domvpavlino.ru

Защита человека от поражения электрическим током, прямое и косвенное прикосновение. Условия поражения электрическим током Способы и средства, применяемые

Поражение электрическим током возникает при взаимодействии человека с токоведущими частями электрооборудования вследствие пробоя или неисправности.

Сложность полученных травм зависит от многих обстоятельств:

  • индивидуальных особенностей человека;
  • мощности разряда;
  • класса напряжения;
  • характера (постоянный или переменный);
  • места прикосновения;
  • пути прохождения потока по организму.

Прохождение тока по сосудам

Опасность электротравмы состоит в том, что без специальных устройств наличие аварийной ситуации выявить невозможно.

Причины электротравм

  • Прикосновение к поверхностям электроприборов, голым проводам, контактам электрических устройств (автоматических выключателей, патронов ламп, предохранителей) под напряжением.
  • Прикосновение к электротехническим устройствам, которые оказались под напряжением ввиду неисправности.
  • Одновременное прикосновение к двум фазам под напряжением.
  • Нарушение правил безопасности персонала при выполнении строительно-монтажных работ.
  • Прикосновение к влажным металлоконструкциям или стенам, соединенным с источником электротока.

Неосторожное использование бытовых приборов

Поражение электрическим током

Основные симптомы

Признаки поражения электрическим током:

  • отсутствие дыхания;
  • бледность;
  • «знаки тока» на теле пострадавшего;
  • запах горелого (волос, электроприбора и т.д.);
  • нахождение человека в положении лежа вблизи электроприбора;
  • отсутствие пульсации артерий;
  • отсутствие дыхания;

При летальном исходе на коже присутствуют множественные ожоги и петехиальные кровоизлияния. Те, кто выживает после полученной электротравмы, обычно находятся в коме. Состояние характеризуется нестабильной работой дыхательной системы, сердца и сосудистым коллапсом. Последующее состояние отмечается повышенной агрессией и судорогами вплоть до перелома костей от мышечных сокращений (падений во время припадков).

При получении электротравмы высокого напряжения у больного часто наблюдается гиповолемический шок, гипотензия, развивается почечная недостаточность.

Следующим этапом является деструкция тканей, вызванная электроожогом. Также вследствие получения травмы могут обостриться хронические заболевания желудочно-кишечного тракта (кровотечения из язв, язвенные колиты и др.), отек легких, различного рода инфекции аэробные и анаэробные.

Электротравма с тяжелыми последствиями

Почти в каждом случае наблюдаются отеки головного мозга с сопутствующим коматозным состоянием до нескольких суток.

К менее распространенным последствиям относят расстройства нервной системы, ведущие к частичной потере трудоспособности:

  • повреждения от ожогов;
  • нарушение зрения;
  • рефлекторные дистрофии;
  • частые головные боли;
  • катаракты;
  • нарушение работы памяти, эмоционального равновесия;
  • разрывы спинного мозга;
  • припадки.

Изменения в организме

Ток воздействует на ткань в четырех направлениях:

  • биологическое;
  • механическое;
  • электролитическое;
  • термическое.

Биологическое – нарушение состава тканей организма, биологических процессов, обострение заболеваний.

Механическое – нарушение целостности кожи и других тканей.

Электролитическое – разложение крови и секретов организма.

Термическое – ожоги, нагрев кровеносных сосудов.

Поражение рук электрическим током

Электроток проходит по замкнутой цепи, т.е. всегда ищет выходной путь. Поэтому степень поражения током организма зависит от пути, по которому он проходит по телу. Если поражение идет через нижние конечности и выходит на землю, опасность для организма снижается.

В случаях, когда токовая нагрузка проходит через сердце или голову, вероятность получения тяжелой травмы резко возрастает. Т.е. чем ближе путь прохождения электротока к сердцу, тем вероятнее летальный исход инцидента.

Вторым показателем степени поражения является длительность воздействия. Наибольшую опасность для организма представляет переменный ток, т.к. вызывает судороги сердца. В данной ситуации человек не сможет самостоятельно высвободиться. Пот, вызываемый судорогами, уменьшает сопротивление, и увеличивает негативное влияние токового потока.

Чаще всего в таких случаях наступает смерть: электроток, проходящий в сердце, вызывает фибрилляцию желудочков. Остановка сердцебиения происходит от повреждения центральной нервной системы.

Высокое напряжение характеризуется большими температурами и при контакте с кожей вызывает сильнейшие дуговые электроожоги, обугливание. При таких инцидентах происходит возгорание одежды и близлежащих предметов. Если нагрев от электротока прямой, то в точках входа-выхода потока и сосудах образуются некрозные точки. Происходит развитие тромбоза.

Виды поражений

  • электротравма;
  • электрический шок;
  • электроудар.

Электротравмы делятся на несколько видов:

  • электрические знаки;
  • ожоги;
  • механические повреждения;
  • поражения глаз;
  • электропигментация кожи.

Электроожог – повреждение кожи электротоком. Он обусловлен прохождением потока частиц непосредственно через организм человека. Различают:

  • Дуговые. Возникают под воздействием электродуги на организм человека. Характеризуются высокой температурой.
  • Контактные ожоги – наиболее распространенные. Вызваны прямым контактом тока напряжением до 1 кВ с кожей.

Электрический знак – изменение структуры кожных покровов в местах вхождения электротока. Чаще всего наблюдаются на руках. Кожа становится припухлая, появляются знаки круглой или овальной формы через некоторое время после возникновения инцидента.

Последствия поражения током в виде электрических знаков

Механические повреждения – разрывы мышц и кожных покровов. Возникают вследствие судорог. Отмечаются случаи с переломом конечностей.

Электроофтальмия – воспаление оболочки глаза вследствие воздействия ультрафиолета (во время появления электродуги). Диагностируется по истечении 6 часов после получения травмы. Симптомы – покраснение белков, повышенное слезоотделение, частичная слепота, головная боль, боль в глазах при свете, нарушение прозрачности роговицы, сужение зрачка. Состояние длится несколько дней.

Предотвратить электроофтальмию на производстве и во время строительных работ можно, если использовать защитные очки.

Электроофтальмия – поражение оболочки глаза при электротравме

Электрометаллизация – проникновение мелких расплавленных частиц в кожные покровы. Появляется из-за разбрызгивания раскаленного металла при горении дуги. Степень травматизма зависит от обширности действия металла. Зачастую кожные покровы постепенно восстанавливаются.

Электрошок – ответ ЦНС на внешнее раздражение электротоком. Последствия: нарушение работы легочных мышц, кровообращения. Делится на 2 фазы – возбуждения и истощения ЦНС. После длительного шокового состояния наступает летальный исход.

Электроудар – судорожные сокращения мышечной ткани под воздействием электротока. Небольшие травмы вызывают слабые удары (неприятные ощущения, покалывание). Ток большого напряжения крайне опасен. Под его воздействием человек не может самостоятельно действовать. Через несколько минут наступает удушье и фибрилляция желудочков.

Самым опасным считают токовые нагрузки в промышленных установках с частотой 20-100 Гц и более. Такой электроток вызывает, кроме ожогов, необратимые разрушения внутренних органов.

