domvpavlino.ru

Организация занимающаяся установкой кип на магистральном газопроводе. Контрольно-измерительные пункты КИП.РСЗ. Поплавковый дифференциальный манометр

В ГРП для контроля работы оборудования и измерения параметров газа применяют следующие КИП:

  • термометры для замера температуры газа;
  • показывающие и регистрирующие (самопишущие) манометры для замера давления газа;
  • приборы для регистрации перепада давлений на скоростных расходомерах;
  • приборы учета расхода газа (газовые счетчики или расходомеры).

Все КИП должны подвергаться государственной или ведомственной периодической поверке и быть в постоянной готовности к выполнению измерений. Готовность обеспечивается метрологическим надзором. Метрологический надзор заключается в осуществлении постоянного наблюдения за состоянием, условиями работы и правильностью показаний приборов, осуществлении их периодической проверки, изъятии из эксплуатации пришедших в негодность и не прошедших проверки приборов. КИП должны устанавливаться непосредственно у места замера или на специальном приборном щитке. Если КИП монтируют на приборном щитке, то используют один прибор с переключателями для замера показаний в нескольких точках.

КИП присоединяют к газопроводам стальными трубами. Импульсные трубки соединяют сваркой или резьбовыми муфтами. Все КИП должны иметь клейма или пломбы органов Росстандарта.

КИП с электрическим приводом, а также телефонные аппараты должны быть во взрывозащищенном исполнении, в противном случае их ставят в помещении, изолированном от ГРП.

К наиболее распространенным видам КИП в ГРП относятся приборы, рассматриваемые далее в настоящем разделе.

Приборы для измерения давления газа подразделяются:

  • на жидкостные приборы, в которых измеряемое давление определяется величиной уравновешивающего столба жидкости;
  • пружинные приборы, в которых измеряемое давление определяется величиной деформации упругих элементов (трубчатые пружины, сильфоны, мембраны).

Жидкостные манометры используют для замера избыточных давлений в пределах до 0,1 МПа. Для давлений до 10 МПа манометры заполняют водой или керосином (при отрицательных температурах), а при измерении более высоких давлений - ртутью. К жидкостным манометрам относятся и дифференциальные манометры (дифманометры). Их применяют для замеров перепада давления.

Дифференциальный манометр ДТ-50 (рисунок ниже), Толстостенные стеклянные трубки прочно закрепляют в верхней и нижней стальных колодках. Вверху трубки присоединяют к камерам-ловушкам, предохраняющим трубки от выброса ртути в случае повышения максимального давления. Там же расположены игольчатые вентили, с помощью которых можно отключать стеклянные трубки от измеряемой среды, продувать соединительные линии, а также выключать и включать дифманометр. Между трубками расположены измерительная шкала и два указателя, которые можно устанавливать на верхний и нижний уровни ртути в трубках.

Дифференциальный манометр ДТ-50

а - конструкция; б - схема расположения каналов; 1 - вентили высокого давления; 2, 6 - колодки; 3 - камеры-ловушки; 4 - измерительная шкала; 5 - стеклянные трубки; 7 - указатель

Дифманометры можно использовать и как обычные манометры для замера избыточных давлений газа, если одну трубку вывести в атмосферу, а другую - в измеряемую среду.

Манометр с одновитковой трубчатой пружиной (рисунок ниже). Изогнутая пустотелая трубка, закреплена нижним неподвижным концом к штуцеру, с помощью которого манометр присоединяют к газопроводу. Второй конец трубки запаян и шарнирно связан с тягой. Давление газа через штуцер передается на трубку, свободный конец которой через тягу вызывает перемещение сектора, зубчатого колеса и оси. Пружинный волосок обеспечивает сцепление зубчатого колеса и сектора и плавность хода стрелки. Перед манометром устанавливают отключающий кран, позволяющий при необходимости снять манометр и заменить его. Манометры в процессе эксплуатации должны проходить государственную поверку один раз в год. Рабочее давление, измеряемое манометром, должно находиться в пределах от 1/3 до 2/3 их шкалы.

Манометр с одновитковой трубчатой пружиной

1 - шкала; 2 - стрелка; 3 - ось; 4 - зубчатое колесо; 5 - сектор; 6 - трубка; 7 - тяга; 8 - пружинный волосок; 9 - штуцер

Самопишущий манометр с многовитковой пружиной (рисунок ниже). Пружина выполнена в виде сплюснутой окружности диаметром 30 мм с шестью витками. Вследствие большой длины пружины ее свободный конец может перемещаться на 15 мм (у одновитковых манометров - только на 5-7 мм), угол раскручивания пружины достигает 50-60°. Такое конструктивное исполнение позволяет применять простейшие рычажные передаточные механизмы и осуществлять автоматическую запись показаний с дистанционной передачей. При подключении манометра к измеряемой среде свободный конец пружины рычага будет поворачивать ось, при этом перемещение рычагов и тяги будет передаваться оси. На оси закреплен мостик, который соединен со стрелкой. Изменение давления и перемещение пружины через рычажный механизм передаются стрелке, на конце которой установлено перо для записи измеряемой величины давления. Диаграмма вращается с помощью часового механизма.

Схема самопишущего манометра с многовитковой пружиной пружиной

1 - многовитковая пружина; 2, 4, 7 - рычаги; 3, 6 - оси; 5 - тяга; 8 - мостик; 9 - стрелка с пером; 10 - картограмма

Поплавковые дифференциальные манометры.

Широкое распространение в газовом хозяйстве нашли поплавковые дифманометры (рисунок ниже) и сужающие устройства. Сужающие устройства (диафрагмы) служат для создания перепада давления. Они работают в комплекте с дифманометрами, измеряющими создаваемый перепад давления. При установившемся расходе газа полная энергия потока газа складывается из потенциальной энергии (статического давления) и кинетической энергии, то есть энергии скорости.

До диафрагмы поток газа имеет начальную скорость ν 1 в узком сечении эта скорость возрастает до ν 2 , после прохождения диафрагмы лоток расширяется и постепенно восстанавливает прежнюю скорость.

При возрастании скорости потока увеличивается его кинетическая энергия и соответственно уменьшается потенциальная энергия, то есть статическое давление.

За счет разности давлений Δp = p ст1 - p ст2 ртуть, находящаяся в дифманометре, перемещается из поплавковой камеры в стакан. Вследствие этого расположенный в поплавковой камере поплавок опускается и перемещает ось, с которой связаны стрелки прибора, показывающего расход газа. Таким образом, перепад давления в дроссельном устройстве, измеренный с помощью дифференциального манометра, может служить мерой расхода газа.

Поплавковый дифференциальный манометр

а - конструктивная схема; б - кинематическая схема; в - график изменения параметров газа; 1 - поплавок; 2 - запорные вентили; 3 - диафрагма; 4 - стакан; 5 - поплавковая камера; 6 - ось; 7 - импульсные трубки; 8 - кольцевая камера; 9 - шкала указателя; 10 - оси; 11 - рычаги; 12 - мостик пера; 13 - перо; 14 - диаграмма; 15 - часовой механизм; 16 - стрелка

Зависимость между перепадом давления и расходом газа выражается формулой

где V - объем газа, м 3 ; Δp - перепад давления, Па; К - коэффициент, постоянный для данной диафрагмы.

