domvpavlino.ru

Скорость распространения пламени. Влияние различных факторов на скорость распространения пламени Скорость распространения пламени в м

Скорость ламинарного горения – скорость с которой фронт пламени перемещается в направлении перпендикулярном к поверхности свежей ТВС.

–зона ламинарного горения;

–скорость ламинарного горения.

    Турбулентное горение.

Турбулентная скорость пламени – скорость, с которой фронт пламени перемещается в турбулезированном потоке.

–зона турбулентного горения;

–нормальные скорости маленьких частиц.

Ламинарное горение не обеспечивает необходимую скорость выделения тепла в двигателе, поэтому требуется турбулезация газового потока.

Уравнение Аррениуса:
– скорость химической реакции.

–константа химической реакции, зависящая от состава смеси и рода топлива;

–давление химической реакции;

–порядок химической реакции;

–универсальная газовая постоянная;

–температура химической реакции;

–энергия активации – энергия, необходимая для разрыва внутримолекулярных связей.

Влияние различных факторов на процесс горения в двс с искровым зажиганием.

    Состав смеси.


–верхний концентрационный предел;

–нижний концентрационный предел;

–нормальное горение;

мощностной состав смеси – максимальная мощность, развиваемая двигателем.

экономический состав смеси – максимальная экономичность.

    Степень сжатия.


С увеличение частоты оборотов, увеличивается фаза воспламенения, что приводит к позднему развитию процесса сгорания и уменьшению количества тепла выделившегося за цикл. Поэтому при изменении требуется регулирование угла опережения зажигания (УОЗ).

    Угол опережения зажигания.

Угол опережения зажигания – угол поворота коленвала от момента подачи искры до ВМТ.

П
од нагрузкой
понимают угол поворота дроссельной заслонки – именно ей регулируют нагрузку на двигатель.

–угол поворота дроссельной заслонки.

Основные нарушения процесса горения в двс с искровым зажиганием. Детонация.

Д
етонация
– взрывообразное горение смеси, сопровождающееся ударными волнами давления, распространяющимися по объему камеры сгорания. Детонация возникает в результате самовоспламенения удаленных от свечи участков смеси, вследствие интенсивного нагрева и сжатия при распространении фронта пламени.

При детонации:

Отражаясь от стенок камеры сгорания, ударная волна образует вторичные фронты пламени и очаги самовоспламенения. Внешне детонация проявляется в виде глухих стуков при работе двигателя на больших нагрузках.

Последствия работы двигателя с детонацией:

    Перегрев и прогорание отдельных узлов двигателя (клапаны, поршни, прокладки головки, электроды свечей);

    Механические разрушения деталей двигателя вследствие ударных нагрузок;

    Снижение мощности и экономичности работы.

Т.о. длительная работа с детонацией недопустима.

П
еречислим факторы, вызывающие детонацию:


Способность топлива к самовоспламенению характеризует детонационная стойкость , а детонационная стойкость оценивается октановым числом (ОЧ) .

ОЧ – численно равно объемной доли плохо дитонирующего изооктана смеси с легко дитонирующим нормальным гептаном, эквивалентным по детонационным свойствам данному бензину.

Изооктан – 100 ед., нормальный гептан – 0 ед.

Например: октановое число 92 означает, что данный бензин обладает такой же детонационной стойкостью как эталонная смесь из 92% изооктана и 8% нормального гептана.

А
– автомобильный бензин;

и – исследовательский метод получения бензина;

м – моторный метод (буква обычно не пишется).

В моторном методе исследования регулируют степень сжатия, пока не начнется детонация, и определяют по таблицам октановое число.

Моторные методы имитируют движение на полной нагрузке (грузовик за городом).

Исследовательский метод имитирует движение при частичной нагрузке (в городе).

Если октановое число избыточно велико, то снижается скорость распространения пламени. Процесс сгорания затягивается, что приводит к снижению КПД и повышению температуры отработавших газов. Следствием этого является падение мощности, повышение расхода топлива, перегрев двигателя и прогорание отдельных элементов. Максимальные показатели двигателя достигаются при октановом числе топлива близком к порогу детонации.

