domvpavlino.ru

Элементы сверла. Геометрические параметры режущей части. В зависимости от предназначения сверла делятся на категории по

В арсенале как домашнего, так и профессионального мастера должно быть множество различных инструментов. Сверла незаменимы для осуществления целого спектра работ. Сегодня их существует множество разновидностей. Однако сверло спиральное получило наибольшее распространение. Это объясняется рядом его особенностей и функций. Устройство этого инструмента, а также сфера его применения заслуживают особого внимания.

Общие сведения

Сверло представляет собой режущий элемент инструмента, который делает отверстия в различных материалах. Их существует множество разновидностей. Подбирают тип фрезы, исходя из особенностей и условий работы. По своим характеристикам сверла для перфоратора, дрели должны быть тверже, чем материал.

Назначение сверл разное. Они могут применяться для обработки металла, дерева, бетона, стекла, кафеля. У каждого инструмента в зависимости от назначения существуют свои особенности.

Наибольшего распространения сегодня получило сверло спиральное. Его еще называют винтовым. Оно имеет цилиндрическую форму и имеет ряд конструктивных особенностей.

Устройство сверла

Сверло спиральное имеет три основных элемента. Это рабочая часть, хвостовик и шейка фрезы. В первом отделе находятся две спиральные винтовые канавки. Это режущий элемент. Также они хорошо отводят стружку с рабочего места. Если техника обладает такой возможностью, именно по этим канавкам подается смазочный материал в область сверления.

Рабочая часть состоит из режущего и калибровочного отдела. Последнюю еще называют ленточкой. Это узкая полоса, которая продолжает поверхность канавки на фрезе. Режущий отдел состоит из двух главных и двух вспомогательных кромок. Они расположены вдоль цилиндра фрезы по спирали. Также к этой части относят поперечную кромку. Она имеет конусообразную форму и расположена на конце сверла.

Чтобы надежно закрепиться в станке или ручном инструменте, фреза обладает хвостовиком. Он может обладать лапкой для изъятия сверла из гнезда или поводок. Последний обеспечивает передачу крутящего момента от патрона инструмента.

Шейка нужна для выхода когда осуществляется шлифовка рабочей части.

Особенности изделия

Сверла для перфоратора, станка, которые имеют спиральную форму, сегодня наиболее популярны. Это объясняется их особенными характеристиками. Они хорошо направлены в отверстии, а также имеют большой запас под переточку. Из-за особенностей конструкции такая фреза хорошо отводит стружку и легко подает смазывающие материалы к рабочей поверхности. Эти особенности делают представленную разновидность сверл очень популярной.

Для правильного обозначения геометрических параметров существуют свои обозначения. Диаметр сверла при этом может быть самым разным. Однако обозначения остаются одни и те же. Угол кончика при вершине именуется как 2φ. Наклон канавок обозначается буквой ω, а концевой поперечной кромки - ψ. Передний угол на чертежах именуется как γ, а задний - α.

Все вместе эти показатели называются геометрией сверла. Она отражает положение канавок, режущих кромок, а также их углы наклона.

Разновидности инструмента

Берет во внимание такой важный показатель, как форма хвостовика. Она может быть следующих разновидностей:

  1. Фреза с цилиндрическим хвостовиком (ГОСТ 2034-80).
  2. Сверла с коническим хвостовиком (ГОСТ 10903).
  3. Инструмент с коническим хвостовиком (ГОСТ 22736).

Чтобы мастер имел возможность выполнить все поставленные перед ним задачи, сверло выпускают различных типов. В первом варианте фреза крепится в трехкулачковом патроне или другом предназначенном приспособлении.

Сверло спиральное с цилиндрическим хвостовиком может быть изготовлено в коротком, среднем и длинном исполнении. Такой инструмент имеет 3 класса точности: повышенная (А1), нормальная (В1) и нормальная (В). Они могут изготавливаться как сварным, так и цельным способом. Хвостовик не должен иметь кольцевые трещины, непровар или поверхностные раковины.

Конические разновидности крепятся непосредственно в шпинделе оборудования иди переходной втулке (если размер не совпадает).