Значение коэффициента К зависит от соотношения диаметров отверстия диафрагмы и газопровода, плотности и вязкости газа.

При установке в газопроводе центр отверстия диафрагмы должен совпадать с центром газопровода. Отверстие диафрагмы со стороны входа газа выполняют цилиндрической формы с коническим расширением к выходу потока. Диаметр входного отверстия диска определяют расчетным путем. Входная кромка отверстия диска должна быть острой.

Нормальные диафрагмы могут применяться для газопроводов с диаметром от 50 до 1200 мм при условии 0,05 < m < 0,7. Тогда m = d 2 /D 2 где m - отношение площади отверстия диафрагмы к поперечному сечению газопровода; d и D - диаметры отверстия диафрагмы и газопровода.

Нормальные диафрагмы могут быть двух видов: камерные и дисковые. Для отбора более точных импульсов давления диафрагма размещается между кольцевыми камерами.

Плюсовый сосуд присоединяют к импульсной трубке, отбирающей давление до диафрагмы; к минусовому сосуду подводят давление, отбираемое после диафрагмы.

При наличии расхода газа и перепада давления часть ртути из камеры выжимается в стакан (рисунок выше). Это вызывает перемещение поплавка и соответственно стрелки, указывающей расход газа, и пера, отмечающего на диаграмме величину перепада давления. Диаграмма приводится в движение от часового механизма и делает один оборот в сутки. Шкала диаграммы, разделенная на 24 части, позволяет определить расход газа за 1 ч. Под поплавком помещается предохранительный клапан, который разобщает сосуды 4 и 5 в случае резкого перепада давления и тем самым предотвращает внезапный выброс ртути из прибора.

Сосуды сообщаются с импульсными трубками диафрагмы через запорные вентили и уравнительный вентиль, который в рабочем положении должен быть закрыт.

Силъфонные дифманометры (рисунок ниже) предназначены для непрерывного измерения расхода газа. Действие прибора основано на принципе уравновешивания перепада давления силами упругих деформаций двух сильфонов, торсионной трубки и винтовых цилиндрических пружин. Пружины - сменные, их устанавливают в зависимости от измеряемого перепада давлений. Основные части дифманометра - сильфонный блок и показывающая часть.

Принципиальная схема сильфонного дифманометра

1 - сильфонный блок; 2 - плюсовый сильфон; 3 - рычаг; 4 - ось; 5 - дроссель; 6 - минусовый сильфон; 7 - сменные пружины; 8 - шток

Сильфонный блок состоит из сообщающихся между собой сильфонов, внутренние полости которых заполнены жидкостью. Жидкость состоит из 67% воды и 33% глицерина. Сильфоны связаны между собой штоком 8. В сильфон 2 подводится импульс до диафрагмы, а в сильфон 6 - после диафрагмы.

Под действием более высокого давления левый сильфон сжимается, вследствие чего жидкость, находящаяся в нем, через дроссель перетекает в правый сильфон. Шток, жестко соединяющий донышки сильфонов, перемещается вправо и через рычаг приводит во вращение ось, кинематически связанную со стрелкой и пером регистрирующего и показывающего прибора.

Дроссель регулирует скорость перетекания жидкости и тем самым снижает влияние пульсации давления на работу прибора.

Для соответствующего предела измерения применяют сменные пружины.

Счетчики газа. В качестве счетчиков могут использоваться ротационные или турбинные счетчики.

В связи с массовой газификацией промышленных предприятий и котельных, увеличением видов оборудования возникла необходимость в измерительных приборах с большой пропускной способностью и значительным диапазоном измерений при небольших габаритных размерах. Этим условиям в большей мере удовлетворяют ротационные счетчики, в которых в качестве преобразовательного элемента применяются 8-образные роторы.

Объемное измерение в этих счетчиках осуществляется вследствие вращения двух роторов за счет разности давлений газа на входе и на выходе, Необходимый для вращения роторов перепад давления в счетчике составляет до 300 Па, что позволяет использовать эти счетчики даже на низком давлении. Отечественная промышленность выпускает счетчики РГ-40-1, РГ-100-1, РГ-250-1, РГ-400-1, РГ-600-1 и РГ-1000-1 на номинальные расходы газа от 40 до 1000 м 3 /ч и давление не более 0,1 МПа (в системе единиц СИ расход 1 м 3 /ч = 2,78*10 -4 м 3 /с). При необходимости можно применять параллельную установку счетчиков.

Ротационный счетчик РГ (рисунок ниже) состоит из корпуса, двух профилированных роторов, коробки зубчатых колес, редуктора, счетного механизма и дифференциального манометра. Газ через входной патрубок поступает в рабочую камеру. В пространстве рабочей камеры размещены роторы, которые под действием давления протекающего газа приводятся во вращение.

Схема ротационного счетчика типа РГ


1 - корпус счетчика; 2 - роторы; 3 - дифференциальный манометр; 4 - указатель счетного механизма

При вращении роторов между одним из них и стенкой камеры образуется замкнутое пространство, которое заполнено газом. Вращаясь, ротор выталкивает газ в газопровод. Каждый поворот ротора передается через коробку зубчатых колес и редуктор счетному механизму. Таким образом учитывается количество газа, проходящего через счетчик.

Ротор подготавливают к работе следующим образом:

  • снимают верхний и нижний фланцы, затем роторы промывают мягкой кистью, смоченной в бензине, поворачивая их деревянной палочкой, чтобы не повредить шлифованную поверхность;
  • затем промывают обе коробки зубчатых колес и редуктор. Для этого заливают бензин (через верхнюю пробку), проворачивают роторы несколько раз и сливают бензин через нижнюю пробку;
  • закончив промывку, заливают масло в коробки зубчатых колес, редуктор и счетный механизм, заливают соответствующую жидкость в манометр счетчика, соединяют фланцы и проверяют счетчик путем пропускания через него газа, после чего замеряют перепад давления;
  • далее прослушивают работу роторов (должны вращаться бесшумно) и проверяют работу счетного механизма.

При техническом осмотре следят за уровнем масла в коробках зубчатых колес, редукторе и счетном механизме, замеряют перепад давления, проверяют на плотность соединения счетчиков. Счетчики устанавливают на вертикальных участках газопроводов так, чтобы поток газа направлялся через них сверху вниз.

Турбинные счетчики.

В этих счетчиках колесо турбины под воздействием потока газа приводится во вращение; число оборотов колеса прямо пропорционально протекающему объему газа. При этом число оборотов турбины через понижающий редуктор и магнитную муфту передается на находящийся вне газовой полости счетный механизм, показывающий суммарный объем газа, прошедший через прибор при рабочих условиях.

Мобильные бригады нашей компании осуществляют работы по строительству, монтажу и пуско-наладке оборудования различных ЭХЗ объектов. Проекты включают пункты КИП , соответствующие предстоящим задачам, с разным количеством колодок и клемм, узлов подключения.

Что необходимо для подготовки?

