domvpavlino.ru

Минимальные расходы воды методы определения. Определение расчетных минимальных расходов воды при отсутствии гидрометрических данных. Системы внутреннего холодного и горячего водоснабжения

Предприятия и жилые дома потребляют большое количество воды. Эти цифровые показатели становятся не только свидетельством конкретной величины, указывающей расход.

Помимо этого они помогают определить диаметр трубного сортамента. Многие считают, что расчет расхода воды по диаметру трубы и давлению невозможен, так, как эти понятия совершенно не связаны между собой.

Но, практика показала, что это не так. Пропускные возможности сети водоснабжения зависимы от многих показателей, и первыми в этом перечне будут диаметр трубного сортамента и давление в магистрали.

Выполнять расчет пропускной способности трубы в зависимости от ее диаметра рекомендуют еще на стадии проектирования строительства трубопровода. Полученные данные определяют ключевые параметры не только домашней, но и промышленной магистрали. Обо всем этом и пойдет далее речь.

Расчитаем пропускную способность трубы с помощью онлайн калькулятора

ВНИМАНИЕ! Чтобы правильно посчитать, необходимо обратить внимание, что 1кгс/см2 = 1 атмосфере; 10 метров водяного столба = 1кгс/см2 = 1атм; 5 метров водяного столба = 0.5 кгс/см2 и = 0.5 атм и т.д. Дробные числа в онлайн калькулятор вводятся через точку (Например: 3.5 а не 3,5)

Введите параметры для расчёта:

Какие факторы влияют на проходимость жидкости через трубопровод

Критерии, оказывающие влияние на описываемый показатель, составляют большой список. Вот некоторые из них.

  1. Внутренний диаметр, который имеет трубопровод.
  2. Скорость передвижения потока, которая зависит от давления в магистрали.
  3. Материал, взятый для производства трубного сортамента.

Определение расхода воды на выходе магистрали выполняется по диаметру трубы, ведь эта характеристика совместно с другими влияет на пропускную способность системы. Так же рассчитывая количество расходуемой жидкости, нельзя сбрасывать со счетов толщину стенок, определение которой проводится, исходя из предполагаемого внутреннего напора.

Можно даже заявить, что на определение «трубной геометрии» не влияет только протяженность сети. А сечение, напор и другие факторы играют очень важную роль.

Помимо этого, некоторые параметры системы оказывают на показатель расхода не прямое, а косвенное влияние. Сюда относится вязкость и температура прокачиваемой среды.

Подведя небольшой итог, можно сказать, что определение пропускной способности позволяет точно установить оптимальный тип материала для строительства системы и сделать выбор технологии, применяемой для ее сборки. Иначе сеть не будет функционировать эффективно, и ей потребуются частые аварийные ремонты.

Расчет расхода воды по диаметру круглой трубы, зависит от его размера . Следовательно, что по большему сечению, за определенный промежуток времени будет выполнено движение значительного количества жидкости. Но, выполняя расчет и учитывая диаметр, нельзя сбрасывать со счетов давление.

Если рассмотреть этот расчет на конкретном примере, то получается, что через метровое трубное изделие сквозь отверстие в 1 см пройдет меньше жидкости за определенный временной период, чем через магистраль, достигающей в высоту пару десятков метров. Это закономерно, ведь самый высокий уровень расхода воды на участке достигнет самых больших показателей при максимальном давлении в сети и при самых высоких значениях ее объема.

Смотреть видео

Вычисления сечения по СНИП 2.04.01-85

Прежде всего, необходимо понимать, что расчет диаметра водопропускной трубы является сложным инженерным процессом. Для этого потребуются специальные знания. Но, выполняя бытовую постройку водопропускной магистрали, часто гидравлический расчет по сечению проводят самостоятельно.

Данный вид конструкторского вычисления скорости потока для водопропускной конструкции можно провести двумя способами. Первый – табличные данные. Но, обращаясь к таблицам необходимо знать не только точное количество кранов, но и емкостей для набора воды (ванны, раковины) и прочего.

Только при наличии этих сведений о водопропускной системе, можно воспользоваться таблицами, которые предоставляет СНИП 2.04.01-85. По ним и определяют объем воды по обхвату трубы. Вот одна из таких таблиц:

Внешний объем трубного сортамента (мм)

Примерное количество воды, которое получают в литрах за минуту

Примерное количество воды, исчисляемое в м3 за час

Если ориентироваться на нормы СНИП, то в них можно увидеть следующее – суточный объем потребляемой воды одним человеком не превышает 60 литров. Это при условии, что дом не оборудован водопроводом, а в ситуации с благоустроенным жильем, этот объем возрастает до 200 литров.

Однозначно, эти данные по объему, показывающие потребление, интересны, как информация, но специалисту по трубопроводу понадобятся определение совершенно других данных – это объем (в мм) и внутреннее давление в магистрали. В таблице это можно найти не всегда. И более точно узнать эти сведениям помогают формулы.

Смотреть видео

Уже понятно, что размеры сечения системы влияют на гидравлический расчет потребления. Для домашних расчетов применяется формула расхода воды, которая помогает получить результат, имея данные давления и диаметра трубного изделия. Вот эта формула:

Формула для вычисления по давлению и диаметру трубы: q = π×d²/4 ×V

В формуле: q показывает расход воды. Он исчисляется литрами. d – размер сечению трубы, он показывается в сантиметрах. А V в формуле – это обозначение скорости передвижения потока, она показывается в метрах на секунду.

