domvpavlino.ru

Основные понятия об объемно-планировочных решениях зданий. Огнезащита стальных несущих конструкций Потеря целостности строительной конструкции определяется

Несущая способность

Максимальная нагрузка, которую могут нести строительные конструкции, их элементы, а также грунты оснований без потери их функциональных качеств.

Огнестойкость ЖБК. Предельные состояния по огнестойкости для ЖБК. Факторы, влияющие на величину пределов огнестойкости ЖБК. Общие принципы расчета пределов огнестойкости ЖБК и способы повышения их пределов огнестойкости. Огнестойкость железобетонных конструкций (ЖБК). В условиях пожара предел огнестойкости железобетонных конструкций наступает, как правило: 1) за счет снижения прочности бетона при его нагреве 2) теплового расширения и температурной ползучести арматуры 3) возникновения сквозных отверстий или трещин в сечениях конструкции 4) в результате утраты теплоизолирующей способности Наиболее чувствительными к воздействию пожара являются изгибаемые железобетонные конструкции: плиты, балки, ригели, прогоны. Их предел огнестойкости обычно находится в пределах R50-R90 Столь малое значение пределов огнестойкости изгибаемых элементов объясняется тем, что рабочая арматура растянутой зоны этих конструкций, которая вносит основной вклад в их несущую способность, защищена от пожара лишь тонким защитным слоем бетона. Это и определяет быстроту прогрева рабочей арматуры конструкции до критической температуры. Огнестойкость сжатых железобетонных элементов исчерпывается при пожаре за счет снижения прочности, поверхностных, наиболее прогреваемых слоев бетона и сопротивления рабочей арматуры при нагреве. Это приводит к быстрому снижению несущей способности конструкции при пожаре. В момент времени воздействия пожара, когда несущая способность конструкции снизится до уровня рабочих нагрузок, и наступит ее предел огнестойкости по признаку «R». Для железобетонных колонн предел огнестойкости обычно находится в пределах R90-R150. Предельные состояния по огнестойкости для ЖБК. Факторы, влияющие на величину пределов огнестойкости ЖБК. Предельными состояниями по огнестойкости для ЖБК являются: 1) потеря прочности (R) 2) потеря теплоизолирующей способности (I) 3) потеря целостности (E) В отличие от металлических конструкций, для которых основополагающей величиной при оценке предела огнестойкости по потере прочности (R) является приведенная толщина (tred) поперечного сечения, для оценки огнестойкости железобетонной конструкции по признаку потери прочности (R) необходимо знать: 1) вид бетона 2) миним. расстояние от обогреваемой поверхности до оси рабочей арматуры 3) размеры сечения конструкции 4) схему опирания. Для оценки огнестойкости железобетонной конструкции по признаку потери теплоизолирующей способности (I) необходимо знать: 1) вид бетона 2) толщину конструкции (для конструкции с внутренними пустотами – эффективную толщину конструкции). Расчет огнестойкости любых строительных конструкций по признаку потери целостности (E) является очень сложной технической задачей и, как правило, не проводится. Огнестойкость железобетонных конструкций зависит от многих факторов: конструктивной схемы, геометрии, уровня эксплуатационных нагрузок, толщины защитных слоев бетона, типа арматуры, вида бетона, и его влажности и др. Общие принципы расчета пределов огнестойкости ЖБК Расчеты пределов огнестойкости ЖБК, также как и для металлических конструкций связаны с решением прочностной (статической) и теплотехнической задач. В отличие от металлической конструкции, состоящей только из одного материала – металла, предел огнестойкости ЖБК утрачивается в результате утраты прочностных свойств, как несущей металлической арматуры, так и собственно бетона. Утрата прочностных свойств металлической арматуры происходит в результате нагрева ее до критической температуры (), которая, в свою очередь, зависит от напряжений в сечении металлической арматуры (от приложенной нагрузки), вида ЖБК, схемы опирания и нагружения ЖБК, марки металла арматуры. Утрата прочностных свойств бетона также происходит в результате нагрева его до критической температуры (), при которой считается, что бетон мгновенно утрачивает свои прочностные свойства.