Монтаж производится после проведения ряда подготовительных мероприятий, в частности:
  • укладки и засыпки трубопровода;
  • закрепления отметок в местах установки КИП :
  • присоединения кабелей к трубопроводу, закрепления датчиков электрохимического потенциала.
Организационные моменты на каждом проекте следующие:
  • на первом этапе назначаются лица, которые отвечают за качественное и безопасное выполнение предстоящих задач:
  • на осуществление работ запрашиваются необходимые разрешения;
  • участников бригад знакомят с применяемой технологией, проводят инструктаж по ТБ.
Проект стартует после того, как на объект доставляют необходимые материалы, инструменты и машины. Так, при монтаже контрольно-измерительных пунктов используются различные виды сварки, среди механизмов на площадке обязательно присутствуют сварочные аппараты. Инструкции по монтажу КИП включают рекомендации по контролю за качеством, в них также указываются требования по безопасности и охране труда. Только при соблюдении указанных требований можно обеспечить достаточную безопасность земляных, монтажных, пусконаладочных работ и соответствующее нормативам качество.

Что входит в состав работ?

После того как необходимые подготовительные мероприятия завершены, производится разбивка местонахождения, рытье котлована с применением специальной техники и доработкой вручную, прокладка кабелей в СКИП. Стойка устанавливается в котлован, далее производится засыпка грунтом с послойным уплотнением. Кабели присоединяются к клеммам, затем подключаются электроды сравнения. На финишном этапе осуществляется маркировка кабелей, нанесение номера

УД 01 Контрольно-измерительные приборы

Тема 2.1 Урок 65-66 Установка КИП на трубопроводах.

ТРЕБОВАНИЯ, ПРЕДЪЯВЛЯЕМЫЕ К МОНТАЖУ СИСТЕМ АВТОМАТИЗАЦИИ ХОЛОДИЛЬНОЙ УСТАНОВКИ

Приборы и средства автоматизации, устанавливаемые непосредственно в помещении холодильной установки , должны соответствовать требованиям, предъявляемым к помещениям класса В-1б. Приборы и средства автоматики, не соответствующие этим требованиям, должны быть смонтированы в смежном с холодильной установкой помещении, удобном для обзора из машинного отделения и имеющем приточную избыточную вентиляцию .

Места установки приборов должны обеспечивать надёжный контроль или регулирование соответствующих параметров, лёгкую доступность обслуживающему персоналу и хорошую видимость шкал настроек приборов. Приборы и средства автоматики должны устанавливаться так, чтобы вибрация их была минимальной.

Для удобства обслуживания все приборы средства автоматики, вмонтированные в холодильные трубопроводы, должны выделяться запорными вентилями с обеих сторон. Не рекомендуется монтировать на пультах или щитах заводского изготовления какие-либо дополнительные щитки или устройства. Все смонтированные защитные приборы автоматики должны быть настроены на величину, отличающуюся от нормальной величины контролируемого параметра на 10-15%.

Места отбора импульсов давления на компрессорах должны располагаться обязательно перед (по ходу паров аммиака) всасывающим и нагнетательным вентилями. На промежуточном сосуде все три прибора, контролирующие уровень, монтируют на одной колонке. На горизонтальных ресиверах типа РД реле уровня монтируют на специальных колонках. На линейных ресиверах реле уровня монтируют без колонки. В испарителях реле уровня монтируют на колонках, а датчики температурных регуляторов – на трубопроводах входа или выхода хладоносителя. На маслоотделителях реле уровня монтируют без специальной колонки.

На насосах необходимо следить за правильностью установки обратных клапанов и подключения реле давления.

Необходимо тщательно проверять соответствие выполненных внешних соединений схемам внутренних соединений приборов или исполнительных механизмов. Такая проверка осуществляется прозвонкой электрических цепей с помощью прибора. Проверка цепей прозвонкой может быть выполнена успешно, если будет исключена возможность образования обходных цепей, помимо той, которая в данный момент проверяется. На это следует обращать особое внимание и отсоединять проверяемые цепи от остальных. При проверке монтажа необходимо прозвонить и все резервные жилы.

Проверка состояния изоляции осуществляется с помощью мегомметра на 500 или 1000 В. При проверке изоляции следует тщательно следить за тем, чтобы не подать высокое напряжение на детали с пониженным испытательным напряжением (электролитические конденсаторы, полупроводниковые приборы, слаботочную телефонную аппаратуру и др.). Эти детали должны быть закорочены или отключены в зависимости от схемы.

Состояние изоляции считается нормальным, если его электрическое сопротивление соответствует требованиям «Правил Устройства Электроустановок» (ПУЭ).

Провода и кабели необходимо прокладывать только с медными жилами. Нельзя прокладывать в одной трубе провода, идущие к термометрам сопротивления, датчикам ПРУ и РОС, датчикам газоанализаторов, соленоидным вентилям и прочим цепям с напряжением 220 В переменного тока.

Приборы и средства автоматики должны быть установлены в легкодоступных для обслуживания местах.

Реле РКС следует устанавливать строго по инструкции: «плюс» прибора подключают к стороне высокого давления, а «минус» - к стороне низкого давления.

Колонку датчиков ПРУ следует установить строго по проекту и в соответствии с требованиями противопожарной безопасности. Кабельные вводы в щиты, пульты, соединительные коробки и приборы автоматики должны быть уплотнены, как это требуется ПУЭ для взрывоопасных помещений. На кабелях и проводах должны быть маркировочные бирки.

ТЕХНОЛОГИЧЕСКАЯ КАРТА
МОНТАЖ КОНТРОЛЬНО-ИЗМЕРИТЕЛЬНЫХ ПУНКТОВ (КИП) ПРИ СТРОИТЕЛЬСТВЕ

I. ОБЛАСТЬ ПРИМЕНЕНИЯ

1.1. Типовая технологическая карта (далее ТТК) - комплексный нормативный документ, устанавливающий по определённо заданной технологии организацию рабочих процессов по строительству сооружения с применением наиболее современных средств механизации, прогрессивных конструкций и способов выполнения работ . Они рассчитаны на некоторые средние условия производства работ. ТТК предназначена для использования при разработке Проектов производства работ (ППР), другой организационно-технологической документации, а также с целью ознакомления (обучения) рабочих и инженерно-технических работников с правилами производства работ по монтажу Контрольно-измерительных пунктов (далее КИП).

1.2. В настоящей карте приведены указания по организации и технологии производства работ по монтажу контрольно-измерительных пунктов, рациональными средствами механизации, приведены данные по контролю качества и приемке работ, требования промышленной безопасности и охраны труда при производстве работ.

1.3. Нормативной базой для разработки технологических карт являются: СНиП, СН, СП, ГЭСН-2001 ЕНиР, производственные нормы расхода материалов, местные прогрессивные нормы и расценки, нормы затрат труда, нормы расхода материально-технических ресурсов.

1.4. Цель создания ТК - описание решений по организации и технологии производства работ по монтажу КИП с целью обеспечения их высокого качества, а также:

Снижение себестоимости работ;

Сокращение продолжительности строительства;

Обеспечение безопасности выполняемых работ;

Организации ритмичной работы;

Унификации технологических решений.