Конический хвостовик

При изготовлении фрезы с коническим хвостовиком представленного типа используют несколько разных стандартов. Сверло спиральное (ГОСТ 10903) применим для изделий нормальной длины. К этой группе также относится еще несколько стандартов, которые используют в процессе изготовления длинных, удлиненных фрез. Эти инструменты могут выпускаться с шейкой или без нее. Причем ее размер никак не регламентируется.

Фреза с коническим хвостовиком (ГОСТ 22736) регламентирует выпуск изделий диаметром 10-30 мм, которые имеют Они могут быть выполнены в укороченном или нормальном виде. для этих изделий может быть повышенным (А) и нормальным (В).

Сверла с коническим хвостовиком диаметром более 6 мм изготавливаются сварным способом. Для более узких сечений допускается применять цельный тип изготовления.

Сверла для металла

Помимо разбивки фрез по принципу формы хвостовика, существует классификация относительно материала обработки. Фреза может быть предназначена для металла, бетона, существует также сверло по дереву. Спиральное рабочее место применимо для всех разновидностей материала. Разница заключается только в конструкции инструмента.

В зависимости от типа металла подбирают Они применимы для легированных, нелегированных сталей, чугуна, сплавов, цветных металлов. Иногда их применяют для обработки твердых пластмасс. От толщины и твердости рабочей зоны зависит долговечность использования изделия. Это универсальный тип инструмента. Сверло по металлу может полноценно просверлить отверстие даже в древесине.

Если инструмент медленно погружается и сильно нагревает материал, требуется производить его заточку. Если его диаметр не превышает 12 мм, процедура проводится вручную. Но для большего размера фрезы применяется для заточки специальное оборудование.

Сверло по бетону

Одним из самых трудных в обработке материалов является бетон. Он требует применения инструмента с особыми наварными пластинами из твердого сплава. Их принято называть победитовыми. Сегодня любые твердосплавные насадки именуют таким образом.

Такой инструмент в процессе обработки материала оставляет отверстия диаметром больше, чем само сверло. Это связано с его биением. Если применяется дрель, хвостовик сверла может быть цилиндрическим. Для перфоратора применяют другой тип крепления. Он называется SDS. Их существует несколько типов. Такая система позволяет быстро менять насадки в перфораторе и прочей технике.

Точить такие сверла возможно. Однако следует следить, чтобы инструмент не перегрелся. В противном случае может отвалиться твердосплавная пластина.

Сверло по дереву

Подходящее спиральное изготавливают из обычной высокопрочной стали. Такой материал не выдвигает серьезных требований к материалу фрезы, его форме. Это самое обыкновенное сверло. Довольно просто можно завинтить в мягкую древесину или ДСП обычный саморез. Для этого не потребуется применять сверло. Однако существуют такие ситуации, где без него не обойтись.

Если требуется сделать отверстие до 600 мм глубиной, следует применять винтовые разновидности фрезы. Их диаметр может быть от 8 до 25 мм. Длина их может быть разная. Это удобно, если нужно сделать несквозное или сквозное отверстие. Если требуется, используют удлинитель.

При проведении высверливания бурав после нескольких оборотов достают из материала, очищают от стружки. Затем продолжают работу. Их длина может составлять 300, 460 и 600 мм.

Ознакомившись с основными характеристиками и способом применения такого инструмента, как сверло спиральное, каждый может подобрать для себя правильную разновидность. Это очень популярный тип фрез. Их неповторимые качества, широкий спектр применения делают их очень востребованными.

В этой статье мы рассмотрим тот минимум важной информации, который необходимо знать о свёрлах при заточке сверла и при работе с ним.

Что есть что, а главное - где. Внешний вид сверла и его устройство.

  • рабочая часть - её элементы осуществляют резание и обеспечивают правильное положение сверла в образуемом им отверстии. Рабочая часть сверла представляет собой цилиндр, прорезанный двумя диаметрально противоположными винтовыми канавками;
  • канавка - нужна для отвода стружки из отверстия;
  • ленточка - элемент для точного направления сверла и является дополнительным режущим сегментом. На типовом сверле их две;
  • хвостовик - бывает цилиндрический или конический, и служит для установки сверла в шпиндель станка или в патрон дрели;
  • спинка - является вторым несущим элементом сверла после перемычки (о ней ниже);
  • ω - угол наклона винтовой канавки. От значения этого угла зависит форма срезаемой стружки и её отвод. Для сверл диаметром 10 - 22 мм предусмотрен угол наклона винтовой канавки ω=30°, для сверл меньших размеров этот угол тем меньше, чем меньше диаметр сверла, и для диаметра меньше 0,25 мм достигает 19°.

