domvpavlino.ru

Если взять обычный ртутный термометр и выкинуть в открытом космосе, что он покажет? Обзор: что такое термометр и что измеряют разные виды приборов Термометр с выносным датчиком

Приобретенный термометр показывает на 1,5 градуса меньше (35,1 в места 36,6), что можно сделать, чтобы изменить тарирование?
Игорь, Омск

Уважаемый Игорь, в первую очередь спасибо, за то что выбрали наш электронный термометр. Вы, к сожалению, не указали модель устройства, поэтому я не смогу привести вам точные цитаты из инструкции по эксплуатации именно вашей модели. Я воспользуюсь классической инструкцией для электронного термометра.

Для начала пару слов о принципе действия электронного термометра. В отличии от классического ртутного, где указание температуры происходит за счет увеличения объема ртути при нагревании, что по большому счету делает неважным то, как его держат, можно хоть поперек под мышкой, это ничего не изменит, в электронных - датчик находится на конце и только нагрев этой части влияет на температуру (изменяется от температуры сопротивление проводника) в остальной части термометра только провода. Таким образом, надо очень внимательно смотреть на то, каким образом происходит измерение температуры. Наконечник должен быть "воткнут в мясо" т.е. крепко "втыкаем" в подмышку и плотно прижимаем рукой. Если контакт не плотный или частично свободен датчик, то температура будет ниже.

Далее. В инструкции указано, что "Звуковой сигнал не является сигналом завершения измерения. Это означает, что ваша температура повышается, но незначительно. Рекомендуем удерживать термометр после сигнала еще в течении нескольких секунд". Если перевести это на простой язык - то после того как термометр запищит надо достать его, посмотреть на температуру, додержать его (чтобы быть уверенным еще минутку) после этого посмотреть на показатели и запомнить разницу. И в дальнейшем добавлять эту разницу к измерению, чтобы лишнее время не ждать. Обычно разница составляет 0.3-0.4 градуса. но первый раз необходимо это проверить.

Таким образом - неправильная методика измерения и раннее изъятие термометра может дать "погрешность" в 1.5 градуса. Но при правильном использовании проблем не будет.

Если вы сомневаетесь в правильности показаний термометра, есть фантастически простой тест - налейте стакан теплой воды примерно температуры тела. Или горячую ванну. Опустите туда ртутный и кончик электронного термометра. Данные будут одинаковыми спустя 3 минуты. Это даст вам возможность судить о том, насколько правильно работает термометр. Если же данный тест покажет, что с термометром есть проблемы - обратитесь в сервисный центр. Я уверен, что вам смогут помочь.

Это все касается классического электронного термометра. Если у вас инфракрасный термометр - то напишите. Я расскажу, как правильно проводить обслуживание и измерение данным прибором. Я уверен, что проблемы все решаемы.

Ноль в шкале исчислений Фарадея был равен современным 32 градусам, а температура человеческого тела равнялась 96 градусам. В 1742 году физик Цельсий сделал точками отсчета температуру таяния льда и кипения воды, правда изначально ноль на шкале соответствовал температуре кипения воды, но потом она вид.

Жидкостные термометры работают на основе принципа изменения начального объема жидкости, залитой в термометр, при изменении окружающей температуры. Чаще всего в колбу термометра заливают спирт или ртуть. Плюсами ртутного термометра являются высокая точность измерения температуры, длительный срок использования, однако уровень температуры устанавливается достаточно долго, ртуть в градуснике является опасным материалом, поэтому использование ртутного термометра необходимо производить максимально аккуратно.
Оптические термометры регистрируют температуру по уровню свечения, спектра и иных показателей и чаще всего применяются в научных исследованиях.

Механические термометры действуют по принципу жидкостных, только датчиком служит спираль, или лента из металла.
Электрические - работают по принципу изменения уровня сопротивления проводника при изменении внешней температуры. Те электротермометры, которые имеют большой диапазон, основаны на термопарах - при взаимодействии разных металлов возникает контактная разность потенциалов, которая зависит от температуры. В электротермометры встроены дополнительные функции памяти, подсветки, они безопасны и быстро показывают результат, однако могут давать небольшую погрешность, вследствие чего температуру нужно мерить несколько раз.

