domvpavlino.ru

Силикатный песок и изделия из его. Силикатные стеновые материалы. Силикатные бетоны и изделия из них

Классификация силикатных изделий
Силикатные изделия состоят из смеси различных силикатов и полисиликатов. Получаются они путем термической или термохимической переработки силикатного сырья. В зависимости от условий этой переработки и качества сырья образующиеся продукты и изделия имеют различный химический состав и обладают различными физическими свойствами. На основе условий получения и свойств силикатных изделий их в практике делят на три категории: керамика, стекло и вяжущие вещества.
Керамические изделия получаются спеканием измельченных смесей различных минералов и окислов при высоких температурах. В зависимости от степени спекания их делят на изделия: а) с пористым и б) со спекшимся черепком. К первой группе этих изделий относятся: кирпич, фаянс, кафель, черепица, терракота, гончарные изделия и различные огнеупоры (шамот, динас и т. п.). Вторую группу изделий составляют фарфор, кислотоупорные изделия для химической промышленности, тротуарные и облицовочные плиты и т. п. В зависимости от состояния поверхности керамических изделий их делят на два типа: глазурованные и неглазурованные. К глазурованным относятся такие изделия, которые имеют на поверхности тонкий слой сплавленной стеклообразной массы.
После обжига некоторых порошкообразных силикатов, алюмосиликатов и других веществ минерального происхождения образуются такие продукты, которые обладают вяжущими свойствами, т. е. в присутствии воды превращаются в прочную каменистую массу. Такие продукты называются вяжущими веществами.
Нагрев смесей силикатов до расплавления, с последующим охлаждением жидкости до затвердевания, дает различные сорта стекла.
Классификация стекла и вяжущих веществ приведена ниже (см. главы III и IV).

Применение силикатных изделий
В настоящее время трудно назвать такую отрасль народного хозяйства, где бы не применялись силикатные изделия. Особенно велико их значение в Советском Союзе в связи с развернувшимся широким строительством гидроэлектростанций, городов и различных промышленных сооружений. Наши стройки в больших количествах потребляют цемент, кирпич, облицовочные плиты, черепицу, канализационные трубы, стекло и различные природные строительные материалы.
Непрерывно растет производство важнейшего силикатного материала — цемента, что связано с широким развитием жилищного и промышленного строительства в Советском Союзе. По плану 1965 г. в нашей стране будет производиться до 84,6 млн. т цемента, что в 2,5 раза превысит уровень, достигнутый в 1958 г.
Широко применяются силикатные изделия в химической и металлургической промышленности: это различные огнеупорные материалы, применяемые для кладки печей, кислотоупорные изделия— в производстве кислот, керамические трубы — для подвода и отвода агрессивных газов и жидкостей и т. д.
Много потребляет силикатных изделий электро и радиопромышленность: фарфоровых изоляторов различных систем и размеров, керамических деталей для нагревательных приборов, фарфоровых и шамотных труб для электрических печей и т. д.
Широкое развитие приобрела в годы Советской власти промышленность оптического стекла, которой до революции у нас по существу не было. Оптическое стекло применяется в производстве разнообразных оптических приборов: микроскопов разных систем, биноклей, оптических пирометров и т. п.
Наконец, большое количество силикатных изделий применяется в быту: стеклянная, фарфоровая и фаянсовая посуда, предметы санитарно-гигиенической техники и т. д.

К атегория: Материалы для строительства

Силикатные материалы и изделия

Силикатные изделия представляют собой искусственный каменный материал, изготовленный из смеси извести, песка и воды, отформованный путем прессования под большим давлением и прошедший автоклавную обработку.

В строительстве широкое распространение получили силикатный кирпич; силикатный плотный бетон и изделия из него; ячеистые силикатные бетоны и изделия; силикатный бетон с пористыми заполнителями.

Силикатный кирпич прессуют из известково-песчаной смеси следующего состава (%): чистый кварцевый песок 92-94; воздушная известь 6-8 и вода 7-8. Подготовленную в смесителях известково-песчаную массу формуют на прессах под давлением 15-20 МПа и запаривают в автоклавах при давлении насыщенного пара 0,8 МПа и температуре примерно 175 °С.

При запаривании известь, песок и вода вступают в реакцию, в результате которой образуется гидросиликат кальция, цементирующий массу и придающий ей высокую прочность. Продолжительность цикла автоклавной обработки 10-14 ч, а всего процесса изготовления силикатного кирпича 16-18 ч, в то время как процесс изготовления обычного глиняного кирпича длится 5-6 сут.

Силикатный кирпич выпускается двух видов: одинарный размером 250 X 120 X 65 мм и модульный размером 250 X 120 X 88 мм. Объемная масса силикатного кирпича 1800-1900 кг/м3, морозостойкость не ниже Мрз 15, водопоглощение 8-16% по массе. По прочности при сжатии силикатный кирпич делится на пять марок: 75, 100, ’25, 150 и 200. По теплопроводности силикатный кирпич незначительно отличается от обычного- глиняного и вполне заменяет последний при кладке стен любых зданий, кроме стен, маледящнхея в условиях высокой влажности или подвергающихся воздействию высоких температур (печи, дымовые трубы). По цвету силикатный кирпич светло-серый, но может быть и цветным, окрашенным в массе введением в нее минеральных пигментов.

Изделия из плотного силикатного бетона. Мелкозернистый плотный силикатный бетон - бесцементный бетон автоклавного твердения на основе известково-кремнеземистых или известково-зольных вяжущих - получают по следующей технологической схеме: часть кварцевого песка (8-15%) смешивается с негашеной известью (6-10%) и подвергается тонкому помолу в шаровых мельницах, затем измельченное известково-песчаное вяжущее и обычный песок (75-85%) затворяют водой (7-8%), перемешивают в бетономешалках и затем смесь поступает на формовочный стенд. Отформованные изделия запаривают в автоклавах при температуре 175-190° С и давлении пара 0,8 и 1,2 МПа.

Изделия из плотного силикатного бетона имеют объемную массу 1800-2200 кг/м3, морозостойкость 25-50 циклов, прочность при сжатии 10-60 МПа.

Из плотного силикатного бетона изготовляют крупные полнотелые стеновые блоки, армированные плиты перекрытий, колонны, балки, фундаментные и цокольные блоки, конструкции лестниц и перегородок.

Силикатные блоки для наружных стен и стен во влажных помещениях должны иметь марку не ниже 250.

Изделия из ячеистого силикатного бетона. По способу образования пористой структуры ячеистые силикатные бетоны бывают пеносиликатные и газосиликатные.

Основным вяжущим для приготовления этих бетонов является молотая известь. В качестве кремнеземистых компонентов вяжущего и мелких заполнителей используют молотые пески, вулканический туф, пемзу, золу-унос, трепел, диатомит, трас, шлаки.

При изготовлении ячеистых силикатных изделий пластичную известково-песчаную массу смешивают с устойчивой пеной, прчго- товленной из препарата ГК, мыльного корня и др., или с газооб- разователями - алюминиевой пудрой, а затем смесь заливают в формы и подвергают автоклавной обработке.
Объемная масса пеносиликатных изделий и газосиликатных изделий 300-1200 кг/м3, прочность при сжатии 1-20 МПа.

По назначению ячеистые силикатные изделия делятся на теплоизоляционные объемной массой до 500 кг/м3 и конструктивно-теплоизоляционные объемной массой более 500 кг/м3.

Теплоизоляционные ячеистые силикаты находят применение в качестве утеплителей, а из конструктивно-теплоизоляционных силикатов изготовляют наружные стеновые блоки и панели, а также комплексные плиты покрытий здания.

Изделия из силикатного бетона на пористых заполнителях. В качестве вяжущего силикатного бетона на пористых заполнителях используют тонкомолотые известково-кремнеземистые смеси, а крупными заполнителями служат керамзит, пемза, поризованные шлаки и другие пористые легкие природные и искусственные материалы в виде гравия и щебня. После автоклавной обработки такие бетоны приобретают прочность при сжатии от 3,5 до 20 МПа при объемной массе от 500 до 1800 кг/м3 и из них в основном изготовляют блоки и панели наружных стен жилых и общественных зданий.



- Силикатные материалы и изделия

Силикатными материалами и изделиями называются необожженные материалы и изделия на основе минеральных вяжущих - асбестоцементные, гипсовые и гипсобетонные, силикатные (на основе извести) и магнезиальные с заполнителями (кварцевым песком, шлаком, золой, пемзой, опилками и т. д.). Области применения их чрезвычайно обширны - от несущих и ограждающих конструкций до отделки зданий и сооружений.

Силикатные изделия получают в результате формования и последующей автоклавной обработки смеси извести или других вяжущих веществ на ее основе, тонкодисперсных кремнеземистых добавок, песка и воды.

Силикатный кирпич - искусственный каменный материал, изготовляемый из смеси кварцевого песка и извести путем прессования под большим давлением и последующего твердения в автоклаве. Исходными материалами являются воздушная известь - 6-8% в расчете на СаО, кварцевый песок - 92-94% и вода - 7-8% по массе сухой смеси.

Существуют две схемы производства силикатного кирпича: силосная и барабанная. По силосной схеме известь, совместно с песком, гасят в силосах в течение 4-8 ч. По барабанной схеме известь, совместно с песком, гасят во вращающихся барабанах с подводом пара под избыточным давлением до 0,5 МПа благодаря чему процесс гашения длится 30-40 мин.

Погашенная смесь извести и песка увлажняется, перемешивается и прессуется под давлением 15-20 МПа, в результате получается сырец, который укладывают на вагонетки и направляют в автоклавы на 10-14 ч для запаривания под давлением насыщенного пара 0,8 МПа (изб.) при температуре около 175 о С. Прочность силикатного кирпича растет в течение некоторого времени и после выгрузки из автоклава (на воздухе).

Силикатный кирпич выпускают двух видов: одинарный (размером 250х120х65 мм) и модульный (размером 250х120х88 мм). Модульный кирпич изготавливают с технологическими пустотами, замкнутыми с одной стороны. Цвет кирпича светло-серый, но он может быть и цветным за счет введения в состав смеси щелочестойких минеральных пигментов.

Благодаря прессованию под большим давлением и отсутствию усадочных явлений размеры силикатного кирпича выдержаны более точно, чем у глиняного. Плотность его несколько выше, чем у керамического кирпича - 1800-1900 кг/м 3 , теплопроводность - 0,82 - 0,87 Вт/(м о С). В зависимости от предела прочности при сжатии и изгибе силикатный кирпич изготавливают шести марок: 75, 100, 125, 150, 200 и 250. Морозостойкость силикатного кирпича не ниже М рз 15, водопоглощение 8-16% по массе.

Области применения силикатного кирпича такие же, как и керамического кирпича. Однако он не рекомендуется для кладки фундаментов и стен в условиях высокой влажности, так как воздействие грунтовых и сточных вод вызывает его разрушение. Нельзя использовать силикатный кирпич в конструкциях, подверженных действию высоких температур (в печах, дымовых трубах и т. п.).

Силикатными бетонами называют большую группу бетонов автоклавного твердения, получаемых на основе известково-песчаного, известково-зольного или других известково-кремнеземистых вяжущих. Кроме того, в качестве вяжущего могут использовать молотые доменные шлаки.

Плотный мелкозернистый силикатный бетон, в отличие от тяжелого бетона, в своем составе не содержит крупного заполнителя (гравия или щебня). Структура силикатного бетона более однородна, а стоимость значительно ниже.

Прочность его при сжатии колеблется в довольно широких пределах (15-60 МПа) и зависит от состава смеси, режима автоклавной обработки и других факторов. Водостойкость силикатного бетона удовлетворительная. При полном водонасыщении снижение их прочности не превышает 25%. Морозостойкость - 25-50 циклов, а при добавке портландцемента она повышается до 100 циклов.

Из плотного силикатного бетона выполняют крупные стеновые блоки наружных стен с щелевыми пустотами и внутренних несущих стен, панели и плиты перекрытий, колонны, балки и прогоны, лестничные площадки и марши, цокольные блоки и другие армированные изделия.

В легких силикатных бетонах в качестве заполнителей используют керамзит, гранулированный шлак, шлаковую пемзу и другие пористые материалы в виде гравия и щебня. Из легких силикатных бетонов на пористых заполнителях изготовляют блоки и панели наружных стен жилых зданий.

Ячеистые силикатные бетоны, в зависимости от способа образования пористой структуры, разделяют на пено- и газосиликаты. Их получают при автоклавной обработке известково-песчаной пластичной смеси, в состав которой вводят устойчивую пену (пеносиликат) или алюминиевую пудру и другие газообразователи (газосиликат).

По назначению легкие и ячеистые силикатные бетоны делят на: теплоизоляционные, конструкционно-теплоизоляционные и конструкционные.

Силикатные материалы и изделия автоклавного твердения представляют собой искусственные строительные конгломераты на основе известково-кремнеземистого (силикатного) камня, синтезируемого в процессе автоклавной обработки под действием пара при высокой температуре и повышенном давлении. Одним из основных компонентов сырьевой смеси, из которой формуются изделия, служит известь, которая обладает большой химической активностью к кремнезему при термовлажностной обработке. Именно поэтому вторым основным компонентом сырьевой смеси является кварцевый песок или другие минеральные вещества, содержащие кремнезем, например шлаки, золы ТЭЦ и др. Чтобы химическое взаимодействие проходило достаточно интенсивно, кремнеземистый компонент подвергают тонкому измельчению. Чем более тонким будет измельченный песок, тем выше должно быть относительное содержание извести в смеси. В качестве других компонентов могут быть также введены заполнители в виде немолотого кварцевого песка, шлака, керамзита, вспученного перлита и т. п. Непременным компонентом во всех смесях выступает вода.

К числу автоклавных силикатных изделий относят силикатный кирпич, крупные силикатные блоки, плиты из тяжелого силикатного бетона, панели перекрытий и стеновые, колонны, балки и пр. Легкие заполнители позволяют понизить массу стеновых панелей и других элементов. Силикатные изделия выпускают полнотелыми или облегченными со сквозными или полузамкнутыми пустотами. Особое значение имеют силикатные ячеистые бетоны, заполненные равномерно распределенными воздушными ячейками, или пузырьками. Они могут иметь конструктивное и теплоизоляционное назначение, что обусловливает форму и размеры изделий, их качественные показатели.

Изделия приобретают свойства, необходимые для строительных материалов, после автоклавной обработки, в процессе которой образуется новый известково-кремнеземистый цемент с характерными для него новообразованиями гидросиликатов кальция и магния, а также безводных силикатов.

Возможность образования в автоклаве камневидного изделия была установлена в конце XIX в., но массовое производство силикатных изделий, деталей и конструкций, особенно типа бетонов, было впервые организовано в нашей стране. Технология их изготовления механизирована и в значительной мере автоматизирована, что обеспечивает получение более дешевой продукции по сравнению с цементными материалами и изделиями. Эффективные исследования в этом направлении были выполнены П.И. Боженовым, А.В. Волженским, П.П. Будниковым, Ю.М. Буттом и др. Было показано, что при автоклавной обработке образуются наиболее устойчивые низкоосновные гидросиликаты с соотношением Ca0:Si02 в пределах 0,8-1,2, хотя на промежуточных стадиях отвердевания возможны и более высокоосновные химические соединения. П.И. Боженов, отмечая «технический синтез» цементирующей связки в автоклавном конгломерате, состоящей из смеси гидросиликатов, полагает, что химическое сырье должно удовлетворять определенным требованиям. Оно должно быть высокодисперсным с удельной поверхностью порошка в пределах 2000-4000 см 2 /г, по возможности аморфным, стеклообразным. Химически активное сырье обеспечивает не только образование цементирующей связки в автоклавном конгломерате, но и ряд технологических свойств сырьевой смеси (формуемость изделий, ровность их поверхности, транспортабельность и др.). Но не только химические и физико-химические процессы влияют на формирование структуры и свойств силикатных материалов при автоклавной обработке. А.В. Волжен- ский первым обратил внимание на изменение тепловлажностных условий при автоклавной обработке и их влияние на качество изделий. В связи с этим было принято выделить три этапа в автоклавной обработке: наполнение автоклава и изделий паром до заданного максимального давления; спуск пара; извлечение изделий из автоклава.

Полный цикл автоклавной обработки, по данным П.И. Боженова, слагается из пяти этапов: впуск пара и установление температуры 100°С; дальнейшее повышение температуры среды и давления пара до назначенного максимума; изотермическая выдержка при постоянном давлении (чем выше давление, тем короче режим авто- клавизации); медленное и постепенное нарастание скорости снижения давления пара до атмосферного, а температуры - до 100°С; окончательное остывание изделий в автоклаве или после выгрузки их из автоклава. Оптимальный режим, т. е. наилучшие условия по величине давления пара, температуры и продолжительности всех стадий обработки, обусловливается видом сырья, хотя по экономическим соображениям всегда стремятся к быстрому подъему и медленному спуску давления.

Формирование микро- и макроструктуры силикатного изделия в автоклаве происходит на различных стадиях обработки. Механизм отвердевания известково-песчаного сырца до камневидного состояния выражается в том, что вначале образуется известково-кремнеземистое цементирующее вещество как продукт химического взаимодействия основных компонентов в смеси в условиях повышенных давлений и температур. Согласно одной из теорий (П.П. Будникова, Ю.М. Бутта и др.), образование цементирующего вещества происходит через предварительное растворение извести в воде. Так как растворимость извести с повышением температуры понижается, то постепенно раствор становится насыщенным. Но с повышением температуры возрастает растворимость тонкодисперсного кремнезема. Так, например, с повышением температуры с 80 до 120°С растворимость кремнезема возрастает (по данным Кеннеди) почти в 3 раза. Поэтому при температуре 120-130°С известь и кремнезем, находясь в растворе, взаимодействуют с образованием гелеобразных гидросиликатов кальция. По мере дальнейшего повышения температуры новообразования укрупняются с возникновением зародышей и кристаллической фазы, а затем и кристаллических сростков. При избытке извести возникают сравнительно крупнокристаллические двуосновные гидросиликаты кальция типа C2SH(A) и C2SH2, а после полного связывания извести и в процессе перекристаллизации возникают более устойчивые микрокристаллические низкоосновные гидросиликаты кальция типа CSH(B) и C5S6H5 (то- берморит). Кристаллизация происходит вокруг зерен кварца и в межзерновом пространстве; сопровождается срастанием кристаллических новообразований в каркас с дальнейшим его упрочнением и обрастанием.

Согласно другой теории, образование микроструктуры вяжущего происходит не через растворение извести и кремнезема, а в твердой фазе под влиянием процесса самодиффузии молекул в условиях водной среды и повышенной температуры. Имеется и третья теория (А.В. Саталкин, П.Г. Комохов и др.), допускающая образование микроструктуры вяжущего в результате реакций в жидкой и твердой фазах.

Большую пользу в формировании структуры и свойств силикатных камня и материалов оказывают вводимые в смеси добавочные вещества (добавки), выполняющие функции ускорителей процессов образования гидросиликатов кальция или магния, кристаллизации новообразований, модификаторов свойств и структуры. В целом в составе силикатного камня преобладают низкоосновные гидросиликаты кальция, имеющие тонкоигольчатое или чешуйчатое микрокристаллическое строение CSH(B) и тоберморит CsSeHs. В высокоизвестковых смесях в результате синтеза образуется гиллебрандит 2СаО Si0 2 Н2О (т. е. C 2 SH).

Оптимальная структура силикатного материала формируется при определенном количестве известково-кремнеземистого цемента и минимальном соотношении его фазовых составляющих.

Рис. 9.28. Зависимость прочности силикатного камня от соотношения масс известкового теста (Иг) и молотого песка (П м), а также от состава смеси:

1 - 20.80; 2 - 40.60; 3 - 60.40; 4 - 80.20. В числителе количество извести, в знаменателе - количество молотого песка (помола), взятых по массе


Рис. 9.29.

В свежеизготовленном конгломерате дисперсионной средой (с) служит известковое тесто (И т), а в качестве твердой дисперсной фазы (ф) выступает молотый кремнеземистый (песчаный) компонент (П м). Активность (прочность) известково-кремнеземистого вяжущего вещества оптимальной структуры после автоклавной обработки, как и другие свойства силикатного материала, зависит от величины соотношения И т: П м (по массе). Результаты экспериментальных исследований показали, что пределы прочности при сжатии, на растяжение при изгибе, средняя плотность и другие показатели свойств силикатного камня принимают экстремальные значения при некотором минимальном соотношении с7ф = И^/П м (рис. 9.28). В полном соответствии с формулой (3.4) прочность силикатного конгломерата R c = /Г/х, где R* - прочность автоклавного силикатного камня оптимальной структуры; х = Ит/Пм: И7Пм =

1 - 80:20; 2 - 60:40; 3 - 40:60; 4 - 30:70; 5 - 20:80; 6 - 17:83. Составы изготовлялись: 1,2, 3 - с применением керамдора; 4 , 5, 6 - с применением гранитного щебня. Кривые оптимальных структур 1,11 и III относятся к бетону соответственно с применением гранитного щебня, керамдора и только местного карьерного песка

6/5* - отношение усредненных толщин пленок известкового теста соответственно в вяжущем веществе конгломерата и в вяжущем веществе оптимальной структуры; п - показатель степени, зависит от качества исходных материалов.

Выполненные исследования силикатного камня и силикатного конгломерата на примерах бетонов мелко- и крупнозернистых (рис. 9.29) показали, что при оптимальных структурах их свойства полностью подчиняются общим закономерностям ИСК.

Кроме кремнеземистого сырьевого материала, можно использовать в производстве автоклавных изделий распространенные малокварцевые виды сырья - полевошпатовые, глинистые, карбонатные пески, а также шлаки и другие побочные продукты промышленности. Минералы малокварцевого сырья, растворившись в условиях автоклавирования, становятся активными компонентами, не уступающими по растворимости кварцу. Их активность зависит от размеров радиусов анионов и катионов, входящих в их состав. В автоклаве формируется новое вяжущее (безобжиговое солешлаковое вяжущее), по свойствам превосходящее известково-кремнеземистое автоклавное твердение. Оно состоит из низкоосновных слабозакристаллизован- ных гидросиликатов кальция, а в присутствии ионов алюминия - из высокоосновных гидросиликатов кальция.

Силикатными материалами называются материалы из смесей или сплавов силикатов, полисиликатов и алюмосиликатов. Силикаты – это соединения различных элементов с кремнеземом(оксидом кремния), в которых он играет роль кислоты. Структурным элементом силикатов является тетраэдрическая ортогруппа -4 c атомом кремния Si +4 и атомами кислорода О -2 в вершинах тетраэдра, с ребрами длиной 0,26нм. Тетраэдры в силикатах соединены через общие кислородные вершины в кремнекислородные комплексы в виде замкнутых колец, цепочек, сеток и слоев. В алюмосиликатах, помимо силикатных тетраэдров, содержатся тетраэдры [ AlO 4 ] -5 c ат.Al +3 .

В состав сложных силикатов входят еще катионы:Na+,K+.Ca++,Mg++,Mn++,B +3 ,Cr +3 ,Fe +3 ,Al +3 ,Ti +4 и анионы: O 2 –2, OH-,F-,Cl-,SO 4 – 2 , а так же вода.

Большинство силикатов отличаются тугоплавкостью и огнеупорностью, температура плавления их колеблется от 770 до 2130 0 С. Хим. Состав силикатовов принято выражать в виде формул,сост. Из символов их молекул, составленных в порядке возрастания их валентности, или из формул их оксидов:полевой шпат K 2 Al 2 Si 6 O 16 .

Все силикаты подразделяются на природные(минералы) и синтетические(силикатные материалы) Синтетические делятся на: вяжущие вещества, керамику, бессиликатные материалы, стекла, ситаллы. Природные силикаты исп. В разл. Областях народного хозяйства: В технологических процессах, основанных на обжиге и плавке(глина, кварцит, полевой шпат и др.); в процессах гидротермальной обработки(асбест, слюда и т. д.); в строительсрве; в металлургических процессах.

Сырьем для производства силикатных материалов служат природные минералы(кварцевый песок, глины, полевой шпат, известняк), промышленные продукты(карбонат натрия, бура, оксиды и соли разл. Металлов) и отходы(шлаки, Шламы, зола).

В производстве силикатных материалов используются типовые технологические процессы, что обусловлено близостью физико-математических основ их получения. Схема стадий:

Сырье- подготовка шихты- формирование изделия из шихты-сушка изд. – высоко темпер. Обработка – материал.



Подготовка шихты нужна нужна для обеспечения высокой эффективности последующих процессов высокотемпературной подготовки и состоит из обычных механических операций подготовки твердого сырья: измельчения, классификации, сушки, смешения компонентов.

Операция формования должна обеспечить изготовление изделия данной формы и размеров, с учетом изменения их в последующих операциях сушки и высокотемпературной обработки. Формование включает увлажнение шихты, придание материалу определенной формы.

Сушка проводится для сохранения изделием приданной ему формы перед и во время время операции высокотемпературной обработки., которая является заключительной стадией производства силикатных материалов. Высокотемпературная обработка заключается в обжиге или варке шихты(изделия). Процессы высокомолекулярной обработки: 1) удаление воды, сперва физической, затем кристаллизационной;2)кальцинирование, т. е выделение из компанентов шихты воды иCO 2 .;3) компаненты шихты- карбонаты металлов, гидроксиды металлов и алюмосиликаты превращаются в кислотные оксиды:SiO2,B2O3mAl2O3,Fe2O3 и основные оксиды:Na 2 O,K 2 O,CaO,MgO, вступающие в реакцию друг сдругом; 4)спекание компанентов шихты. Оно может протекать в тв. Фазе, при температуре ниже температуры плавления, или в жидкой фазе, при температуре выше температуры плавления. Во втором случае, вследствие процесса диффузии скорость процесса выше; 5)охлаждение массы с образованием кристаллической и аморфной фаз.

Производство керамики.Керамические материалы – поликристаллические материалы и изделия из них, полученые спеканием глин и их смесей с минеральными добавками, а также оксидов металлов и других тугоплавких соединений. Классификация: По составу- кислородосодержащие(силикатные), бескислородные(карбидные, нитридные, боридные, силицидные); По применению: строительные, огнеупоры, тонкая керамика, спец. Керамика; по степени спекания- пористые(кирпич, огнеупоры,санфаянс), спекшиеся(фарфор, специальная керамика); по состоянию поверхности- глазурованные и неглазурованные. Сырье для производства должно обладать свойством спекаемости- свойство порошкообразного материала образовывать при нагревании поликристаллическое тело- черепок. Сырье- глины.кварцевый песок, карбонаты кальция и магния.

Технологический процессп производства кирпича- 2 варианта: пластический метод и полусухой. Шихта, содержащая 40-50% глины, 50% песка и до 5% оксида железа, поступает на прессование в ленточный пресс(пластич. метод) или в механический пресс, работ. под давлением 10-25 мПа(полусухой метод.). Сформированный кирпич направляют на сушку в туннельную сушилку и затем на обжиг при температуре 900-1000 0 С.

Формование пластическим способом проводят на ленточном прессе.Он состоит из 1.загрузочной воронки; 2. вальцев; 3.шнек;. При продвижении массы к мундштуку 4. пресса происходит ее дополнительное перемешивание и уплотнение. Из увлажнителя 5. для смачивания мундштука подают воду, играющую роль смазки. Глинистую массу в виде ленты 6. режут на кирпичи с помощью резательной машины. 7. опорные ролики.

Схема производства кирпича полусухим способом:

Огнеупорами называют неметаллические материалы, характеризующиеся повышенной огнеупорностью, тоесть способностью противопостоять воздействию высоких температур.Огнеупоры делят:1.алюмосиликатные; 2. Динасовые огнеупоры- сост. Не менее, чем на 95% из оксида кремния; 3. полукислые- до 70-80% оксида кремния и 15-25% оксида алюминия. 3.Шамотные огнеупоры- до 50-70%оксида кремния и до 46% оксида алюминия. Огнеупорны до 1750 0 С.

Схема и уровнение.

4.Высокоглиноземистые огнеупоры – более 45% оксида алюминия.

5. магнезитовые- в качестве основы оксид магния. Огнеупорны до 2500 0 С.

CaCO 3 +MgCO 3 = MgO+CaO+ 2CO 2

6.корундовые огнеупоры;7.Карборундовые- сост. Из карбида кремния;7. циркониевые и ториевые;8.углеродистые.

Загрузка...