domvpavlino.ru

Температурные графики низкотемпературной отопительной системы. Температурный график системы отопления: знакомимся с режимом работы ЦО

Температурный график представляет собой зависимость степени нагрева воды в системе от температуры холодного наружного воздуха. После необходимых вычислений результат представляют в виде двух чисел. Первое означает температуру воды на входе в систему теплоснабжения, а вторая на выходе.

Например, запись 90-70ᵒС означает, что при заданных климатических условиях для отопления определенного здания понадобится, чтобы на входе в трубы теплоноситель имел температуру 90ᵒС, а на выходе 70ᵒС.

Все значения представляются для температуры воздуха снаружи по наиболее холодной пятидневке. Данная расчетная температура принимается по СП «Тепловая защита зданий». Внутренняя температура для жилых помещений по нормам принимается 20ᵒС. График обеспечит правильную подачу теплоносителя в трубы отопления. Это позволит избежать переохлаждения помещений и нерационального расхода ресурсов.

Необходимость выполнения построений и расчетов

Температурный график необходимо разрабатывать для каждого населенного пункта. Он позволяет обеспечиться наиболее грамотную работу системы отопления, а именно:

  1. Привести в соответствие тепловые потери во время подачи горячей воды в дома со среднесуточной температурой наружного воздуха.
  2. Предотвратить недостаточный нагрев помещений.
  3. Обязать тепловые станции поставлять потребителям услуги, соответствующие технологическим условиям.

Такие вычисления необходимы, как для крупных отопительных станций, так и для котельных в небольших населенных пунктах. В этом случае результат расчетов и построений будет называться график котельной.

Способы регулирования температуры в системе отопления

По завершении расчетов необходимо добиться вычисленной степени нагрева теплоносителя. Достигнуть ее можно несколькими способами:

  • количественным;
  • качественным;
  • временным.

В первом случае изменяют расход воды, поступающей в отопительную сеть, во втором регулируют степень нагрева теплоносителя. Временный вариант предполагает дискретную подачу горячей жидкости в тепловую сеть.

Для центральной системы теплоснабжения наиболее характерен качественный, способ при этом объем воды, поступающий в отопительный контур, остается неизменным.

Виды графиков

В зависимости от назначения тепловой сети способы выполнения отличаются. Первый вариант - нормальный график отопления. Он представляет собой построения для сетей, работающих только на отопление помещений и регулируемых централизованно.

Повышенный график рассчитывается для тепловых сетей, обеспечивающих отопление и снабжение горячей водой. Он строится для закрытых систем и показывает суммарную нагрузку на систему подачи горячей воды.

Скорректированный график также предназначен для сетей, работающих и на отопление, и на нагрев. Здесь учитываются тепловые потери при прохождении теплоносителя по трубам до потребителя.


Составление температурного графика

Построенная прямая линия зависит от следующих значений:

  • нормируемая температура воздуха в помещении;
  • температура наружного воздуха;
  • степень нагрева теплоносителя при поступлении в систему отопления;
  • степень нагрева теплоносителя на выходе из сетей здания;
  • степень теплоотдачи отопительных приборов;
  • теплопроводность наружных стен и общие тепловые потери здания.

Чтобы выполнить грамотный расчет, необходимо вычислить разницу между температурами воды в прямой и обратной трубе Δt. Чем выше значение в прямой трубе, тем лучше теплоотдача системы отопления и выше температура внутри помещений.

Чтобы рационально и экономно расходовать теплоноситель, необходимо добиться минимально возможного значения Δt. Это можно обеспечить, например, проведением работ по дополнительному утеплению наружных конструкций дома (стен, покрытий, перекрытий над холодным подвалом или техническим подпольем).

Расчет режима отопления

В первую очередь необходимо получить все исходные данные. Нормативные значения температур наружного и внутреннего воздуха принимаются по СП «Тепловая защита зданий». Для нахождения мощности отопительных приборов и тепловых потерь потребуется воспользоваться следующими формулами.

Тепловые потери здания

Исходными данными в этом случае станут:

  • толщина наружных стен;
  • теплопроводность материала, из которого изготовлены ограждающие конструкции (в большинстве случаев указывается производителем, обозначается буквой λ);
  • площадь поверхности наружной стены;
  • климатический район строительства.

В первую очередь находят фактическое сопротивление стены теплопередаче. В упрощенном варианте можно его найти как частное толщины стены и ее теплопроводности. Если наружная конструкция состоит из нескольких слоев, по отдельности находят сопротивление каждого из них и складывают полученные значения.