1.5. На базе ТТК в составе ППР (как обязательные составляющие Проекта производства работ) разрабатываются Рабочие технологические карты (РТК) на выполнение отдельных видов работ. Рабочие технологические карты разрабатываются на основе типовых карт для конкретных условий данной строительной организации с учетом её проектных материалов, природных условий, имеющегося парка машин и , привязанных к местным условиям. Рабочие технологические карты регламентируют средства технологического обеспечения и правила выполнения технологических процессов при производстве работ. Конструктивные особенности по монтажу КИП решаются в каждом конкретном случае Рабочим проектом. Состав и степень детализации материалов, разрабатываемых в РТК, устанавливаются соответствующей подрядной строительной организацией, исходя из специфики и объема выполняемых работ. Рабочие технологические карты рассматриваются и утверждаются в составе ППР руководителем Генеральной подрядной строительной организации, по согласованию с организацией Заказчика, Технического надзора Заказчика.

1.6. Технологическая карта предназначена для производителей работ, мастеров и бригадиров, производящих работы по монтажу КИП при строительстве средств электрохимической защиты газопровода, а также работников технического надзора Заказчика и рассчитана на конкретные условия производства работ в III-й температурной зоне.

II. ОБЩИЕ ПОЛОЖЕНИЯ

2.1. Технологическая карта разработана на комплекс работ по монтажу КИП.

2.2. Работы по монтажу КИП выполняются в одну смену, продолжительность рабочего времени в течение смены составляет:

где 0,828 - коэффициент использования механизмов по времени в течение смены (время, связанное с подготовкой к работе и проведение ЕТО - 15 мин, перерывы, связанные с организацией и технологией производственного процесса и отдыха машиниста - 10 мин через каждый час работы).

2.3. Технологической картой предусмотрено выполнение работ комплексным механизированным звеном с использованием Одноковшового экскаватора ЭО-2621 с ёмкость ковша 0,25 мhttps://pandia.ru/text/80/369/images/image003_57.jpg" alt="ТТК. Монтаж контрольно-измерительных пунктов (КИП) при строительстве средств электрохимической защиты газопровода" width="422 height=260" height="260">

Рис.1. Одноковшовый экскаватор ЭО-2621

2.4. Работы по монтажу КИП, включают:

Геодезическую разбивку местоположения;

Рытье котлована;

Присоединение катодных и контрольных выводов к трубопроводу;

Установка электродов сравнения;

Засыпка котлована;

Установка КИП;

Подключение кабелей, проводов электрода сравнения.

2.5. Контрольно-измерительный пункт представляет собой колонку, изготовленную из полимерного материала, имеющего форму трехгранника, длиной 2500 мм с монтажным щитком, защищенным от пыли и влаги. Количество КИП, их марка и места расположения на трассе газопровода определяются Рабочим проектом. Со стационарными КИП совмещаются токоизмерительные и маркерные пункты.

2.6. Токоизмерительные контрольные пункты устанавливаются в среднем через 5,0 км, а также с двух сторон футляра при переходах через автомобильную и железную дорогу. К монтажному щитку токоизмерительного контрольного пункта подключаются:

Кабель от электродов сравнения длительного действия;

Кабель от датчиков электрохимического потенциала (вспомогательного электрода) и датчиков скорости коррозии;

Измерительный кабель от трубопровода (катодный вывод);

Токоизмерительные кабели, приваренные к газопроводу на расстоянии 30,0 м от пункта.

2.7. Маркерные пункты предназначены для привязки данных плановой внутритрубной дефектоскопии, устанавливаются через 2,0-3,0 км по трассе газопровода. К монтажному щитку такого КИП подключаются кабели, приваренные к газопроводу в месте установки КИП и непосредственно к маркерным накладкам, устанавливаемым попарно в 5,0 м от КИП.

2.8. Работы следует выполнять, руководствуясь требованиями следующих нормативных документов:

СП 48.13330.2011. Организация строительства;

СНиП 3.02.01-87. Земляные сооружения, основания и фундаменты;

СНиП 3.05.06-85. Электротехнические устройства;

СНиП III-42-80*. Магистральные трубопроводы;

СНиП 12-03-2001. Безопасность труда в строительстве. Часть 1. Общие требования;

Компрессоры, теплообменная аппаратура, вспомогательное оборудование холодильных установок связаны между собой соединительными трубопроводами, по которым происходит циркуляция хладагента.
На холодильных станциях помимо трубопроводов для хладагента имеются трубопроводные системы для циркуляции промежуточного хладоносителя, смазочного масла, охлаждающей воды, греющего пара и сжатого воздуха, необходимого для работы контрольно-измерительных приборов. Специфика работы каждого вида трубопровода определяет тип применяемых труб, вид креплений и соединений.
Для аммиачных и фреоновых трубопроводов диаметром более 20 мм применяют стальные бесшовные трубы: холоднотянутые, выпускаемые отрезками длиной 9 м и наружным диаметром от 20 до 50 мм, и горячекатаные, длиной 4÷12,5 м и наружным диаметром 57÷426 мм. Бесшовные трубы наиболее герметичны и выдерживают высокие давления. Для малых фреоновых машин применяют медные трубы с условным проходом 3÷20 мм. Внутренняя поверхность трубопроводов, монтируемых для систем хладагента, должна быть очищена от окалины и обезжирена.
Для циркуляции хладоносителя и воды применяют водогазопроводные и стальные сварные трубы. Водогазопроводные трубы бывают стальными и чугунными. Канализация на холодильных станциях выполняется из чугунных раструбных труб.
Для маслопроводов фреоновых установок используют также медные трубопроводы, для аммиачных - стальные.
Звенья труб собирают в трубопроводные системы следующими способами: сваркой; фланцевым соединением; соединением с отбортовкой медных труб; ниппельным соединением; раструбным соединением (для чугунных труб); свертными муфтами (для водогазопроводных труб). Трубопроводы с запорной арматурой, приборами и оборудованием соединяют фланцами или ниппелями.
Для аммиачных и фреоновых трубопроводов диаметром 20 мм и более применяют парные фланцевые соединения типа впадина-выступ, уплотняемые паронитовой прокладкой (рис. 60).

Ниппельные соединения с ввертным штуцером 1 (рис. 61) также применяют для аммиачных и фреоновых линий, соединение отбортованной трубы гайкой 1 (рис. 62)-только для фреоновых линий.