Способы борьбы с детонацией:

Нормальная скорость распространения пламени (uн) зависит от теплофизических свойств газовоздушной смеси. Но в еще большей степени скорость распространения зависит от ее физико-химических свойств? скорости горения V, и температуры в зоне реакции горения, ТГ:

т.е. uн пропорциональна скорости реакции окисления (V) и находится в экспоненциальной зависимости от обратной температуры зоны горения (Тг). Определяющим параметром, безусловно, будет скорость реакции. Запишем уравнение скорости химической реакции горения:

где k0 - предэкспоненциальный множитель из уравнения Аррениуса,

Сг, Сок - концентрации горючего и окислителя,

m, n - порядки реакции соответственно по горючему и окислителю,

Еа - энергия активации химической реакции.

Рассмотрим, как будет меняться скорость реакций окисления для смесей с разным соотношением горючего и окислителя (рис. 2).

Из графика видно, что для смеси стехиометрического состава (коэффициент избытка воздуха?=1) скорость реакции окисления максимальна.

При увеличении концентрации горючего в смеси выше стехиометрического количества, когда? становится < 1 (кислород находится в недостатке), горючее сгорает не полностью. В этом случае меньше выделится теплоты реакции горения Qгор и произойдёт снижение Tг.

Скорость реакции окисления по сравнению со стехиометрическим составом смеси уменьшится, причем как из-за снижения концентрации окислителя О2, так и температуры зоны горения. То есть при последовательном снижении? (что эквивалентно увеличению концентрации СГ в смеси) скорость реакции окисления? и температуры зоны горения Tг будут последовательно снижаться. На графике при CГ > СГстех кривая становится резко нисходящей. Снижение же скорости реакции окисления при? > 1 объясняется уменьшением тепловыделения в зоне горения в связи с более низкой концентрацией в ней горючего.

Рисунок 2. Зависимость скорости горения от концентрации горючего в смеси

Именно такая, как на рис.2, зависимость скорости реакции горения от концентрации горючего компонента в исходной смеси предопределяет параболический вид зависимости её других параметров процесса горения от состава смеси: температуры самовоспламенения и минимальной энергии зажигания, концентрационных пределов распространения пламени. Вид параболы имеет также и зависимость нормальной скорости распространения пламени uн от концентрации горючего в смеси СГ. На рис. 3 приведены такие зависимости для случая горения воздушно-пропановой смеси при различных значениях начальной температуры.

Рисунок 3. Зависимость скорости распространения пламени от концентрации пропана в воздухе при начальной температуре 311 K (1); 644 K (2); 811 K (3)

Согласно описанным выше представлениям, максимальная скорость распространения пламени (uнмах) должна соответствовать стехиометрической концентрации горючего. Однако экспериментально найденные её значения несколько сдвинуты в сторону богатых по содержанию горючих смесей. С увеличением начальной температуры смеси скорость распространения пламени должна повышаться, что и наблюдается на практике. Например, для воздушной смеси паров бензина и керосина она имеет вид, приведенный на рис. 4.

Рисунок 4. Зависимость скорости распространения пламени от начальной температуры воздушной смеси паров бензина и керосина с воздухом

Для различных веществ uн зависит от их химической природы и колеблется в довольно широких пределах (табл. 1). Для большинства смесей углеводородных топлив с воздухом uн < 1 м/с. При введении в горючую смесь избыточного воздуха или азота температура горения заметно снижается.

Таблица 1.

Нормальная скорость распространения пламени для некоторых горючих смесей

Введение в горючую смесь инертных и нейтральных газов: азота N2, аргона Аr, диоксида углерода СО2 разбавляет ее и тем самым снижает как скорость реакции окисления, так и скорость распространения пламени. Это хорошо видно из зависимостей, приведённых на рис. 5.

При этом при определённой (флегматизирующей) концентрации разбавителей горение вообще прекращается. Наиболее сильное влияние оказывает введение хладонов, так как они обладают ещё и ингибирующим действием на реакцию горения.

Как видно из рис. 5, введение в горючую смесь хладона (114В2) в 4 - 10 раз эффективнее, чем нейтральных газов - разбавителей.

Рисунок 5. Влияние концентрации разбавителей и хладона 114В2 на скорость распространения пламени в пропано-воздушной смеси (? = 1.15)

Флегматизирующая способность газов - разбавителей зависит от их теплофизических свойств, и в частности, от их теплопроводности и теплоёмкости.

1.3 Диффузионное горение газов

В реальных условиях в тех случаях, когда газ или пары воспламеняются после начала их аварийного истечения, наблюдается диффузионное горение. Типичным и довольно распространенным примером является диффузионное горение газа при разрушении магистральных трубопроводов, на аварийной фонтанирующей морской или сухопутной скважине газового или газоконденсатного месторождения, на газоперерабатывающих заводах.