Тепловые потери стен рассчитываются по формуле:

Q = F*(1/R 0)*(t внутр. воздуха -t наружн. воздуха)

Здесь Q – это тепловые потери в килокалориях, а F – площадь поверхности наружных стен. Для более точного значения необходимо учесть площадь остекления и его коэффициент теплопередачи.


Расчет поверхностной мощности батарей

Удельная (поверхностная) мощность вычисляется как частное максимальной мощности прибора в Вт и площади поверхности теплоотдачи. Формула выглядит следующим образом:

Р уд = Р max /F акт

Расчет температуры теплоносителя

На основе полученных значений подбирается температурный режим отопления и строится прямая теплоотдачи. По одной оси наносятся значения степени нагрева подаваемой в систему отопления воды, а по другой температура наружного воздуха. Все величины принимаются в градусах Цельсия. Результаты расчета сводятся в таблицу, в которой указаны узловые точки трубопровода.

Проводить вычисления по методике достаточно сложно. Для выполнения грамотного расчета лучше всего воспользоваться специальными программами.

Для каждого здания такой расчет выполняется в индивидуальном порядке управляющей компанией. Для примерного определения воды на входе в систему можно воспользоваться существующими таблицами.

  1. Для крупных поставщиков тепловой энергии используют параметры теплоносителя 150-70ᵒС, 130-70ᵒС, 115-70ᵒС.
  2. Для небольших систем на несколько многоквартирных домов применяются параметры 90-70ᵒС (до 10 этажей), 105-70ᵒС (свыше 10 этажей). Может также быть принят график 80-60ᵒС.
  3. При обустройстве автономной системы отопления для индивидуального дома достаточно контроля над степенью нагрева с помощью датчиков, график можно не строить.

Выполненные мероприятия позволяют определять параметры теплоносителя в системе в определенный момент времени. Анализируя совпадение параметров с графиком можно проверять эффективность отопительной системы. В таблице температурного графика указывается также степень нагрузки на систему отопления.

К.т.н. Петрущенков В.А., НИЛ “Промышленная теплоэнергетика”, ФГАОУ ВО «Санкт-Петербургский государственный политехнический университет Петра Великого», г. Санкт-Петербург

1. Проблема снижения проектного температурного графика регулирования систем теплоснабжения в масштабах страны

На протяжении последних десятилетий практически во всех городах РФ наблюдается очень значительный разрыв между фактическим и проектным температурными графиками регулирования систем теплоснабжения. Как известно, закрытые и открытые системы централизованного теплоснабжения в городах СССР проектировались при использовании качественного регулирования с температурным графиком регулирования сезонной нагрузки 150-70 °С . Такой температурный график широко применялся, как для ТЭЦ, так и для районных котельных. Но, уже начиная с конца 70-х годов, появились существенные отклонения температур сетевой воды в фактических графиках регулирования от их проектных значений при низких температурах наружного воздуха. В расчетных условиях по температуре наружного воздуха температура воды в подающих теплопроводах снизилась со 150 °С до 85…115 °С. Произведенное понижение температурного графика владельцами тепловых источников обычно официально оформлялось, как работа по проектному графику 150-70°С со “срезкой” при пониженной температуре 110…130°С. При более низких температурах теплоносителя предполагалась работа системы теплоснабжения по диспетчерскому графику. Расчетные обоснования такого перехода автору статьи не известны.

Переход на пониженный температурный график, например, 110-70 °С с проектного графика 150-70 °С должен повлечь за собой ряд серьезных последствий, которые диктуются балансовыми энергетическими соотношениями. В связи с уменьшением расчетной разности температур сетевой воды в 2 раза при сохранении тепловой нагрузки отопления, вентиляции необходимо обеспечить увеличение расхода сетевой воды для этих потребителей также в 2 раза. Соответствующие потери давления по сетевой воде в тепловой сети и в теплообменном оборудовании теплоисточника и тепловых пунктов при квадратичном законе сопротивления вырастут в 4 раза. Необходимое увеличение мощности сетевых насосов должно произойти в 8 раз. Очевидно, что ни пропускная способность тепловых сетей, спроектированных на график 150-70 °С, ни установленные сетевые насосы не позволят обеспечить доставку теплоносителя до потребителей с удвоенным расходом в сравнении с проектным значением.