Если сеть водоснабжения питается от водонапорной башни, без дополнительного влияния нагнетающего насоса, то скорость передвижения потока составляет приблизительно 0,7 – 1,9 м/с. Если подключают любое нагнетающее устройство, то в паспорте к нему имеется информация о коэффициенте создаваемого напора и скорости перемещения потока воды.


Данная формула не единственная. Есть еще и многие другие. Их без труда можно найти в сети интернета.

В дополнение к представленной формуле нужно заметить, что огромное значение на функциональность системы оказывают внутренние стенки трубных изделий. Так, например, пластиковые изделия отличаются гладкой поверхностью, нежели аналоги из стали.

По этим причинам, коэффициент сопротивления у пластика существенно меньше. Плюс ко всему, эти материалы не подвергаются влиянию коррозийных образований, что также оказывает положительное действие на пропускные возможности сети водоснабжения.

Определение потери напора

Расчет прохода воды производят не только по диаметру трубы, он вычисляется по падению давления . Вычислить потери можно посредством специальных формул. Какие формулы использовать, каждый будет решать самостоятельно. Чтобы рассчитать нужные величины, можно использовать различные варианты. Единственного универсального решения этого вопроса нет.

Но прежде всего, необходимо помнить, что внутренний просвет прохода пластиковой и металлопластиковой конструкции не поменяется через двадцать лет службы. А внутренний просвет прохода металлической конструкции со временем станет меньше.


А это повлечет за собою потери некоторых параметров. Соответственно, скорость воды в трубе в таких конструкциях является разной, ведь по диаметру новая и старая сеть в некоторых ситуациях будут заметно отличаться. Так же будет отличаться и величина сопротивления в магистрали.

Так же перед тем, как рассчитать необходимые параметры прохода жидкости, нужно принять к сведению, что потери скорости потока водопровода связанны с количеством поворотов, фитингов, переходов объема, с наличием запорной арматуры и силой трения. Причем, все это при вычисления скорости потока должны проводиться после тщательной подготовки и измерений.

Расчет расхода воды простыми методами провести нелегко. Но, при малейших затруднениях всегда можно обратиться за помощью к специалистам или воспользоваться онлайн калькулятором. Тогда можно рассчитывать на то, что проложенная сеть водопровода или отопления будет работать с максимальной эффективностью.

Расчет минимальных расходов воды на неизученных реках или в случае, когда имеющийся фактический материал не пригоден для использования в расчетах по статистическим формулам, производится в основном двумя способами: по картам изолиний минимального стока и по эмпирическим зависимостям.

Карты изолиний используются при расчетах минимального 30-дневного стока средних рек, с площадью водосбора от 1000 – 2000 (критическая площадь) до 75 000 км 2 . Реки с площадью водосбора, меньшей критической, относятся к малым рекам.

Они имеют величину модуля минимального стока, отличную от аналогичной характеристики средних рек. Способ определения минимального стока на малых реках излагается ниже. Критическая площадь показывает величину площади бас­сейна, начиная с которой на реках данного района практически не наблюдается изменение модуля минимального 30-дневного стока (М 30) с ростом площади бассейна (F). Она определяется путем построения зависимости M 30 =f(F) на двуосной логарифмической клетчатке, на которой критической площади будет со ответствовать точка перегиба кривой при переходе ее в прямую, близкую к горизонтальной линии.

На территории России выделено 11 районов в зимний сезон и 14 районов в летне-осенний, в которых реки имеют близкие по размеру критические площади бассейнов. Их величина изменяется от 800 до 10 000 км 2 . Поэтому для ее определения в данном районе может быть использована карта районов (рис. 4.3., 4.4.) для определения минимальных 30-дневных расходов воды на малых реках и таблица наибольших (критических) площадей бассейнов малых рек (табл. 4.3).

Таблица 4.3.

Наибольшие критические площади бассейнов (км 2 ) малых рек

Индекс района по карте Летне-осенний сезон Зимний сезон Индекс района по карте Летне-осенний сезон Зимний сезон
А Д
Б Е
В Ж
Г

Способ определения минимального 30-дневного стока по картам изолиний аналогичен методу вычисления годового стока. Карты изолиний минимального стока не применяются для озерных рек и рек, расположенных в карстовых районах.

Минимальный 30-дневный сток на малых реках, с площадью водосбора не менее 50 км 2 , для увлажненных районов и 100 км 2 для районов недостаточного увлажнения, рассчитывается по эмпирической зависимости вида

где – минимальный 30-дневный расход воды, средний за многолетний период, для зимнего или летне-осеннего сезонов;

F – площадь бассейна реки в км 2 ;

а, n, с - параметры, определяемые в зависимости от географического местоположения реки, устанавливаются по таблице и картам районов для определения минимального 30-дневного стока на малых реках (табл. 4.4).

1 – граница и индекс района для определения наибольшего значения (критической) площади бассейна малой реки; 2 – граница и номер района для определения минимальных 30 – дневных расходов воды на малых рек; 3 – номер района и индекс подрайона для определения минимальных 30 – дневных расходов воды на малых реках; 4 – расчетные створы

Рис. 4.3. Выкопировки из карт районов для определения минимальных 30 – дневных расходов воды на малых реках в летне-осенний сезон.

1 – граница и номер района для определения коэффициента изменчивости; 2граница и номер района для определения минимального среднего суточного расхода воды;

Рис. 4.4. Выкопировка из карты районов для определения минимального среднего суточного расхода воды и коэффициента изменчивости 30-дневного стока в летне-осенний сезон.

