domvpavlino.ru

Химические удобрения. Азотные удобрения Форма в которой находится азот в мочевине

Формы азотных удобрений

В системе удобрения азотом важен выбор формы азота. Азот в составе удобрений может быть в различных формах:

- Аммиачная (NH 4). Хорошо связывается с почвой, свободно усваивается растением, в том числе при низких температурах. Аммиачная форма способствует росту корневой системы, кущения, лучшему усвоению фосфора, серы, бора и др.. Рекомендуется вносить под озимую пшеницу рано весной, под сахарную свеклу под культивацию и подкормку. Хорошо усваивается на щелочных почвах. Желательно зарабатывать в почву.

Лучшая форма азота для предпосевного внесения. Содержится в селитре, аммиачной воде, сульфат аммония, аммофос, нитрофоске.

- Азотная (NO 3). Не задерживается почвой и легко вымывается в более глубокие слои, лучше работает при более высоких температурах. Есть данные, что 3 мм осадков вымывают нитраты на 1 см вглубь, т.е. если за месяц выпало 60 мм дождя, нитраты переместятся на 20 см глубже. Хорошо усваивается на кислых почвах. Эта форма азота положительно влияет на усвоение калия, магния и кальция. Нет нужды заворачивать в почву. Лучшая форма азота для подкормок. Ее следует применять в тех фазах вегетации, когда происходит интенсивный рост растений. Содержится преимущественно в различных видах селитры.

- Нитратно-аммиачная (NO 3 , NH 4). Наиболее универсальная форма азотных удобрений для предпосевного внесения и подкормки.

- Амидная (NH 2). В почве должна разложиться сначала к аммиачной форме, а позже к азотной. Усваивается растениями медленнее, чем азотная и аммиачная. Это медленно действующая форма азота. Чем выше температура, тем быстрее работает амидная форма азота. Положительно влияет на уменьшение аккумуляции нитратов в растении. ЕЕ обязательно заворачивать в почву.

Лучшим азотным удобрением для основного внесения является мочевина, в которой азот находится в амидной форме и не вымывается в глубь почвы. Однако при низких температурах азот из мочевины является труднее доступным для растений.

Селитра аммиачная (NH 4 N0 3 , (N34)). Аммонийно-нитратное удобрение в соотношении NH 4: NO 3 = 1:1. По эффективности аммиачная селитра часто занимает первое место среди азотных удобрений. Это лучшее удобрение для подкормки озимых зерновых и рапса. Применяется в системах удобрения во всех почвенно-климатических зонах Украины при предпосевном внесении и для подкормки. Водорастворимое, физиологически слабокислое, быстродействующее азотное удобрение.

Удобрение концентрированное, почти не содержит балластных соединений и быстро растворяется в воде. Характерная особенность аммиачной селитры заключается в том, что катионы аммония удобрения поглощаются грунтовым комплексом но не вымываются в нижние слои почвы и пролонгировано поглощаются корневой системой растений. Ионы нитратного азота удобрения не поглощаются почвенными коллоидами, находятся в подвижном состоянии и быстро усваиваются. Это актуально при ранней весенней подпитке, когда процессы нитрификации в почве еще не происходят.

Аммонийная и азотная формы азота легко поглощаются растением. Рекомендуемые средние нормы внесения аммиачной селитры 3-4 ц / га, до 6 ц / га.

Целесообразно применять весной для подкормки озимых культур, яровых зерновых, масличных, сахарной свеклы.

В условиях достаточного увлажнения возможно вымывание нитратной формы азота, поэтому используют селитру для весенне-летних подкормок, или вносят весной с заделкой в ​​почву перед посевом. В районах с недостаточным обеспечением влагой ее можно вносить с осени. Селитру используют также для подкормки пропашных и овощных культур с обязательной одновременной заделкой в ​​почву культиватором при междурядном рыхлении.

При обработке гранул селитры на химических заводах специальными антиусадочными веществами (лиламин) ее можно хранить в полипропиленовой таре 6-8 месяцев.

Селитра аммиачная является хорошим компонентом для производства смесей минеральных удобрений.

Известково-аммиачная селитра (NH 4 NO 3 + CaCO 3 , (N27Ca12)). Универсальное, азотно-карбонатное, нейтральное удобрение. Характеризуется высокой эффективностью на кислых почвах. Известково-аммиачная селитра имеет лучшие физико-механические свойства по сравнению с аммиачной селитрой и карбамидом. Не подкисляет почву.

Натриевая селитра (NaNO 3 , (N15-16)). Хорошо растворима в воде. Удобрение физиологически щелочное. При внесении в почву нитратный азот остается в почвенном растворе, а натрий поглощается грунтовым впитывающим комплексом. Азот легко усваивается растениями, однако существенным недостатком его является способность вымываться и теряться. Рекомендуется вносить на кислых почвах.

Сульфат аммония ((NH 4) 2SO 4 , (N21 S24)). Это кристаллическая соль белого, желтоватого или серого цвета, хорошо растворимая в воде.

Удобрение более физиологически кислое, чем аммиачная селитра. Рекомендуется для внесения на некислых (насыщенных основаниями) почвах и на кислых при известковании.

Можно вносить осенью. Удобрение ценное содержанием серы. Медленно действующее удобрение для основного или предпосевного внесения.

При внесении в почву сульфат аммония быстро растворяется. Аммонийная группа поглощается грунтовым впитывающим комплексом, удерживает азот от вымывания. Благодаря хорошей сорбции в почве, не вымывается и является единственным источником азота для растений длительный срок.

Если использованы при основном внесении удобрения не содержали серы, то сульфатом аммония можно подкормить картофель, лучше через 8-15 дней после высадки клубней. Рассеянные удобрения заделывают в почву при механических рыхлениях.

Одноразовое внесение сульфата аммония даже на подзолистых почвах существенно не сказывается на изменении реакции почвенного раствора, а систематическое применение этого удобрения на подзолистых и оподзоленных почвах приводит к подкислению почвенного раствора. Эту особенность удобрения учитывают при его использовании, проводя одновременно известкование почвы.

На черноземах применение сульфата аммония на развитие растений отрицательно не влияет.

Карбамид (мочевина) ((NH 2) 2CO, (N46)). Амидные удобрения - наиболее концентрированное среди твердых азотных удобрений. Синтезируется из двух газов СО 2 и NH 3 при температуре 185-200°С и давлении 180-200 атмосфер. Водорастворимое, медленно действующее безнитратное удобрение с почти нейтральной реакцией.

Применяется в системах удобрения во всех почвенно-климатических зонах Украины в основное внесение и для внекорневой листовой подкормки. В системе удобрения ярых зерновых культур вносят в предпосевную культивацию. Целесообразнее карбамид использовать под культуры с длинным вегетационным периодом - свеклу, кукурузу на зерно. В почве амидная форма трансформируется в аммиачную, а позже - нитратную. Процесс этот происходит медленно, поэтому азот из мочевины равномерно усваивается растениями в течение вегетации, излишне не накапливается в растении и в грунтовых водах. Мало вымывается из почвы, потери азота в почве минимальные. Удобрение не должно содержать более 0,8% биурета и 0,3% воды, особенно это важно в слоеного внесения. Амидная форма азота способна быстро усваиваться через листовую поверхность.

В процессе грануляции в карбамиде образуется биурет. По содержания 3% биурет является токсичным для растений, поэтому внесение непосредственно перед посевом угнетает развитие растений. В почве биурет полностью разлагается за 10-15 дней - этот интервал рекомендуется выдержать между внесением карбамида в почву и посевом. По содержании биурета 0,8% и ниже он не оказывает отрицательного влияния на проростки растений независимо от срока внесения удобрения (можно вносить непосредственно перед посевом).

Чем выше температура почвы, тем лучше и быстрее усваивается азот из карбамид. На почвах очень кислых или свежо известкованных дает меньший эффект. Меньшая эффективность также на переувлажненных, холодных почвах и при ранневесеннем внесении на озимых.

Одноразовое внесение мочевины не должно превышать 2,5 ц/га. Карбамид нужно зарабатывать в почву, так как потери при поверхностном внесении выше на 20-30%, чем в селитры. При поверхностном внесении NH 4 NO 3 потери азота составляют 1-3%, а CO (NH 2), - уже 20-30%. При поверхностном внесении карбамида на почву без немедленной заделки газообразные потери азота в виде аммиака могут достигать 30-50%.

Допустимая концентрация раствора карбамида для внекорневой подкормки зерновых 5-30%. Содержание биурета при этом не должен превышать 0,3%.

Аммиачная вода ((NH4OH), (N20)). Раствор аммиака в воде. Массовая доля азота 20,5%. Удобрение физиологически кислое. Азот содержится в формах свободного аммиака (NH 3) и аммония (NH 4 OH). Содержание аммиака больше, чем аммония. Чтобы избежать потерь азота, лучше вносить под вспашку или после вспашки, перед посевом озимых на глубину 10-18 см, весной перед посевом ярых культур и летом для подпитки пропашных.

Поверхностное внесение недопустимо, поскольку аммиак быстро испаряется.

Группы фосфорных удобрений

По степени растворимости фосфорные удобрения делят на три групп ы:

1. Водорастворимые и легкодоступные для всех растений (однозамещенные фосфаты: Са (Н 2 РO 4) 2, Mg (H 2 PO 4) 2, K 2 H 2 PO 4 , NaH 2 PO 4 , NH 4 H 2 PO 4 и др..) - различные виды суперфосфатов, аммофос, нитроаммофоски.

2. Нерастворимые в воде, но растворимы в слабых кислотах (лимонной) или в щелочно-лимонных растворах (двузамещенный фосфаты: СаНРO 4 , MgHPO 4) - частично доступны для питания растений.

3. Нерастворимые в воде и слабых кислотах (трехзамещенный: Са 3 (РO 4)2, Mg 3 (PO 4)2) - труднодоступные для растений - фосфоритная мука. Частично может использоваться культурами, корневая система которых способна выделять слабые органические кислоты (гречиха, горчица, люпин, горох).

Коэффициент усвоения фосфора очень низкий (15-30%) в результате быстрого преобразования внесенного растворимого фосфора на малодоступные для растений фосфаты. Поэтому для увеличения содержания подвижных фосфатов в почве, на супесчаных и песчаных почвах рекомендуется внести Р40-60, на легко-и среднесуглинистых - Р60-90 и тяжелосуглинистых - Р90-120.

Суперфосфат гранулированный . Ca (H 2 PO 4) 2-H 2 O + H 3 PO 4 +2CaS0 4 , (P20 S11 Ca30)

Физиологически кислое, водорастворимое фосфорное удобрение. Содержит более 30% сульфата кальция, который имеет практическое значение как источник серы (11%). Используется для основного и допосевного внесения в системах удобрения во всех почвенно-климатических зонах Украины, для всех культур. Характеризуется медленным и равномерным высвобождением элементов питания. В состав удобрения входят микроэлементы: В, Cu, Mn, Mo, Zn. Ценное удобрение для крестоцветных культур (рапса и др.), и бобовых.

Суперфосфат аммонизированный гранулированный.

NH 4 H 2 PO 4 + Ca (H 2 PO 4) 2 х H 2 O + CaSO 4 + H 3 PO 4 - марка N3: P17: S 12

Применяется в системах удобрения во всех почвенно-климатических зонах Украины. Кроме 3% азота и 17% фосфора, содержит 12% серы (40-55% сульфата кальция CaS0 4), что особенно ценно на почвах, где необходимо в систему удобрения дополнительно включать серосодержащие удобрения. Лучше использовать под бобовые, крестоцветные масличные культуры, требовательные к питанию серой.

Нормы внесения удобрения рассчитываются по результатам агрохимических анализов почвы, климатических условий, биологических потребностей и программируемой урожайности. Оптимальная норма суперфосфата аммонизированного для озимой пшеницы составляет 3-6 ц/га, для сахарной свеклы - 5-8 ц/га. Лучший способ внесения - по стерне перед вспашкой.

Удобрение химически кислое, водорастворимое. Вследствие нейтрализации кислотной действия аммиаком, он не подкисляет почву в отличие от суперфосфата. Имеет минимум на 10% более высокую эффективность по сравнению с традиционным суперфосфатом.

Фосфоритная мука. Са 3 (РO 4)2 х СаСO 3 , (P18-20 Ca3 4)

Содержит тризамещенный фосфор в форме Са 3 (РO 4)2, который не растворим в воде, а лишь в слабых кислотах. Большое значение в повышении эффективности фосфоритной муки имеет степень помола. Чем мельче, тем лучше. Допускается остаток частиц, которые не проходят через отверстия сита диаметром 0,18 мм, не более 10%.

Фосфор в удобрении находится в труднодоступной форме. Эффективность его повышается на кислых почвах с рН 5,6 и ниже.

Доступность фосфора из муки для большинства культур низкая. Усваивают его только культуры, корневая система которых имеет кислотные выделения, а именно: люпин, гречиха, горчица. Злаковые культуры плохо усваивают фосфор из этого удобрения.

Эффективность фосфорной муки значительно повышается при компостировании ее с органическими удобрениями. Способствует переводу фосфора в доступные формы посев сидератов, особенно горчицы белой, которая его хорошо усваивает. Следующая культура использует уже фосфор, который высвобождается при разложении биомассы сидератов.

Норма внесения фосфорной муки под основную обработку составляет 5-20 ц/га один раз в 5-6 лет для обеспечения фосфором и особенно кальцием. Это удобрение является прежде хорошим мелиорантов для коренного улучшения почвы, в частности уменьшение его кислотности.

В таких удобрениях как нитрофос, нитрофоска более половины фосфора находится в труднодоступном состоянии, поэтому их целесообразно вносить на кислых почвах в основное удобрение (под вспашку).

Калийные удобрения

Калий хлористый гранулированный, калий хлористый мелкозернистый (КС1, (К 6 0))

В мире, среди всего ассортимента калийных удобрений, бол ьше используется калия хлористого - 80-90%.

Применяется в системах удобрения во всех почвенно-климатических зонах Украины (кроме солонцеватых почв) под основную обработку почвы для культур, которые не чувствительны к вредному воздействию хлора. При внесении под вспашку хлор промывается в глубокие слоя почвы, что снижает возможность попадания в растение. Это высококонцентрированное удобрение, водорастворимое, физиологически кислое.

Калийная соль ((KCl + NaCl), (K 4 0)). Удобрение водорастворимое, физиологическая кислое. Содержит 20% NaCl 2-3% MgCl. Применяется во всех почвенно-климатических зонах осенью под основную обработку почвы для культур (свекла, зерновые, злаковые травы), которые не чувствительны к вредному воздействию хлора.

Калимагнезия ((K 2 SO 4 х MgSO 4 х 6H 2 O), (K28 Mg8 S15)). Производится две марки: в марке «А» содержание калия составляет 28%, в марке "В" - 25%.

Содержание магния в обоих марках - 8%. Применяется во всех почвенно-климатических зонах. Высокая эффективность удобрения наблюдается на почвах, которые имеют низкую обеспеченность магнием и на культурах, чувствительных к вредному воздействию хлора (гречка, картофель, соя, горох, лен, овощи, табак, виноград). Благодаря наличию магния, который положительно влияет на ростовые процессы, синтез углеводов, удобрение особенно эффективно на легких почвах.

Ценным является также содержание серы, который может достигать 15%. Это одно из лучших удобрений.

Каинит естественный ((КСl х MgSO 4 x ЗН 2 O)). Сырое, низкоонцентрированное удобрение, массовая доля калия (К 2 0) составляет не менее 9,5%, 6-7% MgO, 22-25% Na 2 0.

Имеет вид темно-серых или красных крупных кристаллов. Удобрение водорастворимое, хлорное. Рекомендуется применять с осени под основную обработку почвы под сахарную, кормовую свеклу, многолетние травы. Предлагается насыпью. Недостатком его является низкое содержание калия и высокое содержание хлора. На 1 кг К 2 O приходится 3,3 кг хлора. Ценным является содержание магния, серы, натрия.

Сульфат калия (K 2 S0 4 , (K45-52 S45)). Ценное бесхлорное калийное удобрение, физиологически кислое (рН-4), водорастворимое. Рекомендуют вносить под все культуры, особенно чувствительные к хлору. Ценное удобрение для овощных культур, для применения в теплицах. Наличие серы делает это удобрение очень ценным для внесения под крестоцветные, бобовые и другие культуры, положительно реагируют на удобрения серой.

Подходящие для подпитки в растворенном виде. Внекорневую подкормку проводят с концентрацией рабочего раствора 1-3%.

Концентрация рабочего раствора для фертигации: теплицы -0,01-0,05% (0,1-0,5 кг на 1000 л воды), открытый грунт - 0,01-0,1% (0,1-1 кг 1000 л воды).

Это удобрение очень дорогое, что ограничивает его использование.

Комплексные удобрения

Преимущества комплексных удобрений:

В одной грануле содержится два и более элем ентов минерального питания, что обеспечивает их высокую позиционную доступность растениям;

Высокое качество грануляции: равномерность внесения;

Концентрированные, содержат меньше балластных соединений, возможно применение в условиях недостаточного увлажнения;

Выпускаются различных марок с широким спектром использования на всех типах почв и обеспечения физиологических особенностей различных сельскохозяйственных культур;

Обеспечивают постоянную урожайность, улучшенное качество и экологичность продукции, которую можно применять для детского и диетического питания;

Обеспечивают снижение расходов на транспортировку, хранение и использование.

Нитроаммофоска (азофоска) (N16P16K1 6). Одно из лучших удобрений. Удобрение - концентрированное, азотно-фосфорно-калийное, гранулированное, выпускается различных марок с различным содержанием и соотношением элементов минерального питания: N: P: K = 16:16:16, 15:15:15 и другие.

Главные элементы минерального питания содержатся в форме водорастворимых и легкодоступных для растений соединений: NH 4 H 2 PO 4 , (NH 4), HPO 4 , NH 4 NO 3 , NH 4 Cl, KCl, KNO 3 , CaHPO 4

Фосфор нитроаммофоски более подвижный в почве, чем фосфор суперфосфата, и легко усваивается растениями. Каждая гранула содержит одинаковое количество азота, фосфора и калия, полезные вещества равномерно распределяются в почве, превосходя по этому показателю туковые смеси.

Физиологически нейтральное удобрение. Эффективность удобрения нитроаммофоской повышается при дополнительном внесении азотных удобрений. Оптимальная норма внесения нитроаммофоски под сахарную свеклу 8-10 ц/га, под озимую пшеницу 5-8 ц/га. Осенью вносится 3-4 ц/га после зерновых предшественников, где солома используется как удобрение. После других (лучших) предшественников норма осеннего внесения - не более 1-2 ц/га.

Лучше использовать нитроамофоску для ранневесенней подпитки (3-5 ц/га) озимой пшеницы по таломерзлой почве. Очень важно для первой подкормки озимых вместо селитры использовать нитроамофоску на площадях, где под основную обработку не внесен фосфор и калий, или норма внесения этих удобрений недостаточна для формирования программируемого урожая.

Диаммофоска марки 10:26:26. Удобрение высококонцентрированное, гранулированное, содержит значительно меньше свободных химических кислот по сравнению с нитроаммофосками, поэтому считается химически нейтральным. Биогенные элементы содержатся в формах водорастворимых и легкодоступных растениям соединений: NH 4 H, PO 4 , (NH) 3HPO 4 , NH 4 NO 3 , NH 4 Cl, KCl, KNO 3 .

Целесообразно использовать осенью под озимые культуры, ячмень пивоваренный и для подкормки сахарной, столовой свеклы, картофеля, овощных культур в период вегетации. Диаммофоску можно вносить поверхностно с последующей заделкой в ​​почву, но и целесообразно использовать локально в почву ленточным способом на глубину 8-10 см.

Селитра калиевая (нитрат калия) (KNO 3), (N14, K46). Концентрированное азотно-калийное физиологически нейтральное удобрение. Мелкий кристаллический порошок. Полностью водорастворимое удобрение. Не содержит солей (Сl и Na) и соединений тяжелых металлов. Азот в нитратной форме не испаряется, улучшает поглощение других катионов (Са, Mg ...).

Нитрат калия является важным источником пополнения растений калием. Подходит для всех культур на всех фазах развития.

Соотношение азота и калия (1:3,5) в удобрении позволяет применять его для питания всех сельскохозяйственных культур, оно особенно эффективно на почвах, которые имеют средний и повышенный уровень обеспечения соединениями фосфора.

Лучше применять весной, поскольку при внесении осенью нитратный азот, содержащийся в удобрении, вымывается за осенне-зимний период осадками в нижние слои почвы, что приводит к загрязнению грунтовых вод, и он становится почти недоступным для питания растений.

Применяется в системах питания культур, чувствительных к вредному воздействию хлорных калийных удобрений.

Рекомендуется применять в системе фертигации и для листовых подкормок. Используется для внекорневой листовой подкормки озимой пшеницы в фазе колошения в дозе 3-6 кг/га на объем рабочего раствора 200-250 л воды на гектар, а также для приготовления смесей минеральных удобрений.

Одно из лучших удобрений для использования с капельным орошением. Для тепличных растений до 0,5% концентрации (50 г на 10 л воды), для растений открытого грунта - 0,5-1,0% концентрации (50-100 г на 10 л воды).

Кальциевая селитра (нитрат кальция) 5Ca (NO 3) 2 + NH 4 NO 3 x 10Н 2 О, (N15, Ca26).

Физиологически щелочное удобрение, хорошо растворяется в воде, гигроскопиченое. Содержит водорастворимый кальций, который легкодоступен для питания растений. Лучше применять на кислых дерново-подзолистых почвах. Характеризуется быстрым действием даже при неблагоприятных климатических условиях: низкая температура, избыточная влажность, засуха, низкая рН. Использование кальциевой селитры способствует поглощению ионов кальция, магния, калия и других катионов благодаря нитратного азота, который входит в состав удобрения. Высокая эффективность кальциевой селитры наблюдается при применении локально в почву на глубину 8-10 см, хотя производственный опыт подтверждает неплохие результаты при внесении поверхностно. Потери нитратного азота удобрения при использовании незначительные.

Основные агрохимические особенности кальциевой селитры:

Стимулирует развитие корневой системы (активной зоны корни - корневых волосков) и вегетативный рост и развитие сельскохозяйственных и декоративных культур (свекла сахарная, кормовая, столовая, картофель, рапс озимый и яровой, кукуруза зерновая и силоса, соя, капуста, томаты, огурцы, фасоль, петрушка, яблони, земляники, розы, хризантемы, гвоздики)

Улучшает формирование мембран и стенок клеток у растений;

Активизирует деятельность ферментов и обмен веществ в растениях;

Улучшает процессы фотосинтеза, транспортировки углеводородов и усвоения азота в растениях;

Повышает устойчивость растений к стрессовым факторам окружающей среды, грибковых и бактериальных болезней, которые возникают из-за дефицита кальция - сливочная гниль помидоров, перцев, побурение мякоти картофеля, горькой ямковитости плодов яблок.

Улучшает лежкость овощей и фруктов при хранении и транспортировке;

Повышает урожайность на 10-15%, улучшает товарный вид и вкусовые качества овощей и фруктов;

Физиологическое щелочное удобрение (1 ц эквивалентный 0,2 ц СаС0 3), которое эффективно на кислых и солонцеватых почвах.

Кальциевая селитра также используется для некорневого листовой подкормки в концентрации 0,5-2,0%, особенно при появлении симптомов дефицита кальция в растениях. Высокая эффективность от внекорневой подкормки кальциевой селитрой наблюдается в регионах с жарким засушливым климатом и высокой солнечной инсоляцией. Рекомендуется применять на свекле, овощах, рапсе, пшеницы и др..

Нельзя смешивать нитрат кальция с удобрениями, содержащими фосфаты и сульфаты.

Аммофос (NH 4 H 2 PO 4 , (N12, P52)). Сложное высококонцентрированное азотно-фосфорное гранулированное удобрение. Соединения азота и фосфора, содержащихся в удобрении, являются водорастворимыми (содержание водорастворимого моноамонийфосфат (NH 4 H 2 P0 4) - 85-90%, а цитраторозчинного диаммонийфосфата (NH 4) 2HPO 4 - 10-15%) и легкодоступными для растений. Применяется в системах удобрения во всех почвенно-климатических зонах Украины.

Оптимальная норма внесения под озимую пшеницу 1-2 ц/га, под сахарную свеклу - 2-4 ц/га, лучше по стерне перед вспашкой. Фосфор аммофоса меньше связывается почвой, чем фосфор суперфосфата. Вероятно причиной этого является образование аммония, который способствует растворению фосфатов и превращению их в более доступные для растений формы.

В аммофосе фосфор более подвижный, чем в суперфосфате. Характер преобразования аммофоса в дерново-подзолистой почве, в значительной степени зависит от уровня его окультуренности. На кислых почвах аммофос как наиболее растворимая форма быстрее других удобрений ретроградировал, что приводило к снижению содержания в почве минеральных фосфатов и увеличение фракции органического фосфора и недоступных фосфатов по сравнению с почвой, удобренной суперфосфатом. Известкование таких почв тоже не уменьшило объемов ретроградации фосфора аммофоса. На нейтральных и слабощелочных почвах аммофос обеспечивает более благоприятный фосфорный режим по сравнению с суперфосфатом.

Жидкие комплексные удобрения марок 8-24-0 ; 10-34-0. Это растворы азота и фосфора. Марка ЖКД 8-24-0 изготавливается на основе выпаренной ортофосфорной кислоты, а марка ЖКД 10-34-0 - на основе суперфосфорной кислоты.

Аммиачная форма азота в удобрениях химически связана с орто-и полифосфорными кислотами и поэтому транспортируется в негерметично закрытой таре и вносится на поверхность почвы без одновременного посева.

В системе минерального питания ЖКД 10-34-0 можно использовать с гербицидами, макро-и микроудобрениями, стимуляторами роста в одном рабочем растворе, соответственно повышается агроэкономическая эффективность интенсивных технологий выращивания сельскохозяйственных культур. Удобрение вносится также ленточным способом локально в почву на глубину 8-10 см специальными машинами-растениепитателями. Применяется в системах минерального питания всех почвенно-климатических зон Украины. Целесообразно применять в зоне недостаточного увлажнения и на карбонатных почвах, насыщенными основами, с щелочным рН.

Монокалийфосфат (КН 2 РO 4 , (К34, Р50)). Одно из самых концентрированных фосфорнокалийних удобрений. Полностью водорастворимое, имеет высокий уровень усвоения растениями. Повышает урожайность и качество плодов и овощей вследствие увеличения содержания сахаров и витаминов, улучшает зимовку декоративных деревьев и кустов. Для листовой подкормки используют раствор 0,1-0,2% концентрации.

Используется преимущественно в системах капельного полива, гидропоники и для внекорневой подкормки овощных, плодовых, декоративных культур, виноградников на всех типах почв и субстратов.

Массовая доля фосфора (P 2 O 5 - 52%, Р - 23%) и калия (К 2 O - 34% К - 28%) является высокой. Поэтому удобрение также применяется для производства жидких и твердых смесей минеральных удобрений.

Применение удобрения повышает устойчивость растений к поражению грибковыми болезнями.

Монокалийфосфат нельзя смешивать с препаратами, содержащими кальций и магний.

Нитрат магния (N 9 Mg 8). Полностью водорастворимое удобрение для листовой подкормки в теплицах и открытом грунте. Обеспечивает потребность растений в магнии в период вегетации.

Норма внесения на зерновых культурах и травах - 10-20 л в 400 л воды на 1 га, на картофеле и корнеплодах - 6-10 л в 400 л воды на 1 га, на овощных культурах - 4 л в 400 л воды на 1 га.

Сульфат магния (MgS0 4 x H 2 O, Mg26 S21). Ценный источник магния и серы для сельскохозяйственных культур. Водорастворимое удобрение, как примеси содержит Na 2 0 (0,1%), Cl (0,2%), Fe (0,01%), Mn (0,01%).

Используют для основного внесения под овощные (70-150 кг/га), полевые (120-160 ц/га) и плодовые (300-500 кг/га) и для подкормок - 30-50 кг/га раз в 10-20 дней.

Листовое внесении проводят 1 раз в 3-4 недели раствором 1,5-2% во время вегетации. Быстро ликвидирует недостаток магния в листьях.

Высокоэффективный - применяется в норме вдвое ниже, чем сернокислый магний семивидный (эпсомит). Эпсомит (MgS0 4 х 7Н 2 0) применяется в 5%-ной концентрации, а кизерит (MgS0 4 х H2O) - в 2,5%-ной концентрации.

План.

  1. Содержание и формы азота в почве
  2. Процессы превращения азота в почве
  3. Некоторые особенности питания растений нитратным и аммиачным азотом
  4. Баланс азота почвы
  5. Содержание и формы фосфора.
  6. Доступность почвенных фосфатов растениям (условия, определяющие их растворимость).
  7. Баланс фосфора
  8. Содержание калия в почвах
  9. Формы и доступность почвенного калия растениям
  10. Баланс калия

Содержание азота в земной коре, по данным А.П. Виноградова, составляет 2,3*10 -2 весовых процента, а общие запасы исчисляются десятками млрдов. тонн. Основная часть азота почвы находится в виде сложных высокомолекулярных органических соединений. Некоторая часть азота земной коры находится в виде необменнопоглощенных ионов аммония и удерживается в кристаллической решетке алюмосиликатных минералов.

В пахотном слое разных почв количество азота колеблется в широких пределах; в дерново-подзолистых, песчаных и супесчаных почвах – 0,04 – 0,08%, суглинистых и глинистых – 0,1– 0,15%. Серые лесные и черноземные почвы наиболее богаты общим азотом (0,3 – 0,5% и более). В каштановых почвах его количество колеблется от 0,1 (в светло-каштановых и бурых) до 0,2-0,25% (в темно-каштановых).

Азот в почвах находится преимущественно в недоступной растениям органической форме, минерального азота в них всего около 1% от общего. Под влиянием биологических процессов органический азот частично переходит в легкоусвояемые растениями минеральные формы. Распад азотных органических веществ почвы до аммиака (аммонификация) осуществляется аэробными и анаэробными микроорганизмами. Аммиак, накапливающийся в анаэробных условиях, поглощается почвенными коллоидами к может усваиваться растениями. В аэробных условиях аммиак под влиянием специфических микроорганизмов переходит в нитриты и затем окисляется до нитратов (нитрификация). Интенсивность минерализации органического вещества в разных почвах неодинакова, нитратный азот хорошо доступен растениям. Некоторое количество минерального азота поступает в почву с осадками. Атмосферный азот усваивается также отдельными микроорганизмами, живущими свободно, и клубеньковыми бактериями бобовых растений. Однако эта величина прихода азота в почву относительно невелика.

В почвах одновременно с минерализацией органических азотсодержащих веществ идет процесс перехода минеральных соединений азота в органические, недоступные растениям формы. Кроме того, содержание минерального азота в почве уменьшается а результате денитрификации, развивающейся в анаэробных условиях. При этом нитратный азот восстанавливается микроорганизмами до свободного газообразного азота, который теряется из почвы. Азот теряется также в результате вымывания нитратов, особенно из легких почв, осадками и дренажными водами.

Исследованиями ВИУА и Почвенным институтом имени В. В. Докучаева установлено, что 35 – 55% азота в зависимости от формы вносимого удобрения усваивается сельскохозяйственными культурами на дерново-подзолистых и серых лесных почвах, 25– 45% закрепляется в почве и 0,1% теряется при вымывании, что не имеет существенного значения в азотном балансе тяжелосуглинистых почв. С помощью 15N установлено горизонтальное перемещение азота в почве и концентрация его в прикорневой зоне. Прогнозирование действия азотных удобрений на основе агрохимического анализа почв пока еще не дает ощутимых результатов. Соответствия между показателями отдельных методов и фактической прибавки урожаев не наблюдалось. Трудности в определении подвижного азота связаны с тем, что доступность его растениям определяют не только свойства самой почвы, но также погодные условия и агротехника. Обеспеченность растений азотом в значительной степени зависит от сезонной динамики процессов аммонификации и нитрификации, что может обусловить на одной и той же почве резкие различия в снабжении сельскохозяйственных культур этим элементом. Поэтому нет возможности дать характеристику почв по содержанию подвижного азота на основе данных массовых анализов, как по содержанию подвижных соединений фосфора и калия.

Преобладающая часть почвенного азота (95-98%) находится вместе с углеродом в составе органического вещества. Органический азот в почве, обладая достаточной устойчивостью, поддерживает ее плодородие, оставаясь недоступным растениям. В связи с этим немецкий ученый Шульц писал: «Если не говорить о воде, то именно азот является самым могучим двигателем в процессах развития, роста и творчества природы. Его уловить, им овладеть – задача, его сберечь – ключ к экономике, подчинить себе его источник, бьющий с неистощимой энергией – тайна благосостояния».

Органический азот почв составляет основную долю азотного фонда пчв, представлен сложными разнообразными соединениями. Господствующая часть органического азота (82-89% от общего) входит в собственно гумусовые вещества. Остальная часть азота (3-11%) включена в состав неспецифических соединений (аминокислоты, аминосахара, битумы). В этой же группе находится азот негумифицированных органических веществ (ткани отмерших растений и животных, живая и мертвая масса микроорганизмов). В почвах от 200 до 300 кг/га азота включено в неспецифические органические вещества. Этот азот является основным резервным фондом для минерализации и накопления подвижных минеральных форм азота в процессе аммонификации и нитрификации.

В почвах элювиального ряда его содержание колеблется от 1,5 до 6 т/га, в серых лесных возрастает до 10,5 т/га, а в черноземах достигает 13,5-15 т/га. Трудно- и легкогидролизуемый азот образуется в результате неполного разложения органического материала почвы. Эта форма азота частично доступна для растительного организма. Следовательно, непрерывные циклы созидания и разрушения азотистых веществ приводят к накоплению в почве доступных растениям соединений азота. Основу превращений составляют процессы минерализации и иммобилизации.

Рис. Круговорот азота в природе

Минерализация означает превращение органического азота в минеральный посредством аммонификации и нитрификации. Таким образом, в почве формируются минеральные формы азота: аммонийная, нитритная, нитратная – они легко усваиваются растениями, на них приходится до 5% от общего азота. Начальным процессом минерализации органических соединений является аммонификация – распад азотсодержащих органических соединений до аммонийного азота, органических кислот, углекислого газа. Аммонификация осуществляется в широком интервале рН, как в аэробных, так и в анаэробных условиях целым рядом микроорганизмов. Под воздействием протеолитических ферментов, выделяемых различными группами микроорганизмов, белковые вещества гидролизуются до аминокислот. Последние легко усваиваются микроорганизмами и под воздействием ферментов микробных клеток подвергаются процессам дезаминирования. В результате от амино - и амидосоединений отщепляется аммиак и образуются различные органические кислоты, углекислый газ, метан. Ежегодно в процессе аммонификации высвобождается до 2% азота от общих запасов азотсодержащих органических соединений. При этом, если соотношение С:N в субстрате узкое, происходит накопление аммонийного азота в почве, если широкое (солома, опилки), высвобождающийся аммоний тут же потребляется микроорганизмами для построения своего тела. Т. е. проявляется процесс иммобилизации азота – трансформация микроорганизмами его минеральных форм в органические вещества микробных клеток и их метаболитов.

2. Процессы превращения азота в почве.

Какова судьба аммонийного азота почвы?

Предшественник, возделываемая культура, обработка почвы оказывают слабое влияние на накопление обменного аммония. Существенное влияние на режим обменного аммония оказывают гидротермические условия: при избыточном и недостаточном увлажнении и холодной погоде количество его возрастает.

1. Аммонийный азот легко вовлекается в процессы биологического поглощения, растения могут усваивать до 80% его запасов. Благоприятные условия для этого рН = 6, высокая концентрация ионов K, Ca, Mg.

2. При оптимальных значениях влажности и высокой поглотительной способности весь аммонийный азот по мере появления может удерживаться в почве в обменно-поглощенном состоянии (вовлекается в обменные процессы с почвенным поглощающим комплексом).

3. В определенных условиях возможно необменное поглощение аммонийного азота. При наличии минералов с трехслойным строением кристаллической решетки необменная фиксация может достигать до 5-21%. Присутствие K, Ca уменьшают, а смена условий увлажнения – высушивания почв усиливает необменное поглощение аммонийного азота.

4.Большая часть аммонийного азота почвы окисляется до N-NO 3 , N-NO 2 , N-NO и N 2 . Это явление впервые открыл Луи Пастер в XIX веке и назвал нитрификацией. Она осуществляется группой специфических бактерий, для которых это окисление является источником энергии.

Нитрификация осуществляется в 2 этапа. В окислении аммиачных солей до нитритов: 2NH 3 + 3O 2 > 2HNO 2 +H 2 O, принимают участие бактерии родов: Nitrosomonas, Nitrosocystis, Nitrosospira, а до азотной: 2HNO 2 + O 2 > 2HNO 3 – бактериями рода Nitrobacter. Как видно, нитрификация – аэробный процесс, для ее интенсификации необходимы постоянный источник аммонийного азота и кислорода, оптимальные значения температуры – 20-25 0 С, влажности 60% от полной влагоемкости, рН = 6,2-8,2. Интенсивность минерализации органического вещества в разных типах почв неодинакова. В дерново-подзолистых почвах она протекает интенсивнее, чем на черноземах, где органическое вещество разлагается слабее. Ранней весной нитрификация осуществляется слабо, поскольку в почве содержится избыток влаги, почва слабо прогрета. По мере прогревания, нитрификация активизируется, ее пик приходится на конец июня - начало июля.

Наблюдения за содержанием нитратов в почвах показывает, что накопление этой формы минерального азота определяется потенциальными запасами почвенного плодородия. С повышением содержания гумуса и общего азота от дерново-подзолистых к серым лесным почвами далее к черноземам возрастает накопление нитратного азота. Наибольшей мобизизационной способностью обладают черноземы выщелоченные. В пахотном слое этих почв накапливается более 30 кг азота на гектар. В дерново-подзолистых почвах, несмотря на высокую относительную мобильность азотсодержащих органических соединений, образуется немного нитратов – около 10 кг/га, поскольку общее количество гумуса и азота в них низкое.

Содержание нитратного азота во всех почвах четко определяется предшествующей культурой севооборота. Наиболее активно процессы нитрификации развиваются в чистом пару, где в течение лета в черноземах, темно-серых лесных и лугово-черноземных почвах накапливается 120-170 кг/га нитратного азота. Такого количества азота при наличии других элементов питания достаточно для получения урожая зерновых культур в 30-40 ц/га. Роль пара как накопителя нитратов снижается на почвах с небольшим содержанием органического вещества – каштановых, светло-серых лесных и дерново-подзолистых почвах. Однако и в этих почвах в паровом поле содержится больше нитратного азота, чем в других полях севооборота.

Значительное накопление нитратного азота – после августовской вспашки пласта многолетних трав, после хорошо обрабатываемых пропашных культур, после рано убираемых многолетних трав. По этим предшественникам на высокогумусных почвах обычно нет необходимости в дополнительном внесении азотных удобрений.

В черноземах активность накопления этой формы азота обычно в 2-4 раза выше, чем в дерново-подзолистых и серых лесных почвах. В дерново-подзолистых почвах количество азота возрастает от весны к июлю – августу и практически остается неизменным до осени. В черноземных почвах в период июня – июля темпы накопления нитратного азота вследствие засушливых условий замедлены: резкий подъем нитратообразования в них наблюдается в увлажненную вторую половину лета (июль-август). Под сельскохозяйственными культурами содержание нитратного азота весьма динамично, поскольку растения используют его в качестве азотной пищи. Количество нитратного азота несколько возрастает после уборки урожая.

Режим нитратного азота в значительной степени определяется способами основной обработки почвы. Сокращение глубины и числа обработок приводит к снижению накопления нитратов.

Основные биохимические этапы миграции и трансформации нитратного азота следующие:

1. Биологическое поглощение. Нитратный азот находится в почвенном растворе в качестве аниона, легко поглощается и усваивается в основном биологическим путем.

2. Денитрификация. В анаэробных условиях бактерии рода Pseudomonas, Denitrifican, Fluorensens, ответственные за процесс денитрификации, восстанавливая нитратный азот до закисных, летучих форм, молекулярного азота на каждом из этапов добывают кислород для дыхания. Этот процесс наиболее интенсивно происходит в условиях парового поля в виду наличия в почве свободных нитратов, анаэробиозиса, щелочной реакции и избытка органического вещества. Активные расы денитрификаторов являются термофильными бактериями, оптимальная температура для них выше 25 0 С.

3. Вымывание – вынос нитратного азота в почвенном растворе из корнеобитаемого слоя почвенного профиля. В случае смыкания инфильтрационных вод с грунтовыми этот азот теряется безвозвратно. При глубоком залегании грунтовых вод в последующем возможен подъем нитратного азота восходящим током влаги и по градиенту концентрации.

3. Некоторые особенности питания растений нитратным и аммиачным азотом.

Эффективность азотного питания обусловливается формами азотных соединений и условиями их применения. В нейтральной среде обычно лучше проявляется действие аммиачного азота, чем нитратного. Калий и натрий способствуют большему поглощению нитратов, кальций и магний обеспечивают лучшее усвоение аммиака растениями. Для синтеза органических веществ растения используют аммиачный азот быстрее, чем азот нитратов. Преимущество аммиачного питания по сравнению с нитратным в том, что аммиачный азот стоит ближе к продуктам синтеза азотсодержащих веществ в растениях. Для синтеза аминокислот требуется восстановленная форма азота. Нитраты, прежде чем стать непосредственными продуктами синтеза аминокислот и белков, должны быть восстановлены внутри растений до аммиачного азота. При наличии достаточного количества углеводов в растениях нитраты восстанавливаются уже в корнях. Процесс ферментативного восстановления нитратов в растениях идет благодаря окислению углеводов. Нитраты восстанавливаются до аммиака с помощью ферментов, которые представляют собой металлофлавопротеиды. Для них необходимы такие элементы, как молибден, медь, железо, марганец, особенно важен молибден.

Аммиачный азот, поступивший в растения или образовавшийся в них в результате восстановления нитратов и нитритов, не накапливается в них. Накопление аммиачного азота может вредить растениям только в молодом возрасте.

В жизни растения большую роль играет процесс образования аминокислот прямым аминированием кетокислот. Аминокислоты способны передавать свои аминные группы кетокислотам; в этом случае протекает реакция переаминирования, т. е. аминогруппа аминокислот переходит в кетокислоту и в результате образуются аминокислоты. Переаминирование особенно важно для синтеза белков а также для процесса дезаминирования аминокислот, когда идет образование кетокислот и аммиака.

Полученные таким образом кетокислоты в растениях участвуют в образовании углеводов, жиров и других веществ. Аммиак принимает участие в образовании аминокислот в результате прямого аминирования кетокислот, которые получаются из углеводов. Кроме того, из аммиака образуются амиды аминодикарбоновых кислот – аспарагин и глютамин. В результате этого процесса происходит обезвреживание аммиака при обильном аммиачном питании и при недостатке в растениях углеводов, а также при его накоплении в процессе дезаминирования аминокислот.

В отдельных растениях (щавель, осока, хвощ и др.), в которых накапливается значительное количество органических кислот, аммиак может обезвреживаться благодаря образованию аммонийных солей. Например, взаимодействие аммиака со щавелевой кислотой дает щавелевокислый аммоний. Кроме того, возможно обезвреживание аммиака при образовании в растительных тканях мочевины.

Наряду с синтезом белков в растениях идут процессы их распада через аминокислоты до аммиака. Таким образом, с одной стороны, аммиак, поглощенный растением или образовавшийся в результате восстановления нитратов, служит первичным исходным материалом для синтеза белков, с другой стороны, – конечным продуктом распада белков.

Процессы азотного обмена веществ происходят в течение всего роста и развития растений. Характер их зависит от вида и возраста растений, условий среды, в частности условий питания, и других факторов. В молодых растениях синтез белков значительно преобладает над их распадом.

Исследования, осуществленные с помощью изотопа 15 N , показали, что в молодых растениях азот белка обновлялся полностью всего за три дня, а в старых листьях обновлялось лишь около 12% белкового азота за 12 дней. Отношение растений к аммиачному и нитратному питанию зависит от их обеспеченности углеводами. Растения, которые содержат малый запас углеводов в семенах, например, свекла, значительно хуже переносят избыток аммиака, чем нитратов. Картофель, в клубнях которого большой запас углеводов, способен переносить высокие дозы аммиака. Таким образом, для нормального роста и развития растений требуются определенные условия их питания как нитратным, так и аммиачным азотом.

В растения азот поступает неравномерно. В ранние фазы развития растения характеризуются высоким содержанием азота.

В этот период они особенно требовательны к условиям минерального питания. Биологические особенности отдельных растений определяет характер поступления в них питательных элементов. Величина усвоения азота растениями зависит от формы удобрений, температуры, влажности почвы, показателя рН и других условий, но, как правило, не превышает 30-50% (по средним показателям полевых опытов с I5 N).

С понижением температуры наблюдается более сильное снижение поглощения растениями азота окисленных форм удобрений по сравнению с восстановленными. При этом в корнях растений накапливаются нитраты вследствие ингибирования процессов их восстановления и передвижения в надземные органы. В условиях пониженной температуры при аммиачном питании процессы синтеза аминокислот протекают более интенсивно, чем при нитратном, когда больше накапливается углеводов.

На поглощение корнями аммиачных или нитратных ионов влияет также аэрация и величина рН окружающего раствора. С ростом исходного рН поглощение корнями нитратов уменьшается, а аммония – возрастает, при любом рН корни больше поглощают NH 4 + , чем NО 3 - . Аэрирование усиливает поглощение ионов аммония и не влияет на поглощение нитратов.

Величина усвоения растениями азота удобрений при низком содержании подвижных форм фосфора и калия меньше на 10 – 15%, чем при внесении фосфорных и калийных удобрений.

Использование азота удобрений растениями зависит от сроков их применения. Так, на дерново-подзолистой почве при внесении азотных удобрений в фазы выхода в трубку и колошения пшеница использует 45 – 50% меченого азота, а в фазу молочной спелости – не более 10%.

Поглощенный неорганический азот в определенной последовательности включается в синтез азоторганических соединений – сначала образуются более простые, затем, более сложные соединения (конституционные и запасные белки). При фосфорном голодании скорость включения азота в азотистые фракции заметно снижается, при этом тормозится его поглощение и передвижение в надземные органы.

В условиях недостатка кислорода нитратный азот используется только в процессе синтеза белка. В аэробных условиях преимущество имеет аммиачный азот, что особенно важно при выборе ассортимента азотных удобрений для почв, обеспеченных в различной степени кислородом.

При внесении в почву азотных удобрений растения лучше и больше усваивают азот самой почвы. Это обусловлено мобилизацией азота органического вещества почвы, в результате чего он становится более доступным растениям. На хорошо окультуренных дерново-подзолистых почвах больше поступает в растения азота из самой почвы, чем на слабоокультуренных, что важно при разработке прогноза эффективности доз удобрений для почв различного уровня плодородия.

Наряду с использованием растениями азота удобрений часть его закрепляется в почве в органической форме, а также теряется в виде газообразных соединений. Такие процессы происходят в основном впервые 20 – 30 дней, когда азот еще не полностью использован растениями и подвергается интенсивному воздействию гетеротрофных микроорганизмов, а также нитрифицирующих и денитрифицирующих бактерий. Как правило, закрепление азота в органической форме из нитратных удобрений меньше, чем из аммиачных и мочевины. Потери же, наоборот, возрастают при использовании нитратных удобрений. На кислых почвах, в которых накапливаются нитраты, потери внесенного азота могут достигать 55%. Возможны потери азота при фотоокислении органического вещества, а также благодаря биологической денитрификации. В результате процесса окисления – нитрификации аммиака потери азота из почвы наблюдаются даже в нейтральной и слабощелочной среде. Под влиянием негумифицированного органического вещества – клетчатки и других углеводов потери азота удобрений из почвы сокращаются в 2-3 раза. При отношении углерода органического вещества к азоту удобрений, равном 30, потери азота удобрений с избытком компенсируются его фиксацией. Один из путей снижения потерь азота – применение ингибиторов, избирательно действующих на нитрифицирующие микроорганизмы. Потери азота удобрений снижаются в 1,5-2 раза при внесении их вместе с ингибиторами, причем в 2 раза возрастает закрепление азота в органическом веществе почвы.

Полноценное азотное питание при обеспеченности другими элементами, особенно фосфором и калием, способствует улучшению роста и развития растений. В то же время усиленное азотное питание при недостатке фосфатного и калийного очень часто приводит к неравномерности созревания культур, их полеганию, снижению сопротивляемости к грибным болезням и неблагоприятным климатическим условиям. В таких случаях необходимо обеспечить растения фосфором, калием, а также отдельными микроэлементами. Рациональное применение азотных удобрений на фоне фосфорно-калийных и высокой агротехники обеспечивает оптимальное развитие сельскохозяйственных растений и в результате – получение высоких урожаев хорошего качества.

4.Баланс азота.

Пути накопления азота в почве следующие:

а) неисчерпаемым источником азота является атмосфера (среди прочих газов атмосферы на молекулярный азот приходится 78%. Однако молекулярный азот, будучи инертным газом, не может непосредственно усваиваться растениями.

б) фиксация молекулярного азота и пополнение запасов его в почве осуществляется двумя путями: под влиянием грозовых разрядов и с помощью определенных микроорганизмов. Под действие электрических и фотохимических реакций при грозах образуются аммиак и окислы азота, которые поступают в почву с атмосферными осадками. По данным А.В.Петербургского (1979), в осадках всегда больше аммонийного, чем нитратного азота, и общий приход его достигает в среднем около 4кг/га*год.

в) Гораздо большее значение в обогащении почв азотом имеет биологическая фиксация атмосферного азота свободноживущими микроорганизмами, сине-зелеными водорослями и клубеньковыми бактериями. Потенциальные возможности симбиотических и несимбиотических свободноживущих азотфиксаторов неравноценны. Свободноживущие азотфиксирующие микроорганизмы способны при благоприятных условиях ассимилировать 10-15 кг/га*год связанного азота. Клубеньковые бактерии поглощают значительно больше азота из атмосферы. По данным Д.Н.Прянишникова (1945), ежегодно на 1 га люцерна накапливает 300(до 500-600), клевер 150-160 (до 250-300), люпин до 150, соя до 100, вика, горох- 50-60 кг азота. Количество фиксированного азота зависит от вида бобового растения Ph почвенного раствора, величины урожая. Наиболее активно азотфиксация осуществляется в фазу цветения бобовых культур.

г) В связи с развитием химизации земледелия существенная роль в обогащении почв азотом принадлежит так называемому «техническому азоту».

Потери азота (статья расходования элемента)

а) Аммонийный и нитратный азот легко вовлекается в процессы биологического поглощения, поэтому значительное их количество выносится с урожаем полевых растений.

б) Газообразные потери аммонийного азота, которые происходят из хорошо аэрируемой почвы при ее периодическом высыхании и увлажнении.

в) вынос аммонийного азота в составе почвенных коллоидов при эрозионных процессах, количество которого определяется массой смытой почвы и содержанием аммония в ней.

г) вымывание аммонийного и нитратного азота происходит в составе почвенного раствора, а также и аммонийного азота в поглощенном состоянии в коллоидах – мигрантах.

д) денитрификация – процесс разрушения нитратного азота и восстановление его до молекулярной формы. При недостатке кислорода, в условиях избытка свежего органического вещества бактерии рода Denitrificator с помощью ферментов нитратредуктазы осуществляют восстановление нитратного азота до молекулярного.

Этот процесс возникает и особенно интенсивно развивается в условиях, когда в почве отсутствует воздух, почва имеет щелочную реакцию и в избытке неразложившееся органическое вещество богатое клетчаткой, глюкозой и другими углеводами. Денитрифицирующие бактерии быстро окисляют органическое вещество, используя для этой цели кислород нитратов. Процесс восстановления нитратов носит эндотермический характер, т.е реакция протекает с затратой энергии.

е) иммобилизация азота – вторичные процессы синтеза, когда минеральные соединения азота вновь переходят в органические, не усвояемые для растений. Эти процессы носят биологический характер. Микроорганизмы строят белок своих тел, используя углеводы и азот. Различные бактерии, актиномицеты, плесневые грибы разлагают клетчатку, пентозаны и другие вещества растительных и животных остатков. В качестве азотной пищи им необходимы в первую очередь легкорастворимые соединения азота почвы, которые они переводят в белок плазмы клеток. При отмирании бактерий азот снова переходит в форму минеральных соединений – аммиака и нитратов.

ж) необменное поглощение аммиачного азота минералами с трехслойным строением кристаллической решетки.

Фосфор почвы. Содержание и формы фосфора. Доступность почвенных фосфатов растениям. Пути накопления и потерь фосфора

История «путешествий» фосфора на Земле, или, как говорят ученые-геохимики, его миграция, очень интересна и поучительна. Атомы фосфора, как и всех других элементов, постоянно участвуют в великом природном круговороте веществ.

Фосфор – относительно редкий элемент. По данным академика А.Е.Ферсмана, его весовой кларк (процентное содержание элемента в земле) равен всего 0,12%. В таблице распространенности химических элементов в земной коре он стоит на 13-м месте вслед за углеродом и хлором, перед серой. К тому же фосфор – элемент, редко накапливающийся в больших количествах, и потому его относят к числу рассеянных.

В свободном виде в природе по причине своей очень сильной окисляемости он не встречается, но входит в состав многих минералов (их насчитывается до 120) и множества органических веществ. Большинство минералов, содержащих фосфор, являются редкими. Наиболее важные минералы (природные фосфаты) – апатит, вивианит, а также осадочная горная порода фосфорит (состоит из мелкокристаллического или аморфного фосфата кальция с примесью некоторых других веществ).

Несмотря на свою малую распространенность и разбросанность, фосфор, однако, имеет исключительно важное значение в жизни растительных и животных организмов. Он входит в состав большинства растительных и животных белков и протоплазмы. Фосфор – биогенный элемент. Академик Ферсман называл фосфор элементом жизни и мысли.

Источником всех фосфорных соединений в природе следует признать апатит – фосфат кальция, содержащий переменное количество фтора и хлора. В зависимости от преобладания в апатите фтора или хлора образуются минералы фторапатит Са 5 F(РO 4) 4 или хлорапатит Са 5 Сl(PO 4) 3 . Они содержат от 5 до 36% P 2 O 5 .

Рисунок. Мировое месторождение апатитов в Хибинах

В изверженных породах обычно всегда есть мелкие кристаллики апатита. Главнейшие его запасы находятся в зоне магмы, но он встречается и в тех местах, где изверженные породы образуют контакт с осадочными. Значительные запасы апатитов имеются в Норвегии и Бразилии. Подлинно мировое месторождение апатитов находится у нас, на Кольском полуострове, в Хибинах, где оно было открыто в 1925 г.

Под влиянием жизнедеятельности микроорганизмов, почвенных кислот, а также кислот, выделяемых корнями растений, апатиты постепенно подвергаются выветриванию и вовлекаются в биохимический круговорот, который в отличие от круговорота азота, углерода, кислорода и серы ограничивается лишь био-, гидро- и литосферой и не захватывает атмосферы.

Растениями фосфор поглощается только из растворенных фосфатов в виде анионов фосфорной кислоты. Поэтому питание фосфором растений возможно лишь при наличии в почвенном растворе солей фосфорной кислоты, например Са(Н 2 РО 4) 2 , СаНРО 4 , К 2 НРО 4 и др. Скапливается он главным образом в продуктовых частях – семенах, плодах. Наиболее богаты фосфором бобовые растения, а бедны им овощи. Из растений фосфор вместе с пищей попадает в организм животных и человека.

В теле человека имеется свыше 1,5 кг фосфора (1,4 кг в костях, 130 г в мышечных и 12 г в нервных тканях). Ежесуточная потребность взрослого человека в фосфоре от 1 до 1,2 г. Дети больше нуждаются в фосфоре, чем взрослые. По подсчетам ученых, с каждым куском хлеба весом 100 г человек поглощает до 1022 атомов фосфора, т.е. такое астрономическое число, которое не только невозможно представить, но даже и выразить обычными словами. Больше всего его содержится в костях (свыше 5%). Твердость скелету придает кальциевая соль фосфорной кислоты. Очень много фосфора в зубах (в дентине – 13%, а в зубной эмали – 17%). При недостатке фосфора у животных появляется заболевание костей.

При разложении богатых фосфором органических соединений могут образоваться газообразные и жидкие вещества. В частности, аналогично аммиаку может образоваться очень ядовитый бесцветный с чесночным запахом газ – фосфористый водород, или фосфин, РН3. Этот газ можно получить в лаборатории при кипячении белого фосфора с едким кали или при действии соляной кислотой на фосфид кальция: Са 3 Р 2 + 6НСl = 3СаСl 2 + 2РН 3 .

Одновременно с фосфином при этой реакции часто образуется в небольшом количестве жидкий продукт соединения фосфора с водородом – дифосфин Р 2 Н 4 , пары которого сами собой воспламеняются при обычной температуре и поджигают газообразный фосфин.

Подобного рода процессы происходят и в природе, являясь причиной появления так называемых «блуждающих огней» на кладбищах. Вспышки фосфина днем, конечно, не бывают видны, но ночью они вызывают суеверный страх у многих людей, которые незнакомы с научным объяснением этого явления. Описание «блуждающих огней» дано в «Вечерах на хуторе близ Диканьки» Н.В.Гоголем в рассказе «Заколдованное место». Жидкий дифосфин, выделяясь на болотах вместе с метаном, поджигает последний, и тогда возникает новое «чудо» – блуждающие болотные огни. Роль подобных процессов в природе относительно незначительна. Наоборот, образование различного рода фосфатов происходит в очень больших масштабах.

Существует несколько объяснений, как могли образоваться громадные накопления фосфатов органического происхождения, поскольку причины, вызывающие этот процесс, различны.

Богатый фосфором птичий помет, известный под названием гуано, в условиях сухого климата скапливается иногда в огромных количествах. Так, например, на островах Тихого океана, в Чили и Перу имеются огромные толщи гуано (до 100 м). Гуано – одно из самых эффективных удобрений. Оно содержит до 9% азота и 3% фосфорной кислоты.

Большие скопления помета имеются и в пещерах, где обитают летучие мыши. В процессе различных химических превращений эти вещества постепенно образуют различные минералы (алюмофосфаты, монофосфаты и др.). Образование залежей подобных соединений может произойти и в результате различных геологических катастроф, приводящих к массовой гибели животного мира.

Значительным признанием пользуется так называемая биолитная гипотеза происхождения фосфоритов. Согласно ей их залежи могли образоваться в результате массовой гибели морской фауны при встрече теплого морского течения с холодным: быстрая смена температуры оказывает одинаково гибельное влияние на животных, населяющих воды того и другого течения и не приспособившихся к быстрой смене условий. Гибель животного мира может происходить и при встрече течений с различной степенью содержания солей в их водах, например в дельтах больших рек, впадающих в моря и океаны.

В 1934 г. русский ученый А.В.Казаков опубликовал химическую гипотезу происхождения фосфоритов в морских водах. По этой гипотезе фосфаты, растворенные в морской воде, начинают осаждаться, когда из глубин моря они выносятся на его поверхность. Происходит это вследствие уменьшения кислотности воды (в связи с удалением части углекислоты); растворимость фосфатов в этой среде уменьшается, и тогда избыток их выпадает на дно. Так и образовались мощные залежи фосфоритов, оказывающиеся затем на суше вследствие геологических катастроф или постепенного поднятия морского дна.

Фосфоритовые залежи есть во многих странах. Наиболее известны месторождения в Северной Африке (Египет, Тунис, Алжир, Марокко), в США (Флорида). В России месторождения фосфоритов распространены на Урале, в Поволжье, Московской, Кировской, Смоленской, Брянской, Ленинградской и других областях.

В процесс круговорота фосфора, как и в природный круговорот других элементов (кислорода, азота, серы, калия, кальция, алюминия, железа и др.), энергично вмешивается человек. Фосфор нужен человеку для многих целей: большое количество его поглощает спичечная отрасль промышленности. Лучшие сорта нержавеющей стали получаются благодаря процессу фосфатирования – покрытия тонким слоем фосфатов, стойких против атмосферной коррозии. Аналогичной обработке часто подвергаются изделия из цинка, алюминия и их сплавов. Соединения фосфора идут на изготовление многих лекарственных веществ.

Главный же потребитель фосфатов – сельское хозяйство. Со времени химика Ю.Либиха земледельцы, поняв значение фосфора для повышения урожая культурных растений, начали отыскивать природные фосфаты (апатиты, фосфориты), превращать их механическим или чаще всего химическим путем в удобрения и вносить в почву.

Важно заметить, что в 100 кг пшеницы находится около 1 кг фосфора (в виде Р 2 О 5). Столько же фосфора содержится в 200 кг сена, 300 кг соломы, 1500 кг зеленых кормов. Можно себе представить, какие громадные количества фосфора уносятся с наших полей вместе с урожаем. Часть его, конечно, возвращается в почву, но фосфор, например, содержащийся в продуктовых частях растений, идущих на промышленную переработку, пропадает. Не обладая бесконечными запасами фосфора, почва вследствие этого процесса постепенно истощается, что приводит к сильному снижению урожая и необходимости восполнения потери фосфора. Культурные растения в большинстве случаев очень благоприятно отзываются на внесение в почву фосфорных удобрений в легкоусвояемой форме.

Рисунок. Круговорот фосфора в природе

Фосфорное удобрение получается также в качестве побочного продукта при переработке богатого фосфором чугуна в сталь при томасовском процессе. Если «грушу», в которой получается сталь по методу Г.Бессемера, выстлать внутри известковой футеровкой, то известь поглотит фосфор из расплавленного чугуна. В этом и состоит сущность предложенного англичанином С.Дж.Томасом процесса, при котором сразу достигаются две цели: получение доброкачественной стали и ценного удобрения. Последнее достигается путем размалывания поглотившей фосфор известковой футеровки. Получаемый таким путем сухой темно-серый порошок, называемый томасшлаком, содержит от 11 до 24% Р 2 О 5 и является высокоэффективным удобрением, особенно на кислых почвах.

Главнейшие процессы, характеризующие круговорот фосфора в природе, изображены на рисунке. Объяснением этого рисунка могут служить следующие слова знаменитого русского геолога и минералога, профессора Я.В.Самойлова, которому принадлежит большая заслуга в деле изучения фосфоритов: «Фосфор наших фосфоритовых месторождений – биохимического происхождения. Из апатита – минерала, в котором первоначально заключен почти целиком весь фосфор литосферы, элемент этот переходит в тело растений, из растений – в тело животных, которые являются истинными концентраторами фосфора. Пройдя через ряд животных тел, фосфор, наконец, выпадает из биохимического цикла и вновь возвращается в мир минеральный. При определенных физико-географических условиях в море происходят массовая гибель животных организмов и скопление их тел на дне морском, а скопления эти приводят к образованию фосфоритовых месторождений в осадочных отложениях. Наши фосфориты – биолиты, и если бы можно было шаг за шагом повернуть весь ход испытанных нашими фосфоритами перемещений в обратную сторону, то образцы, заполняющие наши музеи, зашевелились бы... »

Таким образом, основные запасы фосфора сосредоточены в горных породах земной коры, в донных осадках морей и океанов, а также в гумусовом горизонте почвы. Главными источниками поступления фосфора в почву являются материнские породы (60% запасов фосфора находится в минеральной части твердой фазы почвы), органические остатки растительного и животного происхождения, органические и минеральные удобрения. В почвах найдено более 200 различных минеральных соединений фосфора. Преобладающими фосфорсодержащими соединениями в земной коре являются разновидности минерала апатита, главным образом, фторапатита.

Глобальный биогеохимический круговорот большинства биогенных макроэлементов предполагает наличие у них газовых форм. И только фосфор, не имея газовых форм, необратимо вымывается в океан. Возврат элемента в геологическом масштабе осуществляется, когда дно моря становится сушей: основные месторождения фосфатов – бывшие донные отложения органического происхождения.

6.Доступность почвенных фосфатов растениям (условия, определяющие их растворимость).

В результате биологического круговорота фосфора в почве накапливаются органические фосфаты , доля которых может достигать до 80% от общего содержания фосфора. Прямым источником органического фосфора являются такие устойчивые соединения, как нуклеопротеиды, нуклеиновые кислоты, фосфатиды, фитин и их производные. Выделяют две группы органических фосфатов в почве: неспецифические соединения индивидуальной природы, образующиеся в результате биологического синтеза и фосфогумусовые специфические соединения. Содержание фосфора в составе специфических гумусовых веществ составляет (в %): в серых лесных почвах 1,78- 2,46; в черноземе обыкновенном -0,9-1,27; в черноземе выщелоченном -1,1-1,43; в темно-каштановой -0,97-1,3. В почве одновременно протекают разнонаправленные процессы. Происходят иммобилизация органическим веществом фосфора почвенного раствора и минерализация органических веществ, которая сопровождается поступлением фосфора в почвенный раствор. Фосфор плазмы микроорганизмов входит в состав белковых тел микроорганизмов. Эта форма фосфора не выполняет существенной роли в питании растений до тех пор, пока из-за неблагоприятных условий обитания микроорганизмы не погибнут. Поскольку, в благоприятных условиях фосфор передается дочерним поколениям при делении клетки материнской особи.

Минеральные формы фосфора находятся преимущественно в виде соединений ортофосфорной кислоты с ионами кальция, магния, железа и алюминия. Соли фосфорной кислоты – наиболее доступная для растений и распространенная форма фосфора в почве, составляет до 5% от валового его содержания. Образуется в результате минерализации органических соединений с помощью фермента фосфатазы или при выветривании минералов. Доступность растениям фосфатов почвы определяется степенью замещенности водородных ионов ортофосфорной кислоты: Ca(H 2 PO 4) 2 – однозамещенный фосфат кальция, растворим в воде; CaHPO 4 – двузамещенный фосфат кальция, растворим в слабокислой среде; Ca 3 (PO 4) 2 – трехзамещенный фосфат кальция, слабо растворим в кислой среде. Значительная их доля адсорбируется на «+» заряженной частью почвенного поглощающего комплекса (базоидами).

Уровень фосфорного питания растений зависит от растворимости минеральных форм фосфора. Фосфаты кальция становятся нерастворимыми в щелочных условиях, а фосфаты железа и алюминия – в кислых. Таким образом, химическое осаждение фосфатов из растворов и сорбция их на поверхности почвенных частиц определяется характером реакции почвенного раствора, обуславливая преобладание одного из трех ионов фосфора.

В интервале кислых и нейтральных почв преобладает монофосфат – одновалентный ортофосфат H 2 PO 4 , в щелочной среде – при pH выше 7,2 доминирует HPO 4 . Ион PO 4 появляется при pH выше 10. Так, растворимость фосфатов полуторных окислов возрастает по мере повышения pH раствора, и, наоборот, в кислой среде они приобретают кристаллическое строение со значительной потерей растворимости. При pH=5 фосфор преимущественно связывается с кальцием, растворимость фосфатов кальция возрастает по мере подкисления среды. Осаждение фосфатов железа происходит при рН ниже 3,5; фосфатов алюминия - ниже 5; а кальций фосфатов - при рН выше 7,5 (Томпсон, Троу, 1982). Возможность осаждения и растворения этих соединений при различных значениях реакции среды может быть представлена в виде схемы представленной выше. Наиболее легко абсорбируется растениями монофосфат. Таким образом, вследствие высокой активности элементарного фосфора и его окислов он образует мало- и труднорастворимые соединения в воде. Т.е. проявляется химическое осаждение фосфатов из растворов и сорбция их на поверхности почвенных частиц. Это явление известно как химическое поглощение фосфора (ретроградация) и определяет эффективность фосфорных удобрений.

Исследованиями установлено, что кроме перечисленных факторов увлажнение-высушивание почвы приводит к «распаковке» глинистых минералов с трехслойным строением кристаллической решетки и высвобождению фосфора. Быстрое смачивание почвы способствует разрушению почвенного агрегата, обнажению внутренних его поверхностей, а, следовательно, и переходу в почвенный раствор ранее скрытых соединений фосфора. Кроме того, степень обеспеченности растений доступными почвенными фосфатами зависит от уровня потребления фосфора возделываемой культурой и связано с ее биологическими особенностями. По данным Д.Н.Прянишникова, некоторые растения (гречиха, горчица, эспарцет, донник, горох) способны усваивать фосфор из трехзамещенных фосфатов. На усвоении фосфатов большое влияние оказывают аммиачное и аммиачно-нитратное удобрения. Поскольку, аммиачные формы азотных удобрений обладают физиологической кислотностью, последняя может оказать растворяющее воздействие на фосфорит.

Исходя из особенностей взаимодействия различных почв с фосфором удобрений, характера превращения фосфора в почвах приемы рационализации фосфатного режима почвы представляются следующими:

  1. Уменьшение контакта водорастворимых фосфатов с почвой (грануляция, капсулирование, локальное и припосевное внесение).
  2. Активизация слаборастворимых фосфорных удобрений при взаимодействии с кислым субстратом (фосфоритование кислых почв, компостирование фосфоритной муки с навозом).
  3. Активизация фосфора самой почвы путем известкования, фаворизации деятельности микроорганизмов, разрушающих органофосфаты, фосфаты железа, кальция и алюминия.

7. Баланс фосфора.

В органической форме фосфор входит в состав сложных белков (нуклеопротеидов), нуклеиновых кислот, фосфатидов, фитина, фосфорных эфиров, Сахаров, В-ферментов и других биологически активных веществ. Значительное количество фосфора находится в растениях в минеральной форме и используется в различных реакциях фосфорилирования (превращение углеводов с участием фосфорной кислоты).

Соединения фосфора с аделиновой кислотой (аденизиндифосфаты и аденизинтрифосфаты) занимают ведущее место в энергетическом обмене в клетке. Они богаты макроэргическими связями, в которых аккумулируется энергия, освобождающаяся при дыхании растений и используемая в разнообразных процессах синтеза.

Основным источником фосфатного питания растений в природных условиях служат соли ортофосфорной кислоты. Пирофосфаты и метафосфаты также могут быть использованы сельскохозяйственными культурами.

Соли одновалентных катионов ортофосфорной кислоты хорошо растворимы в воде и легко усваиваются растениями так же, как и соли двухвалентных катионов ортофосфорной кислоты, если они замещают в кислоте один водород (главным источником таких соединений служит суперфосфат, содержащий в своей основе мококальцийфосфат). Соли двухвалентных катионов (например, дикальцийфосфат) нерастворимы в воде. Однако они хорошо растворяются в слабых кислотах, в том числе и органических, которые присутствуют в почве.

Трехзамещенные ортофосфаты двухвалентных катионов (например, трехкальциевый фосфат) практически нерастворимы в воде, очень слабо растворимы в слабых кислотах и плохо усваиваются растениями. Но такие культуры, как люпин, гречиха, горчица, эспарцет, горох и конопля, способны достаточно хорошо усваивать трехкальциевые фосфаты и тонкоразмолотые фосфориты.

Очень слабо используется растениями фосфор средних и особенно основных солей трехвалентных катионов ортофосфорной кислоты. Органические фосфорные соединения при воздействии ферментов микрофлоры переходят в минеральные фосфаты, которые и усваиваются растениями. Растения поглощают фосфаты более интенсивно в первый период роста, чем в последующие. Недостаток фосфорного питания в ранний период роста растений очень сильно сказывается на дальнейшем их развитии. При этом фосфорное голодание в начале развития растения невозможно полностью преодолеть последующим внесением фосфора. Более того, обильное фосфорное питание в дальнейшем отрицательно сказывается на развитии сельскохозяйственных культур.

Исследования с применением радиоизотопов фосфора позволили установить большую скорость передвижения фосфатов из почвы в растения и внутри них. Фосфор, поступающий в растение, очень неравномерно распределяется между его органами и тканями. Растущие клетки получают фосфора больше, чем клетки, деление которых прекратилось. В фазу созревания репродуктивных органов к ним очень энергично передвигаются фосфаты из вегетативных частей. Основная часть фосфора сосредоточивается в товарной части урожая. Отсюда вытекает необходимость заботиться о достаточном обеспечении фосфорным питанием сельскохозяйственных культур. При нормальном питании злаковых культур фосфатной пищей ускоряется их развитие и созревание, повышается сопротивляемость к полеганию, а также улучшается качество продукции.

Калий почвы. Содержание и формы калия. Доступность почвенного калия растениям. Баланс калия в земледелии

Калий содержится в почвах главным образом в алюмосиликатах. Валовое содержание калия в почвах выше, чем азота и фосфора. Оно определяется, прежде всего, минералогическим и гранулометрическим составом почвы. Объясняется это тем, что большая часть почвенного калия входит в состав полевых шпатов, слюд и различных глинистых минералов (иллит, монтмориллонит, вермикулит). Полевые шпаты (ортоклаз, роговая обманка, микроклин) распространены весьма широко – на них приходится 60% минералогического состава поверхностного слоя земной коры. В их составе 10-12% занимает оксид калия. Большое распространение имеют калийные слюды - мусковит, биотит, флогопит. Мусковит содержит в среднем 10%, а биотит 8% оксида калия. В результате выветривания и биохимического разрушения полевых шпатов и слюд образуются гидрослюды (вторичные минералы). Они входят в состав преимущественно дисперсных фракций почвы. Поэтому, содержание калия в почвах зависит от их гранулометрического состава. Почвы тяжелого гранулометрического состава могут фиксировать значительно больше калия, чем легкие. Помимо минералогического и гранулометрического составов на поглотительную способность почвы в отношении калия значительное влияние оказывают ее влажность, содержание гумуса, реакция среды, биологическая активность, а также дозы и формы минеральных удобрений. В почве калия много в составе живого и мертвого органического вещества, поэтому на содержание калия в почве оказывает влияние степень гумусированности. Меньше всего калия содержится в торфяниках и песчаных почвах, в легких подзолистых и дерново-подзолистых почвах. Максимальные запасы элемента сконцентрированы в черноземах, каштановых и сероземных почвах.

В пахотном слое дерново-подзолистых, песчаных и супесчаных почв находится 0,6-1,5% валового калия (К 2 О), в глинистых- 1,5-2,5%. В серых лесных и черноземных почвах количество валового калия достигает 1-3%, в каштановых и бурых почвах-1-2%.

В почвах различают три формы соединений калия – водорастворимый, обменный и необменный, входящий в состав силикатов.

Растения могут усваивать не только водорастворимый и обменный калий, но частично и необменный (на тяжелых почвах в большей степени, чем на легких). Запасы подвижного калия пополняются в результате выветривания минералов. С другой стороны, обменный калий в почве может переходить в необменные формы.

Агрохимическое обследование почв России показало, что они довольно хорошо обеспечены подвижным калием. Около 67% пахотных почв характеризуется повышенным, высоким и очень высоким его содержанием и лишь 10,8% очень низким и низким. Почвы отдельных природно-экономических районов значительно различаются по количеству подвижного калия. Однако в целом почвы всех районов более обеспечены калием, чем фосфором. Особенно бедны обменным калием легкие подзолистые и торфяные почвы.

В лесной подзолистой зоне преобладают пахотные почвы с низким и средним содержанием обменного калия и только 3% с очень низким. Свыше 30% почв имеет повышенное, высокое и очень высокое его содержание. Наименее обеспечены обменным калием почвы Центрального района Нечерноземной зоны, где почти 32% земель с низким и 5% с очень низким его содержанием.

Наибольшее количество обменного калия находится в пахотных почвах Уральского района, здесь 60% земель имеют повышенное, высокое и очень высокое его содержание. Правда, этот район не полностью входит в зону подзолистых почв.

Закономерности размещения почв с различным содержанием калия еще недостаточно ясны. По-видимому, здесь большую роль играют провинциальные литологические особенности почвообразующих пород. Определенное значение имеют и различия в механическом составе почв. Влияние окультуренности почв на содержание калия сказывается слабее, чем на содержание фосфора. Иногда более окультуренные почвы с повышенным количеством фосфора содержат даже меньше калия, чем менее окультуренные.

Для правильного суждения об обеспеченности почв подвижным калием и его доступности растениям необходимо знать не только его содержание, но и степень подвижности. При одном и том же количестве обменного калия степень его подвижности в легких почвах выше, чем в тяжелых. Источником накопления обменного калия по мере его использования служит необменный калий. В легких дерново-подзолистых почвах значительно меньше необменного калия по сравнению с тяжелыми. Наибольшим его количеством обладают пойменные почвы.

Черноземные почвы Центрально-Черноземной зоны лучше обеспечены подвижным калием, чем почвы подзолистой зоны. Особенно много его в черноземах Западно-Сибирского района (56% земель с очень высоким содержанием). Количество обменного калия здесь увеличивается от лесостепи к сухим степям, достигая наибольшей величины в южных черноземах. Почти во всех каштановых почвах, за исключением супесчаных и песчаных разновидностей, отмечено значительное количество подвижного калия. Особенно богаты им почвы Прикаспийской низменности. Достаточно обеспечены подвижным калием почвы Восточной Сибири и Дальнего Востока, где размещено свыше 60% пахотных земель с повышенным, высоким и очень высоким его содержанием.

9. Формы и доступность почвенного калия растениям

По степени доступности растениям почвенный калий классифицируется следующим образом (Панников, Минеев, 1977). Не все формы калия в почвах доступны растениям. Общепринятым считается, что все формы калия находятся в динамическом равновесии. Принято выделять следующие формы: водорастворимый, обменный, фиксированный, калий нерастворимых силикатов, калий органической части почвы.

Валовое содержание калия в почвах выше, чем азота и фосфора. Объясняется это тем, что калий входит в состав большинства минералов, слагающих почвообразующую породу. Однако валовое содержание элемента не характеризует то его количество, которое может быть усвоено растениями. Эта форма элемента определяется как калий, входящий в состав кристаллической решетки почвенных минералов, она практически недоступна растениям до разрушения этих минералов с высвобождением калия в усвояемую растениями форму – 30кг/га в год (Пчелкин, 1977). По-видимому, разрушение почвенных минералов усиливается на фоне удобрений и под хорошо развитым растительным покровом. Этому способствует попеременное увлажнение и высыхание почвы.

Рисунок. Формы калия в почве и их трансформация (Krauss, 1998)

Водно-растворимый калий наиболее подвижен и доступен растениям. Представлен легкорастворимыми его солями, находящимися в почвенном растворе. Его количество в зависимости от внешних условий постоянно меняется и составляет 1/5- 1/10 часть от обменного калия (1-7мг/кг почвы). Эта форма калия пополняется за счет гидролиза калийсодержащих минералов, разрушения их корневыми выделениями и продуктами жизнедеятельности почвенных микроорганизмов, но главным образом за счет вытеснения обменного калия. Растения могут усваивать до 50-70% водно-растворимого и обменного калия.

Калий органического вещества почвы представляет собой ту часть, которая входит непосредственно в состав гумуса, внесенных органических удобрений, растительных остатков, а также микробных тел. Этот калий становится доступным растениям лишь после отмирания микробных тел и минерализации источников органического вещества.

Обменный, или поглощенный калий составляет 0,8-1,5% . Представлен катионами калия в почвенном поглощающем комплексе. Вместе с водорастворимым калием это основной источник калийного питания растений. Но растения могут усваивать только какую-то часть всего запаса обменного калия, наиболее подвижную. Она вытесняется в почвенный раствор другими катионами, находящимися на поверхности корневых волосков растений.

Фиксация калия в необменном состоянии характерна для почв, богатых глинистыми минералами со сложной, трехслойной кристаллической решеткой. Этот калий внедряется в межпакетное пространство кристаллической решетки. Фиксация калия, при которой он вовлекается внутрь кристаллической решетки, усиливается при попеременном увлажнении и высыхании почвы, значительном содержании органического вещества почвы и щелочной реакции почвенного раствора.

Таким образом, калийное состояние почв связано со способностью катионов переходить из одной формы в другую. Эти превращения заключаются в возможности ионов калия занимать различные по прочности связи с почвой позиции, и относится к двум противоположно направленным, обратимым процессам – фиксации (адсорбции) и мобилизации и (десорбции). Под фиксацией калия понимают переход катионов, находящихся в почвенном растворе или в обменном состоянии в необменную (прочносвязанную) форму. Поэтому, фиксацию калия можно рассматривать как процесс, ответственный за его накопление и сохранение. Десорбционная способность контролирует механизм удаления-потребления почвенного калия. Представляет процесс перехода катионов из обменно-поглощенного или необменного состояния в почвенный раствор.

10. Баланс калия

Баланс калия в агроценозах формируется из приходной и расходной частей. Приходная часть состоит из калия, поступающего из почвообразующих пород и минералов, зольного калия, калия плазмы микроорганизмов и с поступающими минеральными и органическими удобрениями. Расходная часть слагается калием, отчуждаемым из агроценоза с растительной продукцией, потери с поверхностным стоком, за счет инфильтрации и в виде необменной фиксации калия минералами.

Приходные статьи баланса калия

Все калийсодержащие минералы могут служить непосредственными источниками калийного питания растений. Доступность калия слюд и гидрослюд значительно выше. Коэффициент использования калия из слюд (мусковит, биотит, флогопит) составляет 39%, причем они хорошо обеспечивали растения калием при размере фракций от илистой до песчаной (Важенин, Карасева,1959, Петербургский, Кузнецов, 1972). Глинистые минералы (иллит, глауконит) могут быть использованы в качестве калийных удобрений (Грим,1967). По доступности калия растениям из минералов имеется следующий убывающий ряд: биотит-нефелиновая порода > мусковит > полевые шпаты (ортоклаз, микроклин).

Количество высвобождаемого калия зависит не только от общего количества конкретного минерала, но и от содержания в нем калия, зависящего от степени выветренности.

Таким образом, определенные количества разных минералов могут обеспечить одинаковое общее количество калия в субстрате, но условия калийного питания растений при этом будут совершенно различными. Доступность растениям калия определяется, прежде всего, прочностью его связи с минеральной основой почвы. Позиции, занимаемые ионами калия в его почвенных носителях, по возрастанию степени энергии связи можно классифицировать следующим образом:

а) калий, адсорбированный на минеральных и органоминеральных коллоидных частицах ППК. Обменные катионы удерживаются вокруг внешних краев кремнезем-глиноземных элементов структурных слоев глинистых минералов с различной энергией, которая зависит от положения адсорбированного катиона на поверхности минерала, концентрации ионов.

б) калий, необменно-поглощенный межслоевым пространством почвенных минералов с расширяющимся типом решетки (монтмориллонитового типа). Поглощенные катионы, проникающие между силикатными слоями этих минералов, переходят в менее подвижную, по сравнению с обменной, форму при сжимании решетки (Горбунов,1965). Данная реакция, как правило, обратима – при гидратировании коллоидов катионы могут снова переходить в раствор;

в) калий, расположенный в межплоскостном пространстве глинистых минералов с ненабухающей решеткой (гидрослюды). Ионы калия уравновешивают дефицит заряда, вызванный изоморфными замещениями внутри кристаллической решетки, и, поэтому удерживаются электростатическими силами достаточно прочно (Грим,1967);

г) калий, входящий в кристаллическую решетку минералов с листовой решеткой (слюд);

д) калий минералов с каркасным типом кристаллической решетки (полевых шпатов).

Таким образом, максимальной подвижностью обладают ионы почвенного раствора, минимальной – калий, входящий в каркасную кристаллическую решетку полевых шпатов.

Калий, поглощенный органической частью почвы (микробами, органическими остатками и гумифицированным веществом) составляет весьма небольшое количество. В составе золы гуминовой кислоты калий составляет 1,22%. Калий, входящий в состав плазмы микроорганизмов, густо населяющих почву и ризосферу, становится доступным лишь после отмирания микробов.

Калий в почвах малоподвижен – перемещение ионов калия за вегетационный период не превышает 3-7мм. Это делает возможным обогащение почвы калием внесением удобрений в запас, т.е. раз в 3-5 лет.

Расходные статьи баланса калия.

Вынос урожаями представляется основной расходной статьей баланса этого элемента питания. Ежегодно с урожаями технических, пропашных культур выносится более 110 кг/га калия. Считается, что растения предпочтительнее поглощают калий почвы, чем из свежевнесенного удобрения.

По литературным данным, содержание калия в зерне пшеницы является стабильным показателем и составляет 0,5- 0,6% (на сухое вещество); в соломе его уровень колеблется в более широких пределах – 0,8 -1,3%, а при внесении удобрений содержание калия в соломе пшеницы достигало 1,-3,8%.

Значительно варьирует содержание калия в клубнях картофеля, оно составляет от 0,67 до 2,7%. Еще более заметно колеблется концентрация элемента в картофельной ботве – 0,7 -3,8%.

Сельскохозяйственные культуры предъявляют неодинаковые требования к уровню калийного питания. Уровень калийного питания определяется динамикой и интенсивностью потребления элемента в течение вегетации. По этим показателям сельскохозяйственные растения подразделяются на 2 группы:

а) высокотребовательные к уровню калийного питания и отзывчивые на высокие дозы калийных удобрений – картофель, сахарная свекла, ячмень, подсолнечник, гречиха, просо, капуста, морковь, огурец, баклажаны, петрушка, сельдерей.

б) культуры с нормальной потребностью в калии, положительно отзывающиеся на последействие калийных удобрений, внесенных в высоких дозах под предшественник.

Вынос этого элемента с урожаем в интенсивных агроценозах может составлять 110 – 120 кг/га за счет почвенных запасов и 300 кг/га – при внесении калийных удобрений. Вынос калия капустой достигает 500 кг/га, томатом -220, морковью и картофелем -300, ячменем -400, пшеницей -200 кг/га.

Удельный вынос калия в целом увеличивается с повышением уровня калийного питания, но в значительной степени зависит от биологических особенностей выращиваемых культур. У культур с высоким потреблением калия его вынос возрастает по мере повышения доз удобрений. Растения с относительно низкой потребностью в калии склонны накапливать этот элемент в биомассе без соответствующего повышения продуктивности. В общем выносе калия на долю основной продукции приходится (в %): капуста и томат -70, морковь -75, картофель -80, пшеница и ячмень – 15.

Д.Н.Прянишников считал, что выносимое с урожаем количество калия должно быть компенсировано удобрениями не менее чем на 70-80%.

Минералогический и органо-минеральный состав почвы определяет такое ее важное свойство как способность фиксировать, или поглощать калий. Фиксация калия возрастает при высушивании почвы. Иногда фиксированный калий удерживается так прочно, что становится недоступным для растений. По данным С.М.Горбачевой (1977), в Красноярском крае необменная фиксация калия приводит к потере на черноземных, лугово-черноземных и серых лесных почвах до 60%, на серых лесных почвах – 25% элемента. Причем, фиксация проявляется при пониженной влажности и в условиях переменного избыточного увлажнения и последующего высушивания почвы

При водной и ветровой эрозии из корнеобитаемого слоя почвы теряется до 10% калия (обменного и водорастворимого).

  1. Какие вы знаете статьи расхода и прихода азота в почве?
  2. Значение биологического азота в обеспечении потребности возделываемых культур.
  3. Перечислите условия для поглощения аммиачного азота.
  4. Сущность денитрификации соединений азота.
  5. Роль азота в земледелии в свете учения Д.Н.Прянишникова.
  6. В какие органические соединения входит азот в растениях, какова их роль?
  7. Какие вы знаете источники азотного питания и как они превращаются в растениях?
  8. В чем особенности азотного питания бобовых культур?
  9. Расскажите о схеме превращения органических азотсодержащих веществ в почве. Что такое аммонификация и нитрификация?
  10. Какова роль фосфора в жизни растительного организма?
  11. В виде каких соединений находится фосфор в почвах и какова их доступность для растений?
  12. Содержание и формы фосфора в почве.
  13. Методы определения подвижных фосфатов почвы.
  14. Факторы, определяющие доступность почвенных фосфатов.
  15. Перечислите статьи прихода и расходования фосфора
  16. Какова роль калия в растениях?
  17. Каково валовое содержание калия в разных почвах?
  18. На какие группы подразделяются соединения калия в почвах и какова их доступность?
  19. Потребность сельскохозяйственных культур в калии.
  20. Зависимость содержания калия в почве от гранулометрического состава.
  21. Различия сельскохозяйственных культур в способности усвоения калия.

Азотные удобрения - азотосодержащие вещества, которые используются для повышения содержания азота в почве. В зависимости от формы азотного соединения, однокомпонентные азотные удобрения подразделяются на шесть групп. Используются в основной прием как припосевные удобрения и в качестве . Производство основано на получении синтетического аммиака из молекулярного водорода и азота.

Показать все

Группы азотных удобрений

В зависимости от содержащегося азотного соединения, однокомпонентные азотные удобрения подразделяются на шесть групп:

  • ( , );
  • ( , хлористый аммоний);
  • Амидные ();
  • ( , (КАС);

Нитратные удобрения

Нитратные удобрения содержат в нитратной форме (NO 3 -). К этой группе относятся NaNO 3 и Ca(NO 3) 2 .

Нитратные удобрения являются физиологически щелочными и сдвигают реакцию почвы от кислой к нейтральной. В связи с этим свойством их использование очень эффективно на кислых дерново-подзолистых почвах. Не рекомендуется использование на засоленных почвах.

Азотные удобрения (по формам азота)

Аммонийные удобрения - вещества, содержащие в форме катиона аммония NH 4 + .

К ним относятся сульфат аммония (NH 4) 2 SO 4 , сульфат аммония-натрия (NH 4) 2 SO+Na 2 SO 4 или Na(NH4)SO4*2H2O), хлористый аммоний NН 4 Сl.

Производство аммонийных удобрений проще и дешевле, чем нитратных, поскольку окисление аммиака в азотную кислоту не требуется.

во всем мире используют в орошаемом земледелии под рис и хлопчатник, особенно в районах избыточного увлажнения, в частности, в тропиках.В России сульфат аммония производят с 1899 года. Впервые его получили в Донбассе, на Щербинском руднике путем улавливания и нейтрализации серной кислотой аммиака, который образуется при коксовании каменного угля. Принципиальную схему этого способа используют и сейчас.

получают как отход производства капролака. Эффективно при внесении под свеклу и другие корнеплоды из-за присутствия натрия. Рекомендуется для сенокосов и пастбищ.

Хлористый аммоний (хлорид аммония)

содержит значительное количество хлора - 67 %, 24-26 %. Применять под чувствительные к хлору культуры (картофель, табак, виноград, лук, капусту, лен, коноплю) в качестве удобрения или не рекомендуется. Вносить хлорид аммония под хлорофобные культуры можно только осенью и в зонах достаточного увлажнения. В таком случае ионы хлора будут вымыты из корнеобитаемого слоя атмосферными осадками.

Хлорид аммония - мелкокристаллический порошок желтоватого или белого цвета. При 20°C в 100 м 3 воды растворяется 37,2 г вещества. Обладает хорошими физическими свойствами, при хранении не слеживается, малогигроскопичен.

Хлорид аммония получают как побочный продукт при производстве соды.

Аммонийно-нитратные удобрения содержат азот в аммонийной (NH 4 +) и нитратной форме (NO 3 -). К этой группе причисляют аммиачную селитру (NH 4 NO 3), сульфо-нитрат аммония ((NH 4) 2 SO 4 *2NH 4 NO 3 +(NH 4)SO 4), известково-аммонийную селитру (NH 4 NO 3 *CaCO 3).

содержит нитратный и аммонийный азот в соотношении 1: 1. Правильнее называть это удобрение аммонийной селитрой, но аммиачная селитра - название более распространенное. Это наиболее эффективное из однокомпонентных азотных удобрений. Аммиачная селитра - безбалластное удобрение. Стоимость его перевозки и внесения в почву значительно ниже, чем у других азотных удобрений (исключение - мочевина и жидкий аммиак). Сочетание подвижного нитратного азота с менее подвижным аммонийным азотом дает возможность широкого варьирования способов, доз и сроков внесения аммиачной селитры в зависимости от региональных почвенно-климатических условий и особенностей агротехники выращивания культур.

(сульфат-нитрат аммония, монтан-селитра, лейна-селитра) - сероватое мелкокристаллическое или гранулированное вещество сероватого цвета.

Физико-химические свойства удобрения позволяют успешно использовать его в различных почвенно-климатических условиях. Обладает потенциальной кислотностью.

Известково-аммонийная селитра

- гранулированное удобрение. Соотношение селитры и извести варьирует в зависимости от марки удобрения. Широко используется в странах Западной Европы.

Амидные удобрения

Амидные удобрения содержат в амидной форме (NH 2 -). К этой группе относится мочевина CO(NH 2) 2 . Азот в мочевине присутствует в органической форме в виде амида карбаминовой кислоты. Это наиболее распространенное твердое азотное удобрение. Применяется во все приемы внесения, но наиболее эффективно для .

Жидкие аммиачные удобрения - жидкие формы азотных удобрений. К этой группе относятся жидкий (безводный аммиак) NH 3 , аммиачная вода (водный аммиак), аммиакаты. Производство жидких аммиачных удобрений значительно дешевле, чем твердых солей.

содержит 82,3 % . Это самое концентрированное безбалластное удобрение. Внешне - бесцветная жидкость. Физико-химические свойства удобрения изменяются в зависимости от температуры окружающей среды. Хранится только в герметических сосудах, где под давлением разделяется на жидкую и газообразную фазы.

При транспортировке емкости заполняют не полностью. Вещество нейтрально к чугуну, железу и стали, но сильно коррозирует цинк, медь и их сплавы.

- раствор аммиака в воде, давление паров невысокое, черные металлы не разрушает. Азот содержится в форме аммиака NH 3 и аммония NH 4 OH. Свободного аммиака содержится гораздо больше, чем аммония. Это способствует потерям азота за счет улетучивания. Работать с аммиачной водой проще и безопаснее, чем с безводным аммиаком, но в связи с низким содержанием азота ее применение рентабельно только в хозяйствах, расположенных недалеко от предприятий, ее производящих.

Аммиакаты

содержат от 30 до 50 % азота. Внешне это жидкость светло-желтого или желтого цвета. Получают аммиакаты при растворении в водном аммиаке аммиачной селитры, аммиачной и кальциевой селитры, мочевины или аммиачной селитры и мочевины.

Аммиакаты отличаются по концентрации общего азота, по соотношению его форм и разнообразны по физико-химическим свойствам.

Аммиакаты вызывают коррозию медных сплавов. Аммиакаты с аммиачной селитрой окисляют, кроме того, и черные металлы. Хранение и транспортировка аммиакатов возможны в емкостях из алюминия, его сплавов, нержавеющей стали или в обычных стальных цистернах с антикоррозийным покрытием эпоксидными смолами. Возможно применение емкостей из полимерных материалов.

(КАС)

- смесь водных растворов мочевины и аммиачной селитры. КАС обладают нейтральной или слабощелочной реакцией. Внешне - прозрачные либо желтоватые жидкости. Путем изменения соотношения исходных компонентов получают различные марки КАС.

Поведение в почве

Все однокомпонентные азотные удобрения хорошо растворимы в воде.

Нитратные формы

передвигаются вместе с почвенным раствором и связываются в почве только биологическим типом поглощения. Биологическое поглощение активно только в теплое время года. С поздней осени до ранней весны нитраты легко передвигаются в почве и в условиях промывного водного режима могут вымываться, что особенно характерно для легких почв.

В теплое время года в почвах преобладают восходящие потоки влаги. А растения и микроорганизмы активно поглощают нитратный азот.

Аммиачные и аммонийные

формы в почве поглощаются почвенным комплексом (ППК) и переходят в обменно-поглощенное состояние. В таком виде подвижность азота теряется, и он не вымывается. Исключение - легкие почвы с низкой емкостью поглощения.

Дальнейшие процессы нитрификации способствуют трансформации азота в нитратные формы и биологическому поглощению его растениями и микроорганизмами почвы.

С мочевиной

после ее превращения под влиянием уробактерий в аммонийные формы азота происходит то же самое.

Таким образом, азотные удобрения изначально или в процессе нитрификации скапливаются в почве в нитратной форме, которая впоследствии подвергается денитрификации. Эти процессы протекают практически во всех типах почв, и именно с ними связаны основные потери азота.

С агрономической точки зрения, денитрификация является негативным процессом. Но с экологической стороны она играет позитивную роль, поскольку освобождает почву от не использованных растениями нитратов и уменьшает их поступление в сточные воды и водоемы.

Применение на различных типах почв

Эффективность внесения азотных удобрений зависит от почвенно-климатических условий региона. Наибольшая эффективность азотных удобрений наблюдается в районах достаточного увлажнения.

Бедные гумусом дерново-подзолистые почвы, серые лесные почвы, оподзоленные, выщелоченные черноземы

. Действие азотных удобрений устойчиво положительно. Причем, с повышением степени выщелоченности черноземов возрастает и эффективность азотных удобрений.

Супесчаные, песчаные почвы

нечерноземной зоны испытывают острую нехватку азота, поэтому здесь наблюдается высокая эффективность действия азотных удобрений. Однако в условиях промывного режима почвы отмечаются значительные потери азота, и его внесение производят преимущественно в весенний период.

Осушенные торфяно-болотные почвы

. Действие азотных удобрений снижается, поскольку в минимуме оказываются фосфорные и калийные удобрения. Однако в первые годы освоения торфяников в центральных и северо-западных районах нечерноземной зоны возрастает и эффективность азотных удобрений.

Оподзоленные и выщелоченные черноземы

правобережной лесостепи Украины показывают большую эффективность по применению азотных удобрений, чемлевобережной.

Выщелоченные черноземы европейской части России

. Наблюдается меньшая эффективность азотных удобрений в Поволжье. В Центрально-Черноземной зоне и на Северном Кавказе она несколько выше.

В степной зоне

при повышении засушливости климата действие азотных удобрений уменьшается либо становится очень неустойчивым. Но в условиях орошения эффективность действия азотных удобрений возрастает и бывает даже более высокой, чем фосфорных и калийных удобрений.

Типичные черноземы

Молдавии отличаются большими прибавками урожая.

Обыкновенные и карбонатные черноземы

Молдавии характеризуются меньшей эффективностью однокомпонентных азотных удобрений.

Обыкновенные черноземы

степных районов Украины . Азотные удобрения показывают значительную эффективность, но и действие значительно ослабляется с запада на восток.

Обыкновенные и карбонатные черноземы Кубани, предгорий Северного Кавказа, североприазовские черноземы

отличаются значительным положительным действием азотных удобрений.

Карбонатные черноземы Ростовской области, обыкновенные черноземы Поволжья

. Эффективность удобрений снижается.

Каштановые почвы

. При лучших условиях увлажнения отмечается хорошее действие удобрений. В засушливых условиях действие азотных удобрений бывает слабым.

Влияние на сельскохозяйственные культуры

Азотным удобрениям принадлежит ведущая роль в повышении урожайности различных сельскохозяйственных культур. Это связано с ролью азота как важного биологического элемента, играющего исключительную роль в жизни растений.

Достаточное снабжение азотом усиливает синтез органических азотистых веществ. У растений образуются мощные листья и стебли, интенсивность зеленой окраски усиливается. Растения хорошо растут и кустятся, улучшается формирование и развитие органов плодоношения. Эти процессы способствуют повышению урожайности и содержанию белка.

Однако необходимо учитывать, что односторонний избыток азота может задерживать созревание растений, способствуя развитию вегетативной массы при уменьшении развития зерна, корнеплодов или клубней. У льна, зерновых и некоторых других культур избыток азота вызывает полегание (фото) и ухудшение качества растениеводческой продукции.

Так, в клубнях картофеля может снизиться содержание крахмала. В корнеплодах сахарной свеклы снижается сахаристость и возрастает содержание небелкового азота.

При избытке азотных удобрений в кормах и овощах накапливаются потенциально опасные для здоровья человека и животных нитраты.

Получение азотных удобрений

Производство азотных удобрений основывается на получении синтетического аммиака из молекулярного азота и водорода.

Азот образуется при прохождении воздуха через генератор с горящим коксом.

Источники водорода - природный газ, нефтяные или коксовые газы.

Из смеси азота и водорода (соотношение 1: 3) при высокой температуре и давлении и в присутствии катализатора образуется аммиак:

N 2 + 3H 2 → 2NH 2

Синтетический аммиак идет на производство аммонийных азотных удобрений и азотной кислоты, которая используется для получения аммонийно-нитратных и нитратных удобрений.

4.

Ягодин Б.А., Жуков Ю.П., Кобзаренко В.И. Агрохимия / Под редакцией Б.А. Ягодина.- М.: Колос, 2002.- 584 с.: ил (Учебники и учебные пособия для студентов высших учебных заведений).

Изображения (переработаны):

5. 6. Свернуть

Круговорот азота является одним из самых сложных круговоротов в природе. Охватывает всю биосферу, а также атмосферу, литосферу, гидросферу. Очень важную роль в круговороте азота играют микроорганизмы. В круговороте азота выделяют следующие этапы:

1-й этап (фиксация азота): а) азотфиксирующие бактерии связывают (фиксируют) газообразный азот с образованием аммонийной формы (NH и солей аммония) – это биологическая фиксация; б) вследствие грозовых разрядов и фотохимического окисления образуются оксиды азота, при взаимодействии с водой они образуют азотную кислоту, в почве она превращается в нитратный азот.

2-й этап – превращение в растительный белок. Обе формы (аммонийная и нитратная) фиксированного азота усваиваются растениями и превращаются в сложные белковые соединения.

3-й этап – превращение в животный белок. Животные поедают растения, в их организме растительные белки превращаются в животные.

4-й этап – разложение белка, гниение. Продукты метаболизма растений и животных, а также ткани отмерших организмов под воздействием микроорганизмов разлагаются с образованием аммония (процесс аммонификации).

5-й этап – процесс нитрификации. Аммонийный азот окисляется до нитритного и нитратного азота.

6-й этап – процесс денитрификации. Нитратный азот под воздействием денитрифицирующих бактерий восстанавливается до молекулярного азота, который поступает в атмосферу. Круг замыкается.

Трансформация форм азота в почве: в почвенном блоке содержаться NH4, NО3 и органические формы азота. Органические соединения амонифицируются с восстановлением аммиака(при участии почвенных микроорганизмов). Часть аммиака связанный почвенными часточками потребляется растениями,а часть подвергается следующим процессам нитрификации(окисления).

Образуется NО2 и О2, нитраты: 1) NH3 + О2=2НNО2 + 2Н2О(этот процесс происходит с помощью микроорганизмов)

2) 2НNО2+О2=2 HNО3

Часть вымывается из почвы, часть потребляется растениями, часть подвергается денитрификации – восстановлению NО3 до молекулы азота при помощи бактерий нитрификаторов. Происходит потеря азота из почвы. Потеряный азот возвращается в круговорот при помощи процессов азотфиксации(переход азота в аммиачную форму).

36. Азотфиксация

Азотфиксация - процесс химического превращения атмосферного газообразного азота в нитраты или аммиак, которые могут использоваться растениями для синтеза аминокислот и других азотсодержащих органических молекул. Это энергозатратный процесс, энергия берется из электрических зарядов и на свету.

Азотфиксация бывает:

Химической(при высоком давлении и температуре)

N≡N →NН≡NН→NН2≡NН2→NН3≡NН3

(диамид) (гидразин)

Промышленная

Биологической: а)симбиотическая(бактерии проникают внутрь клетки вследствии чего происходит симбиоз). Осуществляется клубеньковыми бактреиями, азотфиксаторы бобовых.

Корневые системы бобовых растений обладают специфическими корневыми выделениями. Благодаря этому клубеньковые бактерии скапливаются вокруг корневых волосков, которые при этом скручиваются. Бактерии проникают в корневой волосок в виде сплошного тяжа, состоящего из соединенных слизью бесчисленных бактерий, проникают в паренхиму корня. Клетки перицикла начинают усиленно делиться, образуются вздутия - клубеньки. Клетки клубеньков заполняются быстро размножающимися бактериями, но остаются живыми и сохраняют крупные ядра. Бактерии при этом трансформируются сами, увеличиваются в размерах, поэтому их называют бактероиды. Благодаря деятельности клубеньковых бактерий часть азотистых соединений из корней бобовых растений диффундирует в почву, обогащая ее азотом.

б)не симбиотическая,осуществляется свободноживущими бактреиями(Clostridium, Azotobacter, цианобактреии).Они автотрофы.

в)ассоциативная: характерна для ризосферных микроорганизмов, то есть живущих на поверхности корневой системы растений. ассоциативные азотфиксаторы продуцируют гормоны роста растений, положительно влияют на рост и развитие растений (защита от фитопатогенов, разрушение токсических веществ)

Конечным продуктом фиксации азота является аммиак. В процессе восстановления азота до аммиака участвует мультиферментный комплекс - нитрогеназа. Нитрогеназа состоит из двух компонентов: MoFe-белок и Fe-белок.

Источником протонов и электронов для восстановления азота служит дыхательная электрон-транспортная цепь. Для восстановления N 2 до NH 3 требуется шесть электронов, согласно уравнению: N 2 + 6е + 2Н + -> 2NH 3

Процесс требует АТФ как источника энергии: по расчетам для восстановления одной молекулы N 2 требуется не менее 12 молекул АТФ. Особенность нитрогеназы заключается и в том, что для работы фермента требуются анаэробные условия. Вместе с тем в клетках высшего растения кислород необходим для поддержания дыхания. У многих азотфиксаторов имеются специальные механизмы защиты нитрогеназы – белок леггебоглобин. Роль леггемоглобина заключается в связывании 0 2 в организме бактерий, таким образом, что остается доступным для аеробного дыхания и не может воздействовать на фермент. Для образования леггемоглобина необходимы Fe, Сu и Со. Для нормального протекания процесса азотофиксации необходимы Мо и Fe, поскольку они входят в состав фермента нитрогеназы. Молибден выполняет структурную функцию, поддерживая конформацию нитрогеназы, каталитическую, участвуя в связывании азота и переносе электронов, а также индуцирует синтез нитрогеназы. Кобальт необходим в связи с тем, что он входит в состав витамина В 12 , который вовлекается в процесс биосинтеза леггемоглобина. Образовавшийся аммиак здесь же в клетках корня реагирует с а-кетоглутаровой кислотой с образованием глутаминовой кислоты, которая и вовлекается в дальнейший обмен. В надземные органы растения-хозяина азотистые вещества передвигаются главным образом в виде амидов.

37. Редукция нитратов в растениях Аммонийный азот после его поступления в растение может непосредственно участвовать в биосинтезе аминокислот. Нитратный должен восстановиться до NH4.Восстановление (редукция) нитратов идет в 2 этапа: начинается в корнях и заканчивается в надземной части. Начало идет под действием фермента нитратредуктаза происходит превращение нитратов в нитриты. Затем нитриты превращаются в аммиак с помощью фермента нитритредуктаза. В состав обоих ферментов входит Fe, а нитратредуктазы еще и Мо. Для нормального протекания данного процесса растение должно быть обеспечено Cu, Mg, Mn. Следует отметить что нитраты в растениях могут накапливаться в значительных количествах и подвергаться редукции по мере необходимости. Повышенная же концентрация аммиака приводит к отравлению растения.Процессы прямого аминирования и образования амидов.Биосинтез аминокислот из NH3 поступившего в растение из почвы или образовавшегося в результате восстановления нитратов и атмосферного азота, происходит в результате восстановительного (прямого) аминирования, с помощью ферментов NH3 взаимодействует с тремя кетокислотами ЩУК, ПВК, α-кетоглутаровая с образованием соответствующих аминокислот.При аминировании ЩУК образуется аспарагиновая кислота:COOH COOHCH2 CH2 C=O + NH3 + 2НАДФ∙Н →CH-NH2 +H2O + 2НАДФCOOH СООНПодобным образом α-кетоглутаровая превращается в глутаминовую:COOH COOHCH2 CH2CH2 CH2C=O + NH3 + 2НАДФ∙Н →CH-NH2 +H2O + 2НАДФCOOH СООНПВК в аланин:CH3 CH3 C=O + NH3 + 2НАДФ∙H →CH-NH2 + H2O + 2НАДФCH3 COOH 38. Ассимиляция азота в растениях Азот - один из 4-х незольных органогенных элементов, кроме того еще и минеральный элемент, т.к. поступает из почвычерез корневую систему (1,5%), обладает высокой биофильностью – изберательностью концентрирования в клетках по отношению к окружающей среде.Основные запасы минерального азота находятся в атмосфере, в пахотном слое (20 – 30 см.). На 1 га приходится приблезительно 18 т общего азота. Если вес пахотного слоя составляет 35 тыс. т., то 18 т – общего азота.0,5 - 2% из 18 т доступные для растения минеральные формы (NH4+ ; NO3-) При выращивании растений происходит вынос с урожаем 100 млн. т в год.Необходимо пополнение запасов азота: 1. Естественным путем - распад и минерализация органических остатков, а также фиксация молекул азота из воздуха. При интенсивных технологиях натуральные процессы поглощения нарушены. 2.Внесение минеральных удобрений. Производство минеральных удобрений очень энергозатратно, на 1 т удобрений используют 4 т нефти. На все сельское хозяйство приходится до 40 %. Избытки вносимых удобрений вымываются, загрязняя окружающую среду нитратами, что я вляются канцерогенами для организма человека.Ионы NO3- очень подвижны, плохо фиксируются в почве, легко вымываются.Ионы NH4+ менее подвижны, хорошо адсорбируются на почве, меньше вымываются осадками, его особенно удерживают гнилистые почвы и с высоким содержанием гумуса.Органические соединения в почве (фольвокислоты, белки, амиды, аминосахара и нуклеиновые кислоты) – в недоступной для растений форме. Только единичные органические соединения могут усваиваться растениями: мочевина, аспаргиновая кислота, глутаминовая кислота.1. NH2 – CO – NH2 2. C00H – CH – CH2 – COOH 3. COOH – CH – NH2 – CH2 – COOH 4. NH2 Внесение азота провоцирует надземную вегетацию и если перекормить растение – преобладает вегетативный этап и растение может задержать цветение или вообще не зацвести. В технологии урожайных культур азот нужно вносить исключительно на начальных этапах онтогенеза. При переходе к цветению вносят фосфор, калий, бор.

39. Поглощение и ассимиляция серы растениями. Физиологическая роль серы Сера поглощается в виде аниона серной кислоты, который в растении восстанавливается до сульфгидрильной группы SH, включающейся в цистеин. Восстановление идет в листьях, хлоропластах, частично в корнях, так как для него нужны углеводы. Первый этап превращения серы – активирование сульфата с помощью АТФ в присутствии ионов магния. Взаимодействуя с АТФ, сульфат под действием фермента АТФ-сульфурилазы образует аденозин-5-фосфосульфат (АФС): SO 4 -2 +AТФ→АФС+ФФ(пирофосфат). Такой активированный сульфат (АФС) является короткоживущим соединением. Он может реагировать с АТФ, образуя 3-фосфоаденозин-5фосфосульфат (ФАФС). ФАФС восстанавливается до сульфита (SO 4 -2) и за тем до сульфида (S -2), это главный путь ассимиляции сульфата у грибов. Другой путь заключается в том, что сера в АФС может превращаться в связанный с ферментом тиосульфид. Существует и третий путь, по которому АФС прямо восстанавливается до сульфита и за тем до сульфида. Образовавшийся тиосульфид или сульфид реагирует с О-ацетилсерином, и образуется цистеин или ацетат. Ферменты синтеза цистеина локализованы в цитозоле, пластидах и митохондриях. Восстановление сульфата до цистеина изменяет заряд серы от +6 до -4, тоесть для этого процесса нужны 10е. Донорами электроном могут быть восстановленный ферредоксин, НАД(Ф)Н и др.Цистеин необходим для синтеза метионина. После синтеза цистеина и метионина сера может включаться в белки и целый ряд других важных соединений (ацетил-КоА или S-аденозилметионин). Наиболее активно восстановление сульфата протекает в листьях, поскольку фотосинтез продуцирует восстановленный тиоредоксин и ферредоксин, а в гликолатном цикле образуется серин, стимулирующий образование О-ацетилсерина. Ассимилированная сера транспортируется по флоэме к месту синтеза белка, главным образом в виде глутамата. Восстановленная сера в растениях снова может подвергаться окислению. Окисленная форма не активна. В молодых органах сера находится главным образом в восстановленной форме (в органических веществах), а в старых – в оскисленной (виде сульфата). Потребность в сере сильно различается у разных сельскохозяйственных культур. Содержание серы в абсолютно сухом веществе растений обычно составляет от 0.1 до 1.0% (в расчете на элемент). Самая высокая потребность в сере характерна, как правило, для растений из рода Brassica (таких, как кочанная капуста, брокколи и рапс), затем следуют бобовые культуры и злаки.

40. Фосфор как элемент минерального питания растений. Физиологическая роль фосфора. МИНЕРАЛЬНОЕ ПИТАНИЕ РАСТЕНИЙ - это совокупность процессов поглощения, передвижения и усвоения растениями химических элементов, получаемых из почвы в форме ионов минеральных солей.Элементы, присутствующие во всех растениях, были отнесены к жизненно важным – это калий, кальций, магний, железо, сера и фосфор.2/3- минеральный фосфор; 1/3- в составе органических соединений. 2/3- нерастворимые в воде, недоступные для корней (AlPO 4 , FePO 4). Двузамещенные соли слаборастворимые; однозамещенные соли Са и Мg поглощаемые корнями.Источники Р- выветривание почвообразующей породы- аппатитыСа(РО 4) 2 *СаI 2 ; органика→ гумус→ минерализация→ нерастворимые соли.В кислой среде нерастворимые соли Р переходят в растворимые; НРО 4 3- →НРО 4 2- →НРО 4 - .Фосфор в ризосфере корней эксудаты подкисляют прилегающий слой почвы. Концентрация фосфора в растениях в 100 раз выше, чем в почве. Н 2 РО - , НРО 4 2- , РО 4 3- - анионы ортофосфорной кислоты. От корневого волоска до ксилемы- по симпласту. Неорганический фосфор по ксилеме транспортируется в виде Р н. В растениях не происходит редукция (восстановление) фосфора. Во всех органических соединениях фосфор находится в окисленной форме. Фосфор не меняет степени окисления в ходе превращения.Фосфор входит в состав НК, РНК, ДНК; фосфолипиды- основа клеточной мембраны. РО 4 обеспечивает гидрофильность фосфолипидов (биполярная часть молекулы) ; все фосфосодержащие продукты акцпторы СО 2 в темновых реакциях фотосинтеза; АТФ, ГДФ- роль энергетического обмена клетки- образующиеся эфирные пирофосфатные связи, которые обладают высокой свободной энергией гидролиза: глю-6-Р и АМФ- 14 кДж/моль; АДФ, АТФ- 30,5 кДж/моль; ФЕП- 62 кДж/моль; участие в регуляции различных реакций.При присоединению фосфата к белку меняется конфигураци белка и его свойства; ферменты-протеинкиназа, протеинфосфаза. Попеременное активирование светособирающих комплексов ФС1 и ФС2. Запасная форма фосфора- фитин- фосфорный эфир шестиатомного спирта инозита. Он запасается в семенах, как основной источник неорнанического фосфора.В семенах присутствует фитин в виде кальцево-магниевой соли инозитфосфатной кислоты- во время засухи фосфат высвобождается из инозита. При недостатке фосфора: синевато-пурпурная окраска листьев; мелкие узкие листья; торможение фотосинтеза, т. к. это проявляется в виде аномального круговорота кислорода, происходит обратный отток сахаров по ксилеме (сладкий сок); распадаются фосфорорганические соединения, торможение гликолиза и ЦТК→мало кетокислот (акцепторы амиака)→ тормозится редукция нитратов→ отравление растения нитратами, торможение синтеза АК и белков→ торможение роста.В целом, дефицит азота в большей мере тормозит рост растения, но дефицит фосфора в большей мере ослабляет процесс фотосинтеза 41. Физиологическая роль калия и кальция в растениях. Калий необходимый для жизни растений элемент. Его содержание составляет десятые доли процента, хотя в некоторых растениях (свекла, картофель табак, подсолнечник) - целые проценты. В растениях калий находится в основном в клеточном соке в виде минеральных солей (KCl, KHCO3, K2HPO4), a также в виде солей органических кислот.В золе находится максимальное количество калия. Концентрация в растении может в 1000 раз превышает концентрацию в почвах. В молодых тканях меристемы, камбии, побегах, почках. В клетке основная часть в вакуоли- основной катион клеточного сока; в цитоплазме адсорбируется на колоиды цитоплазмы. На свету связь калия с колоидами цитоплазмы прочная, в темноте- калий освобождается. Калий способствует гидратации колоида в цитоплазме- высокая водоудерживающая способность→ повышенная устойчивость к засухе и морозам. Калий регулирует устьичное движение; является активатором ферментативных систем; способствует включению фосфата в органические соединения; роль в сахаронакоплении; связь с азотным пианием (способ усвоения амония). Калий нужен на разных этапах в первые дни проростания, в формировании плодов, клбней.При недостатке калия на нижних листьях появляется краевой запал - края листовой пластинки отмирают, листья приобретают характерную куполообразную форму, на листьях появляются коричневые пятна. Образование коричневых пятен (некрозов) связано с нарушением азотного обмена и образованием в тканях трупного яда - путресцина.Кальций – один из биогенных элементов, необходимых для нормального протекания жизненных процессов. Он присутствует во всех тканях и жидкостях животных и растений. Лишь редкие организмы могут развиваться в среде, лишённой Са.Кальций поступает в растение в течение всей его жизни. Часть кальция находится в клеточном соке. Этот кальций не принимает активного участия в процессах обмена веществ, он главным образом обеспечивает нейтрализацию избыточно образующихся органических кислот. Часть кальция сосредоточена в плазме-кальций играет роль антагониста калия, он оказывает на коллоиды действие, противоположное калию, а именно - понижает гидрофильность плазменных коллоидов, повышает их вязкость. Для нормального хода жизненных процессов очень важно оптимальное соотношение калия и кальция в плазме, так как именно это соотношение обусловливает определенные коллоидные свойства плазмы. Кальций входит в состав ядерного вещества, а потому играет большую роль в процессах деления клетки. Велика роль кальция и в образовании клеточных оболочек, особенной формировании стенок корневых волосков, куда он входит в виде пектата. При отсутствии кальция в питательном растворе очень быстро поражаются точки роста надземные частей и корня, так как кальций не передвигается из старых частей растения к молодым. Корни ослизняются, рост их почти прекращается или идет ненормально. В искусственной культуре на водопроводной воде обычно симптомы недостатка кальция не проявляются.42. Физиологическая роль магния и железа в растениях. Магний (0,2%) Поглощается растениями в виде катиона Mg2+; магния много в молодых растущих частях растения, в генеративных органах и запасающих тканях растения. Магний входит в состав хлорофилла и непосредственно участвует в фотосинтезе. В хлорофилле содержится магния около 10 % от общего количества его в зеленых частях растений. С магнием также связано образование в листьях таких пигментов, как ксантофилл и каротин. Магний также входит в состав запасного вещества фитина, содержащегося в семенах растений и пектиновых веществ. Около 70 - 75 % магния в растениях находится в минеральной форме, в основном в виде ионов.Ионы магния, адсорбционно связаны с коллоидами клеток и наряду с другими катионами поддерживают ионное равновесие в плазме; подобно ионам калия, они способствуют уплотнению плазмы, уменьшению ее набухаемости, а также участвуют как катализаторы в ряде биохимических реакций, происходящих в растении. Магний активизирует деятельность многих ферментов, участвующих в образовании и превращении углеводов, белков, органических кислот, жиров; влияет на передвижение и превращение фосфорных соединений, плодообразование и качество семян; ускоряет созревание семян зерновых культур; способствует повышению качества урожая, содержания в растениях жира и углеводов, морозоустойчивости цитрусовых, плодовых и озимых культур.Наибольшее содержание магния в вегетативных органах растений отмечается в период цветения. После цветения в растении резко снижается количество хлорофилла, и происходит отток магния из листьев и стеблей в семена, где образуются фитин и фосфат магния. Следовательно, магний, подобно калию, может перемещаться в растении из одних органе в другие.Наибольшее количество его поглощают картофель, кормовая и сахарная свекла, табак, бобовые травы.Самой важной формой для питания растений является обменный магний, составляющий в зависимости от вида почвы 5 - 10 % общего содержания этого элемента в почве.Железо поглощается из раствора как в виде растворенных солей, так и в виде комплексных и органических соединений. Содержание его в растениях невелико, обычно оно составляет сотые доли процента.Железо играет ведущую роль среди всех содержащихся в растениях тяжелых металлов.Об этом свидетельствует уже тот факт, что оно содержится в тканях растений в количествах более значительных, чем другие металлы. Оно входит в состав ферментов, участвующих в создании хлорофилла, хотя в него этот элемент не входит. Железо участвует в окислительно - восстановительных процессах, протекающих в растениях, так как оно способноменять степень окисления. Атом железа окисляется и восстанавливается сравнительно легко, поэтомусоединения железа являются переносчиками электронов в биохимических процессах. Воснове реакций, происходящих при дыхании растений лежит процесс переноса электронов. Процесс этот осуществляется ферментами - дегидрогенезами и цитохромами, содержащимижелезо.Недостаток железа ведет к распаду ростовых веществ (ауксинов), синтезируемых растениями. Листья становятся светло - желтыми. Железо не может, как калий и магний, передвигаться из старых тканей в молодые (т. е. повторно использоваться растением).Железное голодание чаще всего проявляется на карбонатных и сильноизвесткованных почвах. Особенно чувствительны к недостатку железа плодовые культуры и виноград. При нарушении и ослаблении фотосинтеза и дыхания вследствие недостаточного образования органических веществ, из которых строится организм растения, и дефицита органических резервов, происходит общее расстройство обмена веществ. Поэтому при остром недостатке железа неизбежно наступает гибель растений. У деревьев и кустарников зеленая окраска верхушечных листьев исчезает полностью, они становятся почти белыми, постепенно усыхают.

43. Физиологическая роль основных микроэлементов в растениях Микроэлементы, те питательные елементы содержание которых – менее 0,01 % .Основные микроэлементами растений являються: 1) Железо. Среднее содержание железа в растениях составляет 20–80 мг на 1 кг сухой массы. Ионы Fe3+ почвенного раствора восстанавливаются редокс-системами плазмалеммы клеток ризодермы до Fe2+ и в такой форме поступают в корень. Железо необходимо для функционирования основных редокс-систем фотосинтеза и дыхания, синтеза хлорофилла, восстановления нитратов и фиксации молекулярного азота клубеньковыми бактериями. При этом оно входит в состав нитратредуктазы и нитрогеназы. 2) Медь поступает в клетки в форме иона Сu2+. Среднее содержание меди в растениях 0,2 мг на кг сухой массы. Около 70 % всей меди, находящейся в листьях, сосредоточено в хлоропластах, и почти половина ее – в составе пластоцианина (переносчика электронов между фотосистемами II и I). Она входит в состав ферментов, катализирующих окисление аскорбиновой кислоты, дифенолов и гидроксилирование монофенолов (аскорбатоксидазы, полифенолоксидазы, ортодифенолоксидазы и тирозиназы). Два атома меди функционируют в цитохромоксидазном комплексе дыхательной цепи митохондрий. Медь входит в состав нитратредуктазного комплекса и влияет на синтез легоглобина. Влияя на содержание в растениях ингибиторов роста фенольной природы, медь повышает устойчивость растений к полеганию, повышает засухо-, морозо- и жароустойчивость. 3) Марганец поступает в клетки в форме ионов Mn2+. Среднее его содержание составляет 1 мг на 1 кг сухой массы. Марганец накапливается в листьях. Он необходим для фоторазложения воды с выделением кислорода и восстановления углекислого газа при фотосинтезе. Марганец способствует увеличению содержания сахаров и их оттоку из листьев. Два фермента цикла Кребса (малатдегидрогеназа и изоцитратдегидрогеназа) активируются ионами марганца. Он также необходим для функционирования нитратредуктазы при восстановлении нитратов. Марганец является кофактором РНКполимеразы и ауксиноксидазы, разрушающей фитогормон 3индолилуксусную кислоту 4) Молибден. Наибольшее содержание молибдена характерно для бобовых (0,5–20 мг на 1 кг сухой массы), злаки содержат от 0,2 до 2 мг на 1 кг сухой массы. Он поступает в растения в форме аниона МоО2-4, концентрируется в молодых, растущих органах. Его больше в листьях, чем в корнях и стеблях, а в листе он сосредоточен в основном в хлоропластах. Молибден входит в состав нитратредуктазы и нитрогеназы. Молибден необходим для биосинтеза легоглобина. Как металл-активатор молибден участвует в реакциях аминирования и переаминирования, для включения аминокислот в пептидную цепь, работы таких ферментов, как ксантиноксидаза и различные фосфатазы. 5)Цинк. Содержание цинка в надземных частях бобовых и злаковых растений составляет 15–60 мг на 1 кг сухой массы. Повышенная концентрация отмечается в листьях, репродуктивных органах и конусах нарастания, наибольшая – в семенах. В растение цинк поступает в форме катиона Zn2+. Он необходим для функционирования ферментов гликолиза (гексокиназы, енолазы, триозофосфатдегидрогеназы, альдолазы), а также входит в состав алкогольдегидрогеназы. Цинк активирует карбоангидразу, катализирующую реакцию дегидратации гидрата оксида углерода: Н2СО3 → СО2 + Н2О-помогает использованию углекислого газа в процессе фотосинтеза. Цинк участвует в образовании триптофана. Подкормка цинком способствует увеличению содержания ауксинов в тканях и активирует их рост. 6) Бор. Его среднее содержание составляет 0,1 мг на кг сухой массы. В боре наиболее нуждаются двудольные растения. Много бора в цветках. В клетках большая часть бора сосредоточена в клеточных стенках. Бор усиливает рост пыльцевых трубок, прорастание пыльцы, увеличивает количество цветков и плодов. Без него нарушается созревание семян. Бор снижает активность некоторых дыхательных ферментов, оказывает влияние на углеводный, белковый и нуклеиновый обмен. 44. Эмбриональный этап онтогенеза растений. Роль фитогормонов Эмбриональный этап онтогенеза семенных растений – развитие зародыша от зиготы до созревания семени включительно. Все процессы эмбриогенеза у высших растений осуществляется в семяпочке (семязачатке), которая(ый) формируется на плодолистике. Из зиготы образуется зародыш, из семяпочки – семя, из завязи – плод. Формирующийся зародыш питается гетеротрофно. Существенную роль в развитии зародыша играет формирующийся эндосперм. Из него в зародыш поступает специфический набор питательных веществ: аминокислоты и другие азотистые вещества, углеводы, инозит, витамины и др. Приток питательных веществ в развивающиеся семязачатки (семяпочки), а затем в созревающие семена и формирующиеся плоды определяется тем, что эти участки становятся доминирующими центрами. В них вырабатывается большое количество фитогормонов, прежде всего – ауксина, в результате чего аттрагирующее действие этих тканей возрастает. Накопление питательных веществ происходит в семенах. Запасные вещества могут откладываться и в семядолях, в этом случае эндосперм в зрелых семенах отсутствует (бобовые, пастушья сумка и др.). У некоторых видов (перец, свекла и др.) запасающая ткань формируется из нуцеллуса и в этом случае называется периспермом. Следовательно, питающие ткани как вне зародыша (эндосперм, перисперм), так и в самом зародыше (семядоли) синтезируют и запасают большое количество питательных высокополимерных веществ (белки, крахмал, запасные жиры). Они более компактны и инертны, чем мономеры, не создают значительного осмотического эффекта, что способствует уменьшению содержания воды в семенах Фитогормоны – это производные аминокислот (ИУК), нуклеотидов (цитокинины), полиизопренов (гиббереллины, АБК), непредельных углеводородов (этилен). Среди гормонов растений имеются лишь органические соединения с молекулярной массой от 28 (этилен) до 346 (гиббереллины) На этом этапеосновное влияние имеет ауксин (гормон роста) который помимо свое основной функции влияет на ситнез цитоплазмы, усиливает синтез РНК, белков, сахаров, и прочих необходимых веществ. 45. Ювенильный этап онтогенеза растений. Роль фитогормонов Ювенильный этап – этап молодости – включает прорастание семян или органов вегетативного размножения и характеризуется накоплением вегетативной массы. Растения в этот период, как правило, не способны к половому размножению. Этап можно разделить на две фазы: развитие проростка и накопление вегетативной массы. В течение первой фазы растение закрепляется на определенном экологическом участке среды обитания; во второй фазе создается вегетативная масса, достаточная для обеспечения трофическими факторами органов размножения и формирующихся семян и плодов, которые питаются гетеротрофно (у голосеменных питание может быть смешаным). Эта масса понадобится на следующем этапе развития. Растениям свойственны интенсивный метаболизм, быстрый рост и развитие вегетативных органов. Ткани и органы имеют относительно высокое содержание фитогормонов. Продолжительность этого периода у различных растений неодинакова: от нескольких недель до десятков лет. Особенности периода: проростки по многим параметрам не похожи на взрослые растения (форма листьев; апикальная меристема побегов развита слабее, характер роста побегов); отсутствие цветения, в чем проявляется роль компетенции; ювенильное растение не обладает компетенцией к факторам, вызывающим закладку органов полового размножения, что, возможно, связано с отсутствием в органах-мишенях белков-рецепторов гормонов, участвующих в индукции генеративного развития; сравнительно высокая способность к корнеобразованию; длительность периода сильно различается у разных таксонов и жизненных форм. Факторы, влияющие на ювенильность, у разных растений могут действовать по-разному. Главные из этих факторов: малая площадь листовой поверхности, что, вероятно, связано с недостаточностью углеводного питания; неблагоприятное соотношение молодых и старых листьев (удаление молодых листьев ускоряет образование цветка, старых – задерживает цветение; возможно, в молодых листья образуются ингибиторы цветения, идет конкуренция за ассимиляты); нечувствительность первых листьев к восприятию фотопериодического воздействия; тормозящее влияние корней на переход к зацветанию; нечувствительность меристем апексов побега к стимулам цветения. Ювенильным побегам характерно высокое содержание ауксина, образующегося в молодых листьях, и цитокининов, поступающих из корней. В ювенильных листьях могут присутствовать ингибиторы цветения. Ювенильное состояние зависит от определенных генов и поддерживается недостатком углеводного питания. Фитогормоны – это производные аминокислот (ИУК), нуклеотидов (цитокинины), полиизопренов (гиббереллины, АБК), непредельных углеводородов (этилен). Среди гормонов растений имеются лишь органические соединения с молекулярной массой от 28 (этилен) до 346 (гиббереллины). На этом этапе онтогенеза фигурируют такие фитогормоны:1) главный гормон роста (ауксин) синтезируется в апиксе побега и с верхушечной части передвигается по флоэме в корни стимулируя заложение боковых корешков; 2)цитокинин поднимаясь с ксилемным соком стимулирует синтез пазушных почек,после чего растение переходит к этапу зрелости

46.Индукция цветения:яровизация и фотопериодизм. Фоторецепция,роль фитохрома. Индукция цветения-влияние благоприятных фотопериодов на развитие растений, приводящее к последующему их зацветанию независимо от длины дня. Состоит из процессов,происходящих в листьях и приводящих к образованию гормонов цветения и изпроцессов, происходящих в стеблевых почках и приводящ к детерминации цветочных зачатков Яровизация - физиологическая реакция растений на охлаждение, вызванная адаптацией к сезонным изменениям умеренного климата. Для цветения и образования семян эти растения должны быть подвергнуты воздействию низких положительных температур (2-10 °C, в зависимости от вида и сорта растений). Яровизация присуща некоторым двулетним и многолетним растениям, в частности, злакам (рожь, пшеница и другим), корнеплодам (свёкла, морковь), а также плодовым деревьям (например, яблоням). В рамках современной экологической физиологии это явление описывается как холодовая реактивация диапаузы. Реакция на температурные и световые воздействия позволяет растениям адаптироваться к условиям их существования, используя наиболее благоприятный срокцветения и плодоношения. Переход растения к цветению и плодоношению имеет две фазы: индукцию и эвокацию. В фазе индукции растение реагирует на экологические факторы - температуру (яровизация) и длительность светового дня (фотопериодизм), а также на возраст растения (эндогенная регуляция). В фазе эвокации верхушечных меристемах происходят количественные и качественные биохимические изменения, приводящие к закладке и формированию цветков. Для прохождения яровизации семенам необходимы вода и кислород, поскольку проходящие изменения связаны с дыханием и нуждаются в большом количестве воды. Для яровизации также необходимы сахара и углеводы. Фотопериодизм - реакция живых организмов (растений и животных) на суточный ритм освещённости, продолжительность светового дня и соотношение между темным и светлым временем суток. Под действием реакции фотопериодизма растения переходят от вегетативного роста к зацветанию. Эта особенность является проявлением адаптации растений к условиям существования, и позволяет им переходить к цветению и плодоношению в наиболее благоприятное время года. Помимо реакции на свет, известна также реакция на температурные воздействия - яровизация растений. За восприятие фотопериодических условий у растений отвечают особые рецепторы листьев (например, фитохром). Растения делят на длиннодневные, которые зацветают при непрерывной суточной освещенности более 12 часов, такие как рожь, морковь, лук. Короткодневные, которые зацветают при непрерывной суточной освещенности менее 12 часов, такие как хризантемы, георгины, астры, капуста. Есть и нейтральные, для цветения им необходимо 12 часов, например виноград, одуванчики, сирень.. В умеренных широтах короткие дни весной, а длинные - в середине лета. Поэтому короткодневные цветут весной и осенью, а длиннодневные - летомФоторецепция-все клетки способны реагировать на свет, но те из них, которые содержат пигмент, более чувствительны к действию света, Если искусственно ввести краситель в клетку, то также наблюдается повышение ее светочувствительности (фотодинамический эффект). Фитохром - фоторецептор, сине-зеленый пигмент, существующий в двух взаимопревращающихся формах. Одна поглощает красный свет (λ~660нм), другая - дальний красный (λ~730нм). Поглотив свет, фитохром переходит из одной формы в другую. Этот пигмент играет важную роль в ряде процессов, таких как цветение и прорастание семян.47.Флоральный морфогенез и гормональная теория цветения. Детерминация пола у растений. Сначала увеличивается конус нарастания, затем он превращается в цветковый (флоральный) бугорок. В его меристеме выделяют три зоны:1) периферическая;2) средняя (дистальная);3) центральная(проксимальная). Из периферической зоны формируются элементы околоцветника. У большинства двудольных растений первыми закладываются чашелистики или листочки околоцветника, затем – пыльники. Затем выделяется центральная часть, превращающаяся в пестик. Последними закладываются лепестки венчика. Каждый формирующийся орган цветка оказывает коррелятивное влияние на рост других частей. Затем заложенные органы начинают расти. Первыми растут чашелистики, защищающие органы цветка, потом тычиночные нити, пестик и лепестки. Постепенно лепестки приобретают окраску, соответствующую виду растения.В физиологическом смысле цветение – это комплекс процессов, протекающих от заложения цветка до оплодотворения.Основные этапы цветения: Компетенция;Инициация: индукция + эвокация;флоральный морфогенез.Компетенция – способность клетки, ткани, органа, организма воспринимать индуцирующее воздействие и специфически реагировать на него изменением развития.Инициация цветения – перехода от вегетативного к генеративному этапу развития представляет собой сложный многофазный процесс, включающий стадию индукции цветения и эвокации цветения. Некоторые авторы выделяют также этап транспорта флорального стимула как самостоятельную фазу. У многих растений способность к заложению цветков возникает только после действия пониженных температур и/или при определенном фотопериоде, или же по достижении растением определенного возраста.Индукция цветения – восприятие растением внешних (экзогенных) и/или внутренних (эндогенных) факторов (индукторов), создающее условия для закладки цветочных зачатков. Эта фаза осуществляется под действием экологических факторов – определённого фотопериода (фотопериодизм) и пониженных положительных температур (яровизация) – или эндогенных факторов, обусловленных возрастом растения (возрастная или автономная индукция).Эвокация цветения – процесс, в ходе которого в апикальной меристеме побега происходят необратимые изменения, направляющие дифференцировку ее клеток по генеративному пути развития цветочных зачатков. Этап флорального морфогенеза – включает рост и развитие органов цветка, формирующихся из цветочных зачатков. Детерминация пола -у растений чаще образуются обоеполые (гермафродитные) цветки, реже – однополые (мужские или женские). Какие цветки образуются на растении, зависит от генотипа, но факторы внешней среды также могут влиять на детерминацию пола у высших растений. Дифференцировка пола – сексуализация цветков – цепь взаимосвязанных процессов, каждый из которых может быть вызван одним или несколькими внешними или внутренними факторами. Длинный день, высокая интенсивность светового потока, красный свет стимулируют мужскую детерминацию пола. В системе, регулирующей процессы сексуализации цветков очень важна роль фитогормонов: цитокининов и гиббереллинов. ЦК, образующиеся в корнях, транспортируются в верхушки стеблей и индуцируют формирование в меристеме женских (пестичных) цветков. ГК, синтезируемые в листьях, транспортируясь в апикальные меристемы, вызывают образование мужских (тычиночных) цветков. 48.Физиология вегетативного размножения растений(клубни,луковици). Процесс вегетативного размножения имеет в основе стремление растения к восстановлению утраченных частей. При этом новые особи возникают без продуцирования семян или спор. Вегетативное размножение может происходить естественным путем или может быть вызвано искусственно растениеводом. У многих растений, размножающихся половым путём, существует возможность вегетативного размножения. Для этого части(цы) растительной ткани обрабатывают химическими препаратами (гормонами). Для размножения некоторых растений используют мерисистемные ткани, площадью всего лишь 1-2мм 2 . В любительских условиях большинство растениеводов используют черенки - части растения от нескольких квадратных сантиметров до одного дециметра, или длиной от 10см и более. При вегетативном размножении дочернее растение обладает тем же наследственным материалом, что и родительское. Такие растения называют клонами. Растения, которые появляются в результате вегетативного размножения, развиваются быстрее, чем растения, которые вырастают из семян. Следовательно, они могут быстрее расселяться, переходить к цветению и плодоношению.Вегетативное размножение позволяет сохранять свойства вида неизменными.Вегетативное размножение осуществляется укоренением частей побегов, листьев, почек, частей корневищ и корней. Также вегетативное размножение осуществляется видоизмененными корнями и побегами: клубнями, луковицами, усами. Размножение клубнями.Клубень стеблевого происхождения представляет собой сильно укороченный и утолщенный стебель (или часть его), несущий запасы питательных элементов и почки возобновления (глазки). Многолетние клубни - в основном органы запаса (хохлатка, цикламен), однолетние служат и органами размножения (картофель, хвощ полевой и др.). Стеблевые клубни следует отличать от корневых. Последние образуются в результате утолщения корней (например, у пиона, георгина), не имеют почек возобновления и без соответствующей части корневища для размножения непригодны. Размножение луковицами.Луковицы - подземный многолетний сильно укороченный побег, стебель которого превратился в так называемое донце. Листья утолщены и образуют чешую луковицы. В листьях откладываются питательные элементы. На вершине донца внутри луковицы находится почка. Весной она развивается в побег с цветком. На основании донца возникают придаточные корни. Помимо подземных встречаются надземные луковицы. Они образуются в пазухах листьев (лилия тигровая, бульбоносная), иногда в соцветиях (лук многоярусный). Луковицы сменяются ежегодно или накапливают чешуи в течение нескольких лет и становятся многолетними. В связи с этим различают луковичные растения с ежегодно сменяющимися (тюльпан) и многолетними луковицами (лилия, нарцисс, галантус, сцилла, гиацинт, мускари). Они размножаются образованием замещающих и боковых луковиц, которые развиваются из почек, расположенных в пазухах чешуи материнской луковицы.

Загрузка...