В связи с этим совершенно ясно, что для обеспечения температурного графика 110-70 °С не на бумаге, а на деле, потребуется радикальная реконструкция как теплоисточников, так и тепловой сети с тепловыми пунктами, затраты на которую непосильны для владельцев систем теплоснабжения.

Запрет на применение для тепловых сетей графиков регулирования отпуска теплоты со “срезкой” по температурам, приведенный в п.7.11 СНиП 41-02-2003 “Тепловые сети”, никак не смог повлиять на повсеместную практику ее применения. В актуализированной редакции этого документа СП 124.13330.2012 режим со “срезкой” по температуре не упоминается вообще, то есть, прямой запрет на такой способ регулирования отсутствует. Это означает, что должны выбираться такие способы регулирования сезонной нагрузки, при которых будет решена главная задача – обеспечение нормированных температур в помещениях и нормированной температуры воды на нужды ГВС.

В утвержденный Перечень национальных стандартов и сводов правил (частей таких стандартов и сводов правил), в результате применения которых на обязательной основе обеспечивается соблюдение требований Федерального закона от 30.12.2009 № 384-ФЗ "Технический регламент о безопасности зданий и сооружений" (Постановление Правительства РФ от 26.12.2014 № 1521) вошли редакции СНиП после актуализации. Это означает, что применение “срезки” температур сегодня является вполне законным мероприятием, как с точки зрения Перечня национальных стандартов и сводов правил, так и с точки зрения актуализированной редакции профильного СНиП “Тепловые сети”.

Федеральный Закон № 190-ФЗ от 27 июля 2010 г. “О теплоснабжении”, «Правила и нормы технической эксплуатации жилищного фонда» (утверждены Постановлением Госстроя РФ от 27.09.2003 № 170), СО 153-34.20.501-2003 “Правила технической эксплуатации электрических станций и сетей Российской Федерации” также не запрещают регулирование сезонной тепловой нагрузки со “срезкой” по температуре.

В 90-е годы вескими причинами, которыми объясняли радикальное снижение проектного температурного графика, считались изношенность тепловых сетей, арматуры, компенсаторов, а также невозможность обеспечить необходимые параметры на тепловых источниках в связи с состоянием теплообменного оборудования. Несмотря на большие объемы ремонтных работ, проводимых постоянно в тепловых сетях и на тепловых источниках в последние десятилетия, эта причина остается актуальной и сегодня для значительной части практически любой системы теплоснабжения.

Следует отметить, что в технических условиях на присоединение к тепловым сетям большинства тепловых источников до сих приводится проектный температурный график 150-70 °С, или близкий к нему. При согласовании проектов центральных и индивидуальных тепловых пунктов непременным требованием владельца тепловой сети является ограничение расхода сетевой воды из подающего теплопровода тепловой сети в течение всего отопительного периода в строгом соответствии с проектным, а не реальным температурным графиком регулирования.

В настоящее время в стране в массовом порядке происходит разработка схем теплоснабжения городов и поселений, в которых также проектные графики регулирования 150-70 °С, 130-70 °С считаются не только актуальными, но и действительными на 15 лет вперед. При этом отсутствуют пояснения, как обеспечить такие графики на практике, не приводится хоть сколь-нибудь понятное обоснование возможности обеспечения присоединенной тепловой нагрузки при низких температурах наружного воздуха в условиях реального регулирования сезонной тепловой нагрузки.

Такой разрыв между декларируемыми и фактическими температурами теплоносителя тепловой сети является ненормальным и никак не связан с теорией работы систем теплоснабжения, приведенной, например, в .

В этих условиях чрезвычайно важным является анализ реального положения с гидравлическим режимом работы тепловых сетей и с микроклиматом отапливаемых помещений при расчетной температуре наружного воздуха. Фактическое положение таково, что, несмотря на значительное понижение температурного графика, при обеспечении проектного расхода сетевой воды в системах теплоснабжения городов, как правило, нет значительного понижения расчетных температур в помещениях, которые бы приводили к резонансным обвинениям владельцев тепловых источников в невыполнении своей главной задачи: обеспечении нормативных температур в помещениях. В связи с этим встают следующие естественные вопросы:

1. Чем объясняется такая совокупность фактов?

2. Можно ли не только объяснить существующее положение дел, но и обосновать, исходя из обеспечения требований современной нормативной документации, либо “срезку” температурного графика при 115°С, либо новый температурный график 115-70 (60) °С при качественном регулировании сезонной нагрузки?