Рис. 62. Соединение отбортованных труб:

1 - гайка, 2 - временная заглушка, 3 - штуцер

Для всех типов трубопроводов холодильных станций основной вид соединения - сварка труб встык.
Раструбное соединение и соединение на резьбе с муфтой применяют на водопроводных магистралях.
Для монтажа коммуникаций холодильных станций используют фасонные детали трубопроводов: тройники, отводы, переходы, муфты, крестовины, колена, патрубки.
Колена, отводы и переходы большого диаметра сваривают из отдельных сегментов, вырезанных из стального листа.
Различают следующие виды прокладки трубопроводов: открытую, подземную, в непроходных и проходных каналах.
Правильное крепление трубопроводов - важное условие их нормальной работы. Крепят трубопроводы неподвижными и подвижными опорами и подвесками.
Подвижные крепления, помимо основного назначения - передачи веса трубопроводов на строительную конструкцию, обеспечивают свободу перемещения поддерживаемой ими точки трубопровода. Неподвижные крепления фиксируют трубопровод и передают на строительные конструкции все усилия, не воспринимаемые подвижными креплениями.
Неподвижные крепления разбивают трубопровод на участки, внутри которых происходит температурная компенсация трубопровода. Эти крепления делаются прочными и устойчивыми, так как они воспринимают большие нагрузки.
Элементы крепления трубопроводов хладагента и рассола выполняются с учетом толщины теплоизоляционного слоя.
Неподвижные опоры выполняются в виде металлической подушки, приваренной к основанию. К подушке хомутом жестко притянут трубопровод. Наилучший тип подвижных опор - пружинные.
Сечения трубопроводов в различных участках системы должны обеспечивать надежную, экономичную работу аппаратов и установок.
При заниженных диаметрах трубопроводов растут скорости движения паров и жидкостей, возникает шум, возрастают потери от сопротивления труб, а следовательно, и энергозатраты. Оптимальные скорости в трубопроводах составляют в м/с:

Контрольные вопросы
1. Перечислите трубы, применяемые на холодильных установках.
2. В чем преимущество сварных соединений?
3. Какие виды трубных соединений вы знаете?
4. Расскажите о ниппельном соединении труб.
5. Почему для линий хладагента применяют бесшовные трубы?
6. Какие виды креплений трубопроводов вам известны?
7. Назовите виды запорной арматуры.
8. Расскажите о принципе действия и назначении регулирующего вентиля.
9. Каковы особенности фреоновой запорной арматуры?
10. Что такое сильфонный вентиль ?
11. Назовите типы запорных задвижек.
12. Перечислите типы привода шпинделя задвижек.
13. Для чего служат обратные и предохранительные клапаны?
14. Из какого материала делают прокладки и сальниковые набивки для аммиака и фреона?

Список литературы

http://www. proffholod. ru

http://www. br-r. ru

ТИПОВАЯ ТЕХНОЛОГИЧЕСКАЯ КАРТА (ТТК)

МОНТАЖ КОНТРОЛЬНО-ИЗМЕРИТЕЛЬНЫХ ПУНКТОВ (КИП) ПРИ СТРОИТЕЛЬСТВЕ
СРЕДСТВ ЭЛЕКТРОХИМИЧЕСКОЙ ЗАЩИТЫ ГАЗОПРОВОДА

I. ОБЛАСТЬ ПРИМЕНЕНИЯ

I. ОБЛАСТЬ ПРИМЕНЕНИЯ

1.1. Типовая технологическая карта (далее ТТК) - комплексный нормативный документ, устанавливающий по определённо заданной технологии организацию рабочих процессов по строительству сооружения с применением наиболее современных средств механизации, прогрессивных конструкций и способов выполнения работ. Они рассчитаны на некоторые средние условия производства работ. ТТК предназначена для использования при разработке Проектов производства работ (ППР), другой организационно-технологической документации, а также с целью ознакомления (обучения) рабочих и инженерно-технических работников с правилами производства работ по монтажу Контрольно-измерительных пунктов (далее КИП).

1.2. В настоящей карте приведены указания по организации и технологии производства работ по монтажу контрольно-измерительных пунктов, рациональными средствами механизации, приведены данные по контролю качества и приемке работ, требования промышленной безопасности и охраны труда при производстве работ.

1.3. Нормативной базой для разработки технологических карт являются: СНиП, СН, СП, ГЭСН-2001 ЕНиР, производственные нормы расхода материалов, местные прогрессивные нормы и расценки, нормы затрат труда, нормы расхода материально-технических ресурсов.

1.4. Цель создания ТК - описание решений по организации и технологии производства работ по монтажу КИП с целью обеспечения их высокого качества, а также:

- снижение себестоимости работ;

- сокращение продолжительности строительства;

- обеспечение безопасности выполняемых работ;

- организации ритмичной работы;

- унификации технологических решений.

1.5. На базе ТТК в составе ППР (как обязательные составляющие Проекта производства работ) разрабатываются Рабочие технологические карты (РТК) на выполнение отдельных видов работ. Рабочие технологические карты разрабатываются на основе типовых карт для конкретных условий данной строительной организации с учетом её проектных материалов, природных условий, имеющегося парка машин и строительных материалов, привязанных к местным условиям. Рабочие технологические карты регламентируют средства технологического обеспечения и правила выполнения технологических процессов при производстве работ. Конструктивные особенности по монтажу КИП решаются в каждом конкретном случае Рабочим проектом. Состав и степень детализации материалов, разрабатываемых в РТК, устанавливаются соответствующей подрядной строительной организацией, исходя из специфики и объема выполняемых работ. Рабочие технологические карты рассматриваются и утверждаются в составе ППР руководителем Генеральной подрядной строительной организации, по согласованию с организацией Заказчика, Технического надзора Заказчика.

1.6. Технологическая карта предназначена для производителей работ, мастеров и бригадиров, производящих работы по монтажу КИП при строительстве средств электрохимической защиты газопровода, а также работников технического надзора Заказчика и рассчитана на конкретные условия производства работ в III-й температурной зоне.

II. ОБЩИЕ ПОЛОЖЕНИЯ

2.1. Технологическая карта разработана на комплекс работ по монтажу КИП.

2.2. Работы по монтажу КИП выполняются в одну смену, продолжительность рабочего времени в течение смены составляет:

Где 0,828 - коэффициент использования механизмов по времени в течение смены (время, связанное с подготовкой к работе и проведение ЕТО - 15 мин, перерывы, связанные с организацией и технологией производственного процесса и отдыха машиниста - 10 мин через каждый час работы).

2.3. Технологической картой предусмотрено выполнение работ комплексным механизированным звеном с использованием Одноковшового экскаватора ЭО-2621 с ёмкость ковша 0,25 м (смотри рис.1).

Рис.1. Одноковшовый экскаватор ЭО-2621


2.4. Работы по монтажу КИП, включают:

- геодезическую разбивку местоположения;

- рытье котлована;

- присоединение катодных и контрольных выводов к трубопроводу;

- установка электродов сравнения;

- засыпка котлована;

- установка КИП;

- подключение кабелей, проводов электрода сравнения.

2.5. Контрольно-измерительный пункт представляет собой колонку, изготовленную из полимерного материала, имеющего форму трехгранника, длиной 2500 мм с монтажным щитком, защищенным от пыли и влаги. Количество КИП, их марка и места расположения на трассе газопровода определяются Рабочим проектом. Со стационарными КИП совмещаются токоизмерительные и маркерные пункты.