  • рабочие режущие кромки - основные элементы сверла, при сверлении они образуют конусную поверхность резания;
  • перемычка - является продолжением основных режущих кромок, она определяет прочность и жесткость сверла;

Ниже на рисунке представлены пять режущих сегментом сверла. Две рабочие режущие кромки, одна поперечная кромка и две ленточки.

Ширина ленточек должна быть достаточной для точного направления сверла в отверстии, но не слишком большой, чтобы не вызывать чрезмерного трения сверла о стенки отверстия. Чем больше диаметр сверла, тем шире ленточка. Поперечную кромку на свёрлах более 3 мм желательно стачивать, а при диаметре сверла более 18 мм настоятельно рекомендуется. Широкая перемычка не режет, а скоблит и выдавливает металл, вызывая при этом выделение дополнительного тепла, в следствии излишнего давление на сверло. При правильной заточке сверла угол наклона поперечной режущей кромки ψ должен быть равен 55°.

Непосредственно перед хвостовиком для повышения прочности сверла толщина перемычки постепенно возрастет за счет соответственного уменьшения глубины винтовых канавок. Поверхности винтовых канавок, примыкающие к главным режущим кромкам, являются передними поверхностями спирального сверла, по ним сходит срезаемая стружка,

Поверхности, примыкающие к главным кромкам, представляют собой задние поверхности сверла.

Задний угол сверла образуется при помощи касательной к задней поверхности сверла. Если бы задние углы этих режущих кромок были равны нулю, то задние поверхности на всем своем протяжении соприкасались бы с поверхностью резания, и между ними возникло бы большое трение. Трение тем меньше, чем больше величина заднего угла.

Указанные выше значения угла достигаются соответствующей заточкой задних поверхностей. Конусность режущей части сверла определяется углом 2 φ при его вершине, образуемым главными режущими кромками. От величины угла φ зависят форма режущей кромки, передний и задний углы, прочность сверла у перемычки и силы резания.

С уменьшением угла φ удлиняется главная режущая кромка, улучшается теплоотдача, однако прочность сверла резко понижается. Рекомендуемые значения угла 2 φ в зависимости от обрабатываемого материала приведены в таблице ниже.

Основные моменты при работе со сверлом, от которых, как ни старайся, никуда не деться:

  • вне зависимости от сверла, новое оно или нет, при начале сверления не только образуется отверстие, но и запускается процесс затупления самого сверла. С каждым оборотом сверло будет погружаться медленнее и медленнее. С новым сверлом это будет не так заметно, но факт, остаётся фактом;
  • скорость затупления сверла зависит от скорости его оборотов, количества оборотов по режущей поверхности, скорости подачи (давления на сверло), охлаждения, от материала сверла и от самого обрабатываемого материала;
  • максимальный нагрев начинается с периферии сверла, так как там скорость резания выше;
  • при сильном затуплении сверло во время резания издаёт резкий скрипящий звук, далее лавинообразно выделяется тепло, возрастает скорость износа и в результате инструмент приходит в негодность. Как реанимировать такие свёрла я расскажу в следующей статье или видеоролике на своём канале. Следите за комментариями.

Правила при сверлении металла:

  • - отверстие должно быть накернено, при начале сверления не стоит оказывать сильного давления на сверло, так как можно повредить режущие кромки или попросту сломать сверло. Режущие кромки должны войти в металл плавно. Если сверлить дрелью, то возможен увод сверла даже в случае если оно накернено;
  • при завершении сверления в момент выхода сверла из заготовки необходимо снизить давление на сверло. Это будет способствовать уменьшению торчащих заусенцев при выходе сверла, а также не позволит сверлу заклинить в заготовке и провернуться в патроне;
  • обрабатываемую деталь необходимо надёжно закрепить, это техника безопасности и не стоит этим пренебрегать;
  • работать в перчатках запрещено;
  • если требуемое отверстие более 5 мм, то необходимо начинать сверлить деталь с малого сверла, постепенно увеличивая диаметр;
  • при сверлении металла важно не перегреть сверло. Для этого применяют специальные охлаждающие жидкости, если их нет, то можно использовать масло. Если нет возможности использовать СОЖ, то процесс сверления проводят с перерывами, давая сверлу и заготовке остыть. Можно использовать банку с водой или маслом для окунания сверла. Чугун и цветные металлы можно сверлить без охлаждающей жидкости.
  • при сверлении глубоких отверстий длина режущей части инструмента и винтовых канавок должна быть больше глубины отверстия. В противоположном случае выход стружки будет заблокирован и сверло заклинит. Основное внимание нужно обращать на активность отвода стружки из получаемого отверстия;
  • в случае заклинивания сверла в заготовке для его извлечения используют реверс (включают вращение в обратную сторону).

Продолжение по работе со станком и свёрлами.

Спиральное сверло имеет следующие основные части (рисунок 25): режущая 3, направляющая 1 или калибрующая, хвостовик 5 и соединительная 4 (шейка). Режущая и направляющая части в совокупности составляют рабочую часть 2 сверла, снабженную двумя винтовыми канавками 8.

Режущая часть спирального сверла состоит из двух зубьев, которые в процессе сверления своими режущими кромками 9 врезаются в материал заготовки и срезают его в виде стружки, которая затем отводится по винтовым канавкам. Рабочая часть является основной частью сверла. Условия работы сверла определяются главным образом конструкцией режущей части сверла.

Передними поверхностями 10 сверла являются поверхности винтовых канавок, по которым сходит стружка. Задними поверхностями 11 сверла являются поверхности зуба сверла, обращенные к поверхности резания (по которой происходит отделение стружки от заготовки). Задние поверхности могут быть заточены как плоские, винтовые, конические или цилиндрические поверхности. Линия пересечения задних поверхностей обеих зубьев сверла образует поперечную режущую кромку 13, расположенную в центральной зоне сверла.

Направляющая часть сверла необходима для создания направления при работе инструмента. Поэтому она имеет две направляющие винтовые ленточки (спиральные фаски) 12, которые участвуют в оформлении (калибровании) поверхности обработанного отверстия. Кроме этого направляющая часть сверла служит запасом для переточек инструмента.

Рисунок 25 – Спиральное сверло

Хвостовик, который может быть конической (с лапкой 6) (рисунок 25, а ) или цилиндрической (с поводком 7 и без поводка) (рисунок 25, б ) формы, служит для закрепления сверла на станке. Он с помощью цилиндрической шейки соединяется с рабочей частью сверла. Наиболее часто рабочая часть сверла изготавливается из быстрорежущей стали, а хвостовик из стали 45. Рабочая часть и хвостовик соединяются сваркой. В промышленности используют также твердосплавные сверла. Режущая часть этих сверл оснащается пластинками твердого сплава. У твердосплавных сверл малого диаметра полностью вся рабочая часть может изготавливаться из твердого сплава.



Диаметры просверленных отверстий всегда больше диаметра сверла, которым они обработаны. Разность диаметров сверла и просверленного им отверстия называют разбивкой отверстия . Для стандартных сверл диаметром 10…20 мм разбивка составляет 0,15…0,25 мм. Причиной разбивки отверстий являются недостаточная точность заточки сверл и несоосность сверла и шпинделя сверлильного станка.

Для уменьшения разбивки и для предотвращения возможного защемления сверла в просверливаемом отверстии диаметр сверла в направлении от режущей части несколько уменьшается. Уменьшение диаметра принято называть обратной конусностью и определять разность Δ диаметров на расстоянии l 0 = 100 мм длины рабочей части.

3.1.2 Геометрические параметры

Углом наклона винтовой канавки ω (см. рисунок 25, в ) называется угол, образуемый осью сверла и касательной к вершине винтовой линии пересечения передней поверхности сверла с цилиндрической поверхностью, ось которой совпадает с осью сверла и диаметр, который равен диаметру сверла.

Режущие кромки наклонены к оси сверла и образуют между собой угол при вершине 2φ (главный угол в плане). С увеличением угла при вершине сверла уменьшается активная длина режущей кромки и увеличивается толщина среза, что приводит к увеличению усилий, действующих на единицу длины режущих кромок, и способствует повышению интенсивности износа сверла. Известно, что нормальная работа сверла может иметь место тогда, когда надежно обеспечивается вывод стружки по канавкам и не наблюдается ее защемление и пакетирование. Как показывают исследования, увеличение угла при вершине 2φ приводит к более плавному изменению передних углов вдоль режущей кромки, что благоприятно отражается на режущей способности сверла.