Эта проблема, естественно, постоянно привлекает к себе всеобщее внимание. Поэтому появляются публикации в периодической печати, в которых даются ответы на поставленные вопросы и приводятся рекомендации по ликвидации разрыва между проектными и фактическими параметрами системы регулирования тепловой нагрузки. В отдельных городах уже проведены мероприятия по снижению температурного графика и делается попытка обобщить результаты такого перехода.

С нашей точки зрения, наиболее выпукло и ясно эта проблема обсуждается в статье Гершковича В.Ф. .

В ней отмечаются несколько чрезвычайно важных положений, являющихся, в том числе обобщением практических действий по нормализации работы систем теплоснабжения в условиях низкотемпературной “срезки”. Отмечается, что практические попытки увеличения расхода в сети с целью приведения его в соответствие с пониженным температурным графиком не привели к успеху. Скорее, они способствовали гидравлической разрегулировке тепловой сети, в результате которой расходы сетевой воды между потребителями перераспределялись непропорционально их тепловым нагрузкам.

В то же время при сохранении проектного расхода в сети и снижении температуры воды в подающей линии даже при низких температурах наружного воздуха в ряде случаев удалось обеспечить на приемлемом уровне температуру воздуха в помещениях. Этот факт автор объясняет тем, что в нагрузке отопления очень значительная часть мощности приходится на нагрев свежего воздуха, обеспечивающего нормативный воздухообмен помещений. Реальный воздухообмен в холодные дни далек от нормативного значения, так как он не может быть обеспечен только открыванием форточек и створок оконных блоков или стеклопакетов. В статье особо подчеркивается, что российские нормы воздухообмена в несколько раз превышают нормы Германии, Финляндии, Швеции, США. Отмечается, что в Киеве снижение температурного графика за счет “срезки” со 150 °С до 115 °С было реализовано и не имело отрицательных последствий. Аналогичная работа выполнена в тепловых сетях Казани и Минска.

В настоящей статье рассмотрено современное состояние российских требований нормативной документации по воздухообмену помещений. На примере модельных задач с осредненными параметрами системы теплоснабжения определено влияние разных факторов на ее поведение при температуре воды в подающей линии 115 °С в расчетных условиях по температуре наружного воздуха, в том числе:

Снижение температуры воздуха в помещениях при сохранении проектного расхода воды в сети;

Повышение расхода воды в сети с целью сохранения температуры воздуха в помещениях;

Снижение мощности системы отопления за счет уменьшения воздухообмена для проектного расхода воды в сети при обеспечении расчетной температуры воздуха в помещениях;

Оценка мощности системы отопления за счет уменьшения воздухообмена для фактически достижимого повышенного расхода воды в сети при обеспечении расчетной температуры воздуха в помещениях.

2. Исходные данные для анализа

В качестве исходных данных принято, что имеется источник теплоснабжения с доминирующей нагрузкой отопления и вентиляции, двухтрубная тепловая сеть, ЦТП и ИТП, приборы отопления, калориферы, водоразборные краны. Вид системы теплоснабжения не имеет принципиального значения. Предполагается, что проектные параметры всех звеньев системы теплоснабжения обеспечивают нормальную работу системы теплоснабжения, то есть, в помещениях всех потребителей устанавливается расчетная температура t в.р =18 °С при соблюдении температурного графика тепловой сети 150-70°С, проектном значении расхода сетевой воды, нормативном воздухообмене и качественном регулировании сезонной нагрузки. Расчетная температура наружного воздуха равна средней температуре холодной пятидневки с коэффициентом обеспеченности 0,92 на момент создания системы теплоснабжения. Коэффициент смешения элеваторных узлов определяется общепринятым температурным графиком регулирования систем отопления 95-70 °С и равен 2,2.

Следует отметить, что в актуализированной редакции СНиП “Строительная климатология” СП 131.13330.2012 для многих городов произошло повышение расчетной температуры холодной пятидневки на несколько градусов в сравнении с редакцией документа СНиП 23-01-99.

3. Расчеты режимов работы системы теплоснабжения при температуре прямой сетевой воды 115 °С

Рассматривается работа в новых условиях системы теплоснабжения, созданной на протяжении десятков лет по современным для периода строительства нормам. Проектный температурный график качественного регулирования сезонной нагрузки 150-70 °С. Считается, что в момент ввода в работу система теплоснабжения выполняла свои функции в точности.