2.6. Токоизмерительные контрольные пункты устанавливаются в среднем через 5,0 км, а также с двух сторон футляра при переходах через автомобильную и железную дорогу. К монтажному щитку токоизмерительного контрольного пункта подключаются:

- кабель от электродов сравнения длительного действия;

- кабель от датчиков электрохимического потенциала (вспомогательного электрода) и датчиков скорости коррозии;

- измерительный кабель от трубопровода (катодный вывод);

- токоизмерительные кабели, приваренные к газопроводу на расстоянии 30,0 м от пункта.

2.7. Маркерные пункты предназначены для привязки данных плановой внутритрубной дефектоскопии, устанавливаются через 2,0-3,0 км по трассе газопровода. К монтажному щитку такого КИП подключаются кабели, приваренные к газопроводу в месте установки КИП и непосредственно к маркерным накладкам, устанавливаемым попарно в 5,0 м от КИП.

2.8. Работы следует выполнять, руководствуясь требованиями следующих нормативных документов.

КИП, используемые для установки в ГРП (ГРУ). КИП служат для систематического контроля за соответствием основных параметров работы котла, печи, сосуда, трубопровода, а также для измерения кол-ва и расхода пара и топлива. Классификация КИП: 1) по назначению: -промышленные; -эталонные; - лабораторные. 2) по характеру показаний: -показывающие; - регистрирующие, -интегрирующие 3) по форме представления показаний: -цифровые; - аналоговые. 4) по принципу действия: -механические, -электрические, -жидкостные, -химические... 5) по характеру использования – оперативные, учетные и расчетные.6)По местоположению: -местные и дистанционной передачей показаний. 7) По условиям работы – стационарные и переносные. 8) По габаритам – полногабаритные, малогабаритные и миниатюрные. Приборы для измерения температуры. Могут быть термометры расширения(-190;+650), манометрические термометры (-160;+600), термометры сопротивления (-200;+1100), термоэлектрические термометры (-50+1800), пирометры излучения (подразделяется на оптические, фотоэлектрические, радиоционные) (+20+6000). Приборы для измерения давления и разрежения. Классифицируются: По ряду измерений давления 1)манометры (избыточное давление), 2) вакуумметры (для разряжения), 3) моноваккуумметры (избыт давл. и разрежение), 4) тягомеры (вакуумметры с верхним пределом измерения не превышающих. 5)микроманометры, 6) тягонапоромеры 7) барометры для измерения атмосферного давления. По принципу действия (-жидкостные; -механич., -деформационные; -электромеханические. Приборы для обнаружения утечек газа : - газоиндикаторы; - газоанализатор; -стационарные сигнализаторы; -течеискатель.

Учет расхода газа. Газовые счетчики, их установка. Газовые счетчики используются для учета и измерения количества природного газа проходящего по газопроводу за единицу времени.

Газовые счетчики делятся по сфере применения на бытовые, коммунальные и промышленные. Бытовые газовые счетчики реализованы в виде мембранных или диафрагменных счетчики, и позволяют подсчитывать небольшие расходы газа (до 12 кубических м/ч). В качестве коммунальных газовых счетчиков выступают как диафрагменные, так и ротационные и турбинные счетчики газа, с пропускной способностью от 10 до 40 м3/ч. Для промышленного использования на предприятиях и газовых магистралях, применяются турбинные и ротационные счетчики с еще более высокой пропускной способностью. В маркировке счетчиков газа в большинстве случаев указывается тот номинальный объем, который способен учитывать данный счетчик.

Этапы монтажа : -На вводе газопровода отрезается труба с разрывом 200-400мм. -На двух концах нарезается резьба. Если имелся кран, то с одной стороны. -По соответствующим правилам и нормам в газовом хозяйстве устанавливается газовый счетчик, предварительно закрепив его на специальном каркасе. -На вводе газопровода накручивается термозапорный клапан совмещенный с краном (можно по отдельности). -Далее простым изгибом трубы (эстетически), через паранитовые прокладки и накидные гайки подсоединяется газовый счетчик к газовой арматуре.


Промышленные системы газоснабжения. Принципиальные схемы промышленных систем и их классификация. Межцеховые и внутрицеховые газопроводы. Прокладка межцеховых и внутрицеховых газопроводов.

Промышленные системы газоснабжения. Промышленная система газоснабжения - технический комплекс, состоящий из вводов, газовых сетей (меж- и внутрицеховые), газорегуляторных пунктов (ГРП) и газорегуляторных установок (ГРУ), газопроводов и агрегатов, включая КИП и трубопроводы безопасности и обвязочные. Комплекс обеспечивает транспортирование газа по пром. предприятию и распределение его по газовым горелкам агрегатов. По трубопроводам газ поступает на территорию предприятия через ввод, на котором вне предприятия устанавливают главное отключающее устройство. Газ от ввода к цехам транспортируют по межцеховым газопроводам, которые прокладывают надземным и подземным способами. В конечных точках межцеховых газопроводов устанавливают продувочные трубопроводы, используемые при ремонтах и пусках газопроводов. На нач. участке межцехового газопровода устанавливают центральный ГРП, на котором снижается и поддерживается требуемое цехам предприятия постоянное, давление газа. В ГРП предусматривают пункт измерения расхода газа, с помощью которого контролируют потребление газа предприятием. В зависимости от конкретных условий применяют след. схемы промышленных систем газоснабжения: одноступенчатые, двухступенчатые.

Классификация: В зависимости от конкретных условий проектирования промышленных систем газоснабжения используют различные принципиальные схемы, которые классифицируют след. образом: одноступенчатые системы газоснабжения: а) при непосред. присоединении предпр. к гор. распред. сетям низкого давления; б) при присоединении пром. объектов к гор. сетям через центральный ГРП и с низким давлением в пром. межцеховых газопроводах; в) при присоединении пром. объектов к гор. сетям через центральный ГРП и со средним давлением в пром. газопроводах. Двухступенчатые системы : а) при непосред. присоединении пром. объектов к гор. сетям среднего (выс.) давления цеховыми ГРУ и с низким давлением в цеховых газопроводах; б) при непосред. присоединении пром. объектов к гор. сетям среднего давления цеховыми ГРУ и со средним давлением в цеховых газопроводах; в) при присоединении к гор. сетям через центральный ГРП со средним давлением в межцеховых газопроводах цеховыми ГРУ и с низким давлением в цеховых газопроводах; г) при присоединении к гор. сетям через центральный ГРП со средним давлением в межцеховых газопроводах цеховыми ГРУ и со средним давлением в межцеховых газопроводах.


Принципиальные схемы промышленных систем и их классификация .

Межцеховые и внутрицеховые газопроводы.

Из городской распределительной сети низкого давления газ через задвижку поступает в межцеховой газопровод. У небольших предприятий протяженность межцеховых газопроводов обычно невелика, поэтому на ответвлениях от основного газопровода к цехам отключающие устройства можно не устанавливать.

По внутрицеховым газопроводам транспортируется газ по цеху от ввода до агрегатов. В большинстве случаев такие газопроводы проектируют тупиковыми. Кольцевание внутрицеховых газопроводов применяют только в особо ответственных цехах. На вводе газопровода в цех устанавливают отключающее устройство и манометр. В конце цехового газопровода расположен продувочный трубопровод, к которому присоединены объединенные продувочные трубопроводы от ответвлений газопроводов к агрегатам. Для учета потребления газа в цехе предусмотрен пункт измерения расхода газа. Если цех оборудован ГРУ, то пункт измерения расхода газа совмещают с ней.