Задний угол α является важным элементом конструкции сверла, его размер в значительной мере влияет на стойкость инструмента.

Заточка спиральных сверл

Для удаления изношенных участков инструмента, образования новых лезвий и восстановления режущих свойств были разработаны всевозможные способы заточек стандартных сверл.

Форма заточки сверла выбирается в зависимости от свойств обрабатываемых материалов и диаметра инструмента. Основные формы заточек спиральных сверл приведены на рисунке 26.

Нормальная без подточек (Н) – для сверл диаметром до 12 мм. Применяется для сверл универсального применения при обработке стали, стального литья, чугуна.

Нормальная с подточкой поперечной кромки (НП) – для обработки стального литья с σ в ≤ 500 МПа с неснятой коркой. Подточка поперечной кромки уменьшает ее длину, что улучшает условия резания.

Нормальная с подточкой поперечной кромки и ленточки (НПЛ) – для сверл диаметром 12…80 мм. Применяется для обработки стали, стального литья с σ в > 500 МПа со снятой коркой, чугуна с неснятой коркой. Подточка ленточки до ширины 0,1-0,2 мм на длине 3-4 мм уменьшает трение в наиболее напряженном участке сверла и улучшает условия резания.

Двойная с подточкой поперечной кромки (ДП) – для обработки стального литья с σ в ≥ 500 МПа и чугуна с неснятой коркой. Увеличивается длина режущей кромки, уменьшается толщина стружки, улучшается отвод теплоты, значительно увеличивается стойкость.

Двойная с подточкой поперечной кромки и ленточки (ДПЛ) – для сверл универсального применения при обработке стального литья с σ в >500 МПа и чугуна со снятой коркой.

Двойная с подточкой и срезанной поперечной кромкой (ДП-2)­­ – для обработки хрупких материалов.

Наиболее многочисленной является группа спиральных сверл.

Спиральное сверло (рис. 2.2) представляет собой цилиндрический стержень, рабочая часть которого снабжена двумя винтовыми спиральными канавками, предназначенными для отвода стружки и образования режущих элементов. Наклон канавок к оси сверла составляет 10–45º. Рабочий конец сверла имеет конусообразную форму. На образующих конуса лежат две симметрично расположенные относительно оси сверла режущие кромки. Хвостовик нужен для закрепления сверла. Спиральные сверла делают с цилиндрическими или коническими хвостовиками.

Рис.2.2 Спиральное сверло с коническим хвостовиком

По точности изготовления они делятся на:

    сверла общего назначения;

    сверла точного исполнения.

Размерный ряд спиральных сверл начинается с малоразмерных сверл диаметром от 0,1 до 1,5 мм по ГОСТ 8034 с утолщенным цилиндрическим хвостовиком. Вследствие малых размеров этих сверл оправдано их изготовление целиком из быстрорежущих сталей Р6М3 и Р6М5К5 с твердостью рабочей части до 60 – 62 НRC.

Для обработки труднообрабатываемых материалов изготавливают цельные твердосплавные сверла диаметром от 0,6 до 1,0 мм из сплавов ВК10М, ВК15М. Стойкость спиральных сверл с твердосплавной рабочей частью в 20-30 раз выше стойкости обычных быстрорежущих сверл. Начиная с диаметра 1,5 мм твердосплавные сверла выполняют сборными по ГОСТ 17273. Рабочую твердосплавную часть этих сверл припаивают к хвостовику из стали 45. По ГОСТ 10902 и ГОСТ 4010 спиральные сверла изготавливают из быстрорежущих сталей типа Р12, Р6М3, для обработки конструкционных сталей и для сверления труднообрабатываемых материалов. Такие сверла имеют твердость 63-65 HRC. Быстрорежущие сверла выполняются как с правым, так и с левым направлением винтовых канавок. Спиральные сверла диаметром более 8 мм в целях экономии изготавливают сварными с рабочей частью из быстрорежущей стали и хвостовиком из конструкционной стали. Сверла с пластинками из твердого сплава по ГОСТ 5756 закрепляют в корпусе пайкой. По ГОСТ 6647 выполняются сверла с внутренним подводом охлаждающей жидкости для сверления труднообрабатываемых материалов.