Рассмотрим особенности такого горения. Предположим, что горит фонтан природного газа, основным компонентом которого является метан. Горение происходит в диффузионном режиме и имеет ламинарный характер. Концентрационные пределы распространения пламени (КПРП) для метана составляют 5 - 15 % об. Изобразим структуру пламени и построим графические зависимости изменения концентрации метана и скорости реакции горения от расстояния до осевой фонтана (рис. 6).


Рисунок 6. Схема диффузионного ламинарного пламени газового фонтана (а), изменение концентрации горючего (б), скорости реакции горения (в) по фронту пламени.

Концентрация газа снижается от 100 % на осевой фонтана до значения верхнего концентрационного предела воспламенения и далее до НКПР на его периферии.

Горение газа будет происходить только в интервале концентраций от ВКПР до НКПР, т.е. в пределах концентрационной области его воспламенения. Скорость реакции горения?(Т) будет равна нулю при концентрациях, выше ВКПР и ниже НКПР, и максимальной при. Таким образом, расстояние между ХНКПР и ХВКПР определяет ширину фронта диффузионного пламени:

фп = ХНКПР - ХВКПР. (3)

Ширина фронта для такого пламени имеет значения от 0.1 до 10 мм. Скорость реакции горения в этом случае определяется скоростью диффузии кислорода и по своей величине она примерно в 5?104 раз меньше скорости горения в кинетическом режиме. Во столько же раз ниже теплонапряженность, т.е. скорость выделения теплоты в диффузионно горящем факеле.

1.4 Особенности горения газовых струй. Условия стабилизации пламени

Условия горения газовых фонтанов удобнее рассмотреть на примере газовых струй. В реальных условиях такие струи являются турбулентными. При воспламенении струи газа, вытекающей из скважины, образуется так называемый диффузионный факел, имеющий симметричную веретенообразную форму (рис. 6). Химические реакции горения идут в тонком поверхностном слое факела, который в первом приближении можно считать поверхностью, где концентрации топлива и окислителя обращаются в ноль, а диффузионные потоки топлива и окислителя к этой поверхности находятся в стехиометрическом соотношении. Диффузионный фронт горения имеет нулевую скорость распространения, поэтому самостоятельно удержаться на текущей вверх струе не может.

Стабилизация пламени на струе происходит в самой нижней части факела, где реализуется другой механизм горения. При истечении газа из отверстия на начальном не горящем участке поверхности струи образуется турбулентный слой смешения газа и окружающего воздуха. В этом слое концентрация газа в радиальном направлении плавно падает, а концентрация окислителя нарастает. В средней части слоя смешения возникает гомогенная смесь топлива и окислителя с составом, близким к стехиометрическому. При воспламенении такой подготовленной к горению смеси фронт пламени может распространяться в слое смешения с конечной скоростью даже навстречу потоку, если скорость горения превышает по величине локальную скорость потока. Но так как по мере приближения к выходному отверстию скорость струи нарастает, то на некоторой высоте скорость струи (uf) становится равной скорости горения (?t), и пламя стабилизируется на поверхности струи на этой высоте. Точно рассчитать скорость турбулентного горения (?t) не представляется возможным. Однако оценки показывают, что значение (?t) приблизительно равно пульсационным скоростям струи, величина которых пропорциональна осевой скорости (um). Из экспериментальных данных следует, что максимальные значения среднеквадратичных пульсаций продольной компоненты скорости составляют 0.2um. Принимая эту величину за скорость турбулентного горения, можно считать, что максимальная скорость распространения пламени навстречу фонтанирующей со скоростью 300-450 м/с струе газа будет порядка 50 м/с.

1.5 Оценка дебита горящих газовых фонтанов

При тушении пожаров мощных газовых фонтанов возникает необходимость в оценке дебита (D) горящего фонтана, так как расход газа является одним из основных параметров, определяющих объемы работ и материально-технических средств, необходимых для ликвидации аварии. Однако непосредственное измерение расхода горящего фонтана в большинстве случаев оказывается невозможным, а эффективных дистанционных способов определения расхода струи не существует. Расход мощных газовых фонтанов может быть достаточно точно определен по высоте факела (Н).

Известно, что высота турбулентного факела, образующегося при горении нормально расширенных газовых струй с дозвуковой скоростью истечения, не зависит от скорости или расхода струи, а определяется лишь диаметром отверстия (d), из которого струя вытекает, теплофизическими свойствами газа и его температурой (Т) на выходе из отверстия.