Таблица 4.4.

Значения параметров а, n, с

Номер района по карте Зминий сезон Летне – осенний сезон
а 10 3 n с а 10 3 n с
2,50 1,08 1,40 1,27
1,60 1,05 0,94 1,24
1,00 1,14 0,64 1,22
0,012 1,30 0,0034 1,12 -500
0,72 0,74 -300 0,15 1,05 -200
0,24 0,90 -500 0,00013 1,93 -200
1,10 0,85 -1000 0,053 1,06 -500
0,87 0,84 -160 0,065 1,09

Для расчета минимальных 30-дневных расходов воды различной обеспеченности коэффициент изменчивости Сv определяется в зависимости от величины среднего многолетнего минимального 30-днсвного модуля стока за зимний или летне-осенний сезон для данного района. В качестве вспомогательного материала используется карта районов для определения коэффициентов изменчивости и таблица значений C v (табл. 4.5.). Коэффициент асимметрии принимается по аналогии с окружающими изученными реками или назначается по соотношению C S = 2C v для увлажненных районов и C s =1,0-1,5 C v для районов недостаточного увлажнения.

Таблица 4.5.

Значения C v в зависимости от величины модуля минимального 30- дневного стока за летний и зимний сезоны

Номер района по карте М зим. мес л/сек с 1 км 2 С v зим. мес М лет. мес л/сек с 1 км 2 С v лет. мес
0,5-3 0,3-0,2 3-12 0,5-0,3
0-1 0,4-0,3 4-7 0,6-0,3
__ 2-4 0,6-0,4
1,5-6 0,3-0,2 3-12 0,4-0,3
1-5 0,4-0,2 1-7 0,5-0,3
0,5-3 0,4-0,2 6-7 0,6-0,3
1-5 0,7-0,3 1-5 0,6-0,3

Минимальные расходы воды малых рек могут быть получены по зависимости минимального 30-дневного модуля стока обеспеченностью 97% от отметки тальвега русла реки в замыкающем створе, выраженной в абс. м. для районов с одинаковыми гидрогеологическими условиями питания реки.

Величина минимального среднего суточного стока устанавливается по его соотношению с минимальным 30-дневным модулем стока по зависимости

М сут = аМ мес - b, (4.2)

где М сут - минимальный средний суточный модуль стока в л/сек с 1 км 2 . М мес - минимальный 30-дневный модуль стока; а , b - параметры, определяемые в зависимости от местоположения реки (табл. 4.6.).

Таблица 4.6.

Значения параметров а и b для определения минимального среднего суточного модуля стока

Номер района по карте Зминий сезон Летне – осенний сезон
а b а b
0,94 0,1 0,82 0,4
0,86 0,1 0,74 0,1
0,80 0,3 0,83
0,70 0,4 0,72
0,70 0,2 0,42
0,75 0,1 0,47 0,1

Пример 4.3. Определить минимальные 30-дневные и средние суточные расходы воды 90%-ной обеспеченности в летне-осенний сезон р. Ура у ст. Ура-Губа (Кольский п-ов).

1. Устанавливаем, что площадь бассейна реки до замыкающего створа составляет 1020 км2.

2. Исходя из местоположения речного бассейна на карте (рис. 4.3), определяем индекс района и по табл. 4.6 устанавливаем величину площади бассейна, до которой река считается малой (критическую площадь). Величина критической площади для района А, в котором находится бассейн р. Ура, составляет 1400 км2. Следовательно, расчет необходимо производить по схеме, применяемой для определения минимального стока на малых реках.

3. По той же карте находим, что номер района для определения минимального стока малой реки. По табл. 4.4 определяем значения параметров расчетной формулы для района 1, которые равны а = 0,0014, n = 1,27, С=95. Подставив все расчетные параметры в формулу 4.1 получаем, что величина среднего многолетнего минимального 30-дневного расхода воды в летне-осенний сезон составляет 9,85 м3/сек, или 9,65 л/сек с 1 км2.

4. Для определения коэффициента изменчивости Cv по карте (рис. 4.4) устанавливаем, что бассейн р. Ура расположен в районе 1. По табл. 4.5 находим, что в районе 1 величине модуля 9,65 л/сек с 1 км2 соответствует значение коэффициента изменчивости Cv, равное 0,34 (величина Cv определена путем интерполяции с учетом того, что большему значению модуля соответствует меньшая величина Cv).

5. Величина коэффициента асимметрии Cs принимается в соответствии с рекомендацией для увлажненных районов равной 2 Cv

6. По установленным параметрам Q = 9,85 м3/сек, Cv = 0,34 и Cs =2 Cv определяем, что расчетное значение минимального 30-дневного расхода воды 90%-ной обеспеченности равно 5,3 мг/сек.

7. Для расчета минимального среднего суточного расхода воды по уравнению используется карта, показанная на рис. 4.4, по которой устанавливается, что р. Ура расположена в районе 1, для которого районные параметры а и b равны соответственно 0,82 и 0,4 (значения параметров определены по табл. 4.6). В качестве параметра Ммес подставляется величина М 90% ,равная 5,2 л/сек с 1 км 2 . В результате расчета получаем, что искомая величина минимального среднего суточного расхода воды (после перевода модуля в расход воды) 90%-ной обеспеченности составляет 3,94 м3/сек.