В результате анализа системы уравнений, описывающих процессы во всех звеньях системы теплоснабжения, определяется ее поведение при максимальной температуре воды в подающей линии 115 °С при расчетной температуре наружного воздуха, коэффициентах смешения элеваторных узлов 2,2.

Одним из определяющих параметров аналитического исследования является расход сетевой воды на отопление, вентиляцию. Его величина принимается в следующих вариантах:

Проектное значение расхода в соответствии с графиком 150-70 °С и заявленной нагрузкой отопления, вентиляции;

Значение расхода, обеспечивающее расчетную температуру воздуха в помещениях в расчетных условиях по температуре наружного воздуха;

Фактическое максимально возможное значение расхода сетевой воды с учетом установленных сетевых насосов.

3.1. Снижение температуры воздуха в помещениях при сохранении присоединенных тепловых нагрузок

Определим, как изменится средняя температура в помещениях при температуре сетевой воды в подающей линии t o 1 =115 °С, проектном расходе сетевой воды на отопление (будем считать, что вся нагрузка отопительная, так как вентиляционная нагрузка такого же типа) , исходя из проектного графика 150-70 °С, при температуре наружного воздуха t н.о =-25 °С. Считаем, что на всех элеваторных узлах коэффициенты смешения u расчетные и равны

Для проектных расчетных условий эксплуатации системы теплоснабжения ( , , , ) справедлива следующая система уравнений:

где - среднее значение коэффициента теплопередачи всех приборов отопления с общей площадью теплообмена F, - средний температурный перепад между теплоносителем приборов отопления и температурой воздуха в помещениях, G o – расчетный расход сетевой воды, поступающий в элеваторные узлы, G п – расчетный расход воды, поступающий в приборы отопления, G п =(1+u)G o , с – удельная массовая изобарная теплоемкость воды, - среднее проектное значение коэффициента теплопередачи здания с учетом транспорта тепловой энергии через наружные ограждения общей площадью А и затрат тепловой энергии на нагрев нормативного расхода наружного воздуха.

При пониженной температуре сетевой воды в подающей линии t o 1 =115 °C при сохранении проектного воздухообмена происходит снижение средней температуры воздуха в помещениях до величины t в. Соответствующая система уравнений для расчетных условий по наружному воздуху будет иметь вид

, (3)

где n – показатель степени в критериальной зависимости коэффициента теплопередачи приборов отопления от среднего температурного напора, см. , табл. 9.2, с.44. Для наиболее распространенных приборов отопления в виде чугунных секционных радиаторов и стальных панельных конвекторов типа РСВ и РСГ при движении теплоносителя сверху вниз n=0,3.

Введем обозначения , , .

Из (1)-(3) следует система уравнений

,

,

решения которой имеют вид:

, (4)

(5)

. (6)

Для заданных проектных значений параметров системы теплоснабжения

,

Уравнение (5) с учетом (3) для заданной температуры прямой воды в расчетных условиях позволяет получить соотношение для определения температуры воздуха в помещениях:

Решением этого уравнения является t в =8,7°C.

Относительная тепловая мощность системы отопления равна

Следовательно, при изменении температуры прямой сетевой воды со 150 °С до 115 °С снижение средней температуры воздуха в помещениях происходит с 18 °С до 8,7 °С, тепловая мощность системы отопления падает на 21,6%.

Расчетные значения температур воды в системе отопления для принятого отклонения от температурного графика равны °С, °С.

Выполненный расчет соответствует случаю, когда расход наружного воздуха при работе системы вентиляции и инфильтрации соответствует проектным нормативным значениям вплоть до температуры наружного воздуха t н.о =-25°С. Так как в жилых зданиях, как правило, применяется естественная вентиляция, организуемая жильцами при проветривании с помощью форточек, оконных створок и систем микропроветривания стеклопакетов, то можно утверждать, что при низких температурах наружного воздуха расход холодного воздуха, поступающего в помещения, особенно после практически полной замены оконных блоков на стеклопакеты далек от нормативного значения. Поэтому температура воздуха в жилых помещениях по факту значительно выше определенного значения t в =8,7°C.

3.2 Определение мощности системы отопления за счет снижения вентиляции воздуха помещений при расчетном расходе сетевой воды

Определим, насколько нужно снизить затраты тепловой энергии на вентиляцию в рассматриваемом непроектном режиме пониженной температуры сетевой воды тепловой сети для того, чтобы средняя температура воздуха в помещениях сохранилась на нормативном уровне, то есть, t в = t в.р =18°C.