Инфракрасный термометр измеряет температуру без непосредственного взаимодействия с человеком или предметом, отличается точностью измерения и безопасностью, а также высокой скоростью действия - полсекунды. Они гигиеничны, быстро (в течение 2-5 секунд) работают и помогают измерять температуру детям.

Видео по теме

Известно, что более нагретые тела хуже проводят электрический ток, чем охлажденные. Причина этому – так называемое термическое сопротивление металлов.

Что такое термическое сопротивление

Термическое сопротивление – это сопротивление проводника (участка цепи), обусловленное тепловым движением носителей заряда. Под зарядами здесь надо понимать электроны и ионы, содержащиеся в веществе. Из названия понятно, что речь идет об электрическом явлении сопротивления.

Суть термосопротивления

Физическая сущность термосопротивления заключается в зависимости подвижности электронов от температуры вещества (проводника). Разберемся, откуда такая закономерность.

Проводимость в металлах обеспечивается свободными электронами, которые под действием электрического поля приобретают направленное движение вдоль линий электрического поля. Таким образом, резонно задаться вопросом: что может препятствовать движению электронов? Металл содержит в себе ионную кристаллическую решетку, которая, безусловно, замедляет перенос зарядов с одного конца проводника на другой. Здесь нужно заметить, что ионы кристаллической решетки находятся в колебательном движении, следовательно, они занимают пространство, ограниченное не их размером, а размахом амплитуды их колебаний. Теперь нужно задуматься о том, увеличение температуры металла. Дело в том, что сущность температуры как раз и составляют колебания ионов кристаллической решетки, а также тепловое движение свободных электронов. Таким образом, увеличивая температуру, мы увеличиваем амплитуду колебаний ионов кристаллической решетки, а значит, создаем большее препятствие направленному движению электронов. Вследствие этого сопротивление проводника увеличивается.

С другой стороны, при увеличении температуры проводника увеличивается и тепловое движение электронов. Это означает, что их движение становится все более хаотичным, чем направленным. Чем больше температура металла, тем больше проявляют себя степени свободы, направление которых не совпадает с направлением электрического поля. Это обуславливает также большее количество столкновений свободных электронов с ионами кристаллической решетки. Таким образом, термосопротивление проводника обусловлено не только тепловым движением свободных электронов, но и тепловым колебательным движением ионов кристаллической решетки, которое становится все более заметным при повышении температуры металла.

Из всего сказанного можно сделать вывод о том, что лучшие проводники являются «холодными». Именно по этой причине сверхпроводники, сопротивление которых равняется нулю, содержат при крайне низких температурах, исчисляемых единицами Кельвина.

Видео по теме

Совет 3: Температурный датчик: принцип действия и сфера применения

Нынешнее оборудование, автоматика и автомобилестроение вряд ли обойдутся без всякого рода контроллеров. К такому виду устройств можно отнести и термодатчики, сфера применения которых неограниченна.

Устройство

Термодатчик – это механизм, фиксирующий температуру среды, в которой он находится и передающий ее на приборную панель либо в блок управления. Наиболее часто подобные устройства идут в паре с блоком управления, ведь помимо того, что датчик сообщает показатели, их еще нужно обработать и произвести необходимые манипуляции. Большинство современных термодатчиков имеют электронное наполнение, их принцип действия основывается на передаче электрических импульсов от датчика к фиксирующему прибору. Конструктивно датчики можно разделить на несколько типов.

1. Терморезистивный датчик. Подобные устройства работают по принципу изменения электросопротивления проводника при возникновении колебаний температуры. Эти датчики просты в применении, они очень надежны, чувствительны, более точны.

2. Полупроводниковые термодатчики устроены по принципу реагирования на трансформацию характеристик (р-n) перехода под воздействием температуры. Серия таких датчиков очень проста в своей конструкции и имеет отличное соотношение цены и долговечности.

3. Термоэлектрические датчики, или как их еще называют термопары. Этот тип датчиков работает на эффекте разности температуры пары проводников, которые находятся в разных средах. Благодаря этому, в замкнутой цепи этой пары проводников возникает импульс, датчики сигнализируют о смене температуры относительно друг друга. Эти устройства не дают такой точности, как их вышеописанные коллеги, и конструктивно имеют более громоздкий механизм.

4. Пирометры. Это датчики бесконтактного типа, они фиксируют температуру близ находящегося предмета. У этого вида приборов большой плюс в том, что они могут работать на расстоянии от механизма, в котором необходимо зафиксировать показатели температур.

5. Датчики акустические. Принцип работы основывается на изменении скорости звука в атмосфере при изменении температуры среды, в которой находиться датчик. Такие устройства применяют в средах, где невозможно использование контактных датчиков температуры.

6. Пьезоэлектрические датчики. Смысл устройства следующий: на кварцевую основу, из которой состоит сам датчик, подают определенную серию импульсов, таким образом, с изменением температуры этот материал имеет разную частоту расширения.

Применение

Все виды термодатчиков можно встретить в повседневной жизни. Датчиками оборудуют лифты многоэтажных домов, чтобы не перегреть двигатель лифта в случае возникновения нагрузки. Используют в автомобилях для контроля рабочей температуры мотора и недопущения его закипания. В домашних холодильниках датчик работает в паре с блоком управления, который дает команду включать и выключать агрегат холодильника в зависимости от температуры, фиксируемой датчиком. И еще много каких примеров существует, где в работе оборудования или прибора участвует подобный механизм. Данные устройства в значительной мере облегчают жизнь человеку, только мало кто об этом думает. Приятно, когда машина делает какую-то операцию без участия человека.

Кажется, что это всем ясно - температуру! А что такое температура?

Очень хорошо сказал по этому поводу один физик: «Гораздо легче производить измере­ния, чем точно знать, что измеряется». И почти три сотни лет измеряли повсюду тем­пературу, но только совсем недавно, в конце прошлого столетия, стало окончательно ясно, что такое температура.

А в самом деле, что же показывает термо­метр? Стоит еще раз проследить, как возникло понятие «температура». Когда-то думали: если становится жарко, то это потому, что в теле повышается содержание теплорода. Латинское слово «температура» означало «смесь». Под тем­пературой тела понимали смесь из материй тела и теплорода тела. Затем понятие самого теплорода было отброшено как ошибочное, а слово «темпе­ратура» осталось.

Добрые две сотни лет в науке сохранялось странное положение: случайно выбранным свойством (расширение) случайно выбранного вещества (ртуть) и шкалы, установленной по случайно выбранным постоянным точкам (плав­ление льда и кипение воды), измерялась вели­чина (температура), смысл слова «температу­ра», строго говоря, никому не был понятен.

Но ведь термометр все-таки что-то пока­зывает? Если от ответа потребовать необхо­димую строгость и точность, то на такой вопрос придется ответить так: ничего, кроме удлинения в столбике нагретой ртути.

Ну а если ртуть заменить другим вещест­вом: газом или каким-либо твердым телом, которое также расширяется при нагревании, что будет тогда? Что будут показывать по­строенные на иной основе термометры?

Представим себе, что такие термометры мы сделали. Одни из них мы заполнили ртутью, воздухом, другие изготовили целиком из желе­за, меди, стекла. Точно установим на каждом из них постоянные точки: в тающем льду 0°, в кипящей воде 100°.

Попробуем теперь измерять температуру. Окажется, что, когда воздушный термометр покажет, например, 300°, другие термометры будут показывать:

ртутный 314,1°,

железный 372,6°,

медный 328,8°,

стеклянный 352,9°.

Какая же из этих «температур» правильна: «воздушная», «ртутная», «железная», «медная» или «стеклянная»? Ведь каждое из испытанных нами веществ показывает свою собственную температуру. Еще интересней повел бы себя «водяной» термометр. В пределах от 0° до 4° Ц он показывал бы при нагревании понижение температуры.

Можно, конечно, попытаться выбрать вме­сто теплового расширения какое-нибудь дру­гое свойство вещества, изменяющееся при на­гревании. Можно, например, построить термо­метры на основе изменения (при нагревании) упругости пара жидкости (например, спир­та), электрического сопротивления (например, платины), термоэлектродвижущей силы (термо­пара). В наше время такие термометры широко применяются в технике.

При условии предварительной калибровки по двум постоянным точкам такие термометры, например, при 200°Ц будут показывать: спир­товой (по упругости пара) 1320°, платиновый (по сопротивлению) 196°, спай платины и спла­ва ее с родием (термопара) 222°.

Так какая же из всех этих разных «тем­ператур» настоящая? Как и чем нужно изме­рять температуру?

Прежде чем ответить на эти вопросы, сле­дует уяснить себе самое важное в них - их точное содержание и смысл: «чем нужно изме­рять температуру». Почему такой «простой» вопрос вообще может возникать?

Чем мы измеряем длину? Метрами. Метр - это длина линейки эталона, который ученые

очень бережно хранят, чтобы он не пропал и не испортился. Чем мы измеряем объемы? Можно измерять литрами. Литр - это объем, равный одному кубическому дециметру. А чем мы измеряем температуру?

Эти вопросы совершенно сходны, но ответы на них принципиально различны. Если мы сольем в бочку несколько ведер холодной воды, то бочка будет заполнена водой. Сумма объемов воды в ведрах будет равна объему бочки. Но сколько бы холодной воды вы ни влили в бочку, горячей воды при этом не полу­чится. Рассуждение это совсем не смешно и не наивно, и факт этот вовсе не очевиден сам собой. Это очень важный закон природы, к которому мы просто привыкли, потому что знаем его из опыта. Из нескольких коротких палок можно составить одну длинную, соеди­нив их между собою встык. Но нельзя сложить температуру раскаленного угля из печи и тем­пературу куска льда. Раскаленный уголь от этого не станет более горячим.

Измерять температуру, подобно тому как измеряют длину, объем, массу, нельзя потому, что температуры не складываются. Невозможна такая единица температуры, которой можно непосредственно измерять любую температуру, подобно тому как метром можно измерить любую длину. Объем, длина, масса - примеры экстенсивных свойств системы. Если железный стержень разделить на несколько частей, тем­пература каждой из них от этого не изменится. Температура - пример интенсивных свойств системы. Непосредственно установить число­вое соотношение между различными темпера­турами невозможно и бессмысленно.

Но ведь измерять температуру необходимо. Так как же ее измерять, если ее нельзя изме­рить методом, пригодным для измерения экстен­сивных величин?

Для этого возможен только один путь - использовать объективную связь между темпера­турой и любой экстенсивной величиной: изме­нением объема, длины, отклонением стрелки гальванометра и т. п.

Поэтому ответ на вопрос - какая из пере­численных выше различных «температур» на­стоящая - может показаться с первого раза странным: все они равноправны. Любое свой­ство системы, зависящее от температуры, мо­жет быть выбрано для ее характеристики и измерения.

Термодинамика сумела указать способ и вещество, которое позволяет осуществить тем­пературные измерения наиболее целесообразно.

Это - идеальный газ. По его расширению при постоянном давлении или по росту давления при постоянном объеме могут быть проведены наиболее целесообразно измерения температуры. При таком способе измерения бесчисленные выражения для любых закономерностей в при­роде становятся наиболее простыми.

Но у идеального газа есть один существен­ный недостаток: такого газа нет в природе.

Давление

Насколько сложно и трудно понятие о тем­пературе, настолько просто и ясно понятие «давление». Его хорошо знает любой школьник из самого начального учебника физики. Да­вление - это сила, действующая на единицу площади поверхности. Направлено давление в случае газов и жидкостей всегда перпендику­лярно к поверхности. Понятие «давление» мож­но приложить к твердым телам, но следует ном-нить, что свойства твердых тел могут зависеть от направления, в котором действует давление (например, пьезоэффект).

В термодинамике давление и температура - два основных, главнейших параметра, опре­деляющих состояние термодинамической систе­мы. Это определение означает, что одно и то же количество вещества при одних и тех же зна­чениях температуры и давления занимает всегда один и тот же объем. Правда, необходимо до­бавить: это определение справедливо, когда в системе достигнуто равновесное состоя­ние.

Химику очень полезно знать, что один грамм-моль любого газа при 0° Ц и при дав­лении в 1 атм занимает объем, равный при­близительно 22,4 литра. Это стоит запомнить.

Теплота

Наверное, не одна сотня тысяч лет про­текла с тех пор, как наши далекие предки впервые познакомились с огнем и научились сами получать теплоту. Каждый из нас грелся у горячей печки и мерз в стужу. Казалось бы, что может быть теперь привычнее и понят­ней, чем так хорошо знакомая всем теплота.

Но вопрос - что такое теплота - далеко не так прост. Правильный ответ на него был найден наукой совсем недавно. Долгое время ученые даже не замечали всю сложность этой проблемы.

Первое истолкование природы теплоты было основано на бесспорном и очевидном как буд­то бы факте: при нагревании тела его темпера­тура повышается - следовательно, тело полу­чает теплоту. При остывании, охлаждаясь, тело ее теряет. Поэтому всякое нагретое тело представляет собой смесь того вещества, из которого оно состоит, и тепла. Чем выше температура тела, тем больше в нем приме­шано теплоты. Теперь уже мало кто помнит, что слово «температура» в переводе с латинского и означает «смесь». Когда-то, например, о бронзе говорили, что она - «температура олова и меди».

Два совершенно различных объяснения, две гипотезы о природе теплоты спорили между собой в науке почти два столетия.

Первую из этих гипотез высказал в 1613 г. великий Галилей. Теплота - это вещество. Оно необычно. Оно способно проникать в любые тела и выходить из них. Тепловое вещество, иначе теплород, или флогистон, не порождается и не уничтожается, а только перераспределяется между телами. Чем его больше в теле, тем тем­пература тела выше. Еще не так давно говори­ли - «градус теплоты» (а не температуры), считая, что термометр измеряет крепость смеси из ма­терии и теплорода. (До сих пор еще сохранился обычай мерить в градусах крепость вина - смесь воды и спирта.)

Вторую гипотезу, совершенно, казалось бы, отличную от представления Галилея, выска­зал в 1620 г. знаменитый философ Бэкон. Он обратил внимание на то, что было издавна известно любому кузнецу: под сильными уда­рами молота становится горячим холодный кусок железа. Известен способ получения огня трением. Значит, ударами и трением можно произвести теплоту, не получая ее от уже нагретого тела. Бэкон из этого заключил, что теплота есть внутреннее движение мельчайших частиц тела и температура тела определяется скоростью движения частиц в нем. Эта теория получила в науке название механической тео­рии теплоты. Для ее обоснования и развития очень много сделал гениальный Ломоносов.

При коренном расхождении обе гипотезы имеют немало сходства: из теории теплорода следовало, что термометр измеряет количество теплорода, содержащегося в теле, согласно же механической теории тепла, термометр пока­зывает количество движения, содержащегося в теле. Согласно обеим теориям, должен суще­ствовать абсолютный нуль температуры. Он будет достигнут тогда, когда, по теории теплорода, от тела будет отнят весь теплород, а по механической теории - когда тело потеряет все содержащееся в нем движение.

Теория теплорода почти два века господст­вовала в науке. Она проста и наглядна. Но она ошибочна. Точное взвешивание тел при разных температурах показало, что теплота невесома. Невесомость теплоты хорошо согласовывалась с механической теорией тепла. Тогда думали, что движение никоим образом не может по­влиять на вес тела. Правда, теперь мы знаем, что это не точно. Энергия, согласно закону Эйнштейна, должна обладать массой и, сле­довательно, тоже «весит»; только соответствую­щая прибавка в весе лежит далеко за пределами даже современной точности взвешивания.

Не следует смешивать теплоту с тепловой энергией тела. Тепловая энергия тела опреде­ляется кинетической энергией движения его молекул. Но теплота (это очень важно) дале­ко не равна тепловой энергии. И еще более важно, что теплота вообще не содержится в теле. Теплоты от дров, горящих в печи, в дровах вообще не было. Теплота только поступает в тело или уходит из него.

Совсем не трудно подсчитать количество энер­гии хаотического теплового движения в систе­ме, состоящей из молекул перегретого водя­ного пара,- это и будет его тепловая энергия. Но количество теплоты, которое может выде­литься из этой системы при ее охлаждении, совсем не равно тепловой энергии: сначала охладится пар, потом он начнет конденсиро­ваться в жидкую воду, затем охладится вода и, наконец, вода замерзнет. Теплота же испа­рения воды и теплота плавления льда очень велики. От перегретого пара, таким образом, можно получить гораздо больше теплоты, чем в нем содержится тепловой энергии.

Поэтому, строго говоря, обе гипотезы не верны - ни представление о теплоте как о теп­ловом веществе, ни механическая теория тепла. Вторая из них подтверждена опытом, но она не имеет никакого отношения к теплоте и касается только тепловой энергии, а это не одно и то же.

Работа

Совершать механическую работу - это зна­чит преодолевать или уничтожать сопротив­ления: молекулярные силы, силу пружины, силу тяжести, инерцию материи и т. д. Исти­рать, шлифовать тело, разделять его на части, поднимать грузы, тянуть по дороге повозку,

по рельсам - поезд, сжимать пружину - все это значит совершать работу; это значит преодолевать в течение некоторого времени сопротивление. Совершать работу - это значит преодолевать сопротивление газа, жидкости, твердого тела, кристалла. Сжимать газ, жид­кость, кристалл - это значит совершать работу.

Одним и тем же именем «работа» названы несходные явления, но за внешними различия­ми надо видеть общие основные черты. Работа связана с движением: груз поднимается, по­возка перемещается, поршень скользит в ци­линдре двигателя. Без движения нет работы.

Работа связана с упорядоченным движени­ем. Весь груз перемещается вверх. Вся повозка движется по дороге в одном направлении. Весь поршень в одном направлении движется в ци­линдре. Работа невозможна без двух участ­ников. Для поднятия одного груза должен опуститься другой груз, должна распрямиться пружина, должен расшириться газ. Оба участ­ника движутся упорядочение. Работа - это передача упорядоченного движения от одной системы к другой.

Не следует думать, что работа может быть связана только с механическим движением. Работа может совершаться и при изменении электрического или магнитного поля.

Способность системы совершать работу, конечно, очень важна для термодинамики. Но какую именно работу может совершить систе­ма - это для термодинамики несущественно. Как именно данную работу можно рассчитать и как ее измерить, должна сказать другая наука.

Определение механической работы дает механика. Это определение знает каждый школьник: работа (А) равна произведению силы (F) на путь (l).

Если же сила непостоянна, то приходится подсчитывать величину работы на каждом до­статочно малом участке пути (математики гово­рят - на бесконечно малом), на котором силу можно считать постоянной

dA=Fdl,

и затем просуммировать бесконечно малые значения работы по всему пройденному пути:

Тем, кто еще не отучился пугаться математи­ческих формул, полезно запомнить, что знак интеграла ∫- это просто вытянутая буква S - начальная в слове «сумма».

В физической химии часто рассматриваются процессы, связанные с дроблением вещества в тонкий порошок (в пыль) или с возникно­вением из пара новой фазы тумана или дыма. При таких процессах возникает огромная но­вая поверхность множества мельчайших ча­стиц, и на ее образование должна быть затра­чена немалая работа. Эту работу нельзя не учитывать. Она равна произведению поверх­ностного натяжения (а) на площадь новой поверхности (S):

Такая работа затрачивается и при выдувании мыльного пузыря.

Теплотехника при подсчете работы любых тепловых машин пользуется величиной работы расширяющегося газа, например водяного пара в цилиндре паровоза или в турбине. Этот очень важный вид работы измеряется произве­дением давления газа на изменение его объема:

Электрохимия, например, знает другой вид работы. Электрическая работа аккумулятора или гальванического элемента равна произве­дению электродвижущей силы (Е) на изменение заряда (q):

Полезно заметить и запомнить, что все выражения для различного вида работы очень сходны между собой. Любая работа обязатель­но измеряется произведением двух сомножи­телей: некоторой обобщенной силы / (это мо­жет быть сила всемирного тяготения, сила магнитного или электрического поля, давле­ние, поверхностное натяжение, любые меха­нические силы и т. д.) и величины а - изме­нения соответствующего параметра системы (пройденный путь, электрические заряды, вели­чина поверхности, объем и т. д.):

А=∫fda.

В задачи термодинамики не входит изу­чать различие между разными видами работы. Об этом должны позаботиться другие науки. Различных работ может быть очень много. Теплота только одна.

Термометры хорошо знакомы практически каждому человеку как средства, которые дают информацию о температурном режиме в той или иной среде. Несмотря на простоту выполняемой задачи, производители выпускают данный прибор в разных вариациях, отличающихся конструкционным устройством и рабочими характеристиками.

Современный термометр - это эргономичный измерительный аппарат, который в удобном для пользователя виде представляет климатические показатели целевой среды. По крайней мере, к такому восприятию своей продукции стремятся разработчики данного прибора.

Общие сведения о термометрах

Внешне большинство измерительных средств этого типа представляет собой небольшие приборы, начинка которых ориентирована на фиксацию определенного рода колебаний чувствительного элемента. Классический пример - это продолговатая трубка с жидкостью, заключенная в стеклянный корпус. В народе ее называют градусником. Он может использоваться и в медицинских целях, и для отслеживания уличной температуры. В данном случае принцип измерения основан на способности жидкости расширяться под влиянием тепла. Пользуется популярностью и Это тоже компактное устройство, которое фиксирует показатели температуры за счет чувствительного элемента в виде датчика. Такие модели проигрывают ртутным аналогам по причине высокой степени погрешности, но зато они полностью безопасны и удобны в эксплуатации.

Классификации термометров

Существует множество параметров, по которым разделяются термометры, и указанные выше представители этой группы измерительных приборов иллюстрируют лишь два примера их исполнения. Одной из основных классификаций является разделение по рабочей среде. На рынке можно найти термометры, ориентированные на произведение замера в воздухе, почве, воде, живом теле и т. д. По принципу работы чувствительного элемента можно выделить традиционные жидкостные, электронные, газовые и механические приборы. К более современным относятся инфракрасные, цифровые и оптические устройства. Важно не забывать, что измерительный прибор должен не только фиксировать значения определенным способом, но и предоставлять их в том или ином виде. В этом смысле термометр - это аппарат, который отражает показатели в виде шкалы или с помощью электронного дисплея. Цифровые модели постепенно вытесняют аналоги с механическим способом представления данных, но они проигрывают в плане точности показаний.

Термометры для воды

Такие модели называются аквариумными термометрами, с помощью них пользователь может оценивать температурный режим в водной среде. Аппараты этого типа представляют в двух исполнениях. Более распространенный термометр для воды - это прибор жидкостного типа, в котором функцию индикатора выполняет спирт вместо ртути. Так как техника замера предполагает погружение в средние слои воды, опасные токсические вещества в жидкостных моделях не используются.

Второй вариант водных термометров представляет собой накладной клеящийся аппарат. То есть его не погружают непосредственно в среду, а фиксируют на стенке резервуара. Принцип замера основывается на свойствах некоторых веществ в жидкости менять свои качества в зависимости от интенсивности нагрева. Клеящийся термометр для воды обеспечивается термохимической краской, представленной в виде температурной шкалы. К преимуществам данного типа приборов относят механическую устойчивость, гибкость в установке и безопасность. Однако этот термометр не способен обеспечить высокую точность измерения - особенно если возле емкости с водой находятся активные источники тепла.

Манометрический термометр

Это отдельная группа принцип действия которых связан с фиксацией показателей давления в том или ином веществе или среде. Собственно, изменение давления под действием температуры и выполняет функцию чувствительного элемента. Другое дело, что само давление регистрируется и преобразуется для температурной шкалы после замера через сложное устройство манометра. Обычно для этого используют систему с объединением погружаемого чувствительного элемента, трубчатой пружины и капиллярного провода. В зависимости от колебаний температуры происходит изменение давления в целевом погружаемом объекте. Малейшее отклонение в показателе манометрический термометр отражает через стрелочный механизм. По типу рабочего вещества различаются газовые, конденсационные и жидкостные приборы.

Многофункциональные термометры

В некотором смысле к этой группе термометров можно отнести и вышеназванный манометрический аппарат. Он позволяет получить не одно, а несколько измеряемых значений - в частности, давление и температуру. Однако манометрические приборы чаще всего используют принцип замера давления лишь как вспомогательную операцию для фиксации основного показателя в виде температуры. Полноценные же многофункциональные устройства позволяют отдельно отслеживать несколько показателей, среди которых то же давление, влажность и даже скорость ветра. Это своего рода в которых предусматривается барометр, термометр, гигрометр и другие измерительные компоненты.

Как правило, такие комплексы применяют рыболовы, путешественники и сотрудники специализированных предприятий, работа которых зависит от внешних условий. Станции также бывают механическими и электронными, что обуславливает их точность и удобство в эксплуатации.

Термометр с выносным датчиком

В таких приборах предусматривается наличие специального проводника, по которому транслируется информация, полученная через чувствительный датчик. То есть основа прибора представляет собой панель с интерфейсом и дисплеем, по которому пользователь узнает о показателях температуры. А датчик, в свою очередь, может размещаться непосредственно в целевой среде. Такие модели обычно применяют для определения температурного режима в тех же аквариумах или на улице. При этом термометр с датчиком может работать и по беспроводному способу связи. В этом случае сам датчик будет массивнее, так как для его энергоснабжения потребуется специальная ниша для аккумулятора или батарей.

