domvpavlino.ru

Режущая кромка сверла. Спиральное сверло – универсальный инструмент для любых отверстий. Конструктивные элементы спиральных сверл

Сверление – один из распространенных способов изготовления отверстий. Исходя из того, каких размеров они должны получаться и в каком материале их делают, выбирают инструмент. Спиральное сверло – самое универсальное и востребованное.

1

Спиральное сверло (или, по-другому, винтовое) конструктивно представляет собой стержень цилиндрической формы, состоящий из элементов:

  • Рабочей части – снабжена двумя спиральными винтовыми канавками, которые образуют режущие элементы и предназначены для эффективного отвода стружки, а также подачи смазки в зону сверления.
  • Хвостовика – предназначен для надежного закрепления сверла в ручном инструменте или на станке. Может иметь лапку для извлечения сверла из гнезда конусной формы или поводок, обеспечивающий передачу крутящего момента от патрона оборудования.
  • Шейки – обеспечивает выход абразивного круга в процессе шлифовки рабочей части.

Рабочая часть состоит из:

  • Калибровочной (направляющей) части – это узкая полоска, продолжающая поверхность канавки на окружности сечения сверла. Еще ее называют ленточкой.
  • Режущей части – включает две главные и две вспомогательные, расположенные вдоль сверла по спирали, а также одну поперечную (конусообразную на конце сверла) режущие кромки. Все они образованы пересечением поверхностей канавок: главные – передних с задними, вспомогательные – передних с поверхностью ленточки, поперечная – обеих задних.

Из всех сверл известных на сегодняшний день конструкций спиральные нашли наиболее широкое применение за счет следующих достоинств:

  • большому запасу под переточку;
  • хорошему направлению в отверстии;
  • отличному отводу стружки.

Основные геометрические параметры спирального сверла:

  • угол на кончике при вершине – обозначается 2φ;
  • угол наклона канавки ω;
  • передний угол γ;
  • задний угол α;
  • угол наклона концевой поперечной кромки ψ.

Значения этих параметров зависят от типа, вида и назначения сверла.


Спиральные сверла по металлу также отличаются от прочих винтовых (по бетону, дереву, универсальных и других) размерами, формами и протяженностью своих конструктивных элементов. По форме хвостовика они бывают:

  • с цилиндрическим хвостовиком;
  • с коническим.

Для установки последних на станок используют универсальные специальные переходные втулки – конусы Морзе. Для наиболее распространенных видов инструмента по металлу ниже даны короткие описания.

2

Сверло спиральное с цилиндрическим хвостовиком выпускается короткой, средней и длинной серий по соответствующим стандартам. Такое разнообразие обеспечивает оптимальный подбор нужного инструмента для выполнения каждой конкретной задачи.

Для всех сверл центровые отверстия выполняются согласно ГОСТ 14034. Допустимо выпускать инструмент без центровочных отверстий. Изделия средней и длинной серии согласно своим стандартам могут изготавливаться с шейкой или без нее. Ее размеры не регламентируются.

ГОСТ 4010-77 распространяется на левые и правые сверла короткой серии диаметром 0,5–40 мм. Согласно этому стандарту, в зависимости от диаметра выпускаемого сверла длина составляет (мм):

  • общая всего инструмента – 20–200;
  • рабочей части – 3–100.

ГОСТ 10902-77 распространяется на левые и правые сверла средней серии диаметром 0,25–20 мм. Длина составляет (мм):

  • общая всего инструмента – 19–205;
  • рабочей части – 3–140.

ГОСТ 886-77 распространяется на сверла длинной серии диаметром 1–31,5 мм. Длина составляет (мм):

  • общая всего инструмента – 56–316;
  • рабочей части – 33–207.

У данных изделий направление спирали – правое. С левым изготовляются по согласованию с заказчиком.

Для всего этого инструмента технические требования к изготовлению регламентируются ГОСТ 2034-80. Согласно этого документа данные сверла производятся из быстрорежущей стали и предназначены для просверливания отверстий в ковких и серых чугунах, легированных и углеродистых конструкционных и , конструкционных сталях высокой и повышенной обрабатываемости. Этот инструмент изготовляется 3 классов точности:

  • повышенной точности – А1;
  • нормальной – В1;
  • нормальной – В.