Система уравнений, описывающих процесс работы системы теплоснабжения в этих условиях, примет вид

Совместное решение (2’) с системами (1) и (3) аналогично предыдущему случаю дает следующие соотношения для температур различных потоков воды:

,

,

.

Уравнение для заданной температуры прямой воды в расчетных условиях по температуре наружного воздуха позволяет найти уменьшенную относительную нагрузку системы отопления (произведено уменьшение только мощности системы вентиляции, теплопередача через наружные ограждения в точности сохранена):

Решением этого уравнения является =0,706.

Следовательно, при изменении температуры прямой сетевой воды со 150°С до 115°С сохранение температуры воздуха в помещениях на уровне 18°С возможно за счет снижения общей тепловой мощности системы отопления до 0,706 от проектного значения за счет снижения затрат на нагрев наружного воздуха. Тепловая мощность системы отопления падает на 29,4%.

Расчетные значения температур воды для принятого отклонения от температурного графика равны °С, °С.

3.4 Увеличение расхода сетевой воды с целью обеспечения нормативной температуры воздуха в помещениях

Определим, как должен увеличиться расход сетевой воды в тепловой сети на нужды отопления при снижении температуры сетевой воды в подающей линии до t o 1 =115°С в расчетных условиях по температуре наружного воздуха t н.о =-25°С, чтобы средняя температура в воздуха в помещениях сохранилась на нормативном уровне, то есть, t в =t в.р =18°C. Вентиляция помещений соответствует проектному значению.

Система уравнений, описывающих процесс работы системы теплоснабжения, в этом случае примет вид с учетом возрастания значения расхода сетевой воды до G o у и расхода воды через системы отопления G пу =G оу (1+u) при неизменном значении коэффициента смешения элеваторных узлов u=2,2. Для наглядности воспроизведем в этой системе уравнения (1)

.

Из (1), (2”), (3’) следует система уравнений промежуточного вида

Решение приведенной системы имеет вид:

°С, t o 2 =76,5°С,

Итак, при изменении температуры прямой сетевой воды со 150 °С до 115 °С сохранение средней температуры воздуха в помещениях на уровне 18 °С возможно за счет увеличения расхода сетевой воды в подающей (обратной) линии тепловой сети на нужды систем отопления и вентиляции в 2,08 раза.

Очевидно, что такого запаса по расходу сетевой воды нет и на теплоисточниках, и на насосных станциях при их наличии. Кроме того, столь высокое увеличение расхода сетевой воды приведет к возрастанию потерь давления на трение в трубопроводах тепловой сети и в оборудовании тепловых пунктов и теплоисточника более, чем в 4 раза, что невозможно реализовать из-за отсутствия запаса сетевых насосов по напору и по мощности двигателей. Следовательно, увеличение расхода сетевой воды в 2,08 раза за счет возрастания только количества установленных сетевых насосов при сохранении их напора неизбежно приведет к неудовлетворительной работе элеваторных узлов и теплообменников большей части тепловых пунктов системы теплоснабжения.

3.5 Снижение мощности системы отопления за счет снижения вентиляции воздуха помещений в условиях повышенного расхода сетевой воды

Для некоторых теплоисточников расход сетевой воды в магистралях может быть обеспечен выше проектного значения на десятки процентов. Это связано, как с уменьшением тепловых нагрузок, имевшем место в последние десятилетия, так и с наличием определенного резерва производительности установленных сетевых насосов. Примем максимальное относительное значение расхода сетевой воды равным =1,35 от проектного значения. Учтем также возможное повышение расчетной температуры наружного воздуха по данным СП 131.13330.2012.

Определим, насколько необходимо снизить средний расход наружного воздуха на вентиляцию помещений в режиме пониженной температуры сетевой воды тепловой сети, чтобы средняя температура воздуха в помещениях сохранилась на нормативном уровне, то есть, t в =18 °C.

Для пониженной температуры сетевой воды в подающей линии t o 1 =115°C происходит снижение расхода воздуха в помещениях с целью сохранения расчетного значения t в =18°C в условиях возрастания расхода сетевой воды в 1,35 раза и повышения расчетной температуры холодной пятидневки. Соответствующая система уравнений для новых условий будет иметь вид

Относительное снижение тепловой мощности системы отопления равно

. (3’’)

Из (1), (2’’’), (3’’) следует решение

,

,

.

Для заданных значений параметров системы теплоснабжения и =1,35:

; =115 °С; =66 °С; =81,3 °С.