Известна эмпирическая формула расчёта дебита фонтана по высоте факела при горении природного газа:

D = 0.0025Hф 2, млн. м3/сутки. (4)

На реальных пожарах ламинарный режим горения практически не встречается. Газ, как в пласте газового месторождения, так и в транспортных трубопроводах и в технологических установках, находится под давлением. Поэтому расходы газа при аварийном истечении будут очень большими? до 100 м3/с на пожарах фонтанирующих газовых скважин (до 10 млн. м3/сутки). Естественно, что в этих условиях режимы истечения, а значит, и режимы горения будут турбулентными.

Для расчета сил и средств на тушение горящих газовых факелов необходимо знать расход газа. Исходные данные для его расчета практически всегда отсутствуют, поскольку неизвестны либо давление газа в технологическом оборудовании, либо в пласте месторождения. Поэтому на практике пользуются экспериментально установленной зависимостью (4) высоты пламени факела от расхода газа, расчётные данные при использовании которой приведены в табл. 2.

Таблица 2.

Зависимость высоты пламени от расхода газа газового фонтана при различных режимах горения

При адиабатическом, т.е. не сопровождающемся тепловыми потерями сгорании, весь запас химической энергии горючей системы переходит в тепловую энергию продуктов реакции. Температура продуктов адиабатического сгорания не зависит от скорости реакций, протекающих в пламени, а лишь от их суммарного теплового эффекта и теплоемкостей конечных продуктов. Эта величина называется адиабатической температурой горения Т г. Она является важной характеристикой горючей среды. У большинства горючих смесей величина Т г лежит в пределах 1500 ÷ 3000°К. Очевидно, что Т г – максимальная температура продуктов реакции в отсутствие внешнего подогрева. Фактическая температура продуктов сгорания может быть только меньше Т г в случае возникновения тепловых потерь.

Согласно тепловой теории горения, разработанной советскими уче­ными Я. Б. Зельдовичем и Д. А. Франк-Каменецким, распространение пламени происходит путем передачи тепла от продуктов горения к несгоревшей (све­жей) смеси. Распределение температур в газовой смеси с учетом тепловыде­ления от химической реакции и теплопроводности показано на рис. 6.1:

Рис. 6.1. Распределение температур в газовой смеси

Фронт пламени, т.е. зона, в которой происходит реакция горения и ин­тенсивный саморазогрев сгорающего газа, начинается при температуре само­воспламенения Т св и заканчивается при температуре Т г.

Перед распространяющимся вправо фронтом пламени находится свежая смесь, а сзади – продукты горения. Считается, что в зоне подогрева реакция протекает настолько медленно, что выделением тепла пренебрегают.

Процесс теплопередачи при стационарном распространении пламени не приводит к потерям тепла и понижению температуры по сравнению с Т г непосредственно за фронтом пламени. Теплоотвод из каждого сгорающего слоя газа при поджигании соседнего, еще не нагретого, скомпенсирована аналогичным количеством тепла, ранее полученным в поджигающем слое при его собственном поджигании. Дополнительное тепло начального поджигающего импульса заметно не искажает стационарного режима горения, так как его роль все более уменьшается по мере увеличения количества сгоревшего газа.

Продукты сгорания теряют тепло только в результате излучения и при соприкосновении с твердой поверхностью. Если излучение незначительно, такое сгорание оказывается практически адиабатическим. Заметные тепловые потери возможны лишь на определенном расстоянии за фронтом пламени.



Таким образом, инициирование горения газовой смеси в одной точке приводит к нагреву близлежащего слоя, который разогревается путем тепло­проводности от продуктов реакции до самовоспламенения. Сгорание этого слоя влечет за собой воспламенение следующего и т.д. до полного выгорания горючей смеси. Отводимое из зоны реакции в свежую смесь тепло полностью компенсируется выделением тепла реакции, и возникает устойчивый фронт пламени. В результате послойного сгорания фронт пламени перемещается по смеси, обеспечивая распространение пламени.

Если свежая смесь движется навстречу фронту пламени со скоростью, равной скорости распространения пламени, то пламя будет неподвижным (стационарным).

К свежей смеси от единицы поверхности пламени в единицу времени путем теплопроводности подводится количество тепла:

(6.7)

где – коэффициент теплопроводности; – ширина фронта пламени.

Это тепло расходуется на нагрев свежей смеси от начальной температуры до температуры горения :

где с – удельная теплоемкость; – плотность смеси.