Помимо инструмента из быстрорежущей стали допускается по заказу потребителя изготовление сверл также из легированной стали 9ХС. Инструмент может производиться не только цельным, но и сварным. Хвостовики сварных изделий должны быть выполнены из стали 45 или 40Х. Не допускаются в зоне сварки: непровар, поверхностные раковины и кольцевые трещины.

3

Сверло спиральное с коническим хвостовиком выпускается разных типов и, соответственно, по различным стандартам. Это позволяет оптимально подобрать именно тот инструмент, который лучше всего подойдет для того или иного вида работ. Существуют следующие ГОСТы:

  • 10903-77 – для сверл нормальной длины;
  • 12121-77 – длинных;
  • 2092-77 – удлиненных;
  • 22736-77 – с твердосплавными пластинами.

Весь этот инструмент согласно своим стандартам может изготавливаться с шейкой или без нее. Ее размеры не регламентируются.

ГОСТ 10903 распространяется на сверла нормальной длины диаметром 5–80 мм, которые выпускаются в двух исполнениях: с нормальным и усиленным хвостовиком. Согласно ГОСТ 10903, в зависимости от диаметра выпускаемого сверла с нормальным хвостовиком длина составляет (мм):

  • общая всего инструмента – 133–514;
  • рабочей части – 52–260.

С усиленным хвостовиком сверла ГОСТ 10903 выпускаются диаметрами 12–76 мм. Длина их рабочей части такая же, как и у с нормальным хвостовиком. Длины следующие (мм):

  • общая – 199–514;
  • рабочей части – 101–260.

Размеры используемых для крепления в патроне станка конусов Морзе от 1 до 6.

ГОСТ 12121 распространяется на длинные сверла диаметром 5–50 мм, которые предназначены для выполнения сверления через специальные кондукторные втулки. Длина составляет (мм):

  • общая всего инструмента – 155–470;
  • рабочей части – 74–321.

Размеры используемых для крепления в патроне станка конусов Морзе от 1 до 4. У инструмента этих двух стандартов направление спирали – правое. С левым изготовляются по согласованию с заказчиком.

ГОСТ 2092 распространяется на удлиненные сверла диаметром 6–30 мм. Длина составляет (мм):

Для этого инструмента технические требования к изготовлению регламентируются ГОСТ 5756-81. В соответствии с ним данные сверла предназначены для сверления различных деталей из чугуна. Должны изготавливаться классов:

  • повышенной точности – А;
  • нормальной – В.

В качестве режущей оснастки должны применяться твердосплавные пластины типа ВК. Корпуса изделий выполняются из или сплава 9ХС. Допускается производство корпусов из иных марок с содержанием вольфрама в пределах до 6 %. Недопустимо использовать стальные сплавы, содержащие кобальт.

Инструмент с рабочей частью диаметром от 6 мм и больше, корпус которого выполнен из быстрорежущего сплава, должен изготавливаться сварным. Хвостовики сварных изделий должны быть выполнены из стали 45 или 40Х. Не допускаются в зоне сварки: непровар, поверхностные раковины и кольцевые трещины.

Сверло – это распространенный режущий инструмент, который используется не только для получения сквозных отверстий методом сверления, но и для увеличения размеров уже имеющихся.

Технически изделия представляют собой насадки под ручные дрели, перфораторы и различные станки.

Само сверление подразумевает выборку материала за счет вращательного движения острой режущей кромки.

Инструмент делится на огромное количество видов по своей форме и назначению.

Характеристики сверл

Главная характеристика любого сверла – его прочность, которая должна превышать этот показатель у обрабатываемого материала.

Инструмент, в зависимости от условий использования, имеет различный размер и форму.

Отличается также угол заточки режущей части, цвет и др.

Каждое изделие имеет хвостовик, тип которого должен соответствовать патрону дрели, шуруповерта или станка.

Материал

Для изготовления сверла используется различные по своим характеристикам сплавы.

При этом применяется так называемая “быстрорежущая” сталь марок P18, P9, P9K15.

Если диаметр сверла превышает 8 мм, в его изготовлении используется метод сварки, например: углеродистая сталь для хвостовика, быстрорежущая сталь для рабочей части.

Для материалов с высокими показателями твердости (в основном из металла), используются, как правило, кобальтовые сверла.

Их особенность заключается в том, что рабочая часть производится из быстрорежущей стали Р6М5К5, ВК6М с добавлением кобальта.