Пример 4.4. Определить минимальные 30-дневные и средние суточные расходы воды 75%-ной обеспеченности в летне-осенний сезон река на Кольском п-ове в зоне 3 (рис. 4.3). Устанавливаем, что площадь бассейна реки до замыкающего створа составляет 920 км 2 .

Пример 4.5. Определить минимальные 30-дневные и средние суточные расходы воды 25%-ной обеспеченности в летне-осенний сезон река на Кольском п-ове в зоне 2 (рис. 4.3). Устанавливаем, что площадь бассейна реки до замыкающего створа составляет 1020 км2.

Максимальные расходы воды

Под максимальными расходами воды рек и малых водотоков понимаются наибольшие в году значения мгновенных или срочных расходов, наблюдаемые во время весеннего половодья или дождевых паводков.

На малых водотоках со значительным внутрисуточным изменением уровней и расходов, особенно в период дождевых паводков, пик паводка может пройти между установленными сроками наблюдений. Поэтому срочные максимальные расходы бывают меньше мгновенных. В свою очередь средний суточный максимум меньше срочного. Эта разница бывает значительной на очень малых водотоках и уменьшается с возрастанием площади водосбора реки. Расчеты следует производить для мгновенных максимальных расходов воды.

По генетическому признаку, или происхождению, максимальные расходы воды подразделяются на:

а) образующиеся в основном от таяния снегов на равнинах,

б) от таяния снегов в горах и ледников,

в) от дождей,

г) от совместного действия снеготаяния и дождей – смешанные максимумы.

К максимумам смешанного происхождения относятся максимальные расходы воды, в образовании которых невозможно установить превалирующую роль талых или дождевых вод.

При анализе и расчетах максимальных расходов воды с применением методов математической статистики максимумы различного генетического происхождения рассматриваются раздельно.

Практическая важность вопроса определяется тем, что многие элементы половодья или паводков необходимо учитывать при строительстве гидротехнических сооружений. Особенно важно знать максимальные расходы воды весеннего половодья и дождевых паводков, от величины которых зависят размеры наиболее массовых сооружений – мостовых переходов через реки и малые водотоки, большое количество которых ежегодно строится на автомобильных и железных дорогах, а также размеры водосбросных и водопропускных отверстий других сооружений.

От правильного определения максимальных расходов воды и работы водосбросных отверстий зависит бесперебойность работы сооружения или дороги, безопасность пли судьба всего сооружения и прилегающих к реке объектов, а также, и стоимость сооружения. Завышенные максимальные расходы воды повысят общую стоимость сооружения, что снизит его экономическую эффективность. Занижение максимальных расходов приведет к разрушению сооружения, затоплению прилегающей к реке местности, материальному убытку и человеческим жертвам.

Расчетные ежегодные вероятности превышения, или обеспе­ченности, максимальных расходов воды определяются в зависимости от класса капитальности сооружения и нормируются общими техническими указаниями, рекомендуемыми или обязательными для проектных организаций.

Все гидротехнические сооружения по своей капитальности делятся на несколько классов. Сооружения высоких классов капитальности должны служить несколько сот лет. Чтобы они работали бесперебойно, их водосбросные отверстия нужно рассчитывать на пропуск максимальных расходов воды очень редкой повторяемости. Временные гидротехнические сооружения рассчитываются на максимальные расходы воды более частой повторяемости.

Строительными нормами и правилами [СНиП II–И 7–65] установлены следующие расчетные ежегодные вероятности превышения, или обеспеченности, максимальных расходов воды в зависимости от класса капитальности сооружения:

Класс сооружения ……..I II III IV

Р °/о……………………0,01 0,1 0,5 1

Временные гидротехнические сооружения V класса рассчитываются на пропуск максимальных расходов 10%-ной обеспеченности.

Постоянные водопропускные сооружения на автомобильных дорогах рассчитываются на максимальные расходы воды следующих обеспеченностей:

Бровка насыпи……………………………1,0 2,0

Отверстия мостов, труб…………………1,0 2,0

Ответвленные водоотводы………….....…2,0 4,0

Обвалование населенных пунктов,

вход в шахты, тоннели и пр.……………. 0,1 0,1

При этом если наблюденный максимальный расход имеет обеспеченность меньше 1%, то он принимается в качестве расчетного.

Технические условия проектирования железных дорог предусматривают расчеты отверстий мостов и труб на пропуск следующих расходов:

а) наибольшего обеспеченностью 0,33% для больших и средних мостов и 0,2% для малых мостов и труб;

б) расчетного обеспеченностью, указанной ниже:

Класс сооружения по степени капитальности I I и II II

Обеспеченность расхода, %............................1 (для труб 2) 1 (для труб2) 2

В зависимости от степени достаточности (длительности) ряда наблюдений и надежности исходных данных применяются следую­щие методы расчета максимальных расходов воды:

а) при наличии длительного ряда гидрометрических наблюдений строится эмпирическая кривая обеспеченности, и верхняя часть экстраполируется за пределы наблюдений до заданных обеспеченностей с помощью теоретической кривой обеспеченности;

Б) при наличии короткого ряда наблюдений, недостаточного для построения кривых обеспеченности, но достаточного для приведения его к длительному ряду, имеющийся короткий ряд приводится к длительному ряду и по последнему строятся кри­вые обеспеченности;

в) при наличии короткого ряда наблюдений, недостаточного для приведения его к длительному периоду, а также при отсутствии наблюдений по расчетному створу расчет производится косвенными методами – по методу аналогии или по формулам с обеспеченными параметрами.