С учетом уравнений (6.7) и (6.8) при U пл =υ г скорость распространения пла­мени определяется соотношением:

, (6.9)

где – коэффициент температуропроводности.

Поскольку скорость горения очень сильно зависит от температуры, сгорание основной массы газа происходит в зоне, температура которой близка к

Скорость химической реакции определяется уравнением:

(6.10)
Тогда скорость распространения пламени:

(6.11)

где b – показатель, зависящий от свойств смеси.

Таким образом, пламя не сможет распространяться по горючей смеси, если его температура будет ниже теоретической температуры горения на ве­личину .

Максимальная скорость распространения пламени наблюдается не при стехиометрическом соотношении горючего и окислителя в смеси, а при избытке горючего. При предварительном подогреве смеси значительно увеличивается скорость распространения пламени в реальных условиях, так как она пропорциональна квадрату начальной температуры смеси.

1) Влажность материала.

2) Влияние ориентации образца в пространстве.

При отрицательных углах наклона (направление движение пламени сверху вниз) скорость распространения пламени или не изменяется или же слабо уменьшается. При увеличении положительного угла наклона (направление движения пламени снизу вверх) свыше 10-15 0 скорость распространения пламени резко возрастает.

3) Влияние скорости и направления воздушных потоков.

С увеличением скорости попутного ветра улучшается газообмен, уменьшается угол наклона пламени к образцу. Скорость распространения возрастает.

Поток воздуха, направленный против направления движения пламени, оказывает двоякое влияние на скорость распространения пламени.

В результате аэродинамического торможения и охлаждения прогретых участков поверхности перед фронтом пламени скорость распространения пламени снижается. С другой стороны, поток воздуха интенсифицирует смешение продуктов пиролиза с окислителем, быстрее происходит образование гомогенной горючей смеси, носик пламени приближается к поверхности твердого материала, что, в свою очередь, приводит к дальнейшему увеличению интенсивности, и это ускоряет распространение пламени.

4) Влияние геометрических размеров образца.

Различают термически толстые и термически тонкие образцы.

Термическая толщина - это толщина слоя твердого материала, прогретого перед фронтом пламени выше начальной температуры к моменту распространения пламени на данный участок поверхности.



5) Влияние материала подложки.

Если горючий материал соприкасается с материалом (подложкой), теплофизические свойства которого отличаются от воздуха, то это также будет влиять на скорость распространения пламени (наклеенная бумага, изоляция проводов и т.п.). Если l подл > l гор. мат. , то тепло будет интенсивно отводиться от образца, и скорость распространения будет меньше, чем в случае отсутствия подложки.

6) Влияние содержания кислорода в окружающей среде.

С увеличением содержания кислорода в окружающей среде скорость распространения пламени увеличивается.

7. Влияние начальной температуры образца.

Для древесины увеличение начальной температуры до 230–250 о С (температурная область пиролиза) приводит к резкому увеличению u л.

Выгорание твердых материалов

Одновременно с распространением пламени по поверхности материала начинается процесс его выгорания. Закономерности выгорания твердых материалов существенно зависят от характера превращения твердой фазы в газообразные продукты.

Если разложение твердой фазы протекает в узком приповерхностном слое без образования углистого слоя, то в этом случае горение протекает с постоянной скоростью. На поверхности твердой фазы после воспламенения устанавливается постоянная температура, равная температуре кипения или возгонки вещества.

Механизм горения твердых веществ, протекающий с образованием углистого остатка на поверхности горения, более сложен. Так горят практически все вещества растительного происхождения, некоторые пластмассы, содержащие в своем составе негорючие или трудногорючие наполнители (тальк, сажу и т.п.). К наиболее распространенным горючим веществам растительного происхождения такого типа относится древесина. В момент воспламенения за счет теплового потока от зоны пламени температура поверхностного слоя древесины быстро возрастает до 450-500 о С. Происходит интенсивное разложение веществ с образованием летучих продуктов и древесного угля, при этом температура на поверхности повышается до 600 о С.

По глубине горящей древесины имеют место области с различными физическими и физико-химическими характеристиками. Условно их можно разделить на 4 зоны:

I - древесный уголь, состоящий на 99% из углерода;

II - древесина с различной степенью пиролизованности;

III - непиролизованная, сухая древесина;

IV - исходная древесина.

По мере выделения летучих продуктов из твердой фазы при горении древесины протекает переугливание материала на все большую глубину. Рост толщины углистого слоя обусловливает повышение его термического сопротивления и, следовательно, снижает скорость прогрева и пиролиза еще не разложившихся слоев древесины, и скорость пламенного горения постепенно снижается. Пламенное горение древесины прекращается при снижении массовой скорости выделения летучих до 5 г/(м 2 ·с). Толщина слоя угля при этом достигает 15-20 мм.

Прекращение пламенного горения древесины открывает доступ кислорода воздуха к нагретому до температуры 650-700 о С углю. Начинается второй этап горения древесины - гетерогенное окисление углистого слоя в основном по реакции С + О 2 ® СО 2 + 33000 кДж/кг, температура углистого слоя возрастает до 800 о С, и процесс гетерогенного горения угля еще более интенсифицируется.

Реальная картина перехода гомогенного горения в гетерогенное несколько отличается от приведенной.

Основным количественным параметром, характеризующим процесс выгорания твердых материалов, является массовая скорость выгорания, которая представляет собой один из параметров, обусловливающих динамику пожара.

Приведенная массовая скорость выгорания представляет собой количество вещества, выгорающего в единицу времени с единицы площади пожара.

Горение металлов

По характеру горения металлы делятся на две группы: летучие и нелетучие.

Летучие металлы имеют Т пл < 1000 К, Т кип < 1500 К. К ним относятся щелочные металлы (литий, натрий, калий и др.) и щелочноземельные (магний, кальций).

Нелетучие металлы имеют Т пл >1000 К, Т кип >2500 К. Механизм горения во многом определяется свойствами оксида металла. Т пл летучих металлов ниже Т пл их оксидов. При этом последние представляют собой достаточно пористые образования.

При поднесении ИЗ к поверхности металла происходит его испарение и окисление. При достижении концентрации паров, равной нижнему концентрационному пределу воспламенения, происходит их воспламенение. Зона диффузионного горения устанавливается у поверхности, большая доля тепла передается металлу и он нагревается до Т кип. Образующиеся пары, свободно диффундируя через пористую оксидную пленку, поступают в зону горения. Кипение металла вызывает периодическое разрушение оксидной пленки, что интенсифицирует горение. Продукты горения (оксиды металлов) диффундируют не только к поверхности металла, способствуя образованию корки оксида, но и в окружающее пространство, где, конденсируясь, образуют твердые частички в виде белого дыма. Образование белого плотного дыма является визуальным признаком горения летучих металлов.

У нелетучих металлов, обладающих высокими температурами фазового перехода, при горении на поверхности образуется весьма плотная оксидная пленка, которая хорошо сцепляется с поверхностью металла. В результате этого скорость диффузии паров металла через пленку резко снижается и крупные частицы, например, алюминия и бериллия, гореть не способны. Как правило, пожары таких металлов имеют место в том случае, когда они находятся в виде стружки, порошков и аэрозолей. Их горение происходит без образования плотного дыма. Образование плотной оксидсидной пленки на поверхности металла приводит к взрыву частицы. Это явление, особенно часто наблюдающееся при движении частицы в высокотемпературной окислительной среде, связывают с накоплением паров металлов под оксидной пленкой с последующим внезапным ее разрывом. Это, естественно, приводит к резкой интенсификации горения.

Горение пылей

Пыль - это дисперсная система, состоящая из газообразной дисперсионной среды (воздух и т.д.) и твердой дисперсной фазы (мука, сахар, древесина, уголь и т.д.).

Факторы, влияющие на скорость распространения пламени по пылевоздушным смесям:

1) Концентрация пыли.

Как и в случае горения гомогенной газовоздушной смеси, максимальная скорость распространения пламени имеет место для смесей несколько выше стехиометрического состава. Для торфяной пыли это 1,0-1,5 кг/м 3 .

2) Зольность.

При увеличении зольности уменьшается концентрация горючего компонента и, соответственно, уменьшается скорость распространения пламени.

С уменьшением содержания кислорода скорость распространения пламени снижается.

Классификация пылей по взрывопожарной опасности.

По взрывопожарной опасности пыли делятся на классы:

I класс - наиболее взрывоопасная - j н до 15 г/м 3 ;

II класс - взрывоопасная - 15 г/м 3 < j н < 65 г/м 3 ;

III класс - наиболее пожароопасная - j н > 65 г/м 3 ; Т св до 250 о С;

IV класс - пожароопасная - j н > 65 г/м 3 ; Т св > 250 о С.

ДИНАМИКА РАЗВИТИЯ ПОЖАРА

Под динамикой пожара понимают совокупность законов и закономерностей, описывающих изменение основных параметров пожара во времени и пространстве. О характере пожара можно судить по совокупности большого количества его параметров: по площади пожара, по температуре пожара, скорости его распространения, интенсивности тепловыделения, интенсивности газообмена, интенсивности задымления и т. д.

Параметров пожара так много, что на одних видах пожаров одни из них являются основными, а на других - вторичными. Все зависит от того, какие цели поставлены в исследование того или иного вида пожара.

В качестве основных параметров, изменяющихся во времени, для изучения динамики пожара принимаем площадь пожара, температуру пожара, интенсивность газообмена и задымления, скорость распространения пожара. Эти параметры пожара наиболее доступны измерению, анализу, расчетам. Они служат исходными данными для определения вида необходимой техники и расчета сил и средств при тушении пожаров, проектировании автоматических систем пожаротушения и т. п.

С момента возникновения пожара, при свободном его развитии, до полного его прекращения пожар в помещении можно разделить на фазы.

Фазы пожара

I. Фаза загорания.

Пламя возникает от постороннего источника зажигания на небольшом участке и медленно распространяется. Вокруг зоны горения образуется конвективный газовый поток, который обеспечивает необходимый газообмен. Поверхность горючего материала прогревается, размер факела увеличивается, увеличивается газообмен, растет лучистый тепловой поток, который поступает в окружающее пространство и на поверхность горючего материала. Продолжительность фазы загорания колеблется от 1 до 3 мин.

II. Фаза начала пожара.

Температура среды в помещении медленно растет. Весь предыдущий процесс повторяется, но уже с большей интенсивностью. Продолжительность второго этапа примерно 5-10 мин.

III. Фаза объемного развития пожара - бурный процесс нарастания всех перечисленных параметров. Температура в помещении достигает 250 -300°С. Начинается «объемная» фаза развития пожара и фаза объемного распространения пожара. При температуре газовой среды в помещении 300°С происходит разрушение остекления. Догорание при этом может происходить и за пределами помещения (огонь вырывается из проемов наружу). Скачком изменяется интенсивность газообмена: она резко возрастает, интенсифицируется процесс оттока горячих продуктов горения и приток свежего воздуха в зону горения.

IV.Фаза пожара .

На данной фазе температура в помещении может кратковременно снизиться. Но в соответствии с изменением условий газообмена резко возрастают такие параметры пожара, как полнота сгорания, скорость выгорания и распространения процесса горения. Соответственно резко возрастает и общее тепловыделение на пожаре. Температура, несколько снизившаяся в момент разрушения остекления из-за притока холодного воздуха, резко возрастает, достигая 500 - 600 °С. Процесс развития пожара бурно интенсифицируется. Увеличивается численное значение всех ранее упомянутых параметров пожара. Площадь пожара, среднеобъемная температура в помещении (800-900 °С), интенсивность выгорания пожарной нагрузки и степень задымления достигают максимума.

V. Фаза стационарного горения.

Параметры пожара стабилизируются. Это обычно наступает на 20-25 мин пожара и, в зависимости от величины пожарной нагрузки, может длиться 20-30 мин.

VI. Фаза затухания.

Интенсивность горения постепенно снижается, т.к. основная часть пожарной нагрузки уже выгорела. В помещении накопилось большое количество продуктов горения. Среднеобъемная концентрация кислорода в помещении снизилась до 16-17 %, а концентрация продуктов горения, препятствующих интенсивному горению, возросла до предельного значения. Интенсивность лучистого переноса тепла к горючему материалу уменьшилась из-за снижения температуры в зоне горения. Из-за повышения оптической плотности среды интенсивность горения медленно снижается, что ведет к снижению всех остальных параметров пожара. Площадь пожара не сокращается: она может расти или стабилизироваться.

VII. Фаза догорания.

Для этой заключительной фазы пожара характерно медленное тление, после чего через некоторое, иногда достаточно продолжительное, время горение прекращается.

Основные параметры пожара

Рассмотрим количественно некоторые основные параметры пожара, определяющие динамику его развития. Определим интенсивность тепловыделения на пожаре, так как это один из основных параметров процесса горения:

Q=βQ р н V м ’Sп, (кДж/с)

где β и Q р н - постоянные (коэффициент недожога и низшая теплота сгорания пожарной нагрузки);

V м ¢ - приведенная массовая скорость выгорания;

S п – площадь пожара;

V м ¢ и S п зависят от времени развития пожара, темпераыура пожара, интенсивности газообмена и др.