ПРИМЕЧАНИЕ

После буквы “К” в маркировке всегда стоит цифра, которая указывает на количество кобальта в частях.

Для сверления бетона, камня и кирпича используются твердосплавные победитовые сверла.

Наконечник такого инструмента имеет напайки из победита – сплава вольфрама (90%) и кобальта (10%), разработанного в СССР. Современных же модификаций этого сплава существует более десяти.

ВАЖНО!

Победитовый наконечник не режет материал, а крошит, так что для работы с металлом, пластиком и деревом он не подходит.

Кроме вольфрама и кобальта, в сплавах встречается хром, молибден, ванадий, а их процентное количество заложено в маркировке.

Покрытие

Чтобы продлить жизнь сверлам, их тело имеет одно из перечисленных покрытий:

Оксидная пленка – значительно повышает устойчивость к перегреву от трения.

Также защищает изделие от ржавчины.

Срок службы, естественно, возрастает.

Алмазное покрытие – самое прочное из существующих.

Применяется в основном на тех изделиях, которые используются при работе с предельно твердыми материалами, включая камень и керамогранит.

Титановое покрытие – общее название, указывающее, что в материале содержится химическое соединение титана – TiN (нитрид титана), TiAIN (титано-алюминиевый нитрид), TiCN (карбонитрид титана).

Окраска

Цвет сверла имеет большое значение.

Он свидетельствует об используемом покрытии или способе обработки:

Серый – родной цвет стали.

Говорит об отсутствии любой обработки.

Самые дешевые и недолговечные изделия имеют именно серый цвет.

Черный – цвет стали, которая была подвергнута воздействию перегретого пара при окончательной обработке.

Черные изделия намного долговечнее, чем предыдущий вариант.

Желтый – цвет стали, которая подвергалась отпуску (обработка металла с целью снять его внутреннее напряжение).

Говорит о высокой твердости стали, причем его хрупкость сильно снижена отпуском.

Золотистый – цвет нитрида титана. Яркие золотистые инструменты очень прочные, к тому же у них снижены показатели трения о заготовку.

Размеры и вес

Производители режущего инструмента предлагают впечатляющий ассортимент сверл всевозможного “калибра”, в зависимости от конструкции и предназначения.

Рассмотрим самые распространенные спиральные изделия по ГОСТу:

Короткие: 20 – 131 мм по длине, 0,3 – 20 мм в диаметре (ГОСТ 4010-77);

Удлиненные: 19 – 205 мм по длине, 0,3 – 20 мм в диаметре (ГОСТ 10902-77);

Длинные: 56 – 254 мм по длине, 1 – 20мм в диаметре (ГОСТ 886-77).

Что касается точного веса, он зависит не только от конструкции изделий, их размеров, но и от материала изготовления.

Вес обыкновенных спиральных сверл находится, как правило, в пределах от нескольких единиц, до нескольких десятков грамм.

Точность обработки

Для спиральных сверл существует такая характеристика, как класс точности:

А — повышенная точность (10 – 13 квалитетов);

В1 – нормальная точность (до 14 квалитетов);

В – нормальная точность (до 15 квалитетов).

Квалитет является характеристикой точности, которая определяет значения допусков.

Виды сверл

Изделия делятся на несколько групп по конструкции и назначению.

Это позволяет быстро подобрать инструмент под конкретные задачи.

По форме

На основании формы сверла достаточно легко определить, для какого материала его можно использовать:

Спиральное – классический инструмент.

Рабочая часть имеет два зубца, которые закручены по спирали.

Инструмент, вгрызаясь в материал, выталкивает своими канавками стружку на поверхность.

Форма наконечника полностью зависит от материала, для которого предназначен инструмент.

Как правило, диаметр изделий не превышает 80 мм.

Винтовое – модернизированный предыдущий вариант, имеющий более совершенную форму канавок, отводящих стружку.

Еще одно отличие – такие изделия больше по длине.

Перьевое – плоское по форме изделие, режущая часть изготовлена в форме острой пики, очертания которой переходят в более широкую лопатку.

Другие названия – плоское резцовое сверло, что продиктовано его формой, перовое.

У строителей именуется перкой.

Используется там, где нужно получить глубокое и одновременно широкое отверстие.

Кольцевое – для тех случаев, когда нужно высверлить отверстие с большим диаметром без предварительной подготовки.

Более известно, как коронка.