Учтем также повышение температуры холодной пятидневки до величины t н.о_ =-22 °C. Относительная тепловая мощность системы отопления равна

Относительное изменение суммарных коэффициентов теплопередачи равно и обусловлено снижением расхода воздуха системы вентиляции.

Для домов постройки до 2000 г. доля затрат тепловой энергии на вентиляцию помещений в центральных районах РФ составляет 40…45% , соответственно, падение расхода воздуха системы вентиляции должно произойти приблизительно в 1,4 раза, чтобы общий коэффициент теплопередачи составил 89% от проектного значения.

Для домов постройки после 2000 г. доля затрат на вентиляцию повышается до 50…55%, падение расхода воздуха системы вентиляции приблизительно в 1,3 раза сохранит расчетную температуру воздуха в помещениях.

Выше в 3.2 показано, что при проектных значениях расходов сетевой воды, температуры воздуха в помещениях и расчетной температуры наружного воздуха снижению температуры сетевой воды до 115°С соответствует относительная мощность системы отопления 0,709. Если это снижение мощности относить на уменьшение нагрева вентиляционного воздуха, то для домов постройки до 2000 г. падение расхода воздуха системы вентиляции помещений должно произойти приблизительно в 3,2 раза, для домов постройки после 2000 г. - в 2,3 раза.

Анализ данных измерений узлов учета тепловой энергии отдельных жилых домов показывает, что уменьшение потребляемой тепловой энергии в холодные дни соответствует снижению нормативного воздухообмена в 2,5 раза и выше.

4. Необходимость уточнения расчетной нагрузки отопления систем теплоснабжения

Пусть заявленная нагрузка системы отопления, созданной в последние десятилетия, равна . Эта нагрузка соответствует расчетной температуре наружного воздуха, актуальной в период строительства, принимаемой для определенности t н.о =-25 °С.

Ниже приводится оценка фактического снижения заявленной расчетной отопительной нагрузки, вызванная влиянием различных факторов.

Повышение расчетной температуры наружного воздуха до -22 °С снижает расчетную нагрузку отопления до величины (18+22)/(18+25)х100%=93%.

Кроме того, следующие факторы приводят к снижению расчетной нагрузки отопления.

1. Замена оконных блоков на стеклопакеты, которая произошла практически повсеместно. Доля трансмиссионных потерь тепловой энергии через окна составляет около 20% от общей нагрузки отопления. Замена оконных блоков на стеклопакеты привела к увеличению термического сопротивления с 0,3 до 0,4 м 2 ∙К/Вт, соответственно, тепловая мощность теплопотерь уменьшилась до величины: х100%=93,3%.

2. Для жилых зданий доля вентиляционной нагрузки в нагрузке отопления в проектах, выполненных до начала 2000-х годов, составляет около 40…45%, позже – порядка 50…55%. Примем среднюю долю вентиляционной составляющей в нагрузке отопления в размере 45% от заявляемой нагрузки отопления. Она соответствует кратности воздухообмена 1,0. По современным нормам СТО максимальная кратность воздухообмена находится на уровне 0,5, среднесуточная кратность воздухообмена для жилого здания – на уровне 0,35. Следовательно, снижение нормы воздухообмена с 1,0 до 0,35 приводит к падению отопительной нагрузки жилого здания до величины:

х100%=70,75%.

3. Вентиляционная нагрузка разными потребителями востребована случайным образом, поэтому, как и нагрузка ГВС для теплоисточника ее величина суммируется не аддитивно, а с учетом коэффициентов часовой неравномерности. Доля максимальной нагрузки вентиляции в составе заявленной нагрузки отопления составляет 0,45х0,5/1,0=0,225 (22,5%). Коэффициент часовой неравномерности оценочно примем таким же, как и для ГВС, равным K час.вент =2,4. Следовательно, общая нагрузка систем отопления для теплоисточника с учетом снижения вентиляционной максимальной нагрузки, замены оконных блоков на стеклопакеты и неодновременности востребования вентиляционной нагрузки составит величину 0,933х(0,55+0,225/2,4)х100%=60,1% от заявленной нагрузки.

4. Учет повышения расчетной температуры наружного воздуха приведет к еще большему падению расчетной нагрузки отопления.