19. Предел огнестойкости конструкций и их предельные состояния по огнестойкости в соответствии с Федеральным законом № 123-Ф3. Предел огнестойкости конструкции (заполнения проемов противопожарных преград) – промежуток времени от начала огневого воздействия в условиях стандартных испытаний до наступления одного из нормированных для данной конструкции (заполнения проемов противопожарных преград) предельных состояний.

Ст.35 123-ФЗ : Пределы огнестойкости строительных конструкций определяются в условиях стандартных испытаний. Наступление пределов огнестойкости несущих и ограждающих строительных конструкций в условиях стандартных испытаний или в результате расчетов устанавливается по времени достижения одного или последовательно нескольких из следующих признаков предельных состояний:

1) потеря несущей способности (R);

2) потеря целостности (Е);

3) потеря теплоизолирующей способности вследствие повышения температуры на необогреваемой поверхности конструкции до предельных значений (I) или достижения предельной величины плотности теплового потока на нормируемом расстоянии от необогреваемой поверхности конструкции (W).

3. Предел огнестойкости для заполнения проемов в противопожарных преградах наступает при потере целостности (Е), теплоизолирующей способности (I), достижении предельной величины плотности теплового потока (W) и (или) дымогазонепроницаемости (S).

4. Методы определения пределов огнестойкости строительных конструкций и признаков предельных состояний устанавливаются нормативными документами по пожарной безопасности.

5. Условные обозначения пределов огнестойкости строительных конструкций содержат буквенные обозначения предельного состояния и группы.

Строительные конструкции зданий, сооружений и строений в зависимости от их способности сопротивляться воздействию пожара и распространению его опасных факторов в условиях стандартных испытаний подразделяются на строительные конструкции со следующими пределами огнестойкости:

1) ненормируемый;

2) не менее 15 минут;

3) не менее 30 минут;

4) не менее 45 минут;

5) не менее 60 минут;

6) не менее 90 минут;

7) не менее 120 минут;

8) не менее 150 минут;

9) не менее 180 минут;

10) не менее 240 минут;

11) не менее 360 минут.

Проблемы при применении средств огнезащиты воздуховодов.

Требования, предъявляемые к подвесам воздуховодов

Федеральный закон от 22 июля 2008 года
№ 123-ФЗ (ред. от 10.07.2012 г. с изменениями, вступившими в силу с 12.07.2012 г.) «Технический регламент о требованиях пожарной безопасности»:

Статья 137. Требования пожарной безопасности к строительным конструкциям:

«1. Предел огнестойкости узлов крепления и сочленения строительных конструкций между собой должен быть не менее минимального требуемого предела огнестойкости стыкуемых строительных элементов.

Свод правил 7.13130.2013 «Отопление, вентиляция и кондиционирование. Противопожарные требования».

Пункт 6.13: «Элементы креплений (подвески) воздуховодов должны быть с пределами огнестойкости не менее нормируемых для воздуховодов (по установленным числовым значениям, но только по признаку потери несущей способности)».

Как видно из таблицы:

– толщина МБОР для обеспечения EI 90 занижена в 2,5 раза по сравнению с толщиной МБОР для обеспечения R 90 даже при значении приведённой толщины металла 2,4 мм;

– толщина МБОР для обеспечения EI 120 занижена по сравнению с толщиной МБОР для
обеспечения R 120 даже при значении приведенной толщины металла 7,91 мм;

– огнезащитная эффективности МБОР независимо от его толщины для обеспечения R 150
и R 180 проведением стандартного испытания не подтверждена.

Следовательно, с учётом того, что приведённая толщина металла реально применяемых для крепления воздуховодов конструктивных элементов значительно меньше 2,4 мм, то есть значения приведённой толщины металла, для которой определена огнезащитная эффективность стальных конструкций до 90 минут включительно, можно сделать вывод, что огнезащитная обработка подвесов воздуховода по соответствующему технологическому регламенту для обеспечения воздуховодом предела огнестойкости EI до 90 минут включительно не будет обеспечивать соответствующих пределов огнестойкости по R подвесов данных воздуховодов.