Форма инструмента напоминает пустотелый цилиндр, а на оси вращения находится центровочное спиральное сверло.

Часть, режущая материал, выполнена либо в виде зубьев, твердосплавных напаек, либо имеет напыление из алмазной крошки.

Коническое (конусное) – своей формой напоминает конус с острым наконечником.

Подходит для работы с металлом, толщина которого не превышает 0,5 см.

Всего один инструмент способен проделать разные по размеру отверстия.

Все зависит от начального и конечного диаметра конуса, а также от глубины погружения.

С противоположных боковых сторон сверла находятся специальные канавки с заточенными кромками.

Ступенчатое – разновидность конусного варианта.

Конус разделен на ступени с увеличением их диаметра, которые имеют свой размер.

Инструмент удобен тем, что позволяет в процессе работы отслеживать диаметр образуемого отверстия.

Копьевидное – формой напоминают наконечник копья, откуда и название.

Используются при работе с твердыми, но одновременно хрупкими материалами, например, стеклом и кафелем.

Балерина (балеринка) – круговое сверло, которое используется при работе с деревом и кафелем.

Все зависит от установленной режущей части.

Спроектировано таким образом, чтобы на выходе получалось идеально ровное отверстие большого диаметра.

Инструмент имеет крестообразную форму с резцами, расстояние до которых от центра может регулироваться.

Так выставляется диаметр необходимого отверстия.

Центральная часть – спиральное сверло, вокруг которого и вращаются резцы.

Сверла одностороннего резанья.

Режущие кромки находятся с одной стороны относительно оси самого инструмента.

В свою очередь делятся на пушечные (передний конец стержневидной формы наполовину срезан, что формирует отводной канал для стружки)

и ружейные (обжатая трубка с полостью, через которую подводится охлаждающая жидкость, и углом канавки до 120 градусов).

Трубчатые – аналогия коронок, но с более длинной рабочей частью.

Конструкции Форстнера – усовершенствованный вариант спирального инструмента, но с дополнительными фрезами.

Конструкции Жирова – подвид винтового инструмента, имеющий три конуса на режущей части, из-за чего ее длина увеличена.

Также конструкция дополнена перемычкой с пазом, которая подточена на треть режущей кромки.

Конструкции Юдовина и Масарновского – инструмент с большим углом канавки и особенной ее формой, что и отличает его от других видов.

Зенковочное – монолитный цилиндр, имеющий несколько режущих кромок, образующих конус.

Используется для зенковки отверстий под головки винтов.

По назначению

Инструмент делится по назначению, что и является причиной его особой формы в каждом конкретном случае.

В строительстве, в быту и на производстве используются следующие сверла:

Универсальные.

Как понятно из названия, справляются с большинством материалов.

Имеют особую заточку, которая получила соответствующее название – универсальная.

По дереву – это и спиральные, и перьевые, кольцевые и винтовые.

По древесине хорошо работают, в том числе, сверла Форстнера и балеринки.

По металлу — конические, корончатые, ступенчатые, а также классические спиральные.

По бетону – корончатые с твердосплавными напайками, ударные спиральные и винтовые.

Имеют различные хвостовики под перфораторные патроны.

Для керамики – коронки, копьевидные и балерины.

Первые производятся без зубьев.

Режущую функцию выполняет специальное алмазное напыление.

При работе по стеклу используются именно эти виды.

По пластику – специальные спиральные варианты и коронки, способные проходить материал, не ломая его.

Существует специализированный инструмент, который используется строго для выполнения конкретной задачи:

Для глубокого сверления – спиральный инструмент, имеющий сквозные каналы.

Их назначение – подача охлаждающей жидкости прямо на режущую часть.

Сюда относится ружейный и пушечный подвиды.

Одностороннего реза – инструмент, основное назначение которого заключается в создании точных отверстий.

Подвид – эжекторные сверла, разработанные под сверлильные станки.

Как ясно из названия, режущие кромки смещены к одной стороне от оси, вокруг которой происходит вращение инструмента.

Центровочное – специфический инструмент, способный в деталях проделывать исключительно центровые отверстия, но не более того.

Как выбрать сверло

Подбирая хорошее сверло для дома, следует ориентироваться на цвет изделия, его размер, производителя.

Что касается хвостовиков, то встречается один из перечисленных вариантов:

Цилиндрический (под дрели);

Конический (хвостовик Морзе);

Типа SDS (под перфораторы);

Трехгранный (под ручные дрели), четырехгранный, шестигранный (hex под шуруповерты и дрели).

Выбирая сверло для профессиональной деятельности, полезными будут:

Маркировка – сочетание букв и цифр, указывающих на такие параметры, как диаметр, твердость стали, примеси в сплаве, место производства и его технология.

ПРИМЕЧАНИЕ

Маркировка ставится на изделия, диаметр которых больше 2 мм.

Угол заточки – отличается для различных материалов и представляет собой угол между режущими кромками.

От него зависит легкость сверления и скорость.

Что нужно знать о сверлах

Хвостовик типа конус Морзе встречается, как правило, на инструментах, предназначенных для установки в патроны промышленных станков.

Так как эти хвостовики выпускаются в размерах от КМ0 до КМ7, а патрон станка рассчитан на работу с одним вариантом, поэтому выпускаются специальные наборы переходников.

Кроме монолитных, производятся сверла со съемными наконечниками (перовые сборные сверла).

Как правило, они устанавливаются на универсальные сверлильные станки с ЧПУ.

Наконечники при этом изготавливаются различной формы из твердых сплавов или порошковой стали.

Важно!

Сверла с покрытием из нитрида титана (TiN) нельзя затачивать.

В противном случае все его показатели прочности сходят на нет.

Производители сверл

Современные производители, проверенные временем:

Bosch – входит в тройку лучших брендов мира по строительному инструменту;

Ruko – хорошее соотношение цены и качества;

Зубр – производитель с хорошей ценовой политикой и долговечностью инструмента;

Haisser – мощные инструменты для промышленных потребностей.

Особое внимание уделяется сверлам советского производства, как самым надежным и долговечным.

Сегодня встретить подобный инструмент тяжело, однако, каждый профессионал знает, что инструмент с маркировкой “Сделано в СССР” всегда предпочтителен.

Сверление является одним из самых распространённых методов получе­ния отверстия. Режущим инструментом служит сверло, с помощью которого получают отверстие в сплошном материале или увеличивают диаметр ранее просверленного отверстия (рассверливание). Движение резания при свер­лении - вращательное, движение подачи - поступательное. Режущая часть сверла изготовляется из инструментальных сталей (Р18, P12, P6M5 и др.) и из твердых сплавов. По конструкции различают свёрла: спиральные, с прямыми канавками, перовые, для глубоких отверстий, для кольцевого сверления, центровочные и специальные комбинированные. К конструктив­ным элементам относятся: диаметр сверла D , угол режущей части (угол при вершине), угол наклона винтовой канавки w, геометрические пара­метры режущей части сверла, т.е. соответственно передний g и задний a углы и угол резания d, толщина сердцевины d (или диаметр сердцевины), толщина пера (зуба) b , ширина ленточки f , обратная конусность j 1 , форма режущей кромки и профиль канавки сверла, длина рабочей части l o , общая длина сверла L .


Рис. 5.10. Передний и задний углы сверла

Наибольшее значение угол g имеет на периферии сверла, где в плос­кости, параллельной оси сверла, он равен углу наклона винтовой канавки w. Наименьшее значение угол g имеет у вершины сверла. На поперечной кромке угол g имеет отрицательное значение, что создаёт угол резания больше 90°, а, следовательно, и тяжелые условия работы. Такое резкое из­менение переднего угла вдоль всей длины режущей кромки является боль­шим недостатком сверла, так как это вызывает более сложные условия об­разования стружки. На периферии сверла, где небольшая скорость резания и наибольшее тепловыделение, необходимо было бы иметь и наибольшее те­ло зуба сверла. Большой же передний угол уменьшает угол заострения, что приводит к более быстрому нагреву этой части сверла, а, следова­тельно, и к наибольшему износу.

Задний угол a - угол между касательной к задней поверхности в рассматриваемой точке режущей кромки и касательной в той же точке к окружности ее вращения вокруг оси сверла. Этот угол принято рассматри­вать в плоскости, касательной к цилиндрической поверхности, на которой лежит рассматриваемая точка режущей кромки.

Для точки, находящейся на периферии сверла, задний угол в нормаль­ной плоскости Б-Б может быть определён по формуле

tga н =tga sinj (5.15)

Действительное значение заднего угла во время работы иное по срав­нению с тем углом, который мы получили при заточке и измерили в стати­ческом состоянии. Это объясняется тем, что сверло во время работы не только вращается, но и перемещается вдоль оси. Траекторией движения точки будет не окружность (как это принимают при измерении угла), а некоторая винтовая линия, шаг которой равен подаче свёрла в миллимет­рах за один его оборот. Таким образом, поверхность резания, образуе­мая всей режущей кромкой, представляет собой винтовую поверхность, касательная к которой и будет действительной плоскостью резания.


Рис. 5.12. Углы режущих кромок сверла в процессе резания

Он меньше угла, измеренного в статическом состоянии, на некоторую величину m:

a’= a - m (5.16)

tgm =s /pD (5.17)

Чем меньше диаметр окружности, на которой находится рассматривае­мая точка режущей кромки, и чем больше подача s тем больше угол m и меньше действительный задний угол a’.

Действительный же передний угол в процессе резания g’ соответс­твенно будет больше угла g измеренного после заточки в статическом состоянии:

g’=g +m (5.18)

Чтобы обеспечить достаточную величину заднего угла в процессе ре­зания в точках режущей кромки, близко расположенных к оси сверла, а также для получения более или менее одинакового угла заострения зуба вдоль всей длины режущей кромки, задний угол заточки делается: на пе­риферии 8 -14°, у сердцевины 20 - 27°, задний угол на ленточках сверла 0°.

Кроме переднего и заднего углов, сверло характеризуется углом наклона винтовой канавки w, углом наклона поперечной кромки y, углом при вершине 2j, углом обратной конусности j 1 . Угол w = 18-30°, y=55°, j 1 = 2-3°, у свёрл из инструментальных сталей 2j = 60-140°.

Спиральное сверло имеет ряд особенностей, отрицательно влияющих на протекание процесса стружкообразования при сверлении:

а) уменьшение переднего утла, в различных точках режущих кромок по мере приближения рассматриваемой точки к оси сверла,

б) неблагоприятные условия резания у поперечной кромки (так как
угол резания здесь больше 90°),

в) отсутствие заднего угла у ленточек сверла, что создает большое
трение об обработанную поверхность.

Для облегчения процесса стружкообразования и повышения режущих свойств сверла производят двойную заточку сверла и подточку перемычки и ленточки.

В зависимости от конструкции и назначения различают спиральные, перовые, для глубокого сверления, центровочные, с пластинками из твердых сплавов и другие сверла (рис.1).

Наиболее распространены спиральные сверла. Они имеют две главные режущие кромки, образованные пересечением передних винтовых поверхностей канавок сверла, по которым сходит стружка, с задними поверхностями, обращенными к поверхности резания; поперечную режущую кромку (перемычку), образованную пересечением обеих задних поверхностей, и две вспомогательные режущие кромки, образованные пересечением передних поверхностей с поверхностью ленточки.

Ленточка сверла представляет собой узкую полоску на его цилиндрической поверхности, расположенную вдоль винтовой канавки и предназначенную для направления сверла при резании.

Угол наклона винтовой канавки – угол между осью сверла и касательной к винтовой линии по наружному диаметру сверла (20-30°).

Угол наклона поперечной режущей кромки (перемычки) – острый угол между проекциями поперечной и главной режущих кромок на плоскость, перпендикулярную оси сверла (50-55°).

Угол режущей части (угол при вершине) – угол между главными режущими кромками при вершине сверла (118°).

Передний угол – угол между касательной к передней поверхности в рассматриваемой точке режущей кромки и нормально в той же точке к поверхности вращения режущей кромки вокруг оси сверла. По длине режущей кромки передний угол изменяется: наибольший у наружной поверхности сверла, где он практически равен углу наклона винтовой канавки, наименьшей у поперечной режущей кромки.

Задний угол – угол между касательной к задней поверхности в рассматриваемой точке режущей кромки и касательной в той же точке окружности ее вращения вокруг оси сверла. Задний угол сверла величина переменная: 8-14°на периферии сверла и 20-26° - ближе к центру.

Спиральные сверла изготавливают из быстрорежущей стали Р9, Р18 и стали 9ХС.

Хвостовик спирального сверла может быть цилиндрическим и коническим. Цилиндрический хвостовик (у сверл диаметром до 10 мм) служит для крепления сверла в трехкулачковом патроне или другом приспособлении, предназначенном для соединения сверл со шпинделем сверлильного станка. Конический хвостовик закрепляет непосредственно в шпинделе станка или в переходной втулке, если конус сверла не совпадает с конусом шпинделя.

У сверл диаметром 6-15,5 мм хвостовик изготавливается с конусом Морзе №1, у сверл с диаметрами 16-23,5 мм - №2, у сверл диаметрами 23,9-38,9 мм - №3, у сверл диаметрами 39-49,5 мм - №4 и т.д.

Лапка на конце хвостовика препятствует провертыванию сверла в шпинделе. Она служит также для выбивания сверла из шпинделя по окончании работы. Для этого в боковое отверстие шпинделя вставляют клин и ударяют по нему молотком. Клин давит на лапку, и сверло освобождается.

Рис. 1 Части сверла

Основные части сверла. Режущая часть (рис.1). Калибрующая (направляющая, транспортирующая) часть. Эти две части образуют рабочую часть сверла. Соединительная часть (шейка). Хвостовая часть.

Рабочая часть совместно с режущей и калибрующей частями образует две винтовые канавки и два зуба (пера), обеспечивающих процесс резания.

Калибрующая часть сверла, предназначенная для удаления стружки из зоны резания. Калибрующая часть по всей своей длине имеет ленточку и совместно с ней служит для направления сверла в отверстии.

Шейка у сверл служит для выхода шлифовального круга, а также для маркировки сверл.

Хвостовая часть бывает цилиндрической или конической с конусом Морзе. На конце хвостовой части имеется поводок или лапка.

Конструктивные элементы сверла

Сверло имеет сложную конструкцию и характеризуется диаметром и длиной сверла, шириной и высотой ленточки, диаметром спинки, центральным углом канавки, шириной зуба (пера) и диаметром (толщиной) сердцевины.

Диаметр сверла (d) . Выбор диаметра сверла зависит от технологического процесса получения данного отверстия.

Ленточка сверла. Обеспечивает направление сверла в процессе резания, уменьшает трение об поверхность отверстия и уменьшает теплообразование.

Ширина ленточки бывает от0,2–2 мм в зависимости от диаметра сверла. Ширину ленточки выбирают:

при обработке легких сплавов равной

f =1,2+0,2682 ln { d -18+[(d -18) 2 +1] 1/2 } ;

при обработке других материалов

f =(0,1…0,5) d 1/3 .

Высота ленточки обычно составляет 0,025 d мм.

Для уменьшения трения при работе на ленточках делают утонение по направлению к хвостовику, т.е. обратную конусность по диаметру на каждые 100 мм длины. Для быстрорежущих сверл обратная конусность по диаметру составляет 0,03-0,12 мм. Для твердосплавных сверл – 0,1-0,12 мм.

Сердцевина сверла влияет на прочность и жесткость, характеризуется диаметром сердцевины –d о . Величина диаметра сердцевины выбирается в зависимости от диаметра сверла. Для повышения жесткости и прочности сверла его сердцевина утолщается к хвостовику на 1,4-1,8 мм на каждые 100 мм длины.

Перемычка сверла оказывает влияние на процесс резания.

Режущие элементы сверла. Рабочая часть сверла (см. рис.) имеет шестьлезвий (режущих кромок). Двеглавные режущие кромки (1-2, 1’-2’). Двевспомогательных кромки (1-3, 1’-3’) расположенных на калибрующей части и служащие для направления сверла в процессе работы. Двепоперечные кромки (0-2, 0-2’) образующие перемычку. Все эти лезвия расположены на двух зубьях и имеют непрерывную пространственную режущую кромку, состоящую из пяти разнонаправленных отрезков (3-1, 1-2, 2-2’, 2’-1’, 1’-3’).

Геометрические параметры сверла

Угол при вершине сверла - 2 . Для быстрорежущих сверл 118-120 о, для твердосплавных 130-140 о. Угол влияет на производительность и стойкость сверла, на силы резания, длину режущей кромки и элементы сечения стружки.

Угол наклона поперечного лезвия (перемычки)-(=50-55 о ).

Угол наклона винтовых канавок сверла оказывает влияние на прочность, жесткость сверла и стружкоотвод.

Рекомендуется для хрупких материалов = 10-16 о, для обработки материалов средней прочности и вязкости -= 25-35 о, для обработки вязких материалов -= 35-45 о.

Угол наклона винтовой канавки в данном сечении х определяется по формуле

где r – радиус сверла;

r х – радиус сверла в рассматриваемой точке.

Шаг винтовых канавок р .

где D – диаметр сверла.

Диаметр сердцевины сверла – d o или К принимают равнымК =(0,125…0,145) D .

Для упрочнения инструмента диаметр К увеличивается к хвостовику сверла на 1,4 – 1,8 мм на 100 мм длины.

Диаметр спинки зуба сверла q выбирают по зависимостиq = (0,99…0,98) D .

Профиль стружечных канавок.

Угол стружечной канавки θ при обработке легких сплавов равен 116 о, других материалов 90…93 о.

Радиусы дуг , образующих профиль винтовой канавки сверла принимаются равнымиR к =(0,75…0,9) D , r к =(0,22…0,28) D , а центры дуг лежат на прямой, проходящей через центр поперечного сечения сверла.

Ширина пера. Различают ширину пера в нормальном к оси сечениюВ о и в сечении, нормальном направлению стружечной канавкиВ , которую указывают на чертеже инструмента. Ширину пераВ о определяют в нормальном к оси сверла сечении по формуле:

Передний угол главных режущих кромок . Угол является величиной переменной, наибольшее его значении на периферии сверла, а наименьшее – в центре. Угол может быть определен в нормальномN - N ( N ) сечении. Максимальное значение находится по формуле

Передние углы на поперечной режущей кромке имеют большие отрицательные значения (могут достигать -60 о). Меняются по длине кромки. Наибольшее значение в центре сверла.

Это приводит к следующему: режущая кромка не режет, а вдавливается в металл. На это тратится 65% осевой силы резания и 15% крутящего момента. Для уменьшения осевой силы уменьшают угол при вершине сверла, при этом крутящий момент возрастает и улучшаются его режущие свойства.

Задний угол главных режущих кромок - образуется на режущей части сверла на главных и поперечных режущих кромках. Является переменным и измеряется в нормальном и цилиндрическом сечениях.

Минимальное значение принимает на периферии сверла, максимальное – в центре. Эпюра углов показана на рисунке. Для сверл из быстрорежущих сталей принимается = 8-15 о. Для твердосплавных= 4-6 о.

Изменение передних и задних углов в процессе резания. В процессе резания передние и задние углы меняются и отличаются от углов заточки. Их называют кинематическими или действительными углами резания. Наибольшее значение при сверлении имеет кинематический задний угол.

Кинематический задний угол к изменяется вдоль главной режущей кромки сверла. Зависит от подачи и радиуса рассматриваемой точки режущего лезвия. Для обеспечения достаточного значения заднего угла в процессе резания его делают переменным вдоль режущей кромки. На периферии 8-14 о, а у сердцевины 20-25 о в зависимости от диаметра сверла.

Формы задней поверхности сверл. Различают одноплоскостные и двухплоскостные формы задней поверхности.

Оформление зад­ней поверхности по плоскости. Это наи­более простой одноплоскостной способ заточки сверл, при нем необходи­мо иметь задние углы не менее 20 - 25°. При этом способе заточки значения зад­него угла зависят от угла при вершине сверла2 и заднего угла на периферии.

Недостатком таких сверл является прямолинейная поперечная кромка, кото­рая при работебез кондуктора не обеспе­чивает правильного центрирования сверла.

К
двухплоскостной форме задней поверх­ности сверл относится коническая, цилиндрическая и винтовая форма задней поверхности.

Такая форма задней поверх­ности позволяет получить независимые значения заднего угла на периферии , угла при вершине2 и угла наклона поперечной кромки.

Коническая форма задней поверхности сверла является участком конической по­верхности.

Для образования задних углов вершина конуса смещается относительно оси сверла на вели­чину Н , равную или больше радиуса пере­мычки, иось конуса наклонена к продоль­ной оси сверла под углом.

Ци­линдрическая форма задней поверхности сверла является участком цилиндрической поверхности. Этот метод применяют редко.

Винтовая форма задней поверхности сверла является развертывающейся винто­вой поверхностью. Она позволяет полу­чить рациональное распределение значений задних углови более выпуклую поперечную кромку сверла, что улучшает самоцентрирование сверла при работе.

У таких сверл увеличиваются значения задних углов на поперечной режущей кромке, что приво­дит к уменьшению осевых нагрузок. Большим преимуществом винтовой заточки является возможность автоматизации процесса заточки.

Загрузка...