Приведенную массовую скорость выгорания V м ¢ определяем по формуле:

v м ¢ = (а×Т п +b×I г) v м o ¢

где а, b - эмпирические коэффициенты;

v м o ¢ - приведенная массовая скорость выгорания пожарной нагрузки для данного вида горючего материала;

Т п - среднее значение температуры пожара;

I г - интенсивность газообмена.

Зависимость площади пожара от основных параметров его развития имеет вид:

S п = k (v р ∙ τ) n

где к и n – коэффициенты, зависящие от геометрической формы площади пожара;

v р – линейная скорость распространения пожара;

τ – время его свободного развития.

k = π; n = 2 k = ; n = 2 k = 2а; n = 1

k = ; n = 2 k = 2а; n = 1

Линейная скорость распространения пожара зависит от вида горючей нагрузки, средней температуры пожара и интенсивности газообмена:

v p = (а 1 T п + b 1 I г)v po

где а 1 и b 1 - эмпирические коэффициенты, устанавливающие зависимость линейной скорости распространения пожара от средней температуры и интенсивности газообмена, численное значение которых определяется опытным путем для каждого конкретного вида горючего;

v р o - линейная скорость распространения горения для данного вида горючего.

По мере развития пожара температура пожара и интенсивность газообмена будут расти, увеличивая линейную скорость распространения горения и приведенную массовую скорость выгорания.

Тепловой режим на пожаре

Возникновение и скорость протекания тепловых процессов зависят от интенсивности тепловыделения в зоне горения, т.е. от теплоты пожара. Количественной характеристикой изменения тепловыделения на пожаре в зависимости от различных условий горения служит температурный режим. Под температурным режимом пожара понимают изменение температуры во времени. Определение температуры пожара как экспериментальным, так и расчетным методами чрезвычайно сложно. Для инженерных расчетов при решении ряда практических задач температуру пожара определяют из уравнения теплового баланса. Баланс тепла на пожаре составляется не только для определения температуры пожара, но и для выявления количественного распределения тепловой энергии. В общем случае тепловой баланс пожара для данного момента времени может быть представлен следующим образом:

Q п = Q пг +Q к +Q л

где Q п - тепло, выделяющееся на пожаре, кДж;

Q пг - тепло, содержащееся в продуктах горения, кДж;

Q к - тепло, передаваемое из зоны горения конвекцией воздуху, омывающему зону, но не участвующему в горении, кДж;

Q л – тепло, передаваемое из зоны горения излучением.

Для открытых пожаров установлено, что доля тепла, передаваемого из зоны горения излучением и конвекцией, составляет 40-50% от Q п. Оставшаяся доля тепла (60-70% от Q п) идет на нагрев продуктов горения. Таким образом, 60-70% от теоретической температуры горения данного горючего материала дадут приближенное значение температуры пламени. Температура открытых пожаров зависит от теплотворной способности горючих материалов, скорости их выгорания и метеорологических условий. В среднем максимальная температура открытого пожара для горючих газов составляет 1200 - 1350°С, для жидкостей – 1100 - 1300°С и для твердых горючих материалов органического происхождения – 1100 - 1250°С.

При внутреннем пожаре на температуру влияет больше факторов: природа горючего материала, величина пожарной нагрузки и ее расположение, площадь горения, размеры здания (площадь пола, высота помещения и т.д.) и интенсивность газообмена (размеры и расположение проемов). Рассмотрим подробнее влияние перечисленных факторов.

Пожар можно разделить на три характерных периода по изменению температуры: начальный, основной и заключительный.

Начальный период - характеризуется сравнительно невысокой среднеобъемной температурой.

Основной период - в течение его сгорает 70-80 % общей нагрузки горючих материалов. Окончание этого периода происходит, когда среднеобъемная температура достигает наибольшего значения или уменьшается не более чем до 80% от максимального значения.

Заключительный период - характеризуется убыванием температуры вследствие выгорания пожарной нагрузки.

Рис 9.1. Изменение температуры внутреннего пожара во времени: 1 - кривая конкретного пожара; 2 - стандартная кривая

Поскольку скорость роста и абсолютное значение температуры пожара в каждом конкретном случае имеют свои характерные значения и особенности, введено понятие стандартной температурной кривой (рис. 21.2), обобщающей наиболее характерные особенности изменения температуры внутренних пожаров. Стандартная температура описывается уравнением.

Загрузка...