5. Выполненные оценки показывают, что уточнение тепловой нагрузки систем отопления может привести к ее снижению на 30…40%. Такое снижение нагрузки отопления позволяет ожидать, что при сохранении проектного расхода сетевой воды расчетная температура воздуха в помещениях может быть обеспечена при реализации “срезки” температуры прямой воды при 115 °С для низких температур наружного воздуха (см. результаты 3.2). Еще с большим основанием это можно утверждать при наличии резерва в величине расхода сетевой воды на тепловом источнике системы теплоснабжения (см. результаты 3.4).

Приведенные оценки носят иллюстративный характер, но из них следует, что, исходя из современных требований нормативной документации, можно ожидать как существенного снижения суммарной расчетной нагрузки отопления существующих потребителей для теплового источника, так и технически обоснованного режима работы со “срезкой” температурного графика регулирования сезонной нагрузки на уровне 115°С. Необходимая степень реального снижения заявленной нагрузки систем отопления должна определяться при проведении натурных испытаний для потребителей конкретной тепловой магистрали. Расчетная температура обратной сетевой воды также подлежит уточнению при проведении натурных испытаний.

Следует иметь в виду, что качественное регулирование сезонной нагрузки не является устойчивым с точки зрения распределения тепловой мощности по приборам отопления для вертикальных однотрубных систем отопления. Поэтому во всех расчетах, приводимых выше, при обеспечении средней расчетной температуры воздуха в помещениях будет иметь место некоторое изменение температуры воздуха в помещениях по стояку в отопительный период при различной температуре наружного воздуха .

5. Трудности в реализации нормативного воздухообмена помещений

Рассмотрим структуру затрат тепловой мощности системы отопления жилого дома. Основными слагаемыми тепловых потерь, компенсируемых поступлением теплоты от приборов отопления, являются трансмиссионные потери через наружные ограждения, а также затраты на нагрев наружного воздуха, поступающего в помещения. Расход свежего воздуха для жилых зданий определяется требованиями санитарно-гигиенических норм, которые приведены в разделе 6.

В жилых домах система вентиляции, как правило, естественная. Норма расхода воздуха обеспечивается периодическим открытием форточек и створок окон. При этом следует иметь в виду, что с 2000 г. существенно возросли требования к теплозащитным свойствам наружных ограждений, прежде всего, стен (в 2…3 раза).

Из практики разработки энергетических паспортов жилых зданий следует, что для зданий постройки с 50-х по 80-е годы прошлого века в центральном и северо-западном регионах доля тепловой энергии на нормативную вентиляцию (инфильтрацию) составляла 40…45%, для зданий, выстроенных позднее, 45…55%.

До появления стеклопакетов регулирование воздухообмена производилось форточками и фрамугами, причем, в холодные дни частота их открывания снижалась. При широком распространении стеклопакетов обеспечение нормативного воздухообмена стало еще большей проблемой. Это связано с уменьшением в десятки раз неконтролируемой инфильтрации через щели и с тем, что частое проветривание с помощью открытия створок окон, которое только и может обеспечить нормативный воздухообмен, по факту не происходит.

На эту тему имеются публикации, см., например, . Даже при проведении периодического проветривания отсутствуют какие-либо количественные показатели, свидетельствующие о воздухообмене помещений и его сравнении с нормативным значением. В результате по факту воздухообмен далек от нормативного и возникает ряд проблем: возрастает относительная влажность, образуется конденсат на остеклении, появляется плесень, возникают стойкие запахи, повышается содержание углекислого газа в воздухе, что в совокупности привело к появлению термина “синдром больных зданий”. В отдельных случаях из-за резкого снижения воздухообмена возникает разрежение в помещениях, приводящее к опрокидыванию движения воздуха в вытяжных каналах и к поступлению холодного воздуха в помещения, перетеканию грязного воздуха из одной квартиры в другую, обмерзанию стенок каналов. Как следствие, перед строителями возникает проблема в части использования более совершенных систем вентиляции, способных обеспечить экономию затрат на отопление. В связи с этим необходимо применять системы вентиляции с регулируемым притоком и удалением воздуха, системы отопления с автоматическим регулированием подачи тепла на приборы отопления (в идеале – системы с поквартирным подключением), герметичные окна и входные двери в квартиры.

Подтверждением того, что система вентиляции жилых зданий работает с производительностью, существенно меньшей проектной, являются более низкие, в сравнении с расчетными, расходы тепловой энергии в течение отопительного периода, фиксируемые узлами учета тепловой энергии зданий.

Выполненный сотрудниками СПбГПУ расчет системы вентиляции жилого дома показал следующее . