domvpavlino.ru

Как сделать маяк на трещине стены. Методы контроля трещин в зданиях. Пособие по оценке физического износа жилых и общественных зданий

В процессе наблюдения за трещинами в несущих конструкциях зданий встает вопрос о том, каким образом лучше производить фиксацию результатов наблюдения. Ведь для контроля развития деформаций в конструкциях недостаточно просто установить маяки для наблюдения за трещинами. Необходимо еще и периодически снимать показания с этих маяков, т.е. измерять ширину раскрытия трещины и другие ее характеристики. Эти показания должны быть зафиксированы в документах, для того, чтобы всегда можно было посмотреть историю изменений и проанализировать результаты мониторинга.

Обязательных форм документов в настоящее время не существует, но есть рекомендуемые, которые разработаны в развитие норм и правил эксплуатации зданий , а также приведены в рекомендациях по обследованию зданий. Остановимся на двух основных формах документов, заполняемых при ведении мониторинга за несущими конструкциям при помощи маяков.

Журнал наблюдения за трещинами

Форма журнала наблюдения за трещинами в строительных конструкциях предложена в Пособии по оценке физического износа жилых зданий , разработанном в развитие ВСН 57-88 (Положение по техническому обследованию жилых зданий) . В данной форме журнала ведется сплошная фиксация результатов установки и наблюдения за трещинами при помощи маяков . Форму журнала можно скачать у нас на сайте .

Графический шаблон наблюдения за трещиной

Графический шаблон наблюдения за трещинами в несущих стенах зданий при помощи маяков предназначен для фиксации результатов наблюдений в виде наглядной диаграммы, показывающей характер происходящих измерений. Этот шаблон разработан на основе рекомендаций по обследованию зданий и дает удобное визуальное отображение процессов деформации здания. Данную форму наблюдения можно использовать дополнительно к журналу для анализа результатов мониторинга. После скачивания необходимо распечатать по одному шаблону для каждого места наблюдения (установки маяка). Скачать форму графического шаблона можно у нас на сайте .

Предложенные формы для документирования результатов наблюдения за развитием трещин в зданиях можно использовать как в процессе технической эксплуатации, так и при обследовании зданий. Обычно, специалисты по эксплуатации зданий устанавливают маяки в ходе весенних и осенних осмотров здания , при выявлении новых трещин. Дальнейший контроль установленных маяков и заполнение документов выполняется в зависимости от принятой периодичности, характера деформаций и особенностей объекта.

Появившиеся на стенах здания трещины не только портят эстетику постройки, но и являются признаком серьёзных проблем архитектурного плана.

При возникновении такой ситуации обязательно сообщают в компанию, отвечающую за эксплуатацию сооружения.

Специалисты должны провести техническую оценку сооружения, установить степень безопасности для дальнейшего использования и утвердить список мероприятий по устранению проблемы.

В процессе осмотра учитывают давность повреждения. Также устанавливают маяки на трещины стен, чтобы определить динамику развития разрушения.

Установка маяков для определения размеров трещин в стенах

Степень опасности появившейся трещины определяют по месту образования:

  • на несущих стенах – создают серьезные аварийные ситуации;
  • на перегородках – носят локальный характер.

За проблемным участком конструкции устанавливают наблюдение, используя разные виды маяков. Также мониторинг используется в зданиях, определённых как аварийные или с ограниченной работоспособностью. Следят за развитием образовавшихся разрушений и в сооружениях, рядом с которыми проходят активные строительные работы или проводится реконструкция.

Точечный способ контроля за трещинами на стенах
Электронные датчики и системы мониторинга

Гипсовые маяки
Пластинчатые маяки

Основной целью наблюдения является фиксация в специальном журнале всех изменений параметров появившихся трещин.
Такие показатели необходимы:

  1. для правильной оценки технического состояния постройки;
  2. решения о возможности дальнейшей эксплуатации;
  3. необходимости и сложности проведения ремонтных работ;
  4. ликвидации факторов, разрушающих здание.

Выбирая подходящий метод наблюдения, учитывают срочность получения информации, точность результатов, надёжность самого способа и трудоёмкость предстоящих работ.

Виды маяков и особенности использования

Электронные модели

В работе используются электронные датчики, способные передавать информацию на расстоянии. С помощью таких маяков на трещинах получают точные результаты повреждения стен или перестенков.

Процедура отличается дороговизной и необходимостью использования нескольких датчиков, измеряющих смещение конструкции в разных направлениях. Но, такие наблюдения проводят не более 15 дней, а результаты записывают с точностью до сотых.

Гипсовые отметки на стенах

Считаются самым доступным способом наблюдения за образовавшимися разрушениями. Перед установкой повреждённую поверхность потребуется выровнять. Если конструкция продолжает деформироваться, то на маяке образуются трещины. В этом случае рядом устанавливают контрольные метки.

При этом учитывают:

  • негативную реакцию гипса на влияние низких температур и природных факторов;
  • способность меток разрушаться самим по себе;
  • высокую погрешность полученных результатов.

На полученную точность измерений влияет и неровность стены, на которой образовалась трещина. Каждой метке присваивается порядковый номер и дата. Результаты заносятся в журнал.

Мессуры
Как воспрепятствовать распространению трещин

Измерения с помощью пластинчатых приспособлений

Такие маяки устанавливаются с помощью эпоксидного клея или прикручиваются посредством дюбелей. Модели оборудованы сигнальной шкалой для проведения измерений. На шкале нанесены две оси и дополнительная информация, позволяющая полноценно исследовать повреждения во всех направлениях. Результаты измерения записываются с точностью до сотых (в миллиметрах).

По соотношению стоимости прибора и эффективности проведения мероприятия такой способ считается самым оптимальным. Также пластинчатые маяки удобные в использовании.

Точечный способ контроля

В области смещения конструкции определяются контрольные точки и отмечаются обычными дюбелями или специальными маячками, которые малозаметные на стене. При этом поверхность в проблемной зоне не требуется предварительно очищать от отделки. Такой метод позволяет наблюдать развитие раскола в любом направлении.

Точность результата зависит от погрешности инструментов, которыми выполняют контрольные замеры. Дюбеля или другие приспособления жёстко фиксируются к плоскости и не выпадают в период проведения исследований.

Мессуры

Представляют собой часовой механизм с высокоточной измерительной шкалой. Относятся к наглядным приспособлениям, с которых легко снимаются показания, а результат позволяет быстро ориентироваться в происходящих изменениях. Учитывая высокую стоимость приспособлений и такую же вероятность вандализма, маяки часового типа используются при проведении контрольных замеров.

Мы продолжаем серию публикаций методических рекомендаций по вопросам мониторинга зданий с трещинами. В этой статье будут приведен фрагмент документа «Пособие по обследованию строительных конструкций зданий», разработанного , в редакции 2004 года (далее по тексту Пособие). Это одно из самых подробных описаний процесса наблюдения за трещинами, выпущенных за последнее десятилетие. Пособие предназначено для специалистов по обследованию зданий. Однако, часть, касающаяся работы с трещинами, может быть использована и работниками других профессий, в чьи компетенции входит контроль технического состояния зданий и мониторинг деформаций строительных конструкций, например, специалистами по эксплуатации зданий. Далее приводится текст документа и наши комментарии.

5.3. Методы и средства наблюдения за трещинами

5.3.1. При обследовании строительных конструкций наиболее ответственным этапом является изучение трещин, выявление причин их возникновения и динамики развития. Они могут быть вызваны самыми разными причинами и иметь различные последствия.

По степени опасности для несущих и ограждающих конструкций трещины можно разделить на три группы.

  1. Трещины неопасные, ухудшающие только качество лицевой поверхности.
  2. Опасные трещины, вызывающие значительное ослабление сечений, развитие которых продолжается с неослабевающей интенсивностью.
  3. Трещины промежуточной группы, которые ухудшают эксплуатационные свойства, снижают надежность и долговечность конструкций, однако еще не способствуют полному их разрушению.

Следует отметить, что на данный момент отсутствует общепринятая классификация трещин в строительных конструкциях. В разных документах наблюдается различный подход к данному вопросу. При осмотрах и обследованиях зданий оценка степени опасности трещин безусловно важна и является одним из ключевых моментов. Предлагаемое деление трещин на три группы по степени их опасности вполне приемлемо. Однако, не совсем понятны критерии, по которым следует относить трещины к той или иной группе. На степень опасности трещины влияет множество факторов — конструктивные особенности здания, место расположения и параметры трещины, нагруженность и характеристики поврежденной конструкции, причины деформаций и интенсивность их развития, а также многие другие. Для сбора и анализа всей этой информации требуется проведение обследования. Но для обеспечения безопасности важно оценить трещину сразу же после ее выявления. Для этого делается предварительная оценка, точность которой, в условиях недостаточности информации, в большей степени зависит от опыта и знаний специалиста. По результатам предварительной оценки должны быть назначены дальнейшие мероприятия по обеспечению безопасности и получению дополнительных данных, необходимых для уточнения состояния конструкций. В том числе, устанавливается наблюдение за трещинами и разрабатывается состав и график контрольных осмотров.

5.3.2. В металлических конструкциях появление трещин в большинстве случаев определяется явлениями усталостного характера, что часто наблюдается в подкрановых балках и других конструкциях, подверженных переменным динамическим нагрузкам.

Возникновение трещин в железобетонных или каменных конструкциях определяется локальными перенапряжениями, увлажнением бетона и расклинивающим действием льда в порах материала, коррозией арматуры и действием многих труднопрогнозируемых факторов.

5.3.3. Следует различать трещины, появление которых вызвано напряжениями, проявившимися в железобетонных конструкциях в процессе изготовления, транспортировки и монтажа, и трещины, обусловленные эксплуатационными нагрузками и воздействием окружающей среды.

В железобетонных конструкциях к трещинам, появившимся в доэксплуатационный период, относятся: усадочные трещины, вызванные быстрым высыханием поверхностного слоя бетона и сокращением объема, а также трещины от набухания бетона; трещины, вызванные неравномерным охлаждением бетона; трещины, вызванные большим гидратационным нагревом при твердении бетона в массивных конструкциях; трещины технологического происхождения, возникшие в сборных железобетонных элементах в процессе изготовления, транспортировки и монтажа.

Трещины, появившиеся в эксплуатационный период, разделяются на следующие виды: трещины, возникшие в результате температурных деформаций из-за нарушений требований устройства температурных швов или неправильности расчета статически неопределимой системы на температурные воздействия; трещины, вызванные неравномерностью осадок грунтов основания; трещины, обусловленные силовыми воздействиями, превышающими способность железобетонных элементов воспринимать растягивающие напряжения.

5.3.4. При наличии трещин на несущих конструкциях зданий и сооружений необходимо организовать систематическое наблюдение за их состоянием и возможным развитием с тем, чтобы выяснить характер деформаций конструкций и степень их опасности для дальнейшей эксплуатации.

Наблюдение за развитием трещин проводится по графику, который в каждом отдельном случае составляется в зависимости от конкретных условий.

Хотелось бы отметить, что далее по тексту приводятся конкретные данные по периодичности наблюдения за маяками. Однако, следует относится к ним именно как к рекомендуемым. При назначении сроков очередного осмотра трещин каждая ситуация должна рассматриваться индивидуально, а график наблюдений может корректироваться в зависимости от результатов очередного осмотра. В первую очередь это зависит от интенсивности деформационных процессов и «давности» появления трещины. Чем свежее трещина, и чем быстрее она развивается, тем более пристального внимания требует.

5.3.5. Трещины выявляются путем осмотра поверхностей конструкций, а также выборочного снятия с конструкций защитных или отделочных покрытий.

Следует определить положение, форму, направление, распространение по длине, ширину раскрытия, глубину, а также установить, продолжается или прекратилось их развитие.

5.3.6. На каждой трещине устанавливают маяк, который при развитии трещины разрывается. Маяк устанавливают в месте наибольшего развития трещины.

При наблюдениях за развитием трещин по длине концы трещин во время каждого осмотра фиксируются поперечными штрихами, нанесенными краской или острым инструментом на поверхности конструкции. Рядом с каждым штрихом проставляют дату осмотра.

Расположение трещин схематично наносят на чертежи общего вида развертки стен здания, отмечая номера и дату установки маяков. На каждую трещину составляют график ее развития и раскрытия.

Трещины и маяки в соответствии с графиком наблюдения периодически осматриваются, и по результатам осмотра составляется акт, в котором указываются: дата осмотра, чертеж с расположением трещин и маяков, сведения о состоянии трещин и маяков, сведения об отсутствии или появлении новых трещин и установка на них маяков.

Здесь необходимо пояснить, что разрываться может только гипсовый (цементный) маяк. Для маяков других конструкций аналогичным сигналом будет отклонение от начального значения (положения). Также необходимо уточнить, что под «графиком развития, раскрытия трещины» понимается схема, на которой в графическом виде фиксируется изменение трещины во времени (пример приведен далее на рисунке 5.14). А под «графиком наблюдения» понимается именно назначенная периодичность проведения контрольных осмотров. Печатные формы упомянутых акта и графика развития трещин можно скачать на нашем сайте.

Рис. 5.5. Приборы для измерения раскрытия трещин а - отсчетный микроскоп МПБ-2, б - измерение ширины раскрытия трещины лупой: 1 - трещина; 2 - деление шкалы лупы; в - щуп

5.3.7. Ширину раскрытия трещин обычно определяют с помощью микроскопа МПБ-2 с ценой деления 0,02 мм, пределом измерения 6,5 мм и микроскопа МИР-2 с пределами измерений от 0,015 до 0,6 мм, а также лупы с масштабным делением (лупы Бринеля) (рис. 5.5) или других приборов и инструментов, обеспечивающих точность измерений не ниже 0,1 мм.

Глубину трещин устанавливают, применяя иглы и проволочные щупы, а также при помощи ультразвуковых приборов типа УКБ-1М, бетон-3М, УК-10П и др. Схема определения глубины трещин ультразвуковыми методами указана на рис. 5.6.

5.3.8. При применении ультразвукового метода глубина трещины устанавливается по изменению времени прохождения импульсов как при сквозном прозвучивании, так и методом продольного профилирования при условии, что плоскость трещинообразования перпендикулярна линии прозвучивания. Глубина трещины определяется из соотношений:

где h — глубина трещины (см. рис. 5.6);

V — скорость распространения ультразвука на участке без трещин, мк/с;

ta, te — время прохождения ультразвука на участке без трещины и с трещиной, с;

а — база измерения для обоих участков, см.

Рис. 5.6. Определение глубины трещин в конструкции
1 — излучатель; 2 — приемник

Здесь можно отметить, что инструменты и приборы, используемые при определении параметров трещины, следует выбирать исходя из конкретных условий, в которых предстоит проводить измерения, а также с учетом материала конструкций и величины повреждений. Например, если трещина в кирпичной кладке имеет ширину раскрытия более 20 мм, то применить большинство измерительных луп и микроскопов не получится. Кроме того, возможно, что в этом случае и точность более чем 0,1 мм не потребуется. Тем не менее, важно всегда стремиться к выполнению измерений с наибольшей точностью. Во многих источниках, также как и в рассматриваемом, принято, что наблюдения за шириной раскрытия трещин следует выполнять с точностью не ниже 0,1 мм. Добиться такой точности, а также сопоставимости результатов при многократных замерах через определенные промежутки времени, можно только в случае, если места замеров четко обозначены непосредственно на конструкции. Для этого можно наносить засечки перпендикулярно трещине в местах замеров, либо закреплять фиксирующие края трещины приспособления.

5.3.9. Важным средством в оценке деформации и развития трещин являются маяки: они позволяют установить качественную картину деформации и их величину.

5.3.10. Маяк представляет собой пластинку длиной 200-250 мм, шириной 40-50 мм, высотой 6-10 м, из гипса или цементно-песчаного раствора, наложенную поперек трещины, или две стеклянные или металлические пластинки, с закрепленным одним концом каждая по разные стороны трещины, или рычажную систему. Разрыв маяка или смещение пластинок по отношению друг к другу свидетельствуют о развитии деформаций.

Маяк устанавливают на основной материал стены, удалив предварительно с ее поверхности штукатурку. Рекомендуется размещать маяки также в предварительно вырубленных штрабах (особенно при их установке на горизонтальную или наклонную поверхность). В этом случае штрабы заполняются гипсовым или цементно-песчаным раствором.

Здесь имеет смысл привести выдержку из другого документа

ГОСТ 24846-2012 Грунты. Методы измерения деформаций оснований зданий и сооружений

3 Термины и определения

3.34 маяк, щелемер: Приспособление для наблюдения за развитием трещин: гипсовая или алебастровая плитка, прикрепляемая к обоим краям трещины на стене; две стеклянные или плексигласовые пластинки, имеющие риски для измерения величины раскрытия трещины и др.

10 Наблюдение за трещинами

10.3 При наблюдениях за раскрытием трещин по ширине следует использовать измерительные или фиксирующие устройства, прикрепляемые к обеим сторонам трещины: маяки, щелемеры, рядом с которыми проставляют их номера и дату установки.

Т.е. по большому счету маяк — это любое устройство, закрепляемое на конструкции в месте расположения трещины, и позволяющее отслеживать изменение ее параметров (ширины, сдвига и т.п.). Далее по тексту Пособия приводятся и другие виды маяков, неуказанные в п. 5.3.10. Соответственно описание маяков в этом пункте Пособия следует считать только одним из примеров.

5.3.11. Осмотр маяков производится через неделю после их установления, а затем один раз в месяц. При интенсивном трещинообразовании обязателен ежедневный контроль.

5.3.12. Ширина раскрытия трещин в процессе наблюдения измеряется при помощи щелемеров или трещиномеров. Конструкция щелемера или трещиномера может быть различной в зависимости от ширины трещины или шва между элементами, вида и условий эксплуатации конструкций.

Возникает вопрос: «Чем щелемер и трещиномер отличаются от маяка?» . Четких определений, по которым можно понять различие этих терминов, нам найти не удалось. Назначение, судя по приведенным в документе данным, у них идентичное. Принцип работы может отличаться у разных видов маяков, также как и у щелемеров. Скорее всего, функциональность и возможности для работы с трещинами также не зависят от названия. Хотелось бы все же отделить термин «трещиномер», т.к. более распространено его использование для обозначения электронных приборов, с функциями поиска и определения параметров трещин. Если посмотреть другие методические и нормативные документы данной и смежных тематик, то можно встретить использование терминов «маяк» и «щелемер» для обозначения устройств, аналогичных описываемым в данном Пособии. Причем, прослеживается следующая тенденция — «щелемер» чаще используется в документах, связанных с гидротехническими сооружениями. Возможно, что именно область использования повлияла на распространение названия данных инструментов. Исходя из этого, можно считать, что термины «маяк» и «щелемер» во многом схожи по своему значению. На данный момент это подтверждается и определением из ГОСТ, которое мы приводили в предыдущем комментарии. Надеемся, что в будущем использование терминологии для описания средств наблюдения за трещинами получит большую упорядоченность, а указанные понятия будут разграничены по ясным критериям. Но в данном обзоре мы не будем разделять щелемер и маяк, а предположим, что это в большей степени схожие устройства.

У нас есть дополнительная информация о разграничении понятий маяк, щелемер, трещиномер, деформометр, используемых применительно к средствам наблюдения за трещинами / швами / стыками и другими подобными элементами и повреждениями строительных конструкций зданий и сооружений.

Ответственным этапом является изучение трещин, выявление причин их возникновения и динамики развития.
По степени опасности для несущих и ограждающих конструкций трещины делят на три группы:

  • трещины неопасные, ухудшающие только качество лицевой поверхности;
  • опасные трещины, вызывающие значительное ослабление сечений, развитие которых продолжается с неослабевающей интенсивностью;
  • трещины промежуточной группы, которые ухудшают эксплуатационные свойства, снижают надежность и долговечность конструкций, но не способствуют полному их разрушению.

При наличии трещин на несущих конструкциях зданий и сооружений необходимо организовать систематическое наблюдение за их состоянием и возможным развитием с тем, чтобы выяснить характер деформаций в конструкции и степень их опасности для дальнейшей эксплуатации.

Трещины выявляют путем осмотра поверхностей, а также выборочного снятия с конструкций защитных или отделочных покрытий. Следует определить положение, форму, направление, распространение по длине, ширину раскрытия, глубину, а также установить, продолжается или прекратилось их развитие.

На трещине устанавливают маяк, который при развитии трещины разрывается. Маяк устанавливают в месте наибольшего развития трещины. При наблюдении за развитием трещины по длине концы трещины во время каждого осмотра фиксируют поперечными штрихами. Рядом с каждым штрихом проставляют дату осмотра. Расположение трещин схематично наносят на чертеж развертки стен здания или конструкции, отмечая номера и дату установки маяков. На каждую трещину составляют график ее развития и раскрытия.

По результатам систематических осмотров составляют акт, в котором указывают дату осмотра, чертеж с расположением трещин и маяков, сведения об отсутствии или появлении новых трещин.
Маяк представляет собой пластину длиной 200-250 мм, шириной 40-50 мм, высотой 6-10 мм, наложенную поперек трещины. Изготавливают маяк из гипса или цементно-песчаного раствора. В качестве маяка используют также две стеклянные или металлические пластинки, закрепленные одним концом каждая с разных сторон трещины, или рычажную систему. Разрыв маяка или смещение пластинок по отношению друг к другу свидетельствует о развитии деформаций.
Маяк устанавливают на основной материал стены, удалив предварительно с ее поверхности штукатурку. Рекомендуется размещать маяки также в предварительно вырубленных штрабах. В этом случае штрабы заполняют гипсом или цементно-песчаным раствором.
Осмотр маяков производят через неделю после их установки, затем не реже одного раза в месяц. При интенсивном трещинообразовании обязателен ежедневный контроль.

Ширина раскрытия трещин в процессе наблюдений измеряется при помощи щелемеров или трещиномеров. В журнале наблюдений фиксируют номер и дату установки маяка, место и схему расположения, первоначальную ширину трещины, изменение со временем длины и глубины трещины. В случае деформации маяка рядом с ним устанавливают новый, которому присваивают тот же номер, но с индексом. Маяки, на которых появились трещины, не удаляют до конца наблюдений.
Если в течение 30 суток изменение размеров трещин не будет зафиксировано, их развитие можно считать законченным, маяки можно снять и трещины заделать.

Рис. 1. Порядок установки маяка.

На трещинах установить гипсовые или цементные маяки и организовать наблюдение с регистрацией результатов в определенные промежутки времени в специальном журнале. Размеры маяков: длина 250¸300 мм, ширина 70¸100 мм, толщина 20¸30 мм.

Маяки устанавливаются поперек трещин в местах их наибольшего развития и надежно закрепляются на несущей части стен по обеим сторонам трещин (см. чертеж). Маяки ставят в очищенных от штукатурки местах, позволяющих вести ежедневные наблюдения.

Каждому маяку присваивают номер и указывают дату его установки. Если в течение срока наблюдения на маяке не появится трещина, значит, неравномерная осадка стен и образование в них трещин прекратились и трещину после расчистки можно заделать раствором. Если маяки разрушаются, значит деформация стен продолжается. В этом случае журнал с результатами наблюдений направить на изучение для принятия решения. В сырых местах не допускается ставить гипсовые маяки - в этом случае устанавливать маяки из цементного раствора.

Наблюдения

за трещинами

Наблюдения за развитием трещин в стенах во времени осуществляются с помощью гипсовых, стеклянных или пластинчатых маяков.

1 - трещина; 2 - маяк гипсовый или из стекла; 3 - металлическая пластинка; 4 - риски;

5 - гвоздь

Ширина раскрытия трещин измеряется с помощью: - градуированных луп и микроскопов (МИР-2, МПБ-2) с 2,5-24-кратным увеличением; - целлулоидных или бумажных трафаретов, с нанесенными на них линиями разной толщины от 0,05 до 2 мм , путем совмещения линий с краями трещины; - масштабных линеек при раскрытии трещин более 2 мм (точность измерений ± 0,3 мм ).

При длительных наблюдениях ширина раскрытия трещин за рассматриваемый период определяется с помощью переносных индикаторов с ценой деления 0,01 мм и штангенциркулей с ценой деления 0,1 мм. Величина раскрытия принимается равной разности двух измерений расстояния между штырями (реперами) с центрирующим устройством, заделанными в конструкцию по обе стороны трещины.

Глубина развития несквозных (слепых) трещин hтр определяется: - по следу трещины на поверхности керна, высверленного из тела конструкции; - с помощью стальных калиброванных щупов различной толщины по формуле:

+ 5 мм, (2)

где:
dн - раскрытие трещины снаружи в мм (среднее из трех измерений);

dщ, hщ - толщина щупа и глубина погружения щупа в трещину в мм без усилия (среднее из трех измерений при смещении щупа по трещине на 1- 2 см);

С помощью ультразвуковых приборов (УКБ-1М; УК-10П; УЗП-62 и др.) в соответствии с указаниями РТУ УССР 92-62.

Глубина трещины определяется по разности времени прохождения ультразвуковых импульсов в МКС на длине базы а - с трещиной и без трещины по формуле:

, (3)

где: tl, ta - время прохождения ультразвука соответственно на участке

с трещиной и без трещины.

Маяки нумеруют и пишут на них дату установки. Трещины и маяки в соответствии с графиком наблюдения периодически осматриваются (не реже одного раза в 2-ое суток), и по результатам осмотра составляется акт (журнал), в котором указываются: дата осмотра, чертеж с расположением трещин и маяков, сведения о состоянии трещин и маяков, сведения об отсутствии или появлении новых трещин и установка на них маяков (в журнале (акте) наблюдений обязательно должно быть зафиксировано - место расположения маяка, его номер, дату установки, первоначальную ширину трещины).

В случае деформации (разрыва) маяка рядом с ним устанавливается новый, которому присваивается тот же номер, но с индексом. Маяки, на которых появились трещины, не удаляют до окончания наблюдений.

Если в течение 30 суток изменение размеров трещин не будет

фиксировано, их развитие можно считать законченным, маяки можно снять и трещины заделать.

ЖУРНАЛ НАБЛЮДЕНИЯ ЗА МАЯКАМИ

  • Номер маяка
  • Дата установки маяка
  • Дата осмотра маяка
  • Дата раскрытия трещин
    (величина раскрытия)
Загрузка...