Электроудары различают 4 степеней:

  1. судорожное сокращение мышечных тканей;
  2. то же, но с потерей сознания (дыхание и работа сердца остаются в пределах нормы);
  3. потеря сознания, нарушения работы жизненно важных органов, обострение хронических заболеваний;
  4. клиническая смерть.

Путь прохождения токовой нагрузки через организм – решающий фактор. Наиболее опасны электротравмы, при которых поток течет вдоль тела (рука – рука, рука – нога, голова – ноги, голова – руки) через сердце.

Самым опасным является путь «правая рука – ноги», когда поток проходит вдоль оси сердца.

Основные факторы, влияющие на величину проходящего электротока:

  • Физическое состояние. Хроническое заболевание и острое течение болезней характеризуется снижением сопротивления организма. Следовательно, получить травму с более высокой степенью тяжести вероятнее человеку, который имеет проблемы со здоровьем. Спортсмены и мужчины имеют более высокое сопротивление тела, чем женщины. Также отрицательно на эту величину влияет количество употребленного алкоголя.
  • Психическое состояние. Возбужденное состояние нервной системы повышает кровяное давление и ускоряет сердцебиение. В таких случаях при получении травмы быстро развивается фибрилляция желудочков.
  • Условия окружающей среды: время года, погода, температура, относительная влажность воздуха. В условиях увеличения атмосферного давления увеличивается степень тяжести травмы.
  • Место входа–выхода потока. Разные части тела имеют неодинаковое сопротивление, поэтому и обширность поражения разная.
  • Чистота кожных покровов. Наличие слоя пота или грязи (хорошо проводящих электроток) увеличивает вероятность получить тяжелый ожог.

Последствия

  • Потеря сознания.
  • Возникающие из-за большой температуры ожоги.
  • Сбои в работе сердечной мышцы даже при минимальном времени контакта с электросетью.
  • Нарушения работы нервной системы, асистолия.
  • Обострение хронических заболеваний.
  • Появление внутренних кровотечений.
  • Общее повышение давления.

Помощь при поражении током

В первую очередь необходимо обесточить место инцидента, а пострадавшего – высвободить от контакта с источником без прямых прикосновений. Для этого используют диэлектрики – резиновые листы, жгуты, кожаные ремни, сухие деревянные палки, шесты. По возможности на руки надевают резиновые перчатки.

Если больной не может самостоятельно дышать, то незамедлительно приступают к искусственной вентиляции легких – «изо рта в рот». Периодическую поддержку дыхания следует продолжать в течение последующих четырех часов.

В случаях, когда у человека отсутствует сердцебиение, делают непрямой массаж сердца совместно с искусственной вентиляцией легких. Если травма вызвана ударом молнии и наблюдается асистолия, проводят удар рукой по сердцу, затем искусственное дыхание.

Если поражение произошло от контакта с низким напряжением, то выполняют дефибрилляцию. При осмотре особое внимание уделяют наличию переломов и ушибов позвоночника.

Помощь пострадавшему от поражения электротоком – дефибрилляция

Получившего электрохимические ожоги человека, следует немедленно доставить в ожоговое отделение или травматологию.

Обработка ран в условиях стационара заключается в удалении омертвевших слоев кожи. Практически во всех случаях проводятся мероприятия , направленные на исключение распространения инфекций в организме – антимикробное лечение.

Больным, пребывающим в коме, необходим постоянный мониторинг внутричерепного давления. При осложнениях, травмах головы следует применять специальную терапию.

Профилактика

Для уменьшения риска получения электротравм необходимо:

  • в жилых и административных зданиях прокладывать электропроводку с заземляющим кабелем (или проводом);
  • эффективно заземлять все электроустройства;
  • пользоваться для бытовых и офисных электроприборов розетками с заземляющими контактами;
  • правильно скручивать, а не сгибать провода удлинителей и электроприборов;
  • установить во влажных помещениях розетки с соответствующей степенью защиты;
  • не пользоваться неисправными электроприборами;
  • установить на вводах дифференциальную защиту (дифавтоматы , УЗО);
  • в непогоду находиться в безопасном помещении – в домах с плотно закрытыми дверями и окнами, избегать поездок в автомобиле в ненаселенной местности, где нет молниеотводов и высоких деревьев.

Что делать, если. Видео

Как правильно вести себя при ударе током, рассказывает видео ниже.

Соблюдение элементарных правил электробезопасности поможет избежать травм от поражения электрическим током.

Поражение производственного персонала электрическим током возможно как при прямом прикосновении – электрический контакт людей с токоведущими частями электрооборудования, находящимися под напряжением, так и при косвенном прикосновении – электрический контакт людей с открытыми проводящими частями электрооборудования, оказавшимися под напряжением при повреждении изоляции.

Для предупреждения поражения электрическим током в нормальном режиме работы Электросети должны быть применяются по отдельности или в сочетании следующие меры защиты от прямого прикосновения:

основная изоляция токоведущих частей;

ограждения и оболочки;

установка барьеров;

размещение токоведущих частей вне зоны досягаемости;

применение сверхнизкого (малого) напряжения (СНН).

Для дополнительной защиты от прямого прикосновения в электроустановках напряжением до 1 кВ применяются также устройства защитного отключения (УЗО).

Защита от прямого прикосновения не требуется, если электрооборудование находится в зоне системы уравнивания потенциалов (см. ниже), а наибольшее рабочее напряжение не превышает 25 В переменного или 60 В постоянного тока в помещениях без повышенной опасности и 6 В переменного или 15 В постоянного тока – во всех случаях.

Для защиты от поражения электрическим током в случае повреждения изоляции применяются по отдельности или в сочетании следующие меры защиты при косвенном прикосновении:

защитное заземление;

автоматическое отключение питания;

уравнивание потенциалов;

выравнивание потенциалов;

двойная или усиленная изоляция;

сверхнизкое (малое) напряжение;

защитное электрическое разделение цепей;

изолирующие (непроводящие) помещения, зоны, площадки.

Защиту при косвенном прикосновении следует выполнять во всех случаях, если напряжение в электроустановке превышает 50 В переменного и 120 В постоянного тока.

В помещениях с повышенной опасностью, особо опасных и в наружных электроустановках защита при косвенном прикосновении производится при более низких напряжениях: 25 В переменного и 60 В постоянного тока – в помещениях с повышенной опасностью; 12 В переменного и 30 В постоянного тока – в особо опасных помещениях и в наружных электроустановках.

Защита от прямого прикосновения.

Основная изоляция токоведущих частей:

Основная изоляция токоведущих частей должна иметь сопротивление, обеспечивающее утечки тока через неё, не превышающие безопасных величин (1 мА для переменного тока промышленной частоты). Для изоляции используются материалы, обладающие также механической прочностью, устойчивостью к воздействию агрессивных сред, повышенных температур и др. производственных факторов. Широкое распространение на практике получили изоляционные материалы на основе каучука, пластических масс, керамики, стекловолокна и др. Лакокрасочные покрытия не являются изоляцией, защищающей от поражения электрическим током. Изоляция электроустановок перед вводом их в эксплуатацию подвергается испытанию в соответствии с требованиями ПУЭ. Например, для электроустановок напряжением до 1 кВ сопротивление изоляции должно быть не < 0,5 МОм при испытании напряжением 1 кВ.

Ограждения и оболочки:

Ограждения и оболочки в электроустановках напряжением до 1 кВ представляют собой сплошные или сетчатые устройства, предотвращающие несанкционированный доступ к открытым токоведущим частям электроустановок. Вход за ограждение или вскрытие оболочки должны быть возможны только при помощи специального ключа или инструмента либо после снятия напряжения с токоведущих частей.

Установка барьеров:

Барьеры предназначены для защиты от случайного прикосновения к токоведущим частям в электроустановках напряжением до 1 кВ или приближения к ним на опасное расстояние в электроустановках напряжением выше 1 кВ, но не исключают преднамеренного прикосновения и приближения к токоведущим частям при обходе барьера. Для удаления барьеров не требуется применения ключа или инструмента, однако они должны быть закреплены так, чтобы их нельзя было снять непреднамеренно. Барьеры должны быть изготовлены из изолирующего материала.

Размещение токоведущих частей вне зоны досягаемости:

Эта мера применяется для защиты от прямого прикосновения к токоведущим частям в электроустановках напряжением до 1 кВ или приближения к ним на опасное расстояние в электроустановках напряжением выше 1 кВ при невозможности сооружения ограждений, оболочек и барьеров. При этом расстояние между доступными одновременному прикосновению проводящими частями в электроустановках напряжением до 1 кВ должно быть не менее 2,5 м. Внутри зоны досягаемости не должно быть частей, имеющих разные потенциалы и доступных одновременному прикосновению.

Установка барьеров и размещение токоведущих частей вне зоны досягаемости допускаются только в помещениях, доступных квалифицированному персоналу.

Сверхнизкое (малое) напряжение (СНН):

СНН применяется для защиты от поражения электрическим током при прямом и/или косвенном прикосновениях в электроустановках напряжением до 1 кВ в сочетании с защитным электрическим разделением цепей или в сочетании с автоматическим отключением питания (см. ниже). Суть этой меры защиты заключается в обеспечении наименьшей вероятности поражения человека электрическим током за счёт применения малой величины напряжения питания электроустановок.

При этом величина такого напряжения составляет: не > 25В переменного и не > 60 В постоянного тока – в помещениях с повышенной опасностью; не > 12В переменного и не > 30 В постоянного тока – в особо опасных помещениях и в наружных электроустановках.

Защита от косвенного прикосновения

Защитное заземление:

Защитное заземление представляет собой преднамеренное электрическое соединение с землёй нетоковедущих проводящих (электропроводных) частей электрооборудования, которые в результате нарушения изоляции могут оказаться под напряжением. Такой частью электрооборудования, как правило, является его металлический корпус.

Принцип защитного действия защитного заземления можно объяснить следующим образом: при параллельном включении в электрическую цепь «аварийный корпус – заземление» сопротивлений заземляющего устройства и человека ток по ним по закону Кирхгоффа для разветвлённых электрических цепей распределяется обратно пропорционально величинам сопротивлений, оставаясь практически неизменным в сумме.

Подбор величины сопротивления заземляющего устройства, при которой сила тока, протекающего через человека, будет равна или меньше безопасных значений обеспечит его защиту от поражения. Наибольшая величина сопротивления заземляющего устройства, при которой обеспечивается указанное выше условие, называется допустимым сопротивлением защитного заземления.

Защитное заземление эффективно только в том случае, когда ток замыкания на землю не увеличивается с уменьшением сопротивления заземляющего устройства. Поэтому защитное заземление применяется в качестве основной меры защиты в электросетях с изолированной нейтралью, т.к. только в них при глухом замыкании на землю любого из фазных проводов ток замыкания не зависит от сопротивления заземления.

Конструктивно заземляющее устройство состоит из заземлителей, размещённых в грунте (земле), заземляющего проводника и заземляющей шины (последние расположены вне грунта и служат для подключения заземлителей к электрооборудованию).

Варианты конструкций, схемы размещения в грунте, материалы для изготовления конструктивных элементов, способы расчёта и др. сведения о заземляющих устройствах рассматриваются на лабораторных и практических занятиях.

Согласно требованиям ПУЭ сопротивление заземляющего устройства, используемого для защитного заземления открытых проводящих частей в системе IT напряжением до 1 кВ, должно соответствовать условию:

R зу £ U пр /I зм, (22)

где R зу – сопротивление заземляющего устройства, Ом;

U пр – напряжение прикосновения, значение которого принимается равным 50 В;

I зм – полный ток замыкания на землю, А.

Как правило, не требуется принимать значение сопротивления заземляющего устройства менее 4 Ом. Допускается принимать сопротивление заземляющего устройства до 10 Ом, если соблюдено приведенное выше условие, а мощность источника тока не превышает 100 кВ×А.

Защитному заземлению подлежат металлические нетоковедущие части оборудования, которые из-за неисправности изоляции могут оказаться под напряжением и к которым возможно прикосновение людей.

Автоматическое отключение питания:

Автоматическое отключение питания применяется для быстрого отключения энергоисточника от аварийного электрооборудования. При этом время отключения не должно превышать нормированные значения (табл. 1,2), т.к. в противном случае человек, касающийся в этот момент электроустановки, получит опасную дозу электрической энергии. При выполнении автоматического отключения питания в электроустановках напряжением до 1 кВ открытые проводящие части присоединяются к глухозаземлённой нейтрали источника питания, если применена система TN, и заземлены, если применены системы IT или ТТ.

В электроустановках, в которых в качестве защитной меры применено автоматическое отключение питания, должно быть выполнено уравнивание потенциалов (см. ниже).

Для автоматического отключения питания могут быть применены защитно-коммутационные аппараты и устройства защитного отключения (УЗО).

Таблица 1

Наибольшее допустимое время защитного автоматического отключения для системы TN

Таблица 2

Наибольшее допустимое время защитного автоматического отключения для системы IT

Уравнивание потенциалов:

Система уравнивания потенциалов предназначена для ликвидации разности потенциалов между любыми точками открытых проводящих частей электроустановок, здания, инженерных коммуникаций и т.п.

Основная система уравнивания потенциалов в электроустановках до 1 кВ должна соединять между собой следующие проводящие части:

нулевой защитный РЕ- или РЕN-проводник питающей линии в системе TN;

заземляющий проводник, присоединённый к заземляющему устройству электроустановки, в системах IT и ТТ;

заземляющий проводник, присоединенный к заземлителю повторного заземления на вводе в здание (если есть заземлитель);

металлические трубы коммуникаций, входящих в здание (горячего и холодного водоснабжения, канализации, отопления, газоснабжения и т.п.);

металлические части каркаса здания;

металлические части централизованных систем вентиляции и кондиционирования;

заземляющее устройство системы молниезащиты;

заземляющий проводник функционального (рабочего) заземления, если такое имеется и отсутствуют ограничения на присоединение сети рабочего заземления к заземляющему устройству защитного заземления;

металлические оболочки телекоммуникационных кабелей.

Проводящие части, входящие в здание извне, должны быть соединены как можно ближе к точке их ввода в здание.

Для соединения с основной системой уравнивания потенциалов все указанные части должны быть присоединены к главной заземляющей шине при помощи проводников системы уравнивания потенциалов.

Система дополнительного уравнивания потенциалов должна соединять между собой все одновременно доступные прикосновению открытые проводящие части стационарного электрооборудования и сторонние проводящие части, включая доступные прикосновению металлические части строительных конструкций здания, а также нулевые защитные проводники в системе TN и защитные заземляющие проводники в системах IT и ТТ, включая защитные проводники штепсельных розеток.

Для уравнивания потенциалов могут быть использованы специально предусмотренные проводники либо открытые и сторонние проводящие части, если они удовлетворяют требованиям к защитным проводникам в отношении проводимости и непрерывности электрической цепи.

Выравнивание потенциалов:

Система выравнивания потенциалов предназначена для снижения разности потенциалов (шагового напряжения) на поверхности земли или пола при помощи защитных проводников, проложенных в земле, в полу или на их поверхности и присоединенных к заземляющему устройству, или путём применения специальных проводящих покрытий земли.

Двойная или усиленная изоляция:

Защита при помощи двойной или усиленной изоляции может быть обеспечена применением электрооборудования класса II (табл. 3) или заключением электрооборудования, имеющего только основную изоляцию токоведущих частей, в изолирующую оболочку.

Проводящие части оборудования с двойной изоляцией не должны быть присоединены к защитному проводнику и к системе уравнивания потенциалов.

Защитное электрическое разделение цепей:

Защитное электрическое разделение цепей предназначено для уменьшения опасности однофазного прикосновения в разветвлённых электросетях большой протяжённости, имеющих большую электрическую ёмкость и малое сопротивление изоляции проводов относительно земли.

Защитное электрическое разделение цепей источника тока и электроприёмника осуществляется при помощи разделительного трансформатора и применяется, как правило, для одной питающей цепи, которая при этом имеет малую электрическую ёмкость, большое сопротивление изоляции проводов относительно земли, а, следовательно, меньшую опасность при однофазном прикосновении.


Таблица 3

Классификация по способу защиты человека от поражения электрическим током и условия применения электрооборудования в электроустановках напряжением до 1 кВ

Класс по ГОСТ 12.2.007.0 Р МЭК536 Маркировка Назначение защиты Условия применения электрооборудования в электроустановке
Класс 0 - При косвенном прикосновении 1. Применение в непроводящих помещениях. 2. Питание от вторичной обмотки разделительного трансформатора только одного электроприёмника
Класс I Защитный зажим, знак или буквы РЕ, или желто-зелёные полосы При косвенном прикосновении Присоединение заземляющего зажима электрооборудования к защитному проводнику электроустановки
Класс II Знак При косвенном прикосновении Независимо от мер защиты, принятых в электроустановке
Класс III Знак От прямого и косвенного прикосновений Питание от безопасного разделительного трансформатора

Изолирующие (непроводящие) помещения, зоны, площадки:

Изолирующие (непроводящие) помещения, зоны и площадки применяются в электроустановках напряжением до 1 кВ, когда требования к автоматическому отключению питания не могут быть выполнены, а применение других защитных мер невозможно либо нецелесообразно.

Сопротивление относительно земли изолирующего пола и стен таких помещений, зон и площадок в любой точке должно быть не менее:

50 кОм при номинальном напряжении электроустановки до 500 В включительно;

100 кОм при номинальном напряжении электроустановки более 500 В;

Если сопротивление в какой-либо точке меньше указанных величин, такие помещения, зоны, площадки не должны рассматриваться в качестве меры защиты от поражения электрическим током.

Для изолирующих (непроводящих) помещений, зон, площадок допускается использование электрооборудования класса 0 (табл.3) при соблюдении одного из следующих условий:

открытые проводящие части удалены одна от другой и от сторонних проводящих частей не менее чем на 2 м.

открытые проводящие части отделены от сторонних проводящих частей барьерами из изоляционного материала;

сторонние проводящие части покрыты изоляцией, выдерживающей испытательное напряжение не менее 2 кВ в течение 1 мин.

Пол и стены таких помещений не должны подвергаться воздействию влаги.

Кроме рассмотренных основных способов защиты персонала от поражения электрическим током используются: защитное зануление; блокировка; предупредительная сигнализация; электрозащитные средства (изолирующие штанги, диэлектрические коврики и др.).

Согласно требованиям нормативных документов, безопасность электроустановок обеспечивается следующими основными мерами:

  • 1) недоступностью токоведущих частей;
  • 2) надлежащей, а в отдельных случаях повышенной (двойной) изоляцией;
  • 3) заземлением или занулением корпусов электрооборудования и элементов электроустановок, могущих оказаться под напряжением;
  • 4) надежным и быстродействующим автоматическим защитным отключением;
  • 5) применением пониженных напряжений (42 В и ниже) для питания переносных токоприемников;
  • 6) защитным разделением цепей;
  • 7) блокировкой, предупредительной сигнализацией, надписями и плакатами;
  • 8) применением защитных средств и приспособлений;
  • 9) проведением планово-предупредительных ремонтов и профилактических испытаний электрооборудования, аппаратов и сетей, находящихся в эксплуатации;
  • 10) проведением ряда организационных мероприятий (специальное обучение, аттестация и переаттестация лиц электротехнического персонала, инструктажи и т.д.).

Для обеспечения электробезопасности на предприятиях мясной и молочной промышленности применяют следующие технические способы и средства защиты: защитное заземление, зануление, применение малых напряжений, контроль изоляции обмоток, средства индивидуальной защиты и предохранительные приспособления, защитные отключающие устройства.

Защитное заземление - это преднамеренное электрическое соединение с зёмлёй или её эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением. Оно защищает от поражения электрическим током при прикосновении к металлическим корпусам оборудования, металлическим конструкциям электроустановки, которые вследствие нарушения электрической изоляции оказываются под напряжением.

Сущность защиты заключается в том, что при замыкании ток проходит по обеим параллельным ветвям и распределяется между ними обратно пропорционально их сопротивлениям. Поскольку сопротивление цепи «человек-земля» во много раз больше сопротивления цепи «корпус-земля», сила тока, проходящего через человека, снижается.

В зависимости от места размещения заземлителя относительно заземляемого оборудования различают выносные и контурные заземляющие устройства.

Выносные заземлители располагают на некотором расстоянии от оборудования, при этом заземлённые корпуса электроустановок находятся на земле с нулевым потенциалом, а человек, касаясь корпуса, оказывается под полным напряжением заземлителя.

Контурные заземлители располагают по контуру вокруг оборудования в непосредственной близости, поэтому оборудование находится в зоне растекания тока. В этом случае при замыкании на корпус потенциал грунта на территории электроустановки (например, подстанции) приобретает значения, близкие к потенциалу заземлителя и заземленного электрооборудования, и напряжение прикосновения снижается.

Зануление - это преднамеренное электрическое соединение с нулевым защитным проводником металлических нетоковедущих частей, которые могут оказаться под напряжением. При таком электрическом соединении, если оно надежно выполнено, всякое замыкание на корпус превращается в однофазное короткое замыкание (т.е. замыкание между фазами и нулевым проводом). При этом возникает ток такой силы, при которой обеспечивается срабатывание защиты (предохранителя или автомата) и автоматическое отключение поврежденной установки от питающей сети.

Малое напряжение - напряжение не более 42 В, применяемое в целях уменьшения опасности поражения электрическим током. Малые напряжения переменного тока получают с помощью понижающих трансформаторов. Его применяют при работе с переносным электроинструментом, при использовании переносных светильников во время монтажа, демонтажа и ремонта оборудования, а также в схемах дистанционного управления.

Изолирование рабочего места - это комплекс мероприятий по предотвращению возникновения цепи тока человек-земля и увеличению значения переходного сопротивления в этой цепи. Данная мера защиты применяется в случаях повышенной опасности поражения электрическим током и обычно в комбинации с разделительным трансформатором.

Выделяют следующие виды изоляции:

  • · рабочая - электрическая изоляция токоведущих частей электроустановки, обеспечивающая её нормальную работу и защиту от поражения электрическим током;
  • · дополнительная - электрическая изоляция, предусмотренная дополнительно к рабочей изоляции для защиты от поражения электрическим током в случае повреждения рабочей изоляции;
  • · двойная - электрическая изоляция, состоящая из рабочей и дополнительной изоляции. Двойная изоляция заключается в одном электроприёмнике двух независимых одна от другой ступеней изоляции (например, покрытие электрооборудования слоем изоляционного материала - краской, пленкой, лаком, эмалью и т.п.). Применение двойной изоляции наиболее рационально, когда в дополнение к рабочей электрической изоляции токоведущих частей корпус электроприёмника изготавливается из изолирующего материала (пластмассы, стекловолокна).

Защитное отключение - это быстродействующая защита, обеспечивающая автоматическое отключение электроустановки при возникновении в ней опасности поражения электрическим током.

Оно должно обеспечить автоматическое отключение электроустановок при однофазном (однополюсном) прикосновении к частям, находящимся под напряжением, не допустимым для человека, и (или) при возникновении в электроустановке тока утечки (замыкания), превышающего заданные значения. электробезопасность ток помощь ожог

Защитное отключение рекомендуется в качестве основной или дополнительной меры защиты, если безопасность нельзя обеспечить при заземлении или занулении, либо если заземление или зануление трудно выполнимо, либо нецелесообразно по экономическим соображениям. Устройства (аппараты) для защитного отключения в отношении надежности действия должны удовлетворять специальным техническим требованиям.

Средства индивидуальной защиты делятся на изолирующие, вспомогательные и ограждающие.

Изолирующие защитные средства обеспечивают электрическую изоляцию человека от токоведущих частей и земли. Они подразделяются на основные (диэлектрические перчатки, инструмент с изолированными рукоятками) и дополнительные (диэлектрические галоши, коврики, подставки)

К вспомогательным можно отнести очки, противогазы, маски, предназначенные для защиты от световых, тепловых и механических воздействий.

К ограждающим относятся переносные щиты, клетки, изолирующие подкладки, переносные заземления и плакаты. Они предназначены в основном для временного ограждения токоведущих частей, к которым возможно прикосновение работающих.

Электротравмы возникают в результате воздействия на организм человека электрического тока большой силы, а также разряда атмосферного электричества (молнии). Поражение током может произойти как при непосредственном контакте с источником тока (прямое поражение), так и при возникновении дугового контакта, когда человек находиться вблизи от электроустановки, имеющей напряжение 1000 вольт и выше, особенно в помещениях с повышенной влажностью воздуха.

Электрический ток вызывает общие и местные нарушения в организме: потерю сознания, судороги, остановку сердца и дыхания, ожоги.

Следует помнить, что из-за воздействия тока у пострадавшего происходит спазм голосовых связок, и поэтому он не может крикнуть и позвать на помощь. Если воздействие тока не прекратить, то через несколько минут, в результате возникшей гипоксии, у пострадавшего может остановиться сердце.

Состояние пострадавшего в момент электротравмы может быть настолько тяжелым, что внешне он может мало, чем отличаться от умершего: широкие, не реагирующие на свет зрачки, бледная кожа, отсутствие дыхания и пульса. Это состояние получило название “мнимая смерть”.

При оказании первой помощи первое, что необходимо сделать это прекратить воздействие электрического тока на организм: выключить рубильник, перерубить провод топором с деревянной ручкой или отбросить провод сухой палкой (предметом, не проводящим ток).

При всем этом, самое главное принять меры самозащиты, чтобы не получить смертельное поражение током. Под ноги себе необходимо положить изолирующий материал, а при наличии резиновых перчаток и калош – обязательно ими воспользоваться. Прикосновение к пострадавшему незащищенными руками при не отключенном электрическом токе недопустимо.

После отключения пострадавшего от тока, необходимо немедленно приступить к его оживлению. Для этого применяется метод искусственного дыхания “изо рта в рот” или “изо рта в нос”, сочетая его с закрытым массажем сердца, до полного восстановления функции дыхания и работы сердца. Сам процесс оживления может занять несколько часов, как правило, не менее двух. Затем пострадавшего следует отвезти в ближайшее лечебное учреждение.

Также по возможности необходимо тщательно осмотреть тело пострадавшего. Все местные повреждения следует обработать и закрыть повязкой, как при ожогах.

Транспортировать пострадавшего необходимо в лежачем положении, при этом внимательно следя за его состоянием, так как при транспортировке у него возможна повторная остановка дыхания и серд

23Поражение током и молнией

Поражение током высокого напряжения или молнией

Специфическая проблема при таком варианте поражения током – как безопасно для собственной жизни подойти к пораженному. Уже в 20-30 шагах от лежащего на земле провода высоковольтной линии крайне велика опасность поражения электрическим током: на поверхности почвы образуется так называемый электрический кратер.

В центре этого кратера (место касания провода с землей) будет самое высокое напряжение, убывающее по мере удаления от источника в виде расходящихся концентрических колец. При приближении к зоне электрического кратера следует опасаться не величины тока как такового, а разности напряжения между уровнями распространения электричества по земле. Чем шире шаг, тем выше разность потенциалов и величина поражающего разряда. При расстоянии в 60 – 90 см (средняя длина шага взрослого человека) разряд может оказаться смертельным.

В этом случае ток сначала пройдет по нижней петле – от ноги к ноге. Этот путь наименее опасен, но именно он вызовет судороги в ногах. Человек обязательно потеряет равновесие и упадет, и тогда его тело подвергнется воздействию колоссального напряжения, а путь электрического тока обязательно пройдет через сердце.

Запомните! Передвигаться в зоне «шагового» напряжения следует в диэлектрических сапогах или галошах, либо «гусиным шагом»: пятка шагающей ноги, не отрываясь от земли, приставляется к носку другой.

Снимать высоковольтные провода с пострадавшего нужно с помощью непроводящих ток предметов. Можно воспользоваться стеклянной или пластиковой бутылкой, сухой деревянной палкой или топорищем.

Только после устранения опасности можно приступить к оказанию неотложной помощи. Она будет мало отличаться от разобранных ранее вариантов. Однако при воздействии тока высокого напряжения чаще всего отмечаются ожоги и обугливание тканей, переломы костей и даже отрывы конечностей. Эти виды повреждений требуют специализированной помощи. Так, при ожогах необходимо обработать ожоговую поверхность и наложить стерильную сухую повязку. При кровотечении - наложить кровоостанавливающие жгуты или давящие повязки. При переломах костей – произвести иммобилизацию конечности любыми подручными средствами.

26Солнечный удар - болезненное состояние, расстройство работы головного мозга вследствие продолжительного воздействия солнечного света на непокрытую поверхность головы. Это особая форма теплового удара.

Солнечный удар характеризуется приобретением телом тепла большего, чем то, которым организм в состоянии управлять и охлаждать должным образом. Нарушается не только потоотделение, но и кровообращение (сосуды расширяются, происходит «застаивание» крови в мозгу), накапливаются в тканях свободные радикалы. Последствия такого удара могут быть очень серьезными, угрожая даже остановкой сердца. Солнечный удар очень опасен по своей степени влияния, в первую очередь, на нервную систему.

Симптомы солнечного удара

Солнечный удар сопровождается головной болью, вялостью, рвотой. В тяжелых случаях - комой. Симптомы перегревания усугубляются при повышении влажности окружающей среды.

Легкая степень:

Общая слабость;

Головная боль;

Тошнота;

Учащения пульса и дыхания;

Расширение зрачков.

Меры: вынести из зоны перегревания, оказать помощь. При тошноте и рвоте позиционировать больного таким образом, чтобы избежать захлёбывание рвотной массой.

При средней степени:

Резкая адинамия;

Сильная головная боль с тошнотой и рвотой;

Оглушенность;

Неуверенность движений;

Шаткая походка;

Временами обморочные состояния;

Учащение пульса и дыхания;

Кровотечение из носа

Повышение температуры тела до 39-40°C.

Тяжелая форма солнечного удара развивается внезапно. Лицо гиперемировано, позже бледно-цианотичное. Наблюдаются случаи изменения сознания от легкой степени до комы, клонические и тонические судороги, непроизвольное выделение мочи и кала, бред, галлюцинации, повышение температуры тела до 41-42°C, случаи внезапной смерти. Летальность 20-30%.

7.Защита от воздействия электрического тока.

7.1. Действие электрического тока на организм человека.

При эксплуатации и ремонте электрических сетей и электрооборудования человек может оказаться в непосредственном соприкосновений с находящимися под напряжением частями электропроводок. В результате прохождения тока через организм человека может произойти нарушение его жизнедеятельности функции. Общие нарушения вызывают сбои функции центральной нервной системы, органов дыхания и кровообращения.

Электрический ток проходя через тело человека может оказывать биологическое, тепловое, механическое и химическое действие.

Биологическое действие проявляется в возбуждении и раздражении живых тканей организма;

Тепловое – в способности вызывать ожоги отдельных участков тела;

Механическое – приводит к разрыву тканей, вывиху суставов, и повреждению костей;

Химическое – к электролизу крови (разложению).

Опасность электрического тока состоит в том, что он не имеет внешних признаков и не ощущается органами чувств человека. Только в момент прикосновения к токоведущим частям и возникновения поражающего действия организм начинает ощущать болевые проявления от протекания тока.

Тяжесть поражения электрическим током зависит от ряда факторов, в том числе силы тока, электрического сопротивления тела человека и длительности протекания тока через него, рода и частоты тока, пути его прохождения, индивидуальных свойств организма и условий окружающей среды.

По степени воздействия на человека различают три пороговых значения тока: ощутимый, неотпускающий и фибрилляционный .

Ощутимый – это электрический ток, который при прохождений через организм вызывает ощутимое раздражение. В качестве этого критерия электробезопасности принят ток I =0,6 мА, который не вызывает нарушений деятельности организма. Допустимая длительность протекания такого тока через тело человека не более 10 минут.

Неотпускающий – ток, который при прохождении через тело человека вызывает непреодолимые судорожные сокращения мышц руки, ноги или других частей тела, соприкасающихся с токоведущим проводником. В качестве этого критерия электробезопасности принят ток I =6 мА . Длительность воздействия такого тока ограничивается защитной реакцией самого человека.

Фибрилляционный – ток, вызывающий при прохождений через организм фибрилляцию сердца – хаотические, разновременные и разрозненные сокращения мышечных волокон сердца и паралич дыхания.

При частоте тока 50 Гц фибрилляционными являются токи в пределах от 50 мА до 5 А, а среднее значение порогового фибрилляционного тока – примерно 100 мА. При постоянном токе средним значением порогового фибрилляционного тока можно считать 300 мА, а верхним пределом 5 А.

На степень поражения сильно влияет электрическое сопротивление тела человека, которое изменяется в очень больших пределах.

Наибольшим сопротивлением обладает верхний слой кожи толщиной около 0,2 мм, состоящий из ороговевших клеток. Удельное электрическое сопротивление сухой кожи равно 3∙10 3 -2∙10 4 Ом∙м, а внутренних мышечных тканей – 200-300 Ом∙м. Повреждение рогового слоя (порезы, царапины, ссадины и другие микротравмы) может снизить сопротивление до значений, близких к значению внутреннего сопротивления, что увеличивает опасность поражения человека током.

Такое же влияние оказывает увлажнение кожи, а также загрязнение проводящей пылью или грязью.

Повышение напряжения приложенного к телу человека, в десятки раз уменьшает сопротивление кожи, а следовательно и полное сопротивление тела, которое приближается к своему наименьшему значению 300-500 Ом.

В качестве расчётных значений электрическое сопротивление тела человека принимают 1000 Ом при напряжении U = 50В и 6000 Ом при U = 36В.

В связи с большими различиями значений сопротивлений тканей человека и невозможностью заранее предвидеть место контакта тела человека с токоведущими частями оборудования, определить поражающую силу тока невозможно. Для оценки безопасных условий исходят из допустимых напряжений.

Безопасным напряжением считают напряжение 36 В(для светильников местного стационарного освещения, переносных светильников и электроинструмента в помещениях с повышенной опасностью) и 12 В в особо опасных помещениях (при работах внутри котлов, металлических резервуарах и др.).

В производственных процессах используют два рода тока: постоянный и переменный. При напряжениях до 500 В опасность поражения переменным током выше чем постоянным. Переменный ток частотой 50 Гц представляет наибольшую опасность, а с повышением частоты эта опасность уменьшается.

Опасность поражения электрическим током зависит от условий выполнения работ в производственных помещениях. По степени опасности поражения людей электрическим током производственные помещения, согласно ПУЭ, подразделяют на помещения особо опасные, с повышенной опасностью и без повышенной опасности.

Особо опасные помещения имеют повышенную влажность (по производственным условиям относительная влажность в них приближается к 100%) или химически активную среду, которая постоянно или длительно разрушающе действует на изоляцию и токоведущие части. Возможно и одновременное Действие этих двух факторов, определяющих признаки повышенной опасности производственных помещений. Особо опасными помещениями являются пропиточные, гальванические, газогенераторные участки и отделения, душевые, прачечные, помещения для зарядки аккумуляторов и др. В них разрешается работать электроинструментом напряжением не выше 42В при обязательном применении средств индивидуальной защиты (диэлектрических перчаток, ковриков и др.). Переносные электрические светильники должны иметь напряжение не более 12В.

Помещения с повышенной опасностью – это такие помещения, в которых относительная влажность длительно превышает 75%; имеются токопроводящие полы (металлические, земляные, железобетонные и др.) или токопроводящая пыль; температура воздуха длительно превышает +35°С; установлены большие заземлённые металлические конструкции и возможно одновременное прикосновение человека к имеющим соединение с землёй металлоконструкций зданий, технологическим аппаратам, механизмам и т.п., с одной стороны, и к металлическим корпусам электрооборудования – с другой. К таким помещениям относят кузнечные, механические, столярные производственные участки и отделения, неотапливаемые складские помещения и др. Напряжение электроинструмента и переносных электрических светильников, применяемых в помещениях с повышенной опасностью, не должно превышать 42В.

Помещениями без повышенной опасности являются все помещения, в которых отсутствуют факторы, определяющие особую и повышенную опасность помещений. Это служебные и бытовые помещения, отапливаемые склады и др.

Электроустановки вне помещений по степени опасности приравнивают к электроустановкам, эксплуатируемых в особо опасных помещениях.

Все электроустановки (трансформаторы, электрооборудование, электроприборы и т.п.) согласно Правилам устройства электроустановок (ПУЭ) по условиям электробезопасности разделяют на:

· электроустановки напряжением выше 1000В.

· электроустановки напряжением до 1000В.

· электроустановки с малым напряжением, не превышающим 42В.

7.2.Опасность прикосновения к токоведущим частям в сетях с изолированной и глухозаземленной нейтралью.

Степень поражения при прикосновении к токоведущим частям электрической сети зависит от схемы прикосновения человека, напряжения сети, режима нейтрали сети, качества изоляции токоведущих частей от земли и других факторов.

Наибольшую опасность представляет двухфазное (двухполюсное) прикосновение, при котором человек одновременно присоединяется к двум фазам электроустановки и оказывается под действием рабочего напряжения. Ток I ч, проходящий через тело человека, будет зависеть в этом случае только от напряжения сети и электрического сопротивления тела человека (рис. 7.1).

В сети постоянного тока или однофазной сети ток через тело человека, А:

I = U раб / R ч

где U раб – рабочее напряжение сети, В,

R ч – сопротивление тела человека, Ом.

В трёхфазной сети при касании двух линейных проводов:

I ч = U л / R ч = √3U ф / R ч

где U Л – линейное напряжение сети, В,

U Ф – фазное напряжение сети, В.

Такое включение человека встречается достаточно редко, чаще имеет место однофазное прикосновение. В этом случае на протекающий через человека ток оказывает влияние режим нейтрали источника тока (изолированная или глухозаземлённая), сопротивление изоляции и ёмкость фаз относительно земли.

В трёхфазной сети с изолированной нейтралью напряжением до 1000В (рис. 7.2а) при условии её малой протяжённости емкостным сопротивлением можно пренебречь, и тогда ток проходящий через человека:

I ч = 3U ф /(3R ч + r и)

Из приведённой формулы следует, что в неразветвлённых сетях небольшой протяжённости опасность поражения человека тем больше, чем ниже уровень изоляции (сопротивление изоляции проводов – r и). относительно земли.

В сетях с глухозаземлённой нейтралью (рис. 7.2б) ток, который пройдёт через человека при его прикосновении к фазе, будет:

I ч = U Ф / (R ч + R о)

В этом случае при прикосновении к одной из фаз трёхфазной четырёхпроводной сети с глухозаземлённой нейтралью человек оказывается практически под фазным напряжением.

7.3.Опаснсть напряжения прикосновения и шага.

При пробое или нарушении изоляции электроустановок (рис.7.3) их корпуса и соединённые с ними заземлители оказываются под напряжением. При прикосновении к любому корпусу электроустановки 1, 2, 3 возникает опасность поражения человека электрическим током. Ток, протекающий через корпус электроустановки и заземлитель, растекается по значительному объёму земли. В этом случае земля становится участком электрической цепи. Пространство вокруг заземлителя, где проходит растекание тока на землю, называют полем растекания.

Для выявления закономерности распределения потенциалов на поверхности земли в зоне растекания тока примем допущение что ток замыкания I з стекает в землю через полусферический заземлитель радиусом r , находящийся в однородном грунте с удельным сопротивлением ρ , Ом∙м. (Распределение потенциала на поверхности земли при растекании тока в грунте показан на рис. 7.4.).

Потенциал т.А, находящийся на расстоянии х А от заземлителя можно определить из выражения:

(7.1)

Из выражения (7.1) видно, что потенциал на поверхности земли вокруг полушарового заземлителя изменяется по закону гиперболы, уменьшаясь от максимального значения до нуля по мере удаления от заземлителя.

При попадании человека в зону растекания тока, он может оказаться под разностью потенциалов, которая существует между двумя точками земли, на которых стоит человек. Эту разность потенциалов между двумя точками цепи тока, находящимися одна от другой на расстоянии шага, на которых одновременно стоит человек, называют напряжением шага .

Напряжение шага U ш можно определить как разность потенциалов между точками А и В на поверхности земли (рис.7.3).

Напряжение шага зависит от ширины шага α, и расстояния х А от места замыкания на землю. По мере удаления от места замыкания опасность шаговых напряжений уменьшается: U ш1 › U ш2 (рис. 7.3). На расстоянии около 20м от места замыкания шаговое напряжение практически не представляет опасности. При шаге равном 0,8м вблизи места растекания тока шаговое напряжение может достигать 100 – 150В. Такое напряжение при протекании тока по пути «нога – нога» может вызвать судороги мышц ног, и человек может упасть на землю.

Для уменьшения шагового напряжения в зоне растекания тока человек должен соединить ноги вместе, и не спеша выходить из опасной зоны так, чтобы при передвижении ступня одной ноги не выходила за пределы другой.

Напряжением прикосновения называют напряжение между двумя точками цепи тока, которых одновременно касается человек, или напряжение, приложенное к телу человека.

Корпуса электроустановок 1, 2, 3, которых может коснуться человек (рис.7.3), соединённых заземляющей шиной с заземлителем, при пробое изоляции окажутся под тем же потенциалом, что и сам заземлитель- j з

Потенциал другой точки – это потенциал основания (земли) в том месте где стоит человек – j осн

В этом случае напряжение прикосновения будет:

Где – коэффициент напряжения прикосновения, учитывающей форму потенциальной кривой при полусферическом заземлителе. При заземлителях другой формы коэффициент α 1 определяют из других выражений.

Таким образом, напряжение прикосновения для человека (рис.7.3.), касающегося заземлённого корпуса электроустановки и стоящего на земле, определяется отрезком ОС и зависит от формы потенциальной кривой и расстояния х между человеком и заземлителем: чем дальше от заземлителя находится человек, тем больше U пр и наоборот.

При наибольшем расстоянии х = ∞, а практически при х ≥ 20м напряжение прикосновения имеет наибольшее значение:

U ПР =U З ;

Это наиболее опасный случай прикосновения.

При наименьшем значении х , т.е. когда человек стоит непосредственно на заземлителе U ПР =0 , и .

Это безопасный случай, при котором человек не подвергается воздействию напряжения, хотя он и находится под потенциалом заземлителя.

При других значениях х в пределах 0…20м U пр плавно возрастает от 0 до з, а от 0 до 1 (пунктирная кривая на рис. 7.3.).

7.4. Организационные мероприятия и технические средства,

обеспечивающие безопасность работ в электроустановках.

Обслуживание электроустановок, производство монтажных, ремонтных и наладочных работ требуют выполнения организационных и технических мероприятий, применения технических средств по предупреждению поражения человека электрическим током.

Работы в действующих установках по мерам безопасности разбивают на 4 категории:

При полном снятии напряжения;

При частичном снятии напряжения;

Без снятия напряжения вблизи и на токоведущих частях, находящихся под напряжением;

Без снятия напряжения вдали от токоведущих частей, находящихся под напряжением

Правилами техники безопасности определены требования к персоналу, обслуживающему электроустановки.

7.5.Защита от поражения электрическим током при прикосновении к

нетоковедущим частям электроустановок.

Для устранения опасности поражения током в случае прикосновения к корпусу электроустановки и к другим нетоковедущим металлическим частям, оказавшимся под напряжением в результате нарушения изоляции, применяют защитное заземление, зануление и защитное отключение .

Защитным заземлением называют преднамеренное электрическое соединение металлических нетоковедущих частей электроустановки, которые могут оказаться под напряжением, с заземляющим устройством.

Заземляющее устройство состоит из заземлителя и заземляющих проводников. Заземлителем является металлический проводник (электрод) или группа соединённых между собой проводников (электродов), находящихся в непосредственном соприкосновении с землёй. Заземляющим проводником называют металлический проводник, который соединяет заземляемые части электроустановки с заземлителем.

Принцип действия защитного заземления заключается в снижении до безопасных значений напряжений прикосновения . Это достигается путём уменьшения потенциала заземлённого оборудования, за счёт уменьшения сопротивления заземлителя.

При замыкании токоведущих частей на заземлённый корпус электроустановки он окажется под напряжением U З =I З R З Человек при прикосновении к корпусу попадает под напряжение. Ток протекающий через тело человека будет

Из этого выражения видно, что ток через человека можно уменьшить путём уменьшения сопротивления заземления R з и коэффициента прикосновения или увеличения общего сопротивления человека R оч .

Защитное заземление применяют в трёхфазных сетях напряжением до 1000 В с изолированной нейтралью. (рис. 7.5-а) и сетях напряжением выше 1000 В с заземлённой нейтралью. (рис. 7.5-б).

Сопротивление заземляющего устройства Rз в таких случаях не должно быть больше нормированной величины. Эта величина зависит от напряжения электроустановки, мощности источника питания и является основным показателем, характеризующим пригодность защитного заземления для данных условий.

Согласно ПУЭ и ГОСТ 12.1.030-81 « ССБТ. Электробезопасность. Защитное заземление. Зануление » в электроустановках переменного тока напряжением до 1000 В в сети с изолированной нейтралью сопротивление заземляющего устройства не должно превышать 4 Ом. Если мощность источника питания (трансформатора, генератора) не превышает 100 кВ ·А, то сопротивление заземляющего устройства может достигать 10 Ом, но не более.

В электроустановках с напряжением выше 1000 В сопротивление заземляющего устройства должно быть не более 250/I з (где I з – ток замыкания на землю). При использовании заземляющего устройства одновременно и для электроустановок напряжением до 1000 В его сопротивление R з = 125/I з . Во всех случаях сопротивление R з не должно превышать 10 Ом.

Сопротивление заземления измеряют не реже одного раза в год в периоды наименьшей проводимости:один раз летом при наибольшем просыхании почвы, один раз зимой при наибольшем промерзании почвы. Контроль сопротивления заземления проводят при помощи измерителей защитного заземления типов МС-08, М-416 и др.

7.6 Расчёт защитного заземления .

Расчёт заключается в определении числа заземляющих проводников (труб, стержней), и длины соединяющей полосы, способа размещения в грунте.

Порядок расчёта заземлителей.

1. Зная напряжение, мощность и режим нейтрали электроустановки, определяют нормируемую величину сопротивления –R з.

2. Определяют расчётное удельное сопротивление грунта .

За расчётное удельное сопротивление грунта принимают наибольшее его значение в течении года

где – удельное сопротивление грунта, полученное при измерении, Ом*м

Ψ – коэффициент, учитывающий увеличение удельного сопротивления земли в течении года для разных климатических зон. По таблице 3.11 и 3.12 [ 7 ].

3.Рассчитывают сопротивление R В вертикальных одиночных заземлителей по эмпирическим формулам табл. 3.1 , табл. 11.4.[ 4 ].

4. Определяют число вертикальных заземлителей n с учетом коэффициента использования вертикальных электродов.

Сначала принимают =1. Затем уточняют количество электродов с учетом выбранного по табл. 3.2. значения , который зависит от числа заземлителей, способа их размещения и от отношения расстояния а между заземлителями к их длине l.

5. Находят длину соединяющей вертикальные электроды полосы. При размещении электродов в ряд длина полосы l n =1.05*a(n-1)

При размещении по контуру l n =1.05*a*n

6. По расчетным и выбранным параметрам полосы определяют ее сопротивление R г по эмпирическим формулам табл. 3.1[ 7 ] , табл. 11.4.[ 4 ].

7. Определяют результирующее сопротивление R общ растеканию тока сложного заземлителя с учетом экранирования между полосами и вертикальными электродами, учитываемого коэффициентом использования горизонтального полосового электрода.

Результирующее сопротивление заземлителей не должно превышать нормируемую величину, £

Зануление .

Этот способ защиты от поражения электрическим током заключается в преднамеренном электрическом соединении металлических нетоковедущих частей электроустановок, которые могут оказаться под напряжением, с нулевым защитным проводником.

Нулевым защитным проводником называют проводник, соединяющий зануляемые части с глухозаземлённой нейтральной точкой в трёхфазных сетях, с глухозаземлённым выводом обмотки источника тока в однофазных сетях и с глухозаземлённой средней точкой обмотки источника в сетях постоянного тока.

Принципиальная схема зануления в сети трёхфазного тока показана на рис. 7.6.

Защитный эффект зануления состоит в уменьшении длительности замыкания на корпус и, следовательно, в снижении времени воздействия электрического тока на человека.

Это достигается путём подключения корпусов электроустановок к нулевому проводу. При таком соединении любое замыкание на корпус превращается в однофазное, короткое замыкание. В этом случае в цепи возникает большой ток, способный обеспечить срабатывание защиты и тем самым автоматически отключить повреждённую электроустановку от питающей сети.

Рис. 7.6 Схема зануления в трёхфазной сети.

1.Корпус электроустановки. 2. Аппараты защиты от к.з., r0 – сопротивление заземления нейтрали обмотки источника тока. r п – сопротивление повторного заземления нулевого защитного проводника. Iк – ток короткого замыкания. Iн – часть тока к.з., протекающего через нулевой защитный проводник. Iз – часть тока к.з., протекающего через землю.

Такой защитой являются: плавкие предохранители или автоматические выключатели максимального тока, магнитные пускатели со встроенной тепловой защитой и другие.

Нулевой защитный проводник соединяют с землёй с помощью повторного заземлителя r п (рис. 7.6). В этом случае с момента возникновения замыкания на корпус и до автоматического отключения электроустановки от сети, проявляется защитное свойство этого заземлителя, как при защитном заземлении, то есть заземление корпусов через нулевой проводник снижает в аварийный период их напряжение относительно земли.

Таким образом, зануление осуществляет два защитных действия – быстрое автоматическое отключение повреждённой электроустановки от питающей сети и снижение напряжения занулённых металлических нетоковедущих частей, оказавшихся под напряжением, относительно земли.

Загрузка...