Как показывает расчёт, фактическое обеспечение предела огнестойкости воздуховода EI 120 возможно при условии, что приведённая толщина металла элементов крепления воздуховода будет составлять не менее
7,91 мм, что применительно к подвесу из круглого проката означает его фактический диаметр 31,64 мм.

При анализе информации, изложенной в сертификатах соответствия, выявлено, что ни в одном из сертификатов соответствия не указаны внутренние размеры поперечного сечения воздуховодов, результаты испытаний которых представлены в них. В данных сертификатах соответствия имеются ссылки на технологические регламенты по монтажу конструктивных систем огнезащиты воздуховодов, в которых отсутствуют указания о том, для воздуховодов с какими внутренними размерами поперечного сечения применимы данные технологические регламенты.

Согласно ГОСТ Р 53299-2009 «Воздуховоды. Метод испытаний на огнестойкость» на испытания поставляется образец воздуховода прямоугольного сечения с соотношением внутренних размеров поперечного сечения 1,5 ≤ ≤ 2, где b и a – внутренние размеры поперечного сечения. Результаты испытаний воздуховода могут быть распространены на воздуховоды аналогичной конструкции прямоугольного и круглого сечения, если значение величины их гидравлического диаметра не превышает значения величины гидравлического диаметра испытанного воздуховода более чем
на 50%, а внутренние размеры их поперечного сечения (диаметр или длина большей стороны) не превышают 1000 мм. В свою очередь, величина
гидравлического диаметра определяется геометрическими размерами сечения воздуховода.

Отсутствие, как в сертификате соответствия, так и в технологическом регламенте, информации о внутренних размерах поперечного сечения воздуховода, для которого могут быть применимы результаты сертификационных испытаний, может привести к необоснованному применению системы конструктивной огнезащиты. Необоснованное применение системы конструктивной огнезащиты может, в свою очередь, привести к необеспечению воздуховодом, подвергнутым огнезащите даже в строгом соответствии с технологическим регламентом, требуемого предела огнестойкости.

    Приложение А (обязательное). Определение предельного состояния конструкций по потере несущей способности в зависимости от деформаций

Межгосударственный стандарт ГОСТ 30247.1-94
"Конструкции строительные. Методы испытаний на огнестойкость. Несущие и ограждающие конструкции"
(введен в действие постановлением Минстроя РФ от 23 марта 1995 г. N 18-26)

Elements of building constructions fire-resistance test methods. Loadbearing and separating constructions

Взамен СТ СЭВ 1000-78, СТ СЭВ 5062-85

1 Область применения

1.2. Стандарт применяют для:

Несущих, самонесущих и навесных стен и перегородок без проемов;

Покрытий и перекрытий без проемов с подвесными потолками (при применении их для повышения предела огнестойкости конструкции) или без них;

Колонн и столбов;

Балок, ригелей, элементов арок, ферм и рам, а также других несущих и ограждающих конструкций.

При установлении пределов огнестойкости конструкций в целях определения возможности их применения в соответствии с противопожарными требованиями нормативных документов (в том числе при сертификации) следует применять методы, установленные настоящим стандартом.

ГОСТ 30247.0-94 Конструкции строительные. Методы испытаний на огнестойкость. Общие требования

СТ СЭВ 383-87 Пожарная безопасность в строительстве. Термины и определения

3 Определения

В настоящем стандарте применяют следующие термины.

Несущие конструкции (элементы) - конструкции, воспринимающие постоянную и временную нагрузку, в том числе нагрузку от других частей зданий.

Огнестойкость конструкции - по СТ СЭВ 383.

Самонесущие конструкции - конструкции, воспринимающие нагрузку только от собственного веса.

Ограждающие конструкции - конструкции, выполняющие функции ограждения или разделения объемов (помещений) здания. Ограждающие конструкции могут совмещать функции несущих (в том числе самонесущих) и ограждающих конструкций.

4 Стендовое оборудование

4.2 При испытании ограждающих конструкций регулирующее устройство системы дымовых каналов должно обеспечивать избыточное давление в огневом пространстве печи. При испытании вертикальных ограждающих конструкций избыточное давление должно поддерживаться на высоте не менее чем верхние 2/3 проема печи.

Через 5 мин после начала испытания избыточное давление должно составлять Па:

При испытании горизонтальных элементов - на расстоянии 100 мм от обогреваемой поверхности образца;

При испытании вертикальных элементов - на высоте, равной 3/4 вертикального размера проема печи, считая от низа.

5 Температурный режим

По ГОСТ 30247.0.

6 Образцы для испытаний конструкций

Образцы для испытаний конструкций должны соответствовать ГОСТ 30247.0 и иметь проектные размеры.

Если образцы таких размеров испытать не представляется возможным, то минимальные размеры образцов и проемов печей принимают такими, чтобы обеспечить минимальные размеры зоны огневого воздействия на образец в соответствии с приведенными в таблице 1.

Таблица 1

Наименование конструкции Минимальные размеры зоны
огневого воздействия на образец
Ширина Длина Высота
Стены и перегородки


двум сторонам

Покрытия и перекрытия, опирающиеся по
четырем сторонам

Балки и другие горизонтальные
стержневые конструкции

Колонны, столбы и другие вертикальные
стержневые конструкции

3,0 - 3,0

7 Проведение испытаний

7.2.1 Образцы несущих и самонесущих конструкций должны испытываться под нагрузкой. Распределение нагрузки и условия опирания образцов должны соответствовать расчетным схемам, принятым в технической документации.

7.2.2 Испытательную нагрузку устанавливают из условия создания в расчетных сечениях образцов конструкций напряжений, соответствующих их проектным значениям или технической документации.

7.2.3 При определении проектных значений напряжений следует учитывать только постоянные и временные длительные нагрузки в их расчетных значениях с коэффициентом надежности, равным 1.

7.2.4 При приложении нагрузки необходимо обеспечить условие, чтобы при деформации образца грузы не смещались и не влияли на величину предела огнестойкости вследствие изменения условий теплообмена с окружающей средой.

Нагрузку устанавливают не менее чем за 30 мин до начала испытания и поддерживают (с точностью ) постоянной в течение всего времени испытания.

7.3 Расстановка термопар

7.3.1 Среднюю температуру на необогреваемой поверхности образцов ограждающих конструкций (стен, перегородок, перекрытий и др.) определяют как среднее арифметическое показаний не менее чем пяти термопар. При этом одну термопару располагают в центре, а остальные - в середине прямых, соединяющих центр и углы проема печи.

7.3.2 В случае испытания образцов конструкций, состоящих из отдельных элементов, необходимо, чтобы их стыковые соединения не совпадали с местами установки термопар, предназначенных для измерения средней температуры необогреваемой поверхности.

7.3.3 Для определения температуры в любой точке поверхности образца следует устанавливать термопары (или использовать переносную термопару) в таких местах не обогреваемой поверхности образцов ограждающих конструкций, в которых ожидается появление максимальной температуры (например, в зоне ребер, стыков, металлических закладных деталей и т.п.).

При определении средней температуры необогреваемой поверхности эти точки в расчет не принимают.

Места расположения термопар для измерения температуры на необогреваемой поверхности образца ограждающей конструкции в любом случае должны располагаться не ближе 100 мм от края проема печи.

7.3.4 При испытании колонн, столбов, балок, элементов ферм и других стержневых конструкций термопары для измерения температуры материалов конструкции, при необходимости выполнения таких измерений, устанавливают в плоскостях, перпендикулярных продольной оси образца, расположенных не реже чем через 1 м друг от друга и не ближе 200 мм от внутренней поверхности печи. Одна из этих плоскостей должна быть расположена в центре длины образца.

7.4 Образцы наружных стен испытывают при воздействии тепла со стороны, обращенной при эксплуатации к помещению; покрытия и перекрытия - снизу; балки - с трех сторон; колонны, столбы и фермы - с четырех или с трех сторон с учетом реальных условий использования и наихудшего ожидаемого результата испытания.

Образцы конструкций однослойных и симметричных многослойных внутренних стен испытывают с одной стороны, многослойных несимметричных - с каждой стороны, кроме тех случаев, когда неблагоприятная сторона может быть заранее установлена или известно направление огневого воздействия.

8 Предельные состояния

8.1 При испытании несущих и ограждающих конструкций различают следующие предельные состояния.

8.1.1 Потеря несущей способности R вследствие обрушения конструкции или возникновения предельных деформаций, значения которых приведены в приложении А .

8.1.2 Потеря теплоизолирующей способности I вследствие повышения температуры на необогреваемой поверхности конструкции в среднем более чем на 140°С или любой точке этой поверхности более чем на 180°С в сравнении с температурой конструкции до испытания или более 220°С независимо от температуры конструкции до испытания.

8.1.3 Потеря целостности Е в результате образования в конструкции сквозных трещин или отверстий, через которые на необогреваемую поверхность проникают продукты горения или пламя. В процессе испытания потерю целостности определяют при помощи тампона по ГОСТ 30247.0 , который помещают в металлическую рамку с держателем и подносят к местам, где ожидается проникновение пламени или продуктов горения, и в течение 10 с держат на расстоянии 20-25 мм от поверхности образца.

Время от начала испытания до воспламенения или возникновения тления со свечением тампона является пределом огнестойкости конструкции по признаку потери целостности.

Обугливание тампона, происходящее без воспламенения или без тления со свечением, не учитывают.

8.2 Для нормирования пределов огнестойкости несущих и ограждающих конструкций используют следующие предельные состояния:

Для колонн, балок, ферм, арок и рам - только потеря несущей способности конструкции и узлов R;

Для наружных несущих стен и покрытий - потеря несущей способности R и целостности Е, для наружных ненесущих стен - Е;

Для ненесущих внутренних стен и перегородок - потеря теплоизолирующей способности I и целостности Е;

Для несущих внутренних стен и противопожарных преград - потеря несущей способности, целостности и теплоизолирующей способности R, Е, I соответственно.

9 Оценка результатов испытания

Огнестойкость конструкции – способность сохранять свои несущие и (или) ограждающие функции в условиях пожара (п. 3.1 СП 2 ).

Количественной характеристикой огнестойкости конструкций является предел огнестойкости – время от начала огневого испытания при стандартном температурном режиме до наступления одного из нормируемых для данной конструкции предельных состояний по огнестойкости (п. 5.2.1 СП 2 ).

Основными видами предельных состояний строительных конструкций по огнестойкости являются (ч. 2 ст. 35 123-ФЗ , п. 9 ГОСТ 30247.0):

· потеря несущей способности вследствие обрушения конструкции или возникновения недопустимых деформаций (R);

· потеря целостности в результате образования в конструкциях сквозных трещин или отверстий, через которые на необогреваемую поверхность проникают продукты горения или пламя (Е);

· потеря теплоизолирующей способности вследствие повышения температуры на необогреваемой поверхности конструкции до предельных для данной конструкции значений (I).

Обозначение пределов огнестойкости конструкций согласно п. 10 ГОСТ 30247.0 состоит из условных обозначений нормируемых для данной конструкции предельных состояний и цифры, соответствующей времени достижения одного из этих состояний (первого по времени) в минутах.

Предел огнестойкости конструкции определяется как среднее арифметическое результатов испытаний двух образцов. При этом максимальное и минимальное значения пределов огнестойкости двух испытанных образцов не должны отличаться более, чем на 20 % (от большего значения). Если результаты отличаются друг от друга больше, чем на 20 %, должно быть проведено дополнительное испытание, а предел огнестойкости определяется как среднее арифметическое двух меньших значений. В обозначении предела огнестойкости конструкции среднее арифметическое результатов испытания приводится к ближайшей меньшей величине из ряда чисел: 15, 30, 45, 60, 90, 120, 150, 180, 240, 360 (п. 11 ГОСТ 30247.0, ч. 1 ст. 35 123-ФЗ ).

Например, R 120 – предел огнестойкости 120 минут по потере несущей способности; REI 30 – предел огнестойкости 30 минут по потере несущей способности, целостности и теплоизолирующей способности независимо от того, какое из трёх предельных состояний наступит ранее.

Для нормирования пределов огнестойкости несущих и ограждающих конструкций используют следующие предельные состояния (п. 8.2 ГОСТ 30247.1 ):

· для колонн, балок, ферм, арок и рам – только потеря несущей способности конструкции и узлов ­(R);

· для наружных несущих стен и покрытий – потеря несущей способности и целостности (R, E), для наружных ненесущих стен – E;

· для ненесущих внутренних стен и перегородок – потеря теплоизолирующей способности и целостности ­(E, I);

· для несущих внутренних стен и противопожарных преград – потеря несущей способности, целостности и теплоизолирующей способности (R, E, I).

Пределы огнестойкости строительных конструкций, в том числе с огнезащитой, определяются в условиях стандартных испытаний по методикам, установленным нормативными документами (ГОСТ 30247, ГОСТ Р 53307, ГОСТ Р 53308 и др.) (ч. 9 ст. 87 123-ФЗ ).

Пределы огнестойкости строительных конструкций, аналогичных по форме, материалам, конструктивному исполнению строительным конструкциям, прошедшим огневые испытания, могут определяться расчётом (ч. 10 ст. 87 123-ФЗ ).

Следует обратить внимание, что предел огнестойкости характеризует поведение конструкции только в условиях стандартных испытаний; время до потери конструкцией своих несущих или ограждающих функций в условиях «реального» пожара может отличаться от её предела огнестойкости.

Ранее методики испытания конструкций на огнестойкость регламентировались стандартом СТ СЭВ 1000-78 и пределы огнестойкости измерялись в часах (кратно четверти часа).

Стандартный температурный режим. Для обеспечения сопоставимости результатов испытаний различных конструкций на огнестойкость, выполненных в различных лабораториях, международный стандарт ИСО 834-75 и составленный на его основе ГОСТ 30247.0-94 предписывают проводить их при некотором условном температурном режиме, названным «стандартным».

Стандартное тепловое воздействие на конструкцию создаётся сжиганием соответствующего вида топлива в объёме испытательной печи и контролируется по изменению температуры во время испытаний t ,°C по закону, заданному в виде непрерывно возрастающей логарифмической функции времени t, мин :

t = 345 lg (8t + 1) + t 0 , (2.2)

где t 0 – начальная температура (обычно t 0 = 20°C).

Стандартный температурный режим в большинстве случаев не соответствует температурным режимам «реальных» пожаров, которые могут быть весьма разнообразны как по значениям температур, так и по длительности воздействия (рис. 2.1). Стандартный температурный режим является неубывающим и не отражает начальную и затухающую стадии пожара. Параметры стандартного температурного режима не учитывают реальную величину пожарной нагрузки, объём помещений и площадь проёмов в ограждениях.

В США и Великобритании стандартный температурный режим (2.2) определяется как «целлюлозный» пожар; он наиболее близко соответствует температурному режиму пожара в сравнительно небольших по объёму помещениях жилых и административных зданий при горении пожарной нагрузки из целлюлозосодержащих материалов (древесина, бумага, текстильные материалы).

Кроме того, стандартизированы ещё несколько температурных режимов, в частности, так называемый «углеводородный» пожар (например, стандарт UL 1709, Underwriters Laboratory, США), соответствующий горению нефти, нефтепродуктов или природного газа. Этот режим используется при оценке огнестойкости конструкций железнодорожных и автомобильных тоннелей, а также наружных технологических установок нефтегазового комплекса. При испытании по «углеводородному» режиму температура в огневой камере уже через 5 минут достигает 1000°С, а стремительный рост температуры сопровождается реактивным ударом факела пламени по вышележащим горизонтальным конструкциям.

t НСП

Рис. 2.1. Стандартный температурный режим (1) и температурные режимы «реальных» пожаров (2а, 2б, 2в); t НСП – продолжительность начальной стадии пожара

Следует заметить, что наличие нескольких характерных «стандартных» температурных режимов позволяет более полно учесть специфику огневого воздействия на конструкции в конкретных типах зданий и сооружений, однако при этом утрачивается сопоставимость результатов различных испытаний. Однако для сопоставимости результатов испытаний важно обеспечить не только единый режим изменения температуры газовой среды в огневой камере, но и единые условия теплообмена газовой среды с поверхностью конструкций.

Нормативный термин «стандартный температурный режим» в литературе иногда некорректно называют «стандартным пожаром». Как было отмечено выше (п. 1.1), нормативный термин «пожар» определяется как «неконтролируемое горение, причиняющее материальный ущерб», а при стандартных огневых испытаниях горение всегда контролируемое и не приводит к ущербу, а, наоборот, выполняет положительную функцию.

Рассмотрим характеристики предельных состояний конструкций по огнестойкости несущих и ограждающих конструкций (ГОСТ 30247.1 ).

1) Потеря несущей способности (R ) наступает вследствие обрушения конструкции или возникновения предельных деформаций.

Для изгибаемых элементов конструкций предельное состояние наступает, если прогиб достигнет величины L /20 или скорость нарастания деформаций достигнет L 2 /(9000h ), см ×мин -1 , где L – расчётный пролёт, см ; h – расчётная высота сечения конструкции, см .

Для вертикальных конструкций предельным является состояние, когда вертикальная деформация достигнет 1/100 высоты или скорость нарастания вертикальных деформаций достигнет 10 мм ×мин -1 для образцов высотой 3 ± 0,5 м .

2) Потеря целостности (Е ) происходит в результате образования в конструкции сквозных трещин или отверстий, через которые на необогреваемую поверхность проникают продукты горения или пламя.

В процессе испытания потеря целостности определяется при помощи ватного тампона, который помещают в специальную металлическую рамку и подносят к месту, где возможно проникновение пламени или продуктов горения, и в течение 10 с держат на расстоянии 20…25 мм от поверхности образца. Время от начала испытаний до воспламенения или возникновения тления со свечением тампона принимается за предел огнестойкости по признаку потери целостности Е , при этом тление без свечения не является признаком потери огнестойкости.

3) Потеря теплоизолирующей способности (I ) определяется как следствие повышения температуры на необогреваемой поверхности до опасных значений, которое может привести к воспламенению материала в помещении, смежном с очагом пожара, и таким образом способствовать его распространению. Опасные значения температур зависят от условий эксплуатации конструкции.

Для большинства несущих и ограждающих конструкций в соответствии с ГОСТ 30247.1 потеря теплоизолирующей способности происходит вследствие повышения температуры на необогреваемой поверхности конструкции в среднем более чем на 140°С, или в любой точке этой поверхности более чем на 180°С в сравнении с температурой конструкции до испытания, или более 220°С независимо от температуры конструкции до испытаний.

Для дверей шахт лифтов потеря теплоизолирующей способности происходит вследствие повышения температуры на необогреваемой поверхности створок двери в сравнении с температурой образца перед началом испытания в среднем более чем на 280 °С или более чем на 330 °С в любой точке поверхности двери.