Введение

В данном курсовом проекте рассчитана и запроектирована наружная водопроводная сеть населенного пункта и железнодорожной станции.

В основу проекта положены следующие исходные данные: план населенного пункта и железнодорожной станции в горизонталях, общие сведения о водопотребителях, расчетная плотность жителей в населенном пункте, характеристика санитарно-технического оборудования зданий, этажность застройки, потребители воды на железнодорожной станции и промышленных предприятиях, глубины промерзания грунта и залегания грунтовых вод.

Грунты на территории населенного пункта, железнодорожной станции и на трассе водоводов представлены суглинками. Грунтовые воды залегают на глубине 2,9 м. Глубина промерзания грунта 1,4 м.

Населенный пункт имеет пятиэтажную застройку. Все здания оборудованы водопроводом, канализацией и централизованным горячим водоснабжением. В населенном пункте основными потребителями воды являются население (численность 29110 человек), баня, прачечная, промышленное предприятие, а также большой объем воды расходуется на поливку улиц, тротуаров, зеленых насаждений и проездов.

На железнодорожной станции основными потребителями воды являются локомотивное депо, компрессорная, котельная, дом локомотивных бригад, пассажирское здание (вокзал). Вода расходуется так же на заправку и обмывку вагонов (пассажирских и грузовых), а также на обмывку локомотивов.

Проектируемая система водоснабжения относится к первой категории надежности подачи воды, т.к. обеспечивает пожаротушение. В проекте принята объединенная система водоснабжения.

Водопроводная сеть населенного пункта и станции запроектирована по кольцевой схеме, устроена из пластмассовых труб в пределах населенного пункта, чугунных труб на железнодорожной станции, стальных труб при укладке под путями. Она состоит из магистральных и распределительных линий. В проекте рассчитана только магистральная сеть. В результате гидравлического расчета сети устанавливается действительное потокораспределение воды по всем ее участкам, и определяются потери напора на них при принятых диаметрах труб. Гидравлический расчет водопроводной сети на час максимального водопотребления, совпадающего с пожаром, произведен на ЭВМ. В результате этого расчета используются расчётные диаметры труб. Также, с помощью гидравлического расчета сети на ЭВМ, определяются пьезометрические отметки во всех узлах сети применительно к каждому расчетному случаю. По этим данным строится продольный профиль основной магистральной линии, проходящей через диктующую точку сети.

Минимальный диаметр труб в населённом пункте – 140 мм, а на ж.-д. станции – 150 мм.


Максимальный суточный расход в населенном пункте и на железнодорожной станции составляет 19519,02 м 3 . Расход воды на пожаротушение принят: 2 пожара в населённом пункте по 25 л/с и 15 л/с в депо. Дополнительно принят расход воды на внутреннее пожаротушение в депо в размере 5 л/с. Общий расход воды на пожаротушение равен 62,5 л/с. В проекте так же найден максимальный часовой расход 1206,51 м 3 , соответствующий времени с 8 до 9 часов.

Водопроводная сеть рассчитана на два случая работы:

1) работа водопроводной сети в час максимального водопотребления суток максимальных расходов воды.

2) работа водопроводной сети в час максимального водопотребления суток максимальных расходов воды с учетом противопожарного расхода.

Секундный расход воды в час максимального водопотребления равен 353,8 л/с, а подача противопожарного расхода в час максимального водопотребления равна 407,2 л/с.

По данным расчетов построен график водопотребления по часам суток (рис.1). На этот же график нанесен график подачи воды ВНС II и запроектирована ступенчатая работа насосной станции. Принято: К I =5,36 %Q сут, t 1 =9 ч в период с 6 до 13, с 15 до 17 ; К II =3,45 %Q сут, t 2 = 15 ч в период с 0 до 6, с 13 до 15, с 17 до 24. При этом регулирующий объем водонапорной башни составляет: W рег = 482 м 3 .

Водонапорная башня установлена в самой высокой точке населенного пункта. Высота водонапорной башни Н ВБ = 32,56 м. К установке принят типовой бак для водонапорной башни емкостью W ВБ = 500 м 3 . Диаметр бака: D б = 10 м. Высота бака: h б = 7 м.

В проекте выполнен гидравлический расчет кольцевой водопроводной сети по методу В. Г. Лобачева – Х. Кросса на час максимального водопотребления и гидравлический расчет сети на час максимального водопотребления с учетом подачи противопожарного расхода с использованием программы WS2 (Водопроводная сеть, 2-я версия).

Определение расчетных суточных расходов воды

Водопроводную сеть рассчитываем на подачу требуемого количества воды в сутки наибольшего водопотребления. Для населенного пункта и железнодорожной станции этот расход включает суточный расход на хозяйственно-питьевые нужды населения; наибольший расчетный расход воды на производственные нужды промышленных предприятий и железнодорожной станции; расход на хозяйственно-питьевые нужды рабочих во время их пребывания на производстве; расход воды на поливку улиц и зеленых насаждений.

Все вычисления по определению расчетного суточного расхода воды сведим в таблице 1.

Для заполнения таблицы 1 используем следующие расчетные формулы и нормативные данные , .

1) Средний суточный расход воды Q cy т ср на хозяйственно-питьевые нужды населения определен по формуле, м 3 /сут:

Q cy т ср = ,

где q ж – удельное водопотребление, принимаем по , q ж = 0,6*290 = 174 л/сут (застройка здания, оборудованными внутренним водопроводом и канализацией с централизованным горячим водоснабжением); q ж принимается по СНиП 2.04.02-84 (прил. 1 методич.ук.), в зависимости от степени благоустроенности населенного пункта, климатических условий и санитарно–технического оборудования. Для зданий оборудованных внутренним водопроводом с централизованным горячим водоснабжением составляет 230 - 350 л/с, в проекте принимается равным 290.

При централизованной системе горячего водоснабжения с непосредственным отбором воды из тепловых сетей до 40% общего расхода воды подается из сети теплоснабжения. Поэтому норму водопотребления принимаем с коэффициентом 0,6

N ж - расчетное число жителей в районах жилой застройки, чел.

Вычисление расчетного числа жителей в районах жилой застройки производим по следующей формуле:

N ж = ρ∙F

где ρ – заданная плотность населения, чел./га; по заданию ρ = 201 чел/га;

F - площадь жилой застройки населенного пункта, га, (без учета площади дорог, проездов, зеленых насаждений, территории предприятий). Определяем по плану населенного пункта.

F = 145,55 га;

N ж = 200*145,55 = 29110 чел;

Q cy т ср = 0,174 *29110 = 5065,14 м 3 /сут.

Максимальный суточный расход Q сут. max на хозяйственно – питьевые нужды населения определяем с учетом коэффициента суточной неравномерности водопотребления К сут. max по формуле, м 3 /сут:

Q сут мах = К сут мах *Q сут.ср = 1,2*5065,14= 6078,17; м 3 /сут

где К сут. max –коэффициент, учитывающий уклад жизни населения, режим работы предприятий, степень благоустройства зданий, изменение водопотребления по сезонам года и дням недели, принимаем равным 1,2 (по заданию).

2)Количество воды на нужды местной промышленности, обеспечивающей население продуктами, и неучтенные расходы принимаем дополнительно в размере 10% расхода воды на хозяйственно – питьевые нужды населения.

Расходы воды банями и прачечными являются сосредоточенными и характеризуются значительными величинами, поэтому выделяем их в отдельных узлах на сети. Суточные расходы этими водопотребителями определяем по формулам, м 3 /сут:

· для бани

где 5 - число мест в бане на 1000 жителей в час;

100 - количество белья, подлежащего стирке в смену на 1000 жителей, кг;

t б - продолжительность работы бани в сутки, t б = 16 ч, т.к. баня работает с 7 до 23 ч.;

q б - норма расхода воды на 1 посетителя; принимается по СНиП 2.04.01-85 (для мытья в мыльной с тазами на скамьях и с ополаскива­нием в душе q 6 = 0,18 м 3);

· для прачечной

где n cm - число смен работы прачечной в сутки, n cm = 2;

q n - норма расхода воды на 1 кг белья; принимается по (для меха­низированных прачечных q n - 0,075 м 3).

3)Средний и максимальный суточные расходы воды для ТЭЦ определяем по той же методике, что и для населения, приняв норму удельного водопотребления с коэффициентом 0,4.

q ж = 0,4*290 = 116, л/сут.

Q сут. ср = q ж *N ж /1000= 116*29110/1000=3376,76 м 3 /сут.

Q сут мах = К сут мах *Q сут.ср = 1,2*3376,76 = 4052,11 м 3 /сут.

4) Суточный расход воды железнодорожной станции определяем отдельно по всем водопотребителям, заданным в курсовом проекте. В таблице 1 приведены основные потребители воды на железнодорожной станции и указаны нормы водопотребления для них.

Нормы водопотребления на технические нужды других потребителей железнодорожной станции принимаем по прил.2.

При разработке курсового проекта расходы воды на технологические нужды котельной, компрессорной, локомотивного и вагонного депо приведены в задании.

Расход воды на хозяйственно-питьевые нужды рабочих депо и на прием душа во время их пребывания на производстве учитываем дополнительно к хозяйственно-питьевому водопотреблению населения поселка. Эти дополнительные расходы составляют 0,045 м 3 на 1 человека в смену в горячих цехах и 0,025 м 3 на 1 человека - в холодных цехах.

Часовой расход воды на 1 душевую сетку принят 500 л при продолжительности пользования душем 45 мин (за это время расход составляет 0,375 м 3 /сут) после окончания каждой смены.

Количество душевых сеток определяем по расчетному количеству человек на одну душевую сетку, работающих в смене, в зависимости от групп санитарной характеристики производственных процессов. Для группы санитарной характеристики производственных процессов I в расчетное количество человек на 1 душевую сетку равно 5, а для группы IIб – 3 (т.е. для холодных цехов принимаем 5 человек на 1 душевую сетку, а для горячих – 3 , согласно характеристики).

По максимальному количеству душевых сеток m определяем расход воды на душевые нужды работающих в первую смену по формуле, м 3 /смену:

Q душΙ = 0,375*m (m – количество сеток)

Расходы воды на душевые нужды других смен определяем по соотношению работающих по сменам, м 3 /смену:

Q душΙΙ = Q душΙ Q душΙΙΙ = Q душΙ

где n Ι , n ΙΙ , n ΙΙΙ – число работающих по сменам.

Количество душевых сеток в доме локомотивных бригад определяем по среднечасовому количеству (за сутки) локомотивных поездных бригад, прибывающих в депо, с коэффициентом 1,2 неравномерности подхода поездов. В доме локомотивных бригад установлены две душевые сетки, суточный расход воды через которые составляет 0,5∙2∙24 = 24 м 3 (0,5 м 3 - часовой расход на 1 душевую сетку; 24 ч - число часов работы душевых кабин в сутки).

5) Суточный расход воды промышленным предприятием определяем по той же методике, что и для локомотивного или вагонного депо. Группа санитарной характеристики производственного процесса предприятия приведена в задании и относится к группе I в (т.к. по заданию на предприятии имеются только холодные цеха).

6)Максимальный суточный расход воды на поливку определяется по числу жителей и удельному среднесуточному потреблению воды на поливку в расчете 50 – 90 л/сут на 1 жителя.

Принимаем в проекте 70 л/сут на 1 человека.

Q полив.мах = 70*N ж *n п /1000 = 70*29110*2/1000 = 4075,4 м 3 /сут

Q полив.ср = Q полив.мах *n полив /12 = 4075,4*6/12 = 2037,7 м 3 /сут,

где n п – количество поливок в сутки в зависимости от климатических условий, принимаем 2 раза/сут;

n полив – число месяцев полива в году, принимаем 6 месяцев.

Разделим потребители воды на две категории: одна категория потребляет воду периодически, другая — длительное время.

Первая категория включает в себя точки водораз-бора, потребляющие воду в течение максимум 10 минут, например, умывальники, кухонные мойки, туалеты и т.д. Отличительной чертой этой категории является то, что вода никогда не льется одновременно из всех кранов. Семья, состоящая из двух человек, к примеру, обычно может использовать не более двух кранов одновременно, независимо от того, сколько их имеется в доме.

Более того, стиральные и посудомоечные машины забирают воду периодически, в зависимости от установленной программы. Поэтому очевидно, что выбор насоса с очень высокой производительностью экономически невыгоден с точки зрения стоимости, т. к. он будет использован не на полную мощность.

В таблице на следующей странице представлен нормальный расход воды для различных типов потребителей при периодическом использовании. Нормальный расход — это среднее потребление воды при достаточном давлении насоса, обычно оно составляет 10 метров.

Рис.91 Водоснабжение зданий

Рис.92 Различные области применения воды

Нормальный расчет расхода воды в наиболее часто используемых точках водоразбора

Потребители

Нормальный расход q n

Холодная вода

Горячая вода

л/с

м 3 /ч

л/с

м 3 /ч

Ванна

1,08

1,08

Биде

0,36

1,08

Душ

0,72

1,08

Раковина для умывания

0,36

1,08

Кухонная мойка

0,72

1,08

Душевые, используемые одновременно (например, на предприятиях)

0,36

1,08

Раковины для мытья, используемые одновременно (например, на предприятиях)

0,03

0,11

0,03

0,11

Питьевые чаны для скота

0,03

0,11

Слив писсуара

1,44

Слив унитаза

5,40

Краны с питьевой водой в конюшнях

0,72

0,72

0,72

0,72

Туалетный бачок

0,36

ий пример

Потребители

Нормальный расход q n

Холодная вода

Горячая вода

л/с

м 3 /ч

л/с

м 3 /ч

Ванна

1,08

1,08

Душ

0,72

1,08

Раковина для умывания

0,36

1,08

Кухонная мойка

0,72

1,08

Домашние стиральные и посудомоечные машины

0,72

0,72

Туалетный бачок

0,36

Всего

3,96

3,60

Полный нормальный расход составляет:

1,1 л/с (холодная вода) + 1 л/с (горячая вода) = 2,1 л/с, что соответствует 7,56 м 3 /ч.

Рис.93 Диаграмма, показывающая возможный максимальный расход воды

Возможный максимальный расход воды

Такого расхода на практике фактически не бывает, и он рассчитывается как максимальный расход, который теоретически может иметь место.

Точка водоразбора с наибольшим нормальным расходом определяет, какую характеристику (1, 2, 3 или 4) использовать. Если наибольший нормальный расход в доме приходится на ванну (0,3 л/с), то должна быть применена характеристика №3.

По оси Х из точки 2,1 проведите вертикальную линию вверх до пересечения с кривой характеристики №3. Далее из точки пересечения выведите горизонтальную линию до пересечения с вертикальной осью Y

Для данного примера, по диаграмме, нормальным наивысшим расходом будет 0,57 л/с, что соответствует 2,05 м 3 /ч для всех точек водоразбора периодического использования (категория 1).

Продолжительное использование

После подсчета возможного максимального расхода из потребителей, относящихся к категории 1, добавляется нормальный расход потребителей категории 2.

Нормальный расход для точек водоразбора продолжительного использования

Потребители

Нормальный расход q n

Холодная вода

Горячая вода

л/с

м 3 /ч

л/с

м 3 /ч

Тепловые насосные установки для отвода тепла

0,72

Полив сада и газона (каждый распылитель)

0,72

Наполнение плавательного бассейна

0,72

охлаждение молока и испарителей

0,72

оросительные системы

Запросить производителя

Максимальное потребление

Если в доме имеется тепловой насос (охладитель) для отвода тепла, с помощью которого происходит охлаждение летом и подогрев зимой, а также краны для поливки сада и газонов, то полное максимальное потребление будет следующим:

Бытовое использование

0,57

2,05

Тепловой насос

0,72

Полив сада

0,72

Полное максимальное потребление

0,97

3,49

На работу центробежного насоса при перекачивании воды оказывают влияние несколько факторов:

  • Высота всасывания (от поверхности воды до насоса)
  • Потери на трение во всасывающем трубопроводе и клапане
  • Высота от насоса до наивысшей точки водораз-бора
  • Потери на трение в напорном трубопроводе (в зависимости от производительности)
  • Необходимое минимальное давление в кранах (в зависимости от фитингов)

Рис.94 Фактический напор насоса

При подсчете фактического напора насоса должна быть использована величина максимального водо-потребления, в данном случае 0,97 л/с (3,49 м 3 /ч).

Рис.95 Потери напора во всасывающем и обратном клапанах типа BVF и MVF.

Виды потерь (см. рис. 97, 98 и 99)

Потери в метрах

Потери на трение во всасывающем клапане

0,80

Потери на трение в 8 метровой 11"" всасывающей трубе составляют 8 х 0,08 м

0,64

Потери на трение в 60 метровом 11"" напорном трубопроводе:

Прямые участки труб: 60 х 0,08 м

6 колен, 3 клапана 0,05 (6 х 0,05 + 3 х 1,5)

4,80 0,38

Потери на трение в фитингах верхних кранов (установленные производителем при расходе 0,2 л/с)

2,00

Высота всасывания (от уровня воды до насоса)

6,05

Высота от насоса до наивысшей точки водоразбора

21,50

Необходимое минимальное давление в кране (установленное производителем при расходе 0,2 л/с)

10,00

Фактический напор насоса при 3,49 м 3 /ч

46,17

Рис.96 Потери давления в горячих оцинкованных стальных трубах с отложениями

Диаграммы потерь на трение

Данная таблица и диаграммы для расчета потерь на трение на прямых участках трубопровода и таких участках, как клапаны, колена и т. д., не обязательно идентичны тем, которые Вы используете в своих расчетах, но принципы их совпадают. Вы можете использовать тот вариант, который считаете наиболее подходящим для себя.

На практике 80% продаваемых насосов устанавливаются взамен старых, отработавших свой срок. При подборе насоса для замены часто остаются неизвестными такие параметры системы, как возраст труб, тип обратного клапана в скважине, тип водопроводных кранов в доме и уровень отложений ржавчины и ила в трубах. Поэтому необходимо предугадать эти факторы для более точного определения коэффициентов трения.

Во-первых, вы должны узнать тип насоса, который был прежде в данной установке. На основе полученной информации, Вы сможете определить тип нового насоса.

Если нет достаточной информации по старому насосу, Вы должны узнать, с какой глубины насос должен качать воду (например, 6,05 м) и какое расстояние от насоса до верхней точки водоразбора (в примере 21,5 м). Затем добавьте 10 метров, соответствующих необходимому давлению в верхней точке водоразбора. После этого определяем общий напор: 6,05 + 21,5 + 10 = 37,55 метров, к этому значению нужно добавить примерно 30%, равных 11,26 метра, запас на потери на трение во всасывающем клапане, трубопроводе, присоединениях и т. д.

Таким образом, фактический напор насоса будет равен: 37,55 + 11,26 = 48,81 метра.

Поделиться с друзьями:

Страница 1

Вероятность действия приборов:

qс hr,u – расход воды одним потребителем в час наибольшего водопотребления, принимается по приложению 3 СНиП 2.04.01-85.(qс hr,u =5,6)

q0 – общий расход воды, л/с, санитарно-техническим прибором

(арматурой). принимается по приложению 2 СНиП 2.04.01-85.

U – число потребителей в здании.

N – общее число приборов, обслуживающих потребителей.

Секундный расход воды и стояков на расчетном участке:

q0 – секундный расход воды мойки со смесителем

α - коэффициент, определяемый согласно приложению №4 , в зависимости от общего числа приборов N на расчетном участке сети и вероятности их действия Р

Все расчетные данные, а также вычисленные значения потерь напора на расчетных участках заносятся в таблицу3:

Пример(для участка0-1) ;

PN=0,04, то а=0,256; q=5*0,18*0,256=0,23;

Этому расходу соот-ет труба диам. равное 15мм; V=1,18; i=0,36; Li=0,108

Результаты р

асчета сети внутреннего холодного водопровода

Вероятность использования санитарно-технических приборов

= = 0,034105

Максимальный часовой расход:

qhr =0,005 q0,hr ahr = 0,005*190*1,437 = 1,36515м3/час

где, q0,hr – максимальный часовой расход сантехнических приборов принимаемый согласно обязательному приложению 3. ahr – коэффициент следует принимать по табл. 2 приложения №4 .

Суточный расход воды

8,25 м3/сут

норма расхода холодной воды, л, потребителем в сутки (смену) наибольшего водопотребления,

Ui - число водопотребителей расчетного дома.

Подбор водомера

На вводе данного проектируемого здания водопровода устанавливается водомерный узел для учета расхода воды здания. Счетчики воды устанавливают на вводах трубопровода холодного и горячего водоснабжения.

Средний часовой расход воды за период (сутки) максимального водопотребления:

0.446875 м3/час

где К – коэффициент суточной неравномерности, (К= 1,1 – 1,3)

T- расчетное время, ч, потребления воды (сутки, смена)

Потери напора в счетчиках при расчетном секундном расходе воды

h = S q2 = 1,3 * 0,692 = 0,61893 м.

S – гидравлическое сопротивление счетчика, принимаемое согласно таблицы приложения 2. (для Ø 32 S=1,3)

Определение требуемого напора

Для того, чтобы определить требуемый напор во внутренней сети водопровода здания учитывают геометрическую высоту подачи воды, все возможные потери напора, а также рабочий напор в диктующей водоразборной точке.

где – геометрическая высота подачи воды от оси насоса до расчетного санитарно – технического прибора, м;

Загрузка...