Это прибор, призванный точно измерять температуру воды, почвы, воздуха, человеческого тела, продуктов и так далее. Прибор, отдаленно напоминающий современный термометр, изобрел Галилео Галилей в 1592 году. Изобретателем ртутного градусника стал Фаренгейт, затем прибор доработал Цельсий.

В сегодняшнем виде термометр – незаменимый помощник, который используется в различных сферах деятельности человека.

Виды термометров

  1. Жидкостный.
  2. Манометрический.
  3. Прибор, действующий по принципу сопротивления.
  4. Термоэлектрический.
  5. Электронный.
  6. Электроконтактный.
  7. Цифровой.
  8. Конденсационный.
  9. Газовый.

Также встречаются приборы для измерения температуры:

  1. Биметаллические.
  2. Кварцевые изделия.

Рассмотрим, в чем заключается их принцип действия.

Жидкостный - обычный стеклянный термометр, применяется в быту, технических отраслях. Схема работы заключается в следующем: когда изменяется температура, жидкость расширяется и поднимается, при уменьшении - опускается вниз. В приборе используется ртуть или спиртосодержащие вещества.

Манометрический. В принцип его работы заложено изменение жидкости в замкнутом пространстве при колебаниях температуры. Прибор может работать в диапазоне -60 до +600 градусов, используется во взрывоопасных помещениях.

Термометр сопротивления. В основе его работы заложен принцип свойств тел менять электросопротивление с параллельным изменением температуры. Существуют термометры полупроводниковые и металлические.

Термоэлектрический прибор. На его работу влияет материал изготовления. При снятии показаний необходимо делать небольшую поправку.

Электронный - может измерять температуру на расстоянии. Показания можно снимать с дистанции в несколько сотен метров. Термочувствительный датчик и лазерный индикатор устанавливаются в отдельных помещениях.

Электроконтактный прибор - сигнализирующие устройства, реагирующие на изменения температуры, работают от -35 до +300 градусов, используются в промышленных, энергетических, лабораторных установках.

Цифровое оборудование - наиболее точные измерители. Параметры аппарата напрямую зависят от используемых датчиков. Конденсационные аппараты - обладают высокой чувствительностью, работают по принципу упругости насыщенных паров низкокипящей жидкости от нуля градусов.

Газовая конструкция. В данном варианте работает принцип зависимости между температурой и давлением термометрического вещества.

Биметаллический вариант. Его работа состоит в разнице теплового расширения веществ. Приборы используются на морских и речных судах и атомных электростанциях.

Кварцевые измерители корректно работают при температуре не выше 100 градусов.

Для чего нужен термометр

Без него не обходится ни одна семья, им можно измерять не только температуру тела, он также используется для воды, почвы. Температуру воздуха за окном измеряют уличным градусником.

Существуют измерители для мяса. Для хранения элитных продуктов важно поддерживать определенный температурный режим. Для этих целей используют специальный винный градусник.

Нюансы детских термометров

Градусник для измерения температуры в ротовой полости.

Для детей, в том числе самых маленьких, разработаны термометры в виде сосок, ушные инфракрасные измерители.

Виды детских термометров

Традиционными считаются ртутные и электронные приборы.

Особенности ртутных градусников, предназначенных для детей


Особенности электронных градусников, предназначенных для детей

Особенности инфракрасных градусников для детей.

Виды бытовых инфракрасных градусников

Что делать, если разбился градусник?

А токсичное вещество, которым является ртуть, оказалось на полу комнаты, необходимо:

  1. Незамедлительно проветрить помещение, открыв окна.
  2. Покинуть опасное помещение.
  3. Для локализации очага, необходимо плотно закрыть двери в помещении.
  4. На входе нужно постелить смоченную марганцовкой влажную тряпочку.
  5. Вызвать специалистов для уборки ртути.

Ртуть в квартире должны собирать специалисты.

Нельзя собирать ртуть, оказавшуюся на полу, самостоятельно. Поручите этот процесс специалистам.

Покупать термометр лучше в специализированных магазинах или аптеках. Он должен выдаваться в специальном контейнере, целостность его нужно проверить тут же. Обязательно наличие сертификата. При оплате нужно потребовать чек.

Храните градусник в недоступном для детей месте, не оставляйте их одних при измерении температуры тела.

Загрузка...