Страница 6 из 10

СТРОИТЕЛЬНЫЕ КОНСТРУКЦИИ ХАРАКТЕРИЗУЮТСЯ:

а) пожарной опасностью (классы)

б) огнестойкостью (предел огнестойкости)

Классы пожарной опасности:

К0 - непожароопасные

К1 - малопожароопасные

К2 - умереннопожароопасные

К3 - пожароопасные

Класс устанавливается по ГОСТ 30403-96 №Конструкции строительные. Методы определения пожарной опасности"

Огнестойкость строительных конструкций

Под огнестойкостью понимают способность строительной конструкции сопротивляться воздействию высокой температуры в условиях пожара и выполнять при этом свои обычные эксплуата­ционные функции. Огнестойкость относится к числу основных характеристик конструкций и регламентируется Строительными нормами и правилами.

Время, по истечении которого конструкция теряет несущую или ограждающую способность, называют пределом огнестой­кости и измеряют в часах от начала испытания конструкции на огнестойкость до наступления одного из предельных состояний:

R – потеря несущей способности определяется об­рушением конструкции или возникновением предельных дефор­маций.

Е – потеря целостности (ограждающих функ­ций). Потеря целостности наступает вследствие образова­ния в конструкциях сквозных трещин или отверстий, через кото­рые в соседнее помещение проникают продукты горения или пламя.

I – потеря теплоизолирующей способности определяется повышени­ем температуры на необогреваемой поверхности конструкции в среднем более чем на 140°С или в любой точке этой поверхности более чем на 180°С в сравнении с температурой конструкции до испытания.

Предел огнестойкости колонн, балок, арок и рам опреде­ляется только потерей несущей способности конструкций и узлов (R). Для наружных несущих стен и покрытий - потеря несущей способности и целостности (R, Е). Для наружных ненесущих стен - потеря целостности (Е). Для ненесущих внутренних стен и пере­городок – потеря целостности и теплоизолирующей способности (Е, I). Для несущих внутренних стен и противопожарных преград – все три предельных состояния - R, Е, I. Для окон – только потеря целостности (Е).

Определение фактических пределов огнестойкости строи­тельных конструкций в большинстве случаев осуществляют экс­периментальным путем. Основные положения методов испытаний конструкций на огнестойкость изложены в ГОСТ 30247.0-94 "Конструкции строительные. Методы испытаний на огнестой­кость. Общие требования" и ГОСТ 30247.1-94 "Конструкции строительные. Методы испытаний на огнестойкость. Несущие и ограждающие конструкции"

Сущность метода испытания конструкций на огнестойкость сводится к тому, что образец конструкции, выполненный в нату­ральную величину, нагревают в специальной печи и одновремен­но подвергают воздействию нормативных нагрузок. При этом определяют время от начала испытания до появления одного из признаков, характеризующих наступление предела огнестойкости конструкции.

Температура в огневой камере печи t изменяется во времени по "стандартной" температурной кривой (рис. 3.2), которая может быть выражена зависимостью:

t = 345 lg (8t + 1) + t нач,

где t - время от начала испытания, мин.; t нач - начальная температура, °С.

Отклонение от температур, регламентируемых стандартной кривой, допускается в пределах 10% в течение 30 мин испытания и 5% - в последующее время.

Температуру в печи измеряют не менее чем в трех точках с помощью термопар. Горячие спаи термопар располагают на рас­стоянии 10 см от обогреваемой поверхности конструкции.

Нагревание испытываемых образцов соответствует реальным условиям работы конструкции и возможному направлению воз­действия огня в случае пожара.

При испытании – колонны обогревают с четырех сторон; балки – с трех; покрытия и перекрытия – со стороны нижней поверхности; стены, перегород­ки, двери – с одной стороны.

Испытаниям подвергаются не менее двух одинаковых об­разцов серийного изготовления или специально изготовленных. Перед испытанием образцы оборудуют приборами для измерения температур и деформаций.

Условия подогрева и особенности опытного образца обус­ловливают конструкцию испытательных установок (рис.3.6), пред­ставляющих собой огневые печи, в которых создается заданный температурный режим с помощью сжигания жидкого или газооб­разного топлива. Печи оборудуют приборами для измерения тем­пературы, а также устройствами для опирания, закрепления и нагружения опытных конструкций.

Загрузка...