domvpavlino.ru

Состав конструкционных материалов. Что значит "конструкционные материалы". Кафедра инженерной графики



Физико-механические свойства конструкционных материалов подразделяются на:

  • конструкционные;
  • технологические;
  • эксплуатационные.

Конструкционные свойства

К конструкционным свойствам относятся:

  • прочность;
  • упругость;
  • пластичность;
  • твердость;
  • ударная вязкость.

Эти свойства определяют прочность и долговечность машины.

Прочность - это способность материала сопротивляться деформации и разрушению.

Деформацией называется изменение размеров и формы тела под действием внешних сил. Деформации подразделяются на упругие и пластические. Упругие деформации исчезают после окончания действия сил, а пластические остаются.

Пластичность - способность материала деформироваться. Пластичность обеспечивает конструктивную прочность деталей под нагрузкой и нейтрализует влияние концентраторов напряжений - отверстий, вырезов и т. п. При пластическом деформировании металла одновременно с изменением формы изменяется ряд свойств, в частности при холодном деформировании повышается прочность, но снижается пластичность.

Большинство механических характеристик материалов определяют в результате испытания образцов на растяжение (ГОСТ 1497-84).

При растяжении образцов с площадью поперечного сечения F a и рабочей (расчетной) длиной l о строят диаграмму растяжения в координатах: нагрузка P - удлинение ∆l образца (Рисунок 3 .).

Диаграмма растяжения характеризует поведение металла при деформировании от момента начала нагружения до разрушения образца. На диаграмме выделяют три участка:

  • упругой деформации - до нагрузки P упр ;
  • равномерной пластической деформации от P упр до P max ;
  • сосредоточенной пластической деформации от P max до P k .

Если образец нагрузить в пределах P упр , а затем полностью разгрузить и замерить его длину, то никаких последствий нагружения не обнаружится.

Такой характер деформирования образца называется упругим .
При нагружении образца более P упр появляется остаточная (пластическая) деформация.
Пластическое деформирование идет при возрастающей нагрузке, так как металл упрочняется в процессе деформирования.
Упрочнение металла при деформировании называется наклепом .

При дальнейшем нагружении пластическая деформация, а вместе с ней и наклеп все более увеличиваются, равномерно распределяясь по всему объему образца.
После достижения максимального значения нагрузки P max в наиболее слабом месте появляется местное утонение образца - шейка, в которой в основном и протекает дальнейшее пластическое деформирование. В связи с развитием шейки, несмотря на продолжающееся упрочнение металла, нагрузка уменьшается от P max до P k , и при нагрузке P k происходит разрушение образца.
При этом упругая деформация образца ∆l упр исчезает, а пластическая ∆l ост остается.

При деформировании твердого тела внутри него возникают внутренние силы. Величину сил, приходящуюся на единицу площади поперечного сечения образца, называют напряжением .
Единица измерения напряжения - мегаПаскаль (МПа) .

Отмеченные выше нагрузки на кривой растяжения (P упр, P T , P max , P k ) служат для определения основных характеристик прочности (напряжений):

  • предела упругости σ у ;
  • предела текучести σ Т ;
  • временного сопротивления σ в (предела прочности) и истинного сопротивления разрушению.


Временное сопротивление (предел прочности) σ в - это напряжение, соответствующее наибольшей нагрузке, предшествующей разрушению образца.

σ в = Р max /F 0 ;

где Р - максимальная нагрузка, предшествующая разрушению;
F 0 - первоначальная площадь поперечного сечения образца.

Для оценки пластичности металла служат относительное остаточное удлинение образца при растяжении δ Р и относительное остаточное сужение площади поперечного сечения образца ψ Р .

Относительное остаточное удлинение определяется по формуле:

δ Р = (lк - l 0)/l 0 ,

где lк - длина образца после испытания;
l 0 -длина образца до испытания.

Относительное остаточное сужение определяется из выражения:

ψ Р = (F к - F 0) × 100%/F 0 ,

где F 0 - начальная площадь поперечного сечения образца;
F к - площадь поперечного сечения образца в месте разрушения.

Твердость - это сопротивление материала проникновению в его поверхность стандартного тела (индентора). О твердости судят либо по глубине проникновения индентора, либо по величине отпечатка от вдавливания. Во всех случаях происходит пластическая деформация материала. Чем больше сопротивление материала пластической деформации, тем выше твердость.

Наибольшее распространение получили методы определения твердости Бринелля, Роквелла, Виккерса и микротвердости.

Схемы испытаний представлены на Рисунке 4 .


Рисунок 4 . Схема определения твердости материала
по Бринеллю (а), по Роквеллу (б), по Виккерсу (в).

Твердость по Бринеллю определяют на твердомере Бринелля. В качестве индентора используется стальной закаленный шарик диаметром D 2,5; 5; 10 мм , в зависимости от толщины изделия.

Полученный отпечаток измеряется в двух направлениях при помощи лупы Бринелля. Твердость определяется как отношение приложенной нагрузки P к сферической поверхности отпечатка.

Метод Роквелла основан на вдавливании в поверхность под определенной нагрузкой наконечника в виде шарика или алмазного конуса. Для мягких материалов (до НВ 230 ) используется стальной шарик диаметром 1/16” (1,6 мм ), для более твердых материалов - конус алмазный.

Нагружение осуществляется в два этапа. Сначала прикладывается предварительная нагрузка P 0 (100 Н ) для плотного соприкосновения наконечника с образцом. Затем прикладывается основная нагрузка P 1 , в течение некоторого времени действует общая рабочая нагрузка P . После снятия основной нагрузки определяют значение твердости по глубине остаточного вдавливания наконечника h под нагрузкой P 0 .

Твердость по Виккерсу определяется по величине отпечатка индентора: алмазная четырехгранная пирамида с углом при вершине 136 o .

Твердость рассчитывается как отношение приложенной нагрузки P к площади поверхности отпечатка.

составляет 50…1000 Н . Диагональ отпечатка d измеряется при помощи микроскопа, установленного на приборе.

Преимущество данного способа в том, что можно измерять твердость любых материалов, тонких изделий, поверхностных слоёв. Метод обеспечивает высокую точность при высокой чувствительности.

Способ микротвердости - используется для определения твердости отдельных структурных составляющих и фаз сплава, очень тонких поверхностных слоев (сотые доли миллиметра). Метод аналогичен способу Виккерса. Индентор - пирамида меньших размеров, нагрузки при вдавливании P составляют 5…500 Н .

Ударная вязкость характеризует надежность материала, его способность сопротивляться хрупкому разрушению. Испытания на ударную вязкость производят на маятниковых копрах. Испытуемые образцы имеют надрезы определенной формы и размеров.
Образец устанавливают на опорах копра надрезом в сторону, противоположную удару ножа маятника, который поднимают на определенную высоту.

Характеристикой вязкости является ударная вязкость a н , (удельная работа разрушения).



Общие требования, предъявляемые к конструкционным материалам

Конструкционными называют мате­риалы, предназначенные для изготовления деталей машин, приборов, инже­нерных конструкций, подвергающиеся механическим нагрузкам. Делали машин и приборов характеризуются большим разнообразием форм, размеров, условий эксплуатации. Они работают при стати­ческих, циклических и ударных нагруз­ках, при низких и высоких температу­рах, в контакте с различными средами. Эти факторы определяют требования к конструкционным материалам, ос­новные из которых эксплуатационные, технологические и экономические.

Эксплуатационные требования имеют первостепенное значение. Для того, чтобы обеспечить работоспособность конкретных машин и приборов, кон­струкционный материал должен иметь высокую конструкционную прочность.

Конструкционной прочностью назы­вается комплекс механических свойств, обеспечивающих надежную и длитель­ную работу материала в условиях экс­плуатации.

Механические свойства, определяю­щие конструкционную прочность и вы­бор конструкционного материала, рас­смотрены ниже. Требуемые характеристики механических свойств материала для конкретного изделия за­висят не только от силовых факторов, но и воздействия на него рабочей среды и температуры.

Среда - жидкая, газообразная, ионизи­рованная, радиационная, в которой ра­ботает материал, оказывает существен­ное и преимущественно отрицательное влияние на его механические свойству, снижая работоспособность деталей. В частности, рабочая среда может вы­зывать повреждение поверхности вслед­ствие коррозионного растрескивания, окисления и образования окалины, из­менение химического состава поверх­ностного слоя в результате насыщения нежелательными элементами. Кроме того, возможны разбухание и местное разрушение материала в ре­зультате ионизационного и радиацион­ного облучения. Для того чтобы проти­востоять рабочей среде, материал дол­жен обладать не только механическими, но и определенными физико-химически­ми свойствами: стойкостью к электро­химической коррозии, жаростойкостью, радиационной стойкостью, влагостойкостью, способ­ностью работать в условиях вакуума и др.

В некоторых случаях важно так­же требование определенных маг­нитных, электрических, тепловых свойств, высокой стабильности разме­ров деталей (особенно высокоточных деталей приборов).

Технологические требования направлены на обеспечение наименьшей трудоемкости изготовления деталей и конструкций. Технологичность материала характери­зуют возможные методы его обработки. Она оценивается обрабатываемостью резанием, давлением, свариваемостью, способностью к литью, а также прокаливаемостью, склонностью к деформа­ции и короблению при термической обработке. Технологичность материала имеет важное значение, так как от нее зависят производительность и качество изготовления деталей.



Экономические требования сводятся к тому, чтобы материал имел невысо­кую стоимость и был доступным. Стали и сплавы по возможности должны со­держать минимальное количество леги­рующих элементов. Использование ма­териалов, содержащих легирующие эле­менты, должно быть обосновано повы­шением эксплуатационных свойств дета­лей. Экономические требования, так же как и технологические, приобретают особое значение при массовом масшта­бе производства.

Таким образом, качественный кон­струкционный материал должен удовле­творять комплексу требований.

Прочность конструкционных материалов и критерии ее оценки

Конструкционная прочность - ком­плексная характеристика, включающая сочетание критериев прочности, надеж­ности и долговечности.

Критерии прочности материала выби­рают в зависимости от условий его ра­боты. Критериями прочности при стати­стических нагрузках являются времен­ное сопротивление или предел теку­чести, характеризующие сопро­тивление материала пластической деформации. Поскольку при работе большинства деталей пластическая деформация недопустима, то их несущую способность, как правило, определяют по пределу текучести. Для приближен­ной оценки статической прочности ис­пользуют твердость НВ.

Большинство деталей машин испыты­вает длительные циклические нагрузки. Критерий их прочности - предел вынос­ливости. По величине выбранных критериев прочности рассчитывают допустимые рабочие напряжения. При этом, чем больше прочность материала, тем боль­ше допустимые рабочие напряжения и тем самым меньше размеры и масса детали. Однако повышение уровня прочности материала и, как следствие, рабочих на­пряжений сопровождается увеличением упругих деформаций.

Для ограничения упругой деформации материал должен обладать высоким мо­дулем упругости (или сдвига), являю­щимся критерием его жесткости. Имен­но критерии жесткости, а не прочности обусловливают размеры станин стан­ков, корпусов редукторов и других дета­лей, от которых требуется сохранение точных размеров и формы.

Возможно и противоположное требо­вание. Для пружин, мембран и других чувствительных упругих элементов при­боров, наоборот, важно обеспечить большие упругие перемещения. Для материалов, используемых в авиационной и ракетной технике, важ­ное значение имеет эффективность мате­риала по массе.

Таким образом, в качестве критериев конструкционной прочности выбирают те характеристики, которые наиболее полно отражают прочность в условиях эксплуатации.

Надежность - свойство материала противостоять хрупкому разрушению. Хрупкое разрушение вызывает вне­запный отказ деталей в условиях эксплуатации. Оно считается наиболее опасным из-за протекания с большой скоростью при напряжениях ниже расчетных, а также возможных аварийных последствий.

Для предупреждения хрупкого разру­шения конструкционные материалы должны обладать достаточной пластич­ностью и ударной вязкостью. Однако эти параметры надежности, определенные на небольших лабо­раторных образцах без учета условий эксплуатации конкретной детали, доста­точно показательны лишь для мягких малопрочных материалов. Необходимо также учитывать то, что в условиях эксплуатации действуют факторы, дополнительно снижающие их пластичность, вязкость и увеличивающие опасность хрупкого разрушения. К таким факторам отно­сятся концентраторы напряжений (над­резы), понижение температуры, динами­ческие нагрузки, увеличение размеров деталей.

Для того чтобы избежать внезапных поломок в условиях эксплуатации, необ­ходимо учитывать трещиностойкость материала. Трещиностойкость - группа параметров надежности, характеризую­щих способность материала тормозить развитие трещины.

Количественная оценка трещиностойкости основывается на линейной механике разрушения. В соответствии с ней очагами разру­шения высокопрочных материалов служат небольшие трещины эксплуатационного или технологического происхождения. Трещины являются острыми концентраторами напряжений, местные (ло­кальные) напряжения, в вершине которых мо­гут во много раз превышать средние рас­четные напряжения.

Долговечность - свойство материала сопротивляться развитию постепенного разрушения, обеспечивая работоспособность деталей в течение заданного времени. Причины потери работоспособности разнообразны: развитие процессов усталости, изнаши­вания, ползучести, коррозии, радиацион­ного разбухания и пр. Эти процессы вызывают постепенное накопление не­обратимых повреждений в материале и его разрушение. Обеспечение долговечности материала означает уменьше­ние до требуемых значений скорости его разрушения.

Для большинства деталей машин долговечность определяется сопротивлением материала усталост­ным разрушениям (циклической долго­вечностью) или сопротивлением изна­шиванию. Поэтому эти причины потери работоспособности материала требуют подробного рассмо­трения.

Циклическая долговечность характе­ризует работоспособность материала в условиях многократно повторяющих­ся циклов напряжений. Цикл напряже­ния - совокупность изменения напряже­ния между двумя его предельными значениями σ max и σ min в течение перио­да Т.

Процессы постепенного накопления повреждений в материале под дей­ствием циклических нагрузок, приводя­щие к изменению его свойств, образова­нию трещин, их развитию и разруше­нию, называют усталостью, а свойство противостоять усталостивыносли­востью.

Износостойкость - свойство материа­ла оказывать в определенных условиях трения сопротивление изнашиванию. Изнашивание - процесс постепенного разрушения поверхностных слоев мате­риала путем отделения его частиц под влиянием сил трения. Результат изна­шивания называют износом. Его опре­деляют по изменению размеров, уменьшению объема или массы. Износостойкость материала оцени­вают величиной, обратной скорости изнашивания.

Классификация конструкционных материалов

Перечень конструкционных материа­лов, применяемых в машино- и прибо­ростроении, велик, и классифицировать их можно по разным признакам. Боль­шинство из них, такие, как стали, чугуны, сплавы на основе меди и легких металлов, являются универсальными. Они обладают многочисленными достоинствами и используются в раз­личных деталях и конструкциях.

Наряду с универсальными применяют конструкционные материалы определен­ного функционального назначения: жа­ропрочные, материалы с высокими упругими свойствами, износостойкие, коррозионно- и жаростойкие.

Классификация подраз­деляет конструкционные материалы по свойствам, определяющим выбор мате­риала для конкретных деталей кон­струкций. Каждая группа материалов оценивается соответствующими крите­риями, обеспечивающими работоспособность в эксплуатации. Универ­сальные материалы рассматриваются в нескольких группах, если возможность применения их определяется различны­ми критериями. В соответствии с выбранным принци­пом классификации все конструк­ционные материалы подразделяют на следующие группы:

1. Материалы, обеспечивающие жест­кость, статическую и циклическую про­чность

2. Материалы с особыми технологическими свойствами

3. Износостойкие материалы

4. Материалы с высокими упругими свойствами

5. Материалы с малой плотностью

6. Материалы с высокой удельной прочностью

7. Материалы, устойчивые к воздей­ствию температуры и рабочей среды

Стали, обеспечивающие жесткость, статическую и циклическую прочности

Детали машин и приборов, передаю­щих нагрузку, должны обладать жест­костью и прочностью, достаточными для ограничения упругой и пластиче­ской деформации, при гарантированной надежности и долговечности. Из много­образия материалов в наибольшей сте­пени этим требованиям удовлетворяют сплавы на основе железа - чугуна и осо­бенно стали. Стали обладают высоким наследуемым от железа модулем упру­гости и тем самым высокой жесткостью, уступая в этом лишь бору, вольфраму, молибдену, бе­риллию, которые из-за высокой стои­мости используются только в специаль­ных случаях. Высокая жесткость и дос­тупность обусловливают широкое при­менение сталей для изготовления строи­тельных металлоконструкций, корпус­ных деталей, ходовых винтов станков, валов и многих других деталей машин.

Высокую жесткость стали сочетают с достаточной статической и цикличе­ской прочностью, значение которой можно регулировать в широком диапа­зоне изменением концентрации углеро­да, легирующих элементов и технологии термической и химико-термической обработки.

Применяемые в технике сплавы на ос­нове меди, алюминия, магния, титана, а также пластмассы уступают стали по жесткости, прочности или надежности. Кроме комплекса этих важных для ра­ботоспособности деталей свойств, стали могут обладать и рядом других ценных качеств, делающих их универсальным ма­териалом. При соответствующем легировании и технологии термической обра­ботки сталь становится износостойкой, либо коррозионно-стойкой, либо жаростойкой и жаропрочной, а также при­обретает особые магнитные, тепловые или упругие свойства. Стали свой­ственны также хорошие технологические свойства. К тому же она сравни­тельно недорога. Вследствие этих достоинств сталь - основной металлический материал промышленности.

Классификация конструкционных сталей

Стали классифицируют по химическо­му составу, качеству, степени раскисле­ния, структуре и прочности.

По химическому составу стали класси­фицируют на углеродистые и легиро­ванные. По концентрации углерода те и другие подразделяют на низкоуглеро­дистые (< 0,3 % С), среднеуглеродистые (0,3-0,7% С) и высокоуглеродистые (> 0,7% С). Легированные стали в зави­симости от введенных элементов под­разделяют на хромистые, марганцо­вистые, хромоникелевые, хромокремнемарганцевые и многие другие. По коли­честву введенных элементов их разде­ляют на низко-, средне- и высоколегиро­ванные. В низколегированных сталях количество легирующих элементов не превышает 5%, в среднелегированных содержится от 5 до 10%, в высоколеги­рованных - более 10%.

По качеству стали классифицируют на стали обыкновенного качества, каче­ственные, высококачественные и особовысококачественные.

Под качеством стали понимают сово­купность свойств, определяемых металлургическим процессом ее производ­ства. Однородность химического соста­ва, строения и свойств стали, а также ее технологичность во многом зависят от содержания газов (кислорода, водорода, азота) и вредных примесей - серы и фос­фора. Газы являются скрытыми, количественно трудно определяемыми примесями, по­этому нормы содержания вредных при­месей служат основными показателями для разделения сталей по качеству. Стали обыкновенного качества содержат до 0,055% S и 0,045% Р, качественные - не более 0,04% S и 0,035% Р, высоко­качественные - не более 0,025% S и 0,025% Р, особовысококачественные - не более 0,015% S и 0,025% Р.

По степени раскисления и характеру затвердевания стали классифицируют на спокойные, полуспокойные и кипящие. Раскисление - процесс удаления из жидкого металла кислорода, прово­димый для предотвращения хрупкого разрушения стали при горячей деформа­ции.

Спокойные стали раскисляют марган­цем, кремнием и алюминием. Они со­держат мало кислорода и затвердевают спокойно без газовыделения. Кипящие стали раскисляют только марганцем. Перед разливкой в них содержится по­вышенное количество кислорода, который при затвердевании, частично взаимодействуя с углеродом, удаляется в виде СО. Выделение пузырей СО соз­дает впечатление кипения стали, с чем и связано ее название. Кипящие слали дешевы, их производят низкоуглеродистыми и практически без кремния (Si < 0,07%), но с повышенным количе­ством газообразных примесей.

Полуспокойные стали по степени рас­кисления занимают промежуточное по­ложение между спокойными и кипящи­ми.

При классификации стали по структу­ре учитывают особенности ее строения в отожженном и нормализованном со­стояниях. По структуре в отожженном (равновесном) состоянии конструк­ционные стали разделяют на четыре класса: 1) доэвтектоидные, имеющие в структуре избыточный феррит; 2) эвтектоидные, структура которых состоит из перлита; 3) аустенитные; 4) ферритные. Углеродистые стали могут быть первых двух классов, легированные - всех классов.

Влияние углерода и постоянных примесей на свойства стали

Сталь - сложный по составу железо­углеродистый сплав. Кроме железа и углерода - основных компонентов, а также возможных легирующих эле­ментов, сталь содержит некоторое количество постоянных и случайных приме­сей, влияющих на ее свойства.

Углерод, концентрация которого в конструкционных сталях достигает 0,8%, оказывает определяющее влияние на их свойства. Степень его влияния за­висит от структурного состояния стали, ее термической обработки.

После отжига углеродистые конструк­ционные стали имеют ферритно-перлитную структуру, состоящую из двух фаз - феррита и цементита. Количество цементита, который отличается высокой твердостью и хрупкостью, увеличивает­ся пропорционально концентрации угле­рода. В связи с этим, по мере повыше­ния содержания углерода, увеличивают­ся прочность и твердость, но снижаются пластичность и вязкость стали.

Влияние углерода еще более значи­тельно при неравновесной структуре стали. После закалки на мартенсит вре­менное сопротивление легированных сталей интенсивно растет по мере уве­личения содержания углерода и дости­гает максимума при 0,4%С. При большей концентрации углерода становится нестабильным из-за хруп­кого разрушения стали, о чем свиде­тельствуют низкие значения ударной вязкости. При низком отпуске механиче­ские свойства полностью определяются концентрацией углерода в твердом рас­творе.

Углерод изменяет и технологические свойства стали. При увеличении его со­держания снижается способность сталей деформироваться в горячем и особенно в холодном состояниях, затрудняется свариваемость.

Постоянные примеси в стали : марганец, кремний, сера, фосфор, а также газы: кислород, азот, водород.

Марганец - полезная примесь; вводится в сталь для раскисления и остается в ней в количестве 0,3-0,8%. Марганец уменьшает вредное влияние кислорода и серы.

Кремний - полезная примесь; вводится в сталь в качестве активного раскислителя и остается в ней в количестве до 0,4%, оказывая упрочняющее действие.

Сера - вредная примесь, вызывающая красноломкость стали - хрупкость при горя­чей обработке давлением. В стали она нахо­дится в виде сульфидов. Красноломкость связана с наличием сульфидов, которые образуют с железом эвтектику, отличаю­щуюся низкой температурой плавления (988 °С) и располагающуюся по границам зе­рен. При горячей деформации границы зерен оплавляются, и сталь хрупко разрушается. От красноломкости сталь предохраняет марганец, который связывает серу в суль­фиды, исключающие образование лег­коплавкой эвтектики. Устраняя красноломкость, сульфиды, так же как и другие неметаллические вклю­чения (оксиды, нитриды и т. п.), служат кон­центраторами напряжений, снижают пла­стичность и вязкость стали. Содержание серы в стали строго ограничивают. Положи­тельное влияние серы проявляется лишь в улучшении обрабатываемости резанием.

Фосфор - вредная примесь. Он растворяет­ся в феррите, упрочняет его, но вызывает хладноломкость - снижение вязкости по мере понижения температуры. Сильное охрупчивающее действие фосфора выражается в по­вышении порога хладноломкости. Каждая 0,01 % Р повышает порог хладно­ломкости на 25 °С. Хрупкость стали, вызы­ваемая фосфором, тем выше, чем больше в ней углерода.

Фосфор - крайне нежелательная примесь в конструкционных сталях. Однако современные методы выплавки и переплавки не обеспечивают его полного удаления. Основной путь его снижения - повышение качества шихты.

Кислород, азот и водород - вредные скры­тые примеси. Их влияние наиболее сильно проявляется в снижении пластичности и повышении склонности стали к хрупкому разрушению. Кислород и азот растворяются в феррите в ничтожно малом количестве и загрязняют сталь неметаллическими включениями (окси­дами, нитридами). Кислородные включения вызывают красно- и хладноломкость, сни­жают прочность. Повышенное содержание азота вызывает деформационное старение.

Водород находится в твердом растворе или скапливается в порах и на дислокациях. Хрупкость, обусловленная водородом, про­является тем резче, чем выше прочность материала и меньше его растворимость в кри­сталлической решетке.

Случайные примеси - элементы, попадаю­щие в сталь из вторичного сырья или руд отдельных месторождений. Из скрапа в сталь попадает сурьма, олово и ряд других цветных металлов. Сталь, выплавленная из уральских руд, содержит медь, из керчен­ских - мышьяк. Случайные примеси в боль­шинстве случаев оказывают отрицательное влияние на вязкость и пластичность стали.

Диаграмма состояния железоуглеродистых сплавов

Среди диаграмм состояния металли­ческих сплавов самое большое значение имеет диаграмма состояния системы железо-углерод. Это объясняется тем, что в технике наиболее широко приме­няют железоуглеродистые сплавы.

Имеются две диаграммы состояния железоуглеродистых сплавов: метастабильная, характеризующая превращения в системе железо-карбид железа (це­ментит), и стабильная, характеризую­щая превращение в системе железо - графит.

На то, что система железо - графит является более стабильной, чем система железо-цементит, указывает тот факт, что при нагреве до высоких температур цементит распадается на железо и гра­фит, т. е. переходит в более стабильное состояние.

КОНСТРУКЦИОННЫЕ МАТЕРИАЛЫ, материалы, предназначенные для изготовления конструкций (деталей машин или механизмов, приборов, сооружений, транспортных средств и др.), воспринимающих механические нагрузки. Конструкционные материалы (в отличие от других технических материалов - оптических, изоляционных, смазочных, лакокрасочных, декоративных, абразивных и пр.) должны иметь высокую конструкционную прочность, обеспечивающую их надёжную и длительную работу в условиях эксплуатации. К основным критериям качества конструкционных материалов относятся параметры сопротивления внешним (статическим, циклическим и ударным) нагрузкам - прочность, удельная прочность (особенно для конструкционных материалов, используемых в авиа- и ракетостроении), жаропрочность, выносливость и вязкость разрушения (сопротивление материала образованию трещин). В ряде случаев важными характеристиками конструкционных материалов также являются износо-, термо- и коррозионная стойкость, свариваемость, прокаливаемость и др. На механические свойства конструкционных материалов оказывает влияние (преимущественно негативное) рабочая среда, вызывая повреждение поверхности вследствие коррозионного растрескивания или изменение химического состава поверхностного слоя в результате насыщения нежелательными элементами (например, водородом, вызывающим охрупчивание металлических конструкций). Конструкционные материалы эксплуатируются в широком температурном диапазоне - от -269 до 2500 °С; для обеспечения работоспособности при высокой температуре материал должен обладать жаропрочностью, при низкой - хладостойкостью. От технологичности конструкционных материалов (их обрабатываемости резанием, давлением, способности к литью и др.) зависит качество изготовления деталей.

Конструкционные материалы подразделяются: по природе материалов - на металлические, неметаллические и композиционные материалы, по технологическому исполнению - на деформированные (прокат, поковки, штамповки, прессованные профили и др.), литые, спекаемые, формуемые, склеиваемые, свариваемые (плавлением, взрывом, диффузионным сращиванием и др.); по условиям эксплуатации - на работающие при низких температурах, жаропрочные, коррозионно-, окалино-, износо-, топливо-, маслостойкие и др.; по критериям прочности - на материалы малой и средней прочности с большим запасом пластичности и высокопрочные с умеренным запасом пластичности.

Наибольшее распространение среди металлических конструкционных материалов получили конструкционная сталь и чугун. Конструкционные стали характеризуются широким диапазоном предела прочности - 200-3000 МПа; применяются в строительстве, авто-, авиа-, тракторо-, судостроении и др. Предел прочности чугунов в зависимости от легирования колеблется от 110 МПа (чугаль) до 1350 МПа (чугун, легированный магнием). Чугуны широко используются в машиностроении для изготовления станин, коленчатых валов, зубчатых колёс, цилиндров двигателей внутреннего сгорания, деталей, работающих при температуре до 1200 °С в окислительной среде, и др. Сплавы на основе цветных металлов также широко применяются в различных областях техники. Никелевые сплавы и кобальтовые сплавы сохраняют прочность и жаропрочность до 1000-1100 °С, интерметаллидные сплавы на основе соединения Ni 3 Al - до 1200 °С; применяются в авиационных и ракетных двигателях, паровых и газовых турбинах, аппаратах, работающих в агрессивных средах, и др. Алюминиевые сплавы по удельной жёсткости значительно превосходят стали, предел прочности деформируемых сплавов составляет до 750 МПа, литейных - до 550 МПа; служат для изготовления корпусов самолётов, вертолётов, ракет, судов и др. Магниевые сплавы отличаются малой плотностью (в 4 раза меньше, чем у стали), имеют предел прочности до 400 МПа и выше; применяются преимущественно в виде литых деталей в конструкциях ЛА, в автомобилестроении, в полиграфической промышленности и др. Титановые сплавы (предел прочности до 1600 МПа и более) превосходят стали и алюминиевые сплавы по удельной прочности, коррозионной стойкости и жёсткости; служат для изготовления компрессоров авиационных двигателей, аппаратов нефтеперерабатывающей и химической промышленности и др. Циркониевые сплавы, наряду с малым поперечным сечением поглощения тепловых нейтронов, обладают прочностью, пластичностью и коррозионной стойкостью в агрессивных средах; используются в ядерной энергетике для элементов конструкции активной зоны реакторов АЭС. Повышение эксплуатационных свойств металлических конструкционных материалов, получаемых традиционными методами, связано с использованием легированных и нанокристаллических металлических порошков.

Неметаллические конструкционные материалы включают полимерные материалы, керамику, огнеупоры, стёкла, резины, древесину. Термопласты (полистирол, полиметилметакрилат, полиамиды, фторопласты), а также реактопласты используются в деталях электро- и радиооборудования, узлах трения, работающих в различных средах, в том числе в химически активных: топливах, маслах и др. Стёкла (силикатные, кварцевые, органические) и триплексы на их основе служат для остекления судов, самолётов, ракет; из керамических материалов изготовляют детали, работающие при высоких температурах. Огнеупоры применяются преимущественно в чёрной и цветной металлургии при изготовлении огнеупорных футеровок в агрегатах, работающих в условиях высоких температур (более 900 °С). Резины на основе различных каучуков, упрочнённые кордными тканями, применяются для производства покрышек или монолитных колёс самолётов и автомобилей, а также различных подвижных и неподвижных уплотнений. Древесина используется в качестве шпал, крепи для угольной и горнорудной промышленности, для производства строительных конструкций, домов и др.

Композиционные конструкционные материалы по удельной прочности и удельному модулю упругости на 50-100% превосходят стали или алюминиевые сплавы и обеспечивают снижение массы конструкций на 20-50%. Композиционные конструкционные материалы (углепластики, органопластики, органотекстолиты, алюмостеклопластики и др.) широко применяются в конструкциях самолётов, ракет, в энергетическом, транспортном машиностроении и др.

Получение новых конструкционных материалов с улучшенными (по сравнению с традиционными конструкционными материалами) свойствами связано с синтезом материалов с субмикроскопической структурой из элементов, имеющих предельные значения свойств (предельно прочных, тугоплавких, термостабильных), а также с применением специальных методов изготовления (значительно повышающих прочность и долговечность материалов). Например, для металлических конструкционных материалов используется направленная кристаллизация сталей и сплавов для получения литых деталей со столбчатой структурой зёрен, монокристаллических деталей из никелевых сплавов с определённой кристаллографической ориентацией относительно действующих напряжений (лопатки газовых турбин); для неметаллических конструкционных материалов применяются методы ориентации линейных макромолекул полимерных материалов, модифицирование наночастицами (фуллеренами, нанотрубками, нановолокнами), создание полимерных нанокомпозитов.

Лит.: Машиностроение: Энциклопедия. М., 2001. Т. 2/3: Цветные металлы и сплавы. Композиционные металлические материалы / Ред.-сост. И. Н. Фридляндер; Болтон У. Конструкционные материалы: металлы, сплавы, полимеры, керамика, композиты. 2-е изд. М., 2007.

При выборе материалов в первую очередь требуется всесторонне рассмотреть условия его работы и разграничить факторы, воздействующие на материал, по степени их влияния на надежность машины или механизма. Определяющие факторы должны быть учтены обязательно, менее определяющие - по возможности.

Следующим этапом выбора материала должен быть процесс определения комплекса необходимых свойств материала, обеспечивающих надежную и долговечную работу конструкций, машин и оборудования в заданных условиях эксплуатации. Так как конструкционные материалы характеризуются механическими, физикохимическими и технологическими свойствами, то рассматривать необходимо всю гамму свойств, особенно, если в конструкции должны работать разные материалы.

Более правильным является формирование технических требований к материалу на основании моделирования условий работы изделия в реальных условиях эксплуатации с использованием специальных стендов, на которых с помощью тензометрирования можно определить уровень локальных пиковых напряжений изделия. В том случае, когда не имеется возможности использовать стенд для измерения рабочего напряжения, возникающего в изделии при его эксплуатации, следует использовать расчетные методы.

Физико-химические свойства. Физические свойства определяют поведение материалов в тепловых, гравитационных, электромагнитных и радиационных полях. Из важных физических свойств можно выделить теплопроводность, плотность, коэффициент линейного расширения. Применение в соединениях деталей из различных материалов обусловливает необходимость учета их коэффициентов линейного расширения.

Под химическими свойствами понимают способность материалов вступать в химическое взаимодействие с другими веществами, сопротивляемость окислению, проникновению газов и химически активных веществ. Детали любого изделия должны быть совместимы с рабочей средой. Коррозия, коррозионная усталость, коррозия под напряжением, водородное охрупчивание и т.д. могут вызвать повреждение в металле и привести к хрупкому разрушению конструкции. Такие химически активные металлы, как титан и его сплавы, магниевые сплавы, алюминиевые сплавы, при ударном нагружении могут самопроизвольно загораться при контакте с жидким кислородом.

Механические свойства. Основой выбора материалов для создания надежной и работоспособной техники являются их механические свойства, в первую очередь, прочностные, которые характеризуют способность материалов сопротивляться деформации и разрушению под действием различного рода нагрузок, в разных средах и при различных температурных условиях.

Расчет конструкции на прочность производят по допустимым напряжениям [о], определяемым из условий прочности при статическом нагружении или долговечности при циклическом нагружении. При статическом нагружении допускаемое напряжение равно отношению предельного для данного материала напряжения к коэффициенту безопасности , т.е. к коэффициенту запаса прочности п. Для пластичных материалов за предельное напряжение принимают предел текучести, для квазихрупких - временное сопротивление:

[ = а Т /п Т или [а] = а в /я в. (2.1)

Значение коэффициента запаса прочности зависит от многих факторов: разброса характеристик прочности; присутствия в материале дефектов, допускаемых техническими условиями; степени схематизации расчетной процедуры и т.д.

В России за допускаемое принимается минимальное напряжение, определяемое по пределу текучести или временному сопротивлению. Такая же методика принята во многих странах. Однако в некоторых странах, например в Чехии, Словакии, Германии, Польше, для определения допускаемых напряжений расчет ведется только по пределу текучести, а в Японии - только по временному сопротивлению.

Коэффициент запаса может меняться в широких пределах в зависимости от условий работы оборудования и опыта работы с данным материалом.

Для сосудов и аппаратов, работающих под давлением, коэффициент запаса по пределу текучести находится в пределах от 1,5 до 1,65, а по временному сопротивлению - от 2,35 до 4.

Однако расчеты на прочность конструкций по номинальным напряжениям с учетом коэффициентов запаса не всегда гарантируют необходимый ресурс их работы. Это связано с тем, что назначаемые запасы прочности не учитывают ряда факторов, которые способствуют возникновению повреждений и разрушений несущих элементов конструкций и машин. К этим факторам относятся: присутствие в металле дефектов типа трещин, как исходных, так и возникающих в процессе эксплуатации; наличие микро- и макронеоднородностей металла по толщине, в зонах сварных швов и т.д.; появление локальных напряжений вследствие их концентрации, а также остаточных технологических напряжений; нестабильность эксплуатационного нагружения из-за статических и импульсных перегрузок, стационарных и нестационарных циклических нагрузок. Для учета этих факторов необходим переход от расчета по номинальным напряжениям к анализу локальных напряжений, возникающих в отдельных зонах изделия.

Для высокопрочных и среднепрочных материалов расчет допустимых значений следует проводить на основе принципов механики разрушения с учетом максимальных размеров дефектов. Это связано с тем, что повышение прочности обычно сопровождается уменьшением пластичности и вязкости материала.

Пластичность характеризует способность материала к пластическому течению при превышении предела текучести, а вязкость - способность поглощать энергию внешних сил при разрушении.

У разных материалов соотношение пластичности и вязкости может очень сильно различаться. Например, алюминий имеет малую вязкость при высоком относительном удлинении. Наоборот, термообработанная (улучшенная), легированная сталь при сравнительно небольшом относительном удлинении может иметь высокую вязкость.

Пластичность и вязкость в конструкционные расчеты не входят и являются качественными показателями.

Пластичность показывает способность металла к перераспределению напряжений в зонах концентрации (пиков). Пластическая деформация как бы предохраняет металл от резких локальных перегрузок вблизи концентраторов напряжений.

Широко принятым критерием работоспособности металлических сплавов и сварных соединений, особенно используемых при низких температурах, является ударная вязкость, определенная на образцах с надрезом. При этом сложность представляет выбор необходимого уровня вязкости и вида образцов для ее оценки. В разных странах принят различный гарантированный уровень ударной вязкости. За рубежом сталь обычно допускается к эксплуатации, если ее ударная вязкость, определенная на образцах типа Шарли размером 10 х 10 х 55 мм с надрезом радиусом 0,25 мм, составляет КСУ> 0,30 МДж/м 2 .

Надежность конструкций, работающих в условиях многократного подъема и сброса давления, зависит от сопротивления материалов усталостному разрушению. Поэтому для таких изделий проводятся имитирующие циклические испытания стандартных образцов либо циклические стендовые испытания. База испытаний выбирается в зависимости от условий эксплуатации оборудования.

Металл установок или изделий, подвергаемых многократному нагреву или охлаждению, испытывается на сопротивление термической усталости.

В случае длительного нагружения конструкций при высоких температурах производятся испытания ползучести и длительной прочности материала.

При циклическом или длительном статическом нагружении номинальные эксплуатационные напряжения выбираются с введением коэффициентов запаса п а и п п по пределам длительной прочности и ползучести.

Коэффициенты Яд и л п обычно имеют значения в пределах 2,0-3,5.

Технологические свойства (литейные свойства у литейных сплавов; обрабатываемость давлением у деформируемых сплавов, обрабатываемость резанием, свариваемость) весьма важны и могут быть решающими при выборе материала для изготовления высококачественных изделий в производственных условиях. Например, нельзя изготовить литьем тонкостенные протяженные детали из сплава с низкой жидкотекучестью и плохой заполняемостью. Нельзя также изготавливать сварные конструкции из сталей с высоким содержанием углерода (высоким углеродным эквивалентом), так как в зоне сварного шва всегда будут образовываться сварные трещины.

При рассмотрении обрабатываемости материалов следует исходить из условий серийности изготавливаемого изделия и необходимости применения смягчающей термообработки. Так, при изготовлении изделий крупносерийного или массового производства следует ориентироваться на их механическую обработку с использованием станков с ЧПУ и обрабатывающих центров. В этом случае твердость обрабатываемых деталей должна быть невысокой (до 250 НВ). Для обеспечения низкой твердости для этих деталей может применяться предварительная термообработка: отжиг, нормализация, высокий отпуск.

Оценка свариваемости конструкционных материалов должна включать анализ уровня механических свойств сварного соединения и основного металла, определение склонности к образованию дефектов, прежде всего трещин в металле шва и зоне термического влияния, определение чувствительности сварного соединения к концентраторам напряжений и склонности к хрупкому разрушению. Для получения бездефектных равнопрочных сварных соединений, обладающих высоким сопротивлением хрупкому разрушению, необходима разработка специальной системы легирования сварного шва.

Приняты следующие термины, характеризующие свариваемость металлов: хорошая, удовлетворительная, ограниченная, неудовлетворительная. Хорошая свариваемость характерна для металлических материалов, не имеющих ограничений в проведении процесса сварки при температуре окружающей среды по массе и сложности конструкций. Такие материалы не требуют предварительного подогрева. При удовлетворительной свариваемости на морозе сварка не допускается и должна производиться при комнатной температуре. В сварных элементах должны отсутствовать жесткие стыки; для сложных узлов необходим предварительный сопутствующий подогрев; после сварки при большом объеме наплавленного металла необходим отпуск; при вваривании вкладышей рекомендуется проводить промежуточную термическую обработку. Ограниченная свариваемость подразумевает возможность сварки небольших деталей простой формы с подогревом до 300-400 °С и проведении отпуска после сварки; в случае жестких контуров температура подогрева должна быть увеличена до 600 °С. Неудовлетворительная свариваемость характерна для материалов, нуждающихся в отжиге перед сваркой; даже при сварке простых узлов их необходимо подогревать до температур более 450 °С с обязательным проведением высокого отпуска после сварки.

Выбранные материалы и технологии изготовления из них изделий обязательно должны быть привязаны к возможностям конкретного производства. Например, не следует ориентироваться на лазерную термообработку изделий массового производства, так как это окажется технически невыполнимым, а следует выбрать один из видов химико-термической обработки, который используется на предприятии - изготовителе изделий.

Важный этап выбора материала - оценка его стоимости и дефицитности. Выбранный материал должен быть по возможности дешевым, с учетом всех затрат, включающих как стоимость самого материала, так и стоимость изготовления из него деталей, а также эксплуатационную стойкость. Необходимо учитывать также наличие дефицитных составляющих материала. Например, в последние годы такие элементы в стали, как вольфрам, кобальт, никель являются дефицитными и их использование в качестве легирующих добавок в сталях должно быть ограничено. Однако в тех случаях, когда без них нельзя обеспечить необходимые служебные свойства, их применение оправдано (быстрорежущие стали, жаропрочные стали и сплавы).

Таким образом, основой при выборе материалов являются назначение и условия работы изделия или конструкции. При ЭТОМ КОНструктор опирается на опыт изготовления и эксплуатации изделий и конструкций данного профиля, уровень технологии производства и контроля, а также учитывает экономические соображения. При выборе материалов большую роль могут сыграть результаты стендовых и натурных испытаний изделий.

Использование при выборе материалов, ранее хорошо зарекомендовавших себя в подобных конструкциях и изделиях, вполне оправдано, но может привести, с одной стороны, к отказу от совершенствования конструкций и изделий, а с другой - к повторению уже сделанных ошибок.

Конструкционные материалы, материалы, из которых изготовляются детали конструкций (машин и сооружений), воспринимающих силовую нагрузку. Определяющими параметрами конструкционных материалов являются механические свойства, что отличает их от других технических материалов (оптических, изоляционных, смазочных, лакокрасочных, декоративных, абразивных и др.). В связи с тем, что детали современных механизмов работают при сложных знакопеременных нагрузках, повышенных температурах и др., к основным критериям качества конструкционных материалов относятся параметры сопротивления внешним нагрузкам: прочность, вязкость, надежность, ресурс. Основные конструкционные материалы - металлические сплавы на основе железа (чугуны и стали), меди (бронзы и латуни), свинца и олова.

Сплавы на основе железа. Чугуны. Стали. Классификация сталей, марки сталей. Применение в механических устройствах (валы, зубчатые колеса, крепеж).

Чугуны

Это сплавы железа с углеродом, содержащие постоянные примеси марганца, кремния, фосфора и серы, а также при необходимости легирующие элементы.

В зависимости от структуры и состояния, в котором находится углерод (свободный или химически связанный), различают серые, белые и ковкие чугуны. Чугуны также классифицируют в зависимости от назначения – на конструкционные и со специальными свойствами; и от химсостава – на легированные и нелегированные.

Как конструкционный материал наиболее широко применяются серые чугуны, в которых весь углерод находится в свободном состоянии в виде включений графита пластинчатой формы. Они обладают средней прочностью, хорошими литейными и другими технологическими свойствами (жидкотекучестью, малой линейной усадкой, обрабатываемостью резанием), малочувствительны к концентрации переменных напряжений, антифрикционны.

В белых чугунах избыточный углерод, не растворившийся в твердом растворе железа, присутствует в виде карбидов железа. Вследствие низких механических свойств – высокой хрупкости и твердости, плохой обрабатываемости резанием – белые чугуны не применяются в качестве конструкционных материалов.



Ковкий чугун получают из белого путем последующего отжига до распада графита в виде хлопьев. Детали из него могут подвергаться незначительным деформациям. Они обладают меньшей по сравнению с деталями из серого чугуна хрупкостью, но стоят на 30 … 100% дороже.

Высокопрочный чугун характеризуется шаровидной или близкой к ней формой включений графита, которую получают модифицированием жидкого чугуна присадками магния. Шаровидный графит в наименьшей мере ослабляет металлическую основу, что приводит к высоким механическим свойствам. Высокопрочный чугун обладает хорошими литейными и эксплуатационными свойствами.

Стали

Стали – это деформируемые сплавы железа с углеродом и другими элементами.

По химсоставу стали делят на углеродистые и легированные.

По назначению стали делят на конструкционные, инструментальные и с особыми свойствами. Наиболее

По качеству стали делят на обыкновенные, качественные, высоко и особо высококачественные.

По характеру застывания из жидкого состояния, степени раскисления различают спокойную, полуспокойную и кипящую стали.

Марки углеродистой стали обыкновенного качества обозначаются буквами
Ст (сталь) и цифрами от 0 до 6 , например Ст0 – Ст6 . Цифры соответствуют условному номеру марки в зависимости от химического состава и механических свойств. Чем больше число, тем больше содержание углерода в стали, выше прочность и ниже пластичность. Эти стали делят на три группы – А , Б и В . Сталь группы А имеет гарантированные механические свойства и не подвергается термообработке, в марке стали группа А не указывается . Для стали группы Б гарантируется химический состав, для стали группы В – химический состав и механические свойства.

Степень раскисления обозначается индексами, стоящими справа от номера марки: кп – кипящая, пс – полуспокойная, сп – спокойная. Например, сталь Ст2кп – сталь группы А , кипящая; БСт3пс – сталь группы Б , полуспокойная; ВСт5сп – сталь группы В , спокойная.

Углеродистые качественные стали маркируются двузначными цифрами (08, 10, 15, …, 70) , показывающими среднее содержание углерода в стали в сотых долях процента. Эти стали можно условно разделить на несколько групп. Стали 08, 10 обладают высокой пластичностью, хорошо штампуются и свариваются. Низкоуглеродистые стали 15, 20, 25 хорошо свариваются и обрабатываются резанием, после цементации и термообработки обладают повышенной износостойкостью.

Углеродистые инструментальные стали маркируют буквой У и цифрами, которые соответствуют содержанию углерода в десятых долях процента, например, сталь марки У9 содержит в среднем 0,9% углерода.

Маркируют легированные стали буквами и цифрами, указывающими ее химический состав. Первые цифры марок перед буквами указывают содержание углерода для конструкционных сталей в сотых долях процента (две цифры), а для инструментальных и специальных сталей – в десятых долях. Далее обозначение состоит из букв, указывающих, какие легирующие элементы входят в состав стали, и стоящих непосредственно за каждой буквой цифр, характеризующих среднее содержание легирующего элемента в процентах. Цифры за буквой не ставятся при содержании легирующего элемента менее 1,5%. Легирующие элементы обозначаются следующими буквами: Т – титан, С – кремний, Г – марганец, Х – хром, Н – никель, М – молибден, В – вольфрам и т.п. Например, нержавеющая сталь Х18Н10Т содержит 18% хрома, 10% никеля и до 1,5% титана; конструкционная легированная сталь 30ХГС содержит 0,30% углерода, а хрома, марганца и кремния до 1,5% каждого; инструментальная легированная сталь 9ХС содержит 0,9% углерода, а хрома и кремния до 1,5% каждого. В сталях 30ХГС и 9ХС кремния больше 0,8%, марганца в стали 30ХГС больше 1%.

Обозначения марок некоторых специальных сталей включают впереди букву, указывающую на назначение стали. Например, буква Ш –шарикоподшипниковая сталь (ШХ15 – с содержанием хрома ≈ 1,5%), Э – электротехническая и т.д.

Чаще всего в качестве материалов для валов и осей применяют следующие углеродистые и легированные стали: качественные стали 40, 45, 50 , сталь 40Х – для валов с термообработкой; стали 20, 20Х – для быстроходных валов на подшипниках скольжения с поверхностной цементацией цапф; углеродистые стали обыкновенного качества Ст4, Ст5 – для неответственных валов без термообработки; сталь Х18Н10Т – для коррозионно-стойких, немагнитных валов.

При изготовлении цилиндрических и конических колес основным материалом являются термически обрабатываемые стали. При окружных скоростях зубьев до 3 м/с применяют качественные стали 20, 30, 35 , а при более высоких окружных скоростях – стали 45, 50 , инструментальные стали У8А, У10А и легированные стали 20Х, 40Х, 40ХН, 30ХГСА, 12ХН3А с соответствующей термообработкой (нормализацией, закалкой, улучшением – закалкой с высоким отпуском). Рекомендуется твердость зубьев шестерни (они более нагружены) выбирать на (20 … 50)НВ больше твердости зубьев колеса. Поэтому материал шестерни стараются брать более прочным, чем материал для колес.

Болты, винты, гайки изготавливают из углеродистых и легированных сталей. Крепежные детали общего применения изготавливаются чаще всего из стали марок Ст3, Ст4, Ст5 без последующей термообработки. Более ответственные детали изготавливаются из сталей 35, 45, 40Х, 40ХН с поверхностной или общей термообработкой. Мелкие винты делают из латуни ЛС59-1 , дюралюминия Д1, Д16 . Для защиты поверхности крепежных деталей от коррозии, придания им необходимого цвета применяют цинкование, хромирование, кадмирование. Штифты изготавливают из сталей 45, А12, У8 . Шпонки изготавливают из среднеуглеродистых сталей 40, 45, Ст6 .

Сплавы на основе меди и алюминия. Классификация, обозначение, достоинства и недостатки. Применение сплавов как конструкционных материалов в механических устройствах (упругие элементы, опоры).

Медь и её сплавы

Медь в чистом виде характеризуется высокой электро- и теплопроводностью, хорошей обрабатываемостью давлением, небольшой прочностью и применяется для изготовления токопроводящих деталей. Более широкое применение получили медные сплавы: латунь и бронза. В латунях основным легирующим элементом является цинк, в бронзах – иные элементы.

Легирующие элементы в марках медных сплавов обозначают следующими буквами: А – алюминий, Н – никель, О – олово, Ц – цинк, С – свинец, Ж – железо, Мц – марганец, К – кремний, Ф – фосфор, Т – титан.

Латуни делят на двойные и многокомпонентные сплавы. В двойных содержание цинка может доходить до 50%. Марки таких латуней обозначают буквой Л и цифрой, показывающей содержание меди в процентах, например Л59 . Для улучшения механических, технологических и коррозийных свойств в латуни вводят кроме цинка в небольших количествах различные легирующие элементы (алюминий, кремний, марганец, олово, железо, свинец). В марках многокомпонентных латуней первые цифры указывают среднее содержание меди, а последующие – легирующих элементов. Например, латунь ЛКС80-3-3 содержит 80% меди, по 3% кремния и свинца, а остальное – цинк.

Марки бронз и медно-никелевых сплавов начинаются соответственно с букв Бр и М , а следующие буквы и цифры указывают на наличие легирующих элементов и соответственно их содержание в процентах. Например, бронза БрОЦС 5-5-5 содержит олова, цинка и свинца по 5% или медно-никелевый сплав мельхиор МН19 содержит 19% никеля.

Бронзы называют по основным легирующим элементам: оловянистые, алюминиевые, бериллиевые, кремнистые и т.д. Широко используются оловянистые бронзы, они характеризуются высокой стойкостью против истирания, низким коэффициентом трения скольжения. Все медные сплавы отличаются хорошей стойкостью против атмосферной коррозии.

Латуни и бронзы используют в качестве конструкционных материалов. В частности, латунь Л63, отличающуюся высокой пластичностью, используют для изготовления токопроводящих и конструктивных деталей типа наконечники, втулки, шайбы, а латунь ЛК80-3Л – для изготовления литых деталей. Безоловянистые бронзы БрАЖ9-4 , БРАМц9-2 обладают высокими механическими и антифрикционными свойствами, хорошо обрабатываются, поэтому используются при изготовлении небольших зубчатых и червячных колес, втулок подшипников скольжения, ходовых гаек в винтовых механизмах. Наилучшие антифрикционные свойства имеют оловянистые бронзы.

Особое место занимает при изготовлении упругих элементов из-за высокой прочности и упругости бериллиевая бронза марки БрБ2 . Она немагнитна, стойка к морозу, действию пресной и соленой воды, хорошо сваривается и обрабатывается резанием. Применяют ее для изготовления ответственных деталей типа токоведущих пружинящих контактов, пружин, мембран.

Прочность медных сплавов, особенно латуней, ниже, чем сталей, а коррозионная стойкость много больше. Все латуни и большинство бронз, за исключением алюминиевых, хорошо паяются.

Материал втулки должен быть износостойким, хорошо прирабатываться и иметь в паре с материалом цапфы минимальный коэффициент трения. Для стальных цапф этим условиям удовлетворяют: при высоких давлениях и малых окружных скоростях – бронза БрАЖ9-4 и латунь ЛС59-1 ; при высоких давлениях и скоростях – бронза БрОФ10-1 и БрОЦС-5-5-5 .

Контактные и моментные антимагнитные, коррозионно-стойкие пружины изготавливают из фосфористых БрОФ 6-0,15 , БрОФ 4-0,2 и бериллиевой БрБ2 бронз.

Трубчатые манометрические пружины, сильфоны, мембраны и мембранные коробки изготавливают из латуней Л62 , Л68 , Л80, бронзы БрОФ4–0,2 .

В качестве материала для спиральных пружин используют ленты из бронзы БрОФ 6,5-0,15 .

Металлические мембраны изготавливают из фосфористой и бериллиевой бронз.

Сильфоны изготавливаются цельнотянутыми или паяными из латуни Л80, беррилиевых бронз БрБ2 , БрБ2,5 .

Изготавливают трубчатые пружины из латуни Л80 или бронзы.

Алюминий и его сплавы

Чистый алюминий применяется редко, так как имеет низкую прочность. Чаще при изготовлении деталей применяют сплавы на основе алюминия. Они обладают малой плотностью, высокой электро- и теплопроводностью, коррозийной стойкостью и удельной прочностью. Алюминиевые сплавы в зависимости от технологических свойств делят на деформируемые и литейные.

Наибольшее распространение из деформируемых сплавов получили термически упрочняемые с помощью закалки и старения алюминиево-медно-магниевые и алюминиево-магниевые сплавы. Первые называют дюралюминами (марки Д1, Д16 ), из вторых наиболее часто применяется сплав марки АМг6 . Они обладают высокими механическими свойствами, выпускаются в виде прутков, листов, труб, фасонных профилей. Их применяют для средненагруженных деталей типа стоек, крышек, втулок и т.д. К деформируемым относится высокопрочный алюминиево-магниево-цинковый сплав В95 , который применяют для деталей с повышенными статическими нагрузками (валы, зубчатые колеса).

Деформируемыми являются так называемые спеченные алюминиевые сплавы, отличающиеся очень высокими прочностными свойствами (модуль упругости, пределы прочности σ ut и текучести σ у). Они бывают двух видов: САП (спеченная алюминиевая пудра) и САС (спеченный алюминиевый сплав). САП упрочняется дисперсными частицами окиси алюминия Al 2 O 3 , образуемой в процессе помола алюминиевой пудры в атмосфере азота с регулируемой подачей кислорода. Пудру брикетируют, спекают и подвергают деформации – прессованию, прокатке, ковке. В зависимости от содержания Al 2 O 3 (прочность сплава возрастает при увеличении окиси алюминия до 20 – 22%) различают 4 марки САП (САП-1, САП-2, САП-3 и САП-4) . Сплавы САС содержат до 25% кремния и 5% железа. Их получают распылением жидкого сплава, брикетированием полученных гранул и последующей деформацией. Спеченные алюминиевые сплавы применяют для изготовления высоконагруженных деталей (корпусов блоков, каркасов, стоек и т.д.) и различных профилей.

Из литейных алюминиевых сплавов наибольше распространение получили сплавы алюминия с кремнием – силумины. Они обладают хорошими литейными и средними механическими свойствами. Силумины марок АЛ-2, АЛ-4, АЛ-9 применяют для изготовления литьем корпусов, крышек, кронштейнов и других сложных средненагруженных деталей.

Алюминий и его сплавы трудно паяются.

Загрузка...