солей кальция и магния (CaSO 4 ; MgSO 4 ; СаСl 2; MgCl 2 и др). Некарбонатная жесткость Ж нк иногда называется постоянной, так как простым кипячением разложить указанные соли не удается в силу их свойств. Следовательно, Ж 0 = Ж к + Ж нк.Обычно Ж нк определяют как разность Ж нк = Ж о - Ж к.

Жесткость воды принято измерять в мг-экв/кг или мкг-экв/кг (1 мг-экв = 103 мкг/экв). По величине общей жесткости природную воду делят на три группы: мягкую с Ж 0 < 4 мг-экв/кг; средней жесткости с Ж 0 = 4 ÷ 7 мг-экв/кг и жесткую с Ж 0 > 7 мг-экв/кг. Например, для котлов ДКВр при давлении до 2,4 МПа допускают общую жесткость воды не более 0,02 мг-экв/кг.

Щелочность воды характеризуется содержанием бикарбонатных НСO 3 , карбонатных СО з и гидроксильных ОН - ионов. Величина щелочности измеряется в мг-экв/кг. В природных водах щелочность обусловлена в основном наличием бикарбонатных ионов.

При работе котельного агрегата происходит непрерывное накопление вредных примесей в котловой воде вследствие ее упаривания и притока солей с питательной водой. В паре, выходящем из котла, примесей, как правило, нет (исключение составляют соли кремния в паре при высоких давлениях).

Миллиграмм - эквивалентом называется количество вещества в миллиграммах, численно равное его эквивалентной массе, представляющей собой частное от деления молекулярной массы вещества на его валентность в данном соединении.

Примеси остаются в котловой воде и вызывают нежелательные последствия, если не принять соответствующих мер по предварительной обработке добавочной воды.

Наиболее вредными примесями являются накипеобразователи - соли кальция и магния, характеризующие некарбонатную жесткость, а также коррозионно-активные растворенные газы O 2 и СO 2 . Накипью называется механически прочный слой отложений накипеобразователей на внутренних стенках поверхностей нагрева.

Попадание механических примесей и солей карбонатной жесткости в котельный агрегат нежелательно из - за образования в испарительном контуре так называемых шламов - рыхлых соединений, которые необходимо периодически удалять. Отложение накипи и шлама отрицательно сказывается на работе котлоагрегата. Теплопроводность накипи и шлама незначительна по сравнению с теплопроводностью металлических стенок. Поэтому накипь и шлам увеличивают термическое сопротивление процессу теплопередачи от газов к воде, что приводит в ряде случаев к недопустимому повышению температуры стенок труб и снижению их механической прочности. Увеличение термического сопротивления повышает также расход топлива, что снижает экономичность работы котлоагрегата.

Растворенные в воде газы (О 2 и СО 2) при высоких температурах обладают высокой коррозионной активностью. Коррозия металла стенок труб приводит к уменьшению их толщины и, следовательно, механической прочности.

Щелочность воды несколько снижает интенсивность коррозионных процессов, но с увеличением щелочности наблюдается вспенивание воды в барабанах и возможен унос пены с паром.

Присутствие в воде органических соединений также нежелательно. Высокая окисляемость воды затрудняет ее обработку и удаление минеральных солей, повышает пенообразование. Следовательно, к качеству питательной воды предъявляются определенные требования, которые зависят от типа котельного агрегата (барабанный, прямоточный, водогрейный) и давления вырабатываемого пара.

Существуют два способа обработки воды - докотловая и внутри котловая. Докотловая обработка воды предусматривает комплекс мероприятий, обеспечивающих установленные нормы качества питательной воды. Для поддержания требуемого качества котловой воды в установленных пределах одной докотловой обработки бывает иногда недостаточно (например, для питания барабанных котлоагрегатов высокого и сверхвысокого давлений) из - за несовершенства применяемых методов и аппаратов. В этом случае дополнительно применяется внутри котловая обработка воды, при которой в барабан котлоагрегата вводят химические реагенты (фосфаты). Фосфаты вступают в химические реакции с солями, содержащимися в котловой воде, и образуют малорастворимые рыхлые соединения, которые выводятся из котлоагрегата.

Для прямоточных котлоагрегатов применяют только докотловую обработку добавочной воды. Несмотря на предварительную подготовку питательной воды, для поддержания допустимой по нормам концентрации солей в котловой воде и предотвращения отложений шлама котел продувают, т.е. удаляют из него часть котловой воды. При этом различают периодическую и непрерывную продувку паровых котлов. Периодическая продувка служит преимущественно для удаления шлама из контура котлоагрегата. Непрерывная продувка применяется главным образом для удаления растворенных в воде примесей и получения более чистого пара. Количество продувочной воды, выводимой из котлоагрегата, обычно определяют (или задают) в процентах к производительности агрегата (не более 5 - 6%).

Непрерывная продувка осуществляется из барабана котла (в двухбарабанных котлах - из верхнего) на уровне ввода пароводяной смеси, где солесодержание обычно бывает максимальным. Периодическая продувка производится из нижних коллекторов котла, где скапливается шлам. В двухбарабанных котлах периодическая продувка осуществляется также из нижнего барабана.

Докотловая подготовка воды должна обеспечивать ее осветление (удаление взвешенных частиц), умягчение, снижение щелочности и солесодержания, а также удаление растворенных газов (О 2 и СО 2). Крупные взвешенные вещества удаляют отстаиванием, мелкие - фильтрацией. Для фильтров используют песок, дробленую мраморную крошку, антрацит. Для удаления коллоидных и органических веществ воду перед фильтрованием обрабатывают коагулянтом, т.е. веществом, которое способствует укрупнению взвешенных веществ (соли железа FeSО 4 и FeCl 2 или сернокислый алюминий A 12 (SО 4) 3 . При использовании городской водопроводной воды операции осветления и коагуляции отпадают.

Умягчают воду, т.е. снижают ее жесткость, путем удаления из воды катионов Са 2 + и Mg 2 + еще до поступления ее в котел (докотловая обработка воды). Умягчение осуществляют термическим или химическим методами. Термический метод основан на разложении бикарбонатов кальция и магния при нагревании до 360 - 375 К. Образующиеся при этом труднорастворимые вещества (CaCО 3 , Mg(OH) 2)выпадают в осадок.

В настоящее время основной метод умягчения воды - метод катионного обмена. Сущность его заключается в том, что добавляемую воду пропускают через специальные аппараты - катионитовые фильтры, заполненные материалами, которые участвуют в катионном обмене с солями жесткости. В этих материалах присутствуют катионы натрия (Na+), аммония (NH+), водорода (Н+). Катионы солей жесткости замещают катионы в материале фильтра. Таким образом, катионы, входящие в состав соединений материала фильтра, поступают в обрабатываемую воду, а катионы солей жесткости задерживаются этим материалом. Катионы, перешедшие в воду, уже не являются накипеобразователями.

В качестве катионитовых материалов в производственно - отопительных котельных используют сульфоуголь (каменный и бурый, обработанный концентрированной серной кислотой), который насыщается катионами Na+, NH 4 + или Н+.

Рис. 19.25. Схема водоподготовительной установки.

1 - солерастворитель; 2, 3 - катионитовые фильтры; 4 - теплообменник: 5 - дырчатые листы (тарелки); 6 - деаэратор; 7 - питательный насос; трубопроводы; I - Добавочной сырой воды; II -умягченной воды; III - удаления парогазовой смеси; IV - возвращаемого конденсата; V - пара; VI - питательной воды; VII - слива в дренаж.

В зависимости от качества исходной и питательной воды применяют - различные методы катионирования: натрий-катионирование (Na-катионирование), аммоний - катионирование (NH 4 -катионирование), водород - катионирование (Н-катионирование). Используют также и комбинированные методы, которые осуществляются по трем схемам - последовательной, параллельной, совместной.

В отопительно - производственных котельных широко применяется схема совместного Na - NН 4 -катионирования. С течением времени катионит насыщается катионами кальция и магния и его активность снижается. Для восстановления утраченных обменных свойств катионит подвергают регенерации, обрабатывая его слабым раствором H 2 SO 4 , NaCl или NH 4 C 1 (в зависимости от вида обменного иона). Подробно методы умягчения воды, описание и расчет различных схем изложены в специальной литературе.

Растворенные в воде кислород, двуокись углерода и воздух вызывают коррозию стенок котла, поэтому газы удаляют из воды путем ее дегазации. Из всех известных способов дегазации воды наиболее распространен термический. Этот способ основан на свойстве газов O 2 и СO 2 снижать степень растворимости по мере повышения температуры воды вплоть до кипения, когда при нулевых парциальных давлениях O 2 и СO 2 их растворимость падает до нуля.

На рис. 19.25 показана принципиальная схема водоподготовительной установки (катионитовое умягчение и дегазация).

Добавочная вода из водопровода поступает в Na-катионитовый фильтр, где задерживается большая часть солей, характеризующих жесткость воды. В схеме имеются два катионитовых фильтра. Один фильтр, например 2, находится в работе, а в другом 3 проходит регенерация катионита. Слабый раствор NaCl (6 -10%-ный) подается в фильтр 3 из солерастворителя 1. Умягченная вода подается в деаэратор (дегазатор), где из нее удаляются растворенные газы.

Перед деаэратором воду подогревают горячей водой или паром в теплообменнике, с целью экономии расхода пара на деаэрацию. В верхнюю часть (головку) деаэратора подают очищенную воду и конденсат, возвращаемый в котельную. Проходя через дырчатые листы, вода разбивается на мелкие струи для увеличения площади поверхности контакта с паром, который подается вниз головки. Вода нагревается до кипения, растворенные газы при этом из нее удаляются через патрубок, установленный в верхней части головки. В деаэраторах атмосферного типа поддерживается давление 0,115 - 0,12 МПа, что соответствует температуре насыщения 376 - 377 К.

Подобного типа деаэраторы применяют в котельных низкого и среднего давлений. Они обеспечивают полное удаление кислорода и резко снижают содержание СО 2 в питательной воде. На тепловых станциях с котлами высокого давления используют деаэраторы повышенного давления (0,6 МПа).

Число и производительность деаэратора (по воде) в отопительно - производственных котельных определяют по количеству питательной воды и количеству воды для подпитки тепловых сетей. Запас воды в баках деаэраторов должен быть на 20 - 30 мин при максимальном ее расходе. Запас воды в баках деаэраторов на ТЭЦ должен быть не менее чем на 15 мин работы при максимальном расходе.

В водогрейных котельных применяют деаэраторы вакуумного типа, в которых поддерживается разрежение 0,02 - 0,03 МПа, что соответствует температуре кипения 330 - 340 К. Нагрев воды в них осуществляется от сети горячего водоснабжения.

Нарушение в бесперебойном обеспечении котельного агрегата питательной водой может привести к серьезным авариям. Воду в котельный агрегат подает питательный насос. Каждая котельная установка в соответствии с правилами Госгортехнадзора должна иметь два насоса - основной, или рабочий, и резервный. В качестве основного насоса устанавливают обычно многоступенчатый центробежный насос с электрическим приводом. Резервным служит поршневой насос с приводом от паровой машины. На крупных ТЭЦ в качестве резервных применяют центробежные насосы с приводом от небольшой паровой турбины (турбонасосы).

Подача каждого насоса должна быть не менее 110% номинальной производительности котельной, а напор, создаваемый питательным насосом, должен превышать давление в барабане котла на величину суммарного гидравлического сопротивления питательной линии (включая экономайзер). Напор определяют по формуле

Н = р к.а + Н сопр (19.30)

где р к.а - давление в барабане котлоагрегата; Н сопр - потеря напора в питательной линии (обычно Н сопр = 0,З ÷ 0,4 МПа).

Мощность привода питательного насоса N, кВт, находят по выражению

N = 1,1 D ном Н10 -3 /ȵ н (19.31)

где 1,1 - коэффициент запаса; D ном - номинальная производительность котельной, м 3 /с; Н - полный напор насоса, Па; ȵ н - КПД насоса; для центробежных насосов ȵ н = 0,5 ÷ 0,7 (в зависимости от производительности).

Вспомогательное оборудование котельной установки - топливоподача . Для нормальной и бесперебойной работы котельных установок требуется, чтобы топливо к ним подавалось непрерывно. Процесс подачи топлива складывается из двух основных этапов: 1) подача топлива от места его добычи на склады, расположенные вблизи котельной; 2) подача топлива со складов непосредственно в котельные помещения. Первый этап осуществляется с помощью железнодорожного или водного транспорта или автосамосвалами; на втором этапе для перемещения топлива используют узкоколейные вагонетки вместимостью до 1,5 м 3 , ленточные конвейеры, автопогрузчики, фуникулеры, тельферы и другие устройства, механизирующие этот процесс.

Склады для твердого топлива, как правило, устраивают открытыми и вместимость их рассчитана обычно не более чем на двухмесячный запас. Топливо на этих складах хранят в виде штабелей. Во избежание самовозгорания высота штабеля торфа не должна превышать 1,5 м. Размеры штабелей других видов твердого топлива не нормируют.

Хранилища для жидкого топлива представляют собой стальные (наземные) и бетонные (подземные) резервуары объемом 100 м и более. Расположены они вне котельных. Предпочтительнее использовать бетонные хранилища. Мазут на склады доставляют в железнодорожных цистернах. С помощью пара, подаваемого специальными шлангами, мазут в цистернах подогревают до 340 - 350 К и сливают в лоток, дно которого также обогревается паропроводами. По лотку мазут поступает в хранилища, которые соединяются с насосной станцией, оборудованной фильтрами, и подогревателями мазута. Схема мазутного хозяйства котельной приведена на рис. 19.26.

Газообразное топливо подают в котельные по газопроводам. В зависимости от давления газа трубопроводы могут быть низкого давления (до 0,5 кПа), среднего (от 0,5 кПа до 0,3 МПа) и высокого (более 0,3 МПа). На рис. 19.27 приведена схема газорегулирующего пункта для подачи газа к горелкам котлоагрегатов.

После ввода газопровода в котельную на нем устанавливают отключающую задвижку газовой сети, манометр 2 и отключающую задвижку 1 газовой сети котельной. Затем устанавливают фильтр 3, предохранительный клапан 4 и регулятор давления 5, поддерживающий давление газа перед горелками на требуемом уровне. В исключительных случаях можно отбирать газ помимо регулятора. При непредвиденном повышении давления газа перед горелками сверх установленного значения срабатывает сбросной предохранительный клапан 6 и газ отводится в атмосферу через продувочную свечу 12, установленную над крышей здания котельной. Расход газа учитывает счетчик 7. Газорегулирующий пункт может быть смонтирован как в помещении самой котельной, так и вне ее.

Очистка дымовых газов и удаление золы и шлака. При сгорании твердого топлива образуется много золы.

Рис. 19.26. Схема мазутного хозяйства котельной.

1 - железнодорожный путь для цистерны; 2 - сливной поток; 3 - мазутный бак; 4 - змеевики для подогрева мазута в баке; 5 - дренажный приямок; 6 - паровой насос; 7 - мазутный приямок; 8 - воздушный колпак; 9 - фильтр; 10 - подогреватели мазута; 11 - мазутопровод; 12 - котельные агрегаты; 13 - форсунки; 14 - мазутная магистраль.

При слоевом процессе сжигания основная часть минеральных примесей топлива (60 - 70%) превращается в шлак и проваливается через колосниковые решетки в зольник. В пылеугольных топках большая часть (75 - 85%) золы уносится из котлоагрегатов с дымовыми газами. Выброс сильно запыленных газов через трубу в атмосферу не допускается из - за загрязнения окружающего воздушного бассейна и ухудшения санитарно - гигиенических условий в населенных пунктах, расположенных вблизи котельной. Кроме того, зола вызывает абразивный износ лопаток дымососов. Все эти причины вызывают необходимость улавливать золу из дымовых газов.

В настоящее время в котельных применяют следующие типы золоуловителей : 1) инерционные механические; 2) мокрые; 3) электрофильтры; 4) комбинированные.

Инерционные (механические) золоуловители работают по принципу выделения золовых частиц из газового потока под влиянием сил инерции (при резком изменении направления движения потока, при закручивании газового потока и т. д.).

Рис. 19.27. Принципиальная схема газорегулировочного пункта.

1 - задвижка; 2 - манометр; 3 - фильтр; 4 - предохранительно - запорный клапан (ПЗК); 5 - регулятор давления; 6 - предохранительный сбросной клапан (ПСК); 7 - счетчик; 8 - термометр; 9 - жидкостный манометр; 10 - линия к котлам; 11 - сбросная линия от ПСК; 12 - продувочная свеча; 13 - импульсная линия.

На рис. 19.28 показана схема циклонного золоуловителя. Вследствие тангенциального входа в циклон пылегазовый поток получает вращательное движение, в результате чего частицы золы отбрасываются центробежными силами к стенке корпуса, выпадают из потока и ссыпаются в бункер. Поскольку центробежная сила, с которой отбрасываются частицы золы, при прочих равных условиях будет тем больше, чем меньше радиус циклона, в последнее время предпочитают вместо одного циклона строить батарейные циклоны из нескольких десятков мелких циклонов. Недостаток циклонных золоуловителей - относительно большое (до 40% в однокорпусных и до 20% в батарейных) просачивание мельчайшей пыли в дымовые газы за циклоном. Этот тип золоуловителей используют в отопительно-производственных котельных с расходом дымовых газов до 50 000 м 3 /ч, приведенных к нормальным условиям.

В настоящее время широко применяются золоулавители мокрого типа. Частицы золы из потока выделяются под действием сил инерции. Стенка золоуловителя смачивается пленкой воды, которую вводят в уловитель через различные разбрызгивающие устройства. На рис. 19.29 показана схема мокрого золоуловителя (скруббера) с нижним тангенциальным подводом запыленного газа.

Уловленная зола и загрязненная вода удаляются из нижней части, а очищенные газы - из верхней части корпуса скруббера. Золоуловитель мокрого типа применяют в котельных с расходом дымовых газов более 100 000 м 3 /ч, приведенных к нормальным условиям при условии, что приведенное содержание летучей серы S рл.п ≤ 1%.

Принцип действия электрофильтров заключается в том, что запыленные газы проходят через электрическое поле, образуемое между стальным цилиндром (положительный полюс) и проволокой, проходящей по оси цилиндра (отрицательный полюс). Основная масса частиц золы получает отрицательный заряд и притягивается к стенкам цилиндра, незначительная же часть частиц золы получает положительный заряд и притягивается к проволоке. При периодическом встряхивании электрофильтра электроды освобождаются от золы. Расход электро - энергии невелик (0,1 - 0,15 кВт на 1000 м 3 газа), но высокое напряжение (до 90 000 В) требует особой осторожности при обслуживании электрофильтров. Электрофильтры применяют в котельных с расходом дымовых газов более 70 000 м 3/ ч, отнесенных к нормальным условиям.

Комбинированные золоуловители являются двухступенчатыми, при этом работа каждой ступени основана на различных принципах.

Чаще всего комбинированный золоуловитель состоит из батарейного циклона (первая ступень) и электрофильтра (вторая ступень).

Рис. 19.28. Циклонный золоуловитель. а - схема циклона; б - общий вид батарейного циклона; в - улитка циклона; 1 - циклон; 2 - спираль улитка; 3 - входной коллектор; 4 - крышка; 5 - выхлопная труба; 6 - корпус циклона; 7 - буккер сбора золы и пыли.

Рис. 19.29. Схема центробежного скруббера конструкции ВТИ

1 - корпус; 2 - входной патрубок; 3 - клапан; 4 - коллектор подвода воды; 5 - оросительные сопла.

Эффективность работы золоуловителей оценивают по величине коэффициента очистки (обеспыливания).

ɛ = S у /S д 100%

где S y , S д - содержание золы в газах соответственно после уловителя и до него.

Однокорпусные циклонные уловители имеют ɛ = 40 ÷ 50%, для батарейных циклонов ɛ = 75 ÷ 85%, у мокрых золоуловителей ɛ = 90 ÷ 94%, у электрофильтров ɛ = 90 ÷ 95%; при комбинированной очистке ɛ = 98%.

Процесс золошлакоудаления можно разделить на две основные операции: очистка шлаковых и зольных бункеров и транспортировка золы и шлака на золоотвалы или заводы шлакобетонных изделий.

Существуют три способа удаления очаговых остатков:

  1. механический - с использованием различных механизмов - скреперов, подъемников, шнеков, шлаковыгружателей и т.д.;
  2. пневматический, основанный на способности воздушного потока перемещать сыпучие материалы;
  3. гидравлический, являющийся наиболее совершенным в отношении механизации процесса.

Сущность его состоит в том, что шлак и зола после выгрузки из топок и газоходов смываются в каналы и выносятся по ним к центральному пункту. Оттуда с помощью струи гидроэлеватора под давлением до 2,5 МПа шлак дробится и вместе с золой нагнетается по трубопроводам к отвалам. Способы очистки продуктов сгорания топлива от серосодержащих соединений и от окислов азота в настоящее время находятся еще в стадиях лабораторной и опытно - промышленной проверок. Предельно допустимые суммарные концентрации этих соединений по нормам, принятым в России, составляют 0,085 мг/м 3 .

Котельный завод Энергия-СПБ производит котельно-вспомогательное оборудование котельных установок:

Транспортирование котельно-вспомогательного оборудования осуществляется автотранспортом, ж/д полувагонами и речным транспортом. Котельный завод поставляет продукцию во все регионы России и Казахстана.

Сепарационные устройства. Влажный насыщенный пар, получаемый в барабане котлоагрегатов низкого и среднего давлений, может уносить с собой капли котловой воды, содержащей растворенные в ней соли. В котлоагрегатах высокого и сверхвысокого давлений загрязнение пара обуславливается еще и дополнительным уносом солей кремниевой кислоты и соединений натрия, которые растворяются в паре.
Примеси, уносимые с паром, откладываются в пароперегревателе, что крайне нежелательно, так как может привести к пережогу труб пароперегревателя. Поэтому пар перед выходом из барабана котла подвергается сепарации, в процессе которой капли котловой воды отделяются и остаются в барабане. Сепарация пара осуществляется в специальных сепарирующих устройствах, в котором создаются условия для естественного или механического разделения воды и пара.
Естественная сепарация происходит вследствие большой разности плотностей воды и пара. Механический инерционный принцип сепарации основан на различии инерционных свойств водяных капель и пара при резком увеличении скорости и одновременном изменении направления или закручивания потока влажного пара.
На рис 14.4 показаны принципиальные схемы сепарирующих устройств.
Тягодутьевые устройства. Для нормальной работы котельного агрегата необходимы непрерывная подача воздуха для горения топлива и непрерывное удаление продуктов сгорания.

В современных котельных установках широко распространена схема с разрежением по газоходам. К недостаткам этой схемы следует отнести наличие присосов воздуха в газоотходы через неплотности в ограждениях и работу дымососов на запыленных газах. Достоинство такой схемы – отсутствие выбивания и утечек дымовых газов в помещение котельной, так как воздух в топку нагнетает вентилятор, а дымовые газы удаляет дымосос. В последнее время в мощных энергетических котельных установках широко применяется схема с наддувом. Топка и весь газовый тракт находятся под давлением 3-5 кПа. Давление создается мощными вентиляторами; дымосос отсутствует. Основной недостаток этой схемы – трудности, связанные с обеспечением надлежащей герметичности топки и газоходов котельного агрегата.
Для получения тяги необходимо увеличивать высоту трубы или температуру уходящих газов. Однако при использовании любого из этих способов необходимо иметь в виду, что высота трубы ограничена ее стоимостью и прочностью, а температура газов – оптимальным значением КПД котельной установки. Поэтому большинство современных котельных установок оборудуют искусственной тягой, для создания которой применяют дымосос, преодолевающий сопротивление газового тракта. В этом случае высоту трубы выбирают в соответствии с санитарно-техническими требованиями.
Напор воздуха, создаваемый вентилятором, также следует определять на основании аэродинамического расчета воздушного тракта (воздуховодов, воздухоподогревателя, горелочного устройства и т.д.) Максимальный напор вентилятора должен быть на 10% больше (b 2 = 1,1) потерь напора в воздушном тракте котельного агрегата.
Основы водоподготовки. Одной из основных задач безопасной эксплуатации котельных установок является организация рационального водного режима, при котором не образуется накипь на стенках испарительных поверхностей нагрева, отсутствует их коррозия и обеспечивается высокое качество вырабатываемого пара. Пар, вырабатываемый в котельной установке, возвращается от потребителя в конденсированном состоянии; при этом количество возвращаемого конденсата обычно бывает меньше, чем количество выработанного пара.
Потери конденсата и воды при продувке восполняются за счет добавки воды из какого-либо источника. Эта вода должна быть соответствующим образом подготовлена до поступления в котельный агрегат. Вода, прошедшая предварительную подготовку, называется добавочной, смесь возвращаемого конденсата и добавочной воды – питательной, а вода, которая циркулирует в контуре котла, котловой.
От качества питательной воды зависит нормальная работа котельных агрегатов. Физико-химические свойства воды характеризуют следующие показатели: прозрачность, содержание взвешенных веществ, сухой остаток, солесодержание, окисляемость, жесткость, щелочность, концентрация растворенных газов (СО 2 и О 2).
Прозрачность характеризуется наличием взвешенных механических и коллоидных примесей, а содержание взвешенных веществ определяет степень загрязнения воды твердыми нерастворимыми примесями.
Топливоподача. Для нормальной и бесперебойной работы котельных установок требуется, чтобы топливо к ним подавалось непрерывно. Процесс подачи топлива складывается из двух основных этапов: 1) подача топлива от места его добычи на склады, расположенные вблизи котельной; 2) подача топлива со складов непосредственно в котельные помещения.
Очистка дымовых газов и удаление золы и шлака. При сгорании твердого топлива образуется много золы. При слоевом процессе сжигания основная часть минеральных примесей топлива (60-70%) превращается в шлак и проваливается через колосниковые решетки в зольник. В пылеугольных топках большая часть (75-85%) золы уносится из котлоагрегатов с дымовыми газами.
В настоящее время в котельных применяют следующие типы золоуловителей: 1) инерционные механические; 2) мокрые; 3) электрофильтры; 4) комбинированные.
Инерционные (механические) золоуловители работают по принципу выделения золовых частиц из газового потока под влиянием сил инерции.
В настоящее время широко применяются золоулавители мокрого типа. На рис.14.5 показана схема мокрого золоулавителя (скруббера) с нижним тангенциальным подводом запыленного газа.


Принцип действия электрофильтров заключается в том, что запыленные газы проходят через электрическое поле, образуемое между стальным цилиндром (положительный полюс) и проволокой, проходящей по оси цилиндра (отрицательный полюс). Основная масса частиц золы получает отрицательный заряд и притягивается к стенкам цилиндра, незначительная часть частиц золы получает положительный заряд и притягивается к проволоке. При периодическом встряхивании электрофильтра электроды освобождаются от золы. Электрофильтры применяют в котельных с расходом дымовых газов более 70000 м 3 /ч, отнесенных к нормальным условиям.
Комбинированные золоуловители являются двухступенчатыми, при этом работа каждой ступени основана на различных принципах. Чаще всего комбинированный золоуловитель состоит из батарейного циклона (первая ступень) и электрофильтра (вторая ступень).
Процесс золошлакоудаления можно разделить на две основные операции: очистка шлаковых и зольных бункеров и транспортировка золы и шлака на золоотвалы или шлакобетонных изделий.

До начала монтажа котлов и вспомогательного оборудования должны быть выполнены следующие строительные работы, начата кладка стен здания котельной, закончено устройство фундаментов под котлы, насосы, вентиляторы, борова, завершено устройство покрытий полов, подпольных дутьевых и других каналов и приямков. Котельная должна быть очищена от строительного мусора.

Если котельная имеет прочный бетонный пол толщиной не менее 200 мм, то топку котла выкладывают непосредственно на полу. При отсутствии бетонного пола под котлом устраивают бетонную подушку толщиной 300 мм. До монтажа котла с нижней топкой на затвердевшем фундаменте должны быть возведены стены топки и газоходов до уровня нижних головок секций стены топки, в которые закладывают подколосниковые балки.

Правильность закладки балок проверяют положением уложенных на них колосников.

Секции чугунного котла собирают, опирая их на боковые стенки топки. Под головки секции укладывают асбестовый картон. Секции соединяют на конических ниппелях. Вначале устанавливают крайнюю секцию, а к ней последовательно присоединяют все средние, а потом переднюю лобовую. Чтобы собираемые секции не упали, их раскрепляют боковыми упорами.

Перед сборкой секции очищают от формовочной земли, а внутренние поверхности ниппельных гнезд и наружные поверхности ниппелей - от ржавчины. Ниппельные гнезда смазывают графитной пастой. На середину ниппеля навертывают кольцо из асбестового шнура, пропитанного также графитной пастой. Ниппели вставляют в верхнее и нижнее ниппельные гнезда секции.

Секции стягивают двумя стяжными болтами, вставляемыми в верхнее и нижнее ниппельные отверстия. Под гайки стяжного болта прокладывают шайбы большого диаметра, которые перекрывают ниппельные гнезда. Секции стягивают, постепенно подвинчивая гайки одновременно на обоих болтах, чтобы секция не имела перекоса. Зазор между ниппельными головками не должен быть более 2 мм. Чтобы секции при сборке не были разорваны, их нужно стягивать плавно и равномерно, без рывков.

По окончании сборки пакета секций монтажные болты заменяют постоянными стяжными. К собранным пакетам присоединяют отводы и тройники, связывающие оба пакета между собой.

Монтаж котлов можно вести с использованием пакетов, собранных и испытанных на монтажном заводе. Такие пакеты, состоящие из комплекта секций одной половины котла, доставляют на объект и устанавливают на место автокраном.

Для удобства сборки секционных чугунных котлов и в целях безопасности производства работ применяют приспособление, приведенное на рис. 124.

Рис. 124. Приспособление для сборки секционных чугунных котлов и схемы его установки:
а - конструкция, б - схема установки приспособления при сборке котлов «Универсал-1» и «Универсал 2», в - то же, при сборке котла МГ-2, г - то же, при сборке котла «Энергия-3»; 1 - крайние опорные стойки, 2 - рейка, 3 - винтовые захваты 4 - консольная опора, 5 - средняя опорная стойка

После сборки котлы подвергают гидравлическому испытанию. Для этого на всех открытых патрубках ставят заглушки, оставив лишь отверстия для наполнения котла водой и для выпуска воздуха. Наполнив котел водой, давление поднимают до заданного с помощью присоединенного к котлу гидравлического пресса. Водогрейные котлы испытывают давлением, превышающим рабочее давление на 20%, но не менее 0,4 МПа, а паровые котлы давлением на 0,2 МПа выше рабочего давления. Сборка котлов считается правильной, если в течение 5 мин нахождения под заданным давлением оно не будет падать.

При гидравлическом испытании не должно быть течи или потения на стенках и соединениях котла. При появлении течи или потения места дефектов нужно обвести мелом, постепенно снизить давление, спустить воду из котла, устранить неисправности и вторично подвергнуть испытанию.

Закончив гидравлическое испытание, приступают к монтажу топки, обмуровке котла кирпичной кладкой или крупными блоками из жароупорного бетона или установке металлического кожуха; монтируют колосники, навешивают фронтовую плиту, загрузочную и зольниковую дверцы, присоедняют зольник к дутьевому каналу с помощью дутьевой коробки, устанавливают шиберные блоки, укрепляют канаты и контргрузы.

На смонтированный котел устанавливают арматуру. До установки арматуры на котел ее нужно разобрать, чтобы проверить, прочистить и протереть, затем вновь собрать и проверить на герметичность и прочность гидравлическим испытанием.

Центробежные насосы, как правило, доставляют на объекты с электродвигателями, проверенными и собранными в агрегаты на плите. До установки насосов необходимо очистить от строительного мусора гнезда, установить анкерные болты по шаблону, закрепить их на требуемой высоте и залить гнезда цементным раствором Через двое суток, когда цемент затвердеет, гайки отдинчивают и снимают шаблон.

Затем, положив деревянные клинья, на болты помещают центробежный насос с электродвигателем. Клинья постепенно раздвигают для того, чтобы анкерные болты полностью прошли в отверстия плиты насоса и электродвигателя. Затем навинчивают гайки, выверяют центробежный насос по отвесу и уровню, подливают под плиту цементный раствор, завинчивают гайки, устанавливают ограждение соединительной муфты Дутьевые вентиляторы устанавливают таким же способом.

Трубопроводы в котельной (рис. 125) монтируют из деталей и узлов, заготовленных на монтажных заводах, в следующем порядке. Сначала монтируют подающую 1 и обратную 2 гребенки, воздухосборники 3, предохранительную 4 и питательно-спускную 10 линии. Затем делают обвязку 5 центробежных насосов. Далее устанавливают коллекторы 9, грязевик 8, ручной насос 6 и соединяют их трубопроводом 7 с котлами, насосами и системой. Весь трубопровод должен быть предварительно проверен по замерным карточкам. Рекомендуется проверить также, не засорены ли трубы и узлы.

Рис. 125. Общий вид трубопроводов в котельных:
1 - подающая гребенка, 2 - обратная гребенка, 3 - воздухосборники) 4 - предохранительная линия, 5 -обвязка центробежных насосов 6 - ручной насос, 7 - трубопровод к котлам и системе отопления, 8 - грязевик, 9 - распределительные коллекторы 10 - питательно спускная линия

Трубопровод прокладывают с заданным уклоном не менее 0,002. Уклоны трубопровода должны быть направлены в сторону водоспускных устройств, а подъем - в сторону воздухоудаляющих устройств.

Трубопроводы собирают на сварке, за исключением участка, который присоединяется к котлу и насосу. Задвижки устанавливают и присоединяют к трубопроводу на фланцах, приваренных к нему. Участки трубопроводов, собираемые на сварке, должны быть тщательно подогнаны один к другому. При монтаже трубопроводов в котельной следует обеспечить доступ к задвижкам и другой арматуре. Все манометры необходимо устанавливать так, чтобы их показания были видны с пола. Манометры в узлах управления должны быть на одной высоте. Гильзы термометров надо опускать в трубопровод. Для установки термометров на трубопроводах малого диаметра в них рекомендуется вваривать участки труб диаметром 50 мм. Чтобы систему можно было заполнить водой или удалить из нее воду, в котельных устанавливают ручные насосы.

На водогрейных котлах для предупреждения повышения давления выше допустимого устанавливают два рычажных предохранительных клапана. Выкидную трубу от клапана выводят к раковине в котельной с таким расчетом, чтобы горячая вода не могла обжечь находящихся в котельной людей.

Загрузка...