Прокладка межцеховых и внутрицеховых газопроводов.

На предприятиях чаще отдают предпочтение надземной прокладке межцеховых газопроводов. Так как они в этом случае не подвержены подземной коррозии, более доступны для осмотра и ремонта, менее опасны при утечках газа и экономичнее подземных. Надземные газопроводы прокладывают на опорах, эстакадах, по огнестойким наружным стенам и перекрытиям зданий с производствами не пожароопасной категории. Высота прокладки надземных газопроводов до низа трубы принимается, м, не менее: в местах прохода людей - 2,2; на участках без проезда транспорта и прохода людей - 0,6; над автодорогами - 4,5; над трамвайными путями и железными дорогами - 5,6 - 7,1. Под линиями электропередач в зависимости от напряжения в них газопровод прокладывают на расстоянии от 1 до 6,5 м и заземляют.

Прокладка газопроводов по пешеходным галереям не допускается. Прокладка газопроводов сжиженного газа независимо от давления по конвейерным галереям запрещается. Газопроводы с давлением газа до 0,6 МПа допускается прокладывать по несгораемым (железобетонным, металлическим и каменным) автомобильным и пешеходным мостам. Они должны быть расположены открыто на расстоянии по горизонтали не менее 1 м (в свету) от края панелей для прохода людей и быть доступными для обслуживания. При прохождении газопроводов через стены здания они должны выполняться в футлярах. Вводы газопроводов должны выполняться непосредственно в помещения, где расположены печи, котлы и агрегаты, потребляющие горючие газы. Газопроводы в помещениях должны прокладываться в местах, удобных для обслуживания, осмотра и ремонта. Не допускается прокладка газопроводов в местах, где они могут быть повреждены цеховым транспортом. Пересечение газопроводами вентиляционных шахт, воздуховодов и дымоходов, а также расположение газопроводов в замкнутых, плохо вентилируемых помещениях не допускается. Газопроводы не должны прокладываться в местах, где они могут находиться под воздействием горячих продуктов сгорания или коррозионно-активных жидкостей или соприкасаться с раскаленным или жидким металлом.

Требования, предъявляемые к сжиженным углеводородным газам (СУГ). Транспорт СУГ (железнодорожный, автомобильный, трубопроводный). Установка СУГ у потребителя (баллонные и резервуарные установки).

Требования, предъявляемые к СУГ. Сжиженные газы должны удовлетворять техническим требованиям, определенным в ГОСТ. Смесь пропана и бутана для зимнего времени составляют с повышенным содержанием пропана, для летнего - с повышенным содержанием бутана. Соотношение пропана и бутана в смеси устанавливается договоренностью между поставщиком и заказчиком с учетом местных климатических условий.

Транспорт СУГ (железнодорожный, автомобильный, трубопроводный). Сжиженные углеводородные газы хранят и транспортируют в жидком, а используют в газообразном состоянии. Доставляют их потребителям периодически с созданием запаса на определенный период. С газо- или нефтеперерабатывающего завода газ в жидком виде доставляется на газораздаточные станции или кустовые базы водным путем на танкерах, а чаще - по железной дороге в цистернах объемом 54 или 98 м3. При небольших расстояниях от завода до газораздаточной станции или кустовой базы газ транспортируется в большегрузных автоцистернах емкостью 12 м3 или по трубопроводам под давлением 15 - 20 кгс/см2. Железнодорожные и автомобильные цистерны для перевозки сжиженных газов изготовляют из высокопрочной стали и оборудуют сливо-наливной и контрольной арматурой. Для уменьшения нагрева солнечными лучами цистерны окрашивают в светлый цвет и оборудуют солнцезащитным кожухом.

Для доставки сжиженного газа в резервуарные установки потребителей используют автоцистерны, смонтированные на шасси автомобилей.

Транспорт сжиженного газа в баллонах может осуществляться с ГРС или кустовых баз автомобилями типа «клетка» или обычными малой грузоподъемности непосредственно потребителям или большегрузными автомобилями на обменные, районные и розничные пункты, а с них - непосредственно потребителям специальными автомобилями, обычными бортовыми, переоборудованными для этой цели, а в отдельных случаях и подводами.

Установка СУГ у потребителя. Индивидуальные баллонные установки применяют для снабжения газом потребителей с небольшим расходом газа, например, одноквартирных или малоэтажных жилых домов, общественных помещений и т. п. Различают установки с размещением одного баллона емкостью не более 55 л внутри помещения, где установлены газовые приборы (плита, таган и пр.), и установки с двумя баллонами, размещенными снаружи здания в запирающемся шкаф. При использовании плит со встроенным баллоном разрешается иметь внутри помещения два баллона емкостью 27 л - рабочий (встроенный) и резервный. В производственных помещениях для одного газопотребляющего агрегата устанавливают не более одного баллона емкостью до 80 л.

В комплект баллонной установки входят: один или два баллона, регулятор давления, газовые приборы (обычно плита или плита и водонагреватель) и газопровод.

Групповые резервуарные установки, состоящие из двух и более резервуаров, применяют для снабжения сжиженным газом многоэтажных жилых домов, общественных зданий, коммунальных, промышленных и сельскохозяйственных предприятий. Резервуарные установки могут состоять из подземных или наземных емкостей. Последние применяют ограниченно, только для газоснабжения промышленных и сельскохозяйственных объектов. Для жилых домов используют групповые установки с подземными резервуарами общим геометрическим объемом до 50 м3. В отдельных случаях в районах, где доставка сжиженных газов ограничена сезонными условиями, геометрический объем установки при подземном расположении резервуаров может быть увеличен до 300 м3.


11. Горение газов. Реакция горения газов. Расчёты горения. Температура воспламенения. Пределы воспламенения. Температура горения горючих газов. Методы сжигания горючих газов. Коэффициент избытка воздуха.

Горение – процесс химического соединения горючих составляющих газа с О 2 воздуха, сопровождающийся резким повышением t⁰ и выделением значительного количества тепла. В газообразном топливе присутствует горючая часть и негорючая. Основным горючим компонентом природного газа является метан - CH 4 . Кроме метана в природном газе могут присутствовать горючие газы - пропан, бутан и этан. Химическая реакция горения: C m H n + (m+n/4)O 2 = mCO2 + (n/2)H 2 O; CH 4 + 2O 2 = CO 2 + 2H 2 O.

В практических условиях сжигания газа О 2 берётся не в чистом виде, а входит в состав воздуха, т.к. воздух состоит по объёму на 78% из N 2 и на 21% из О 2 , реакция горения СН 4 в воздухе: СН 4 + 2О 2 + 7,52N 2 = CO 2 + 2H 2 O + 7,52N 2 . Из уравнения видно, что для сжигания 1м3 газа требуется 9,6м3 воздуха.

Наименьшее количество воздуха, необходимого для полного сжигания газа, - теоретический расход воздуха .

В зависимости от соотношения сжигаемого газа и необходимого воздуха горение мб полным и неполным. Полное горение : вся химическая энергия топлива превращается в тепловую. При полном горении в дымовых газах отсутствуют продукты горючих веществ. Продукты полного сгорания: CO 2 , N 2 , избыточный O 2 , пары Н 2 О. Продукты горения при неполном горении : СО, несгоревший Н 2 и СН 4 , тяжёлые углеводороды и сажа. Полноту горения можно определить по цвету пламени. При полном горении цвет прозрачно-голубой, при больших расходах газа – ярко жёлтый, при неполном горении – красноватый с дымными полосами, т.к. в дымовых газах остаются разогретые докрасна частицы углерода или оксиды азота. Наиболее совершенный способ контроля полноты горения – анализ продуктов сгорания с помощью автоматических газоанализаторов. Неполное горение наблюдают при нехватке воздуха, при плохом перемешивании воздуха с газом, малом топочном объёме и низкой t⁰ топки. В практических условиях количество воздуха берётся > теоретического. Отношение действительного расхода воздуха к теоретическому – коэффициент избытка воздуха α = 1,05-1,2 . Α зависит от вида сжигаемого топлива, способа его сжигания, конструкции топки и конструкции горелочного устройства. Воспламенение - пламенное горение вещества, инициированное источником зажигания и продолжающееся после его удаления, то есть возникает устойчивое горение. Температура воспламенения - наименьшая температура вещества, при которой пары над поверхностью горючего вещества выделяются с такой скоростью, что при воздействии на них источника зажигания наблюдается воспламенение. Температура воспламенения смеси зависит от ряда факторов, основными из которых являются качество перемешивания газа с воздухом и количественное содержание горючего газа в газовоздушной смеси. Температура воспламенения природного газа в воздухе при атмосферном давлении в среднем равна 650⁰С. Температурные пределы воспламенения паров в воздухе - такие температуры вещества, при которых его насыщенные пары, находясь в равновесии с жидкой или твердой фазой, образуют в воздухе концентрации, равные соответственно нижнему или верхнему пределам воспламенения. Значения температурных пределов воспламенения применяют при расчете безопасных температурных режимов закрытых технологических аппаратов с жидкостями и летучими твердыми веществами, работающих при атмосферном давлении. Нижний предел воспламеняемости – min содержание газа в газовоздушной смеси, при котором происходит воспламенение. Верхний предел воспламеняемости – max содержание газа в газовоздушной смеси, выше которого смесь не воспламеняется без подвода дополнительного тепла.

Способы сжигания газа. Основное условие сжигания газа – смешение его с воздухом. В зависимости от места подготовки горючей газовоздушной смеси есть 3 способа сжигания газа: *диффузионный : горение осуществляется без предварительного смешения газа с воздухом. Газ под р выходит из горелки и за счёт диффузии перемешивается с окружающим воздухом. Образование горючей газо-воздушной смеси происходит в зоне горения. При этом методе требуется большое количество воздуха: α’’= 1,2-1,4; *кинетическое :

Осуществляется при полном предварительном смешении газа с воздухом. В горелку поступает газ и весь необходимый для горения первичный воздух. Образование гозавоздушной смеси происходит в горелке и в зону горения поступает полностью готовая для горения смесь. α’’ = 1,05-1,1; *диффузионно-кинетическое : происходит с частичным предварительным смешением газа с воздухом. Газ поступает в горелку под давлением и за счёт инжекции подсасывает 50-60% первичного воздуха. В горелке образуется наполовину подготовленная горючая смесь. Вторичный воздух (40-50%) поступает в зону горения за счёт диффузии из окружающего пространства.

Процесс горения газообразного топлива можно разделить на основные стадии: *вытекание газа в горелочное устройство под давлением с увеличенной скоростью; *смесеобразование газа с воздухом; *нагрев газовоздушной смеси до t⁰ возгорания; *возгорание образованной горючей смеси; *горение.

Температура горения . Действительная (расчетная) температура продуктов сгорания t д - температура, которая достигается в ­реальных условиях в самой горячей точке факела. Она ниже теоретической и зависит от потерь теплоты в окружающую среду, степени отдачи теплоты из зоны горения излучением, растянутости процесса горения во времени и др. Действительные усредненные температуры в топках печей и котлов определяются по тепловому балансу или приближенно по теоретической или калориметрической температуре горения в зависимости от температуры в топках с введением в них экспериментально установленных поправочных коэффициентов: t д = t т η, где η- т.н. пирометрический коэффициент.

Скорость протекания реакции горения. Нормальная скорость распространения пламени. Явление проскока и отрыва пламени при сжигании пламени в горелочных устройствах. Устойчивость горения. Стабилизация пламени.

При сжигании газовоздушной смеси зона горения распространяется по объёму смеси с определённой скоростью – скоростью распространения пламени (скорость горения) . 2 типа распространения пламени: нормальное и детонационное. Они характеризуются определёнными величинами скоростей горения газа.

Нормальная скорость распространения пламени – скорость движения фронта пламени в направлении, ┴ поверхности фронта пламени. Для метана 0,4 м/с.

Детонация – процесс химического превращения взрывчатого вещества, сопровождающийся освобождением энергии и распространяющийся по веществу в виде волны со сверхзвуковой скоростью. Детонационное горение характеризуется скоростью распространения пламени, превышающей скорость распространения звука в данной среде. Если скорость распространения пламени газовоздушной смеси, выходящей из горелки, будет < скорости движения этой смеси, то пламя может оторваться от устья горелки. Это – отрыв пламени . Он может произойти из-за увеличения количества газа и воздуха, подаваемых в горелку. Проскок пламени горелки может произойти тогда, когда скорость распространения пламени будет > скорости движения газовоздушной смеси, т.е. скорости вылета смеси из горелки. Проскок пламени сопровождается горением газа внутри самой горелки.


Устойчивость горения. Для поддержания устойчивого горения необходимо обеспечить соотношение газа и воздуха в газовоздушной смеси. Коэффициент α показывает, во сколько раз действительный расход воздуха превышает теоретический. Воздух, принимающий участие в горении, бывает первичным α’ (поступает в горелку для смешения в ней с газом) и вторичным α’’ (поступает в зону горения из окружающего пространства). На устойчивость пламени большое влияние имеет соотношение объёмов газа и воздуха и место образования газовоздушной смеси. Проскок пламени приводит к неполному сгоранию газа, образованию окиси углерода и погасанию пламени. При отрыве пламени газовоздушная смесь поступает в окружающее пространство, что может привести к взрыву. Для удержания устойчивого пламени необходимо соблюдать условия: *поддержание скорости выхода газовоздушной смеси в безопасных пределах; *поддержание t⁰ в зоне горения не ниже t⁰ воспламенения газовоздушной смеси.

Стабилизация газового пламени . Стабилизаторы горения: 1)огнеупорный тоннель; 2) дырчатый горелочный насадок; 3) рассекающий стабилизатор; 4) плоская стабилизирующая решётка; 5) горелка из огнеупорного кирпича; 6) стационарное запальное устройство в виде запальной горелки.

Загрузка...