Перовые сверла

Перовые (рис. 2.1 г), или, как их еще называют, ложечные, сверла отличаются простотой конструкции (представляют собой заострённую пластинку с весьма несовершенной формой рабочей части). В зависимости от того, какова форма заточки режущих кромок, различают односторонние и двусторонние перовые сверла. Все они имеют плоскую режущую часть с двумя режущими кромками, расположенными симметрично относительно оси сверла и образующими угол резания в 45, 50, 75, 90º. Недостаток таких сверл состоит в том, что отсутствует автоматический отвод стружки при сверлении, что портит режущие кромки и вынуждает часто вынимать сверло из просверливаемого отверстия. Кроме того, перовые сверла в процессе работы теряют направление и уменьшаются в диаметре при переточке.

Кольцевые сверла

Сквозные отверстия диаметром свыше 80 мм получают сверлами кольцевого сверления (рис. 2.1 з). Ими вырезается только кольцевая полость, а в центре остается стержень, который удаляется после окончания сверления. В дальнейшем стержень можно использовать в качестве заготовки.

Сверла применяются при обработке отверстий в сплошном материале. По конструкции различаются спиральные, центровочные, перовые, ружейные с наружным или внутренним отводом стружки и кольцевые (трепанирующие головки) сверла. Сверла изготавливаются из быстрорежущей стали марок Р18, Р12, Р9, Р6АМ5, Р6АМ5ФЗ, Р6П5К5 и Р9М4К8. Возможно оснащение режущей части сверла пластинами твердого сплава марок ВК6, ВК6М, ВК8, ВК10М, ВК15М, что позволяет использовать их при обработке материалов на высоких скоростях резания, а также при обработке материалов высокой твердости, например легированных конструкционных сталей.

Виды сверл

Спиральные сверла (рис. 3.26) состоят из трех частей: рабочей части, хвостовика и шейки. Рабочая часть сверла образована двумя спиральными канавками и включает в себя режущую и цилиндрическую (направляющую) части с двумя ленточками, что уменьшает трение сверла о поверхность обрабатываемого отверстия. Режущей частью сверла является его вершина, образующая при заточке сверла два зуба с режущими кромками. Режущие кромки сверла выполняют основную работу резания.

Спиральные сверла выпускают с хвостовой частью (хвостовиком) двух типов — цилиндрические и конические. Цилиндрические хвостовики применяются для сверл диаметром до 20 мм, а конические — для сверл диаметром от 5 мм.

Конический хвостовик сверла имеет лапку, служащую для установки сверла в шпинделе станка или переходной втулке. Крутящий момент от шпинделя станка сверлу передается за счет сил трения между поверхностями конического хвостовика и втулки или отверстия шпинделя станка. Лапка на конце конического хвостовика облегчает удаление (выбивание) сверла из переходной втулки или шпинделя станка. Сверла с цилиндрическими хвостовиками закрепляются в станке или сверлильном приспособлении, механизированном инструменте при помощи специальных сверлильных патронов.

Конструктивные особенности и специфика работы сверла обусловливают непостоянство геометрических параметров заточки их рабочей части. Так, главный задний угол а у стандартного сверла возрастает по мере приближения к центру. На периферии сверла этот угол составляет 8… 14°, а около поперечной режущей кромки уже 26… 35°. На периферии передний угол у = 18… 33°, а около поперечной режущей кромки у = 0 0 или имеет отрицательное значение.

Угол при вершине сверла 2<р выбирают в зависимости от свойств обрабатываемого материала. У стандартных сверл величина этого угла колеблется в пределах 116… 118°. В зависимости от обрабатываемого материала величина угла при вершине выбирается в следующих пределах:

Для стали углеродистой конструкционной — 116… 120°;

Для коррозионно-стойкой стали — 125… 130°;

Для стали высокой прочности — 125… 130°;

Для жаропрочных сплавов — 125… 130°;

Для титановых сплавов — 140°;

Для чугуна средней твердости — 90… 100

Для чугуна твердого — 120… 125°;

Для твердой бронзы — 90… 100

Для латуни, алюминиевых сплавов, баббита — 130… 140°;

Для меди — 125°;

Для пластмасс - 80… 110°;

Для мрамора — 80… 90

Угол наклона поперечной режущей кромки |/ составляет 50… 55 а угол наклона винтовой канавки к оси отверстия со — 23… …27°.

Принята единая градация диаметров сверл, которая охватывает сверла диаметром до 80 мм. Сверла диаметром от 1 до 3 мм имеют градацию через каждые 0,05 мм; диаметром от 3 до 13,7 мм — через 0,1 мм; диаметром от 13,75 до 49,5 — через 0,5; 0,1; 0,15; 0,25; сверла диаметром 52… 80 мм имеют градацию через 1 мм.

Центровочные сверла (рис. 3.27) предназначены для выполнения центровых отверстий, их изготовляют из быстрорежущих инструментальных сталей марок Р9 и Р12. По конструкции различают центровые сверла без предохранительного конуса (рис. 3.27, а) и с предохранительным конусом (рис. 3.27, б).

Перовые сверла (рис. 3.28) имеют плоскую рабочую часть и прямые канавки для отвода стружки. Рабочую часть таких сверл (перо) часто выполняют так, чтобы ее можно было заменить. Отсутствие спиральной части упрощает изготовление перовых сверл и повышает их жесткость в осевом направлении, однако затрудняет отвод стружки из зоны резания. На режущей части перового сверла выполняются стружкоразделительные канавки. Угол при вершине, задний угол, ширину калибрующей ленточки и некоторые другие параметры перовых сверл выбираются в зависимости от условий обработки отверстий по аналогии с параметрами спиральных сверл.

Ружейные сверла (рис. 3.29) применяются для сверления глубоких и сверхглубоких отверстий. Основная конструктивная особенность этих сверл состоит в том, что главные режущие кромки и вершина сверла расположены не симметрично относительно его оси на 0,2… 0,25 мм диаметра, что требует обязательного направления сверла по кондукторной втулке, по предварительно просверленному цилиндрическому, либо центровому отверстию. Ружейное сверло типовой конструкции с наружным отводом стружки состоит из колоска, который оснащен одной режущей, двумя направляющими пластинами и имеет отверстие для подвода смазывающе-охлаждающей жидкости (СОЖ). Ружейные сверла с наружным отводом стружки используются для обработки отверстий диаметром от 3 до 30 мм.

Надежное ориентирование сверла в обрабатываемом отверстии, комбинированное резание (выглаживание в процессе обработки), подача СОЖ в зону резания под давлением, стабильное удаление стружки из зоны резания, отсутствие поперечной режущей кромки, а также возможность достаточно простого оснащения сверла пластинами из твердого сплава позволяет обеспечить за один проход ружейного сверла высокую производительность и малые отклонения размера, формы и расположения оси при малых параметрах шероховатости обработанной поверхности.

Кольцевые сверла (рис. 3.30) применяются для уменьшения сил резания и потребляемой мощности оборудования, повышения производительности обработки сплошных отверстий диаметром более 50 мм, а также уменьшения объема стружки и последующего использования образующегося вдоль оси обрабатываемого отверстия центрального стержня. Кольцевые сверла изготовляются из быстрорежущей стали, ими выполняются отверстия на различных металлорежущих станках (сверлильных, токарных, расточных). Выпускаются сборные кольцевые сверла, корпус которых выполнен из легированной стали 12ХНЗА, а вставные резцы оснащаются пластинами из твердого сплава группы ВК.

В зависимости от требуемого размера отверстий используются различные конструкции кольцевых сверл:

Для образования глубоких отверстий диаметром 110… 180 мм применяются двурезцовые кольцевые сверла (рис. 3.30, а), состоящие из корпуса 1, в котором установлены два сменных резца 2 и 3 и три направляющие пластины 4, 5 и 6;

Для образования глубоких отверстий диаметром 180…250 мм применяют трехрезцовые кольцевые сверла (рис. 3.30, б), отличающиеся от двурезцовых только габаритными размерами и числом резцов;

Для образования отверстий диаметром 50… 100 мм на глубину до 400 мм используются многорезцовые кольцевые сверла (рис. 3.30, в), у которых вставные резцы 1 установлены в корпусе 2 сверла. На наружной поверхности корпуса выполнены винтовые канавки для отвода стружки. Для лучшего направления сверла в его корпус встроены подпружиненные шариковые опоры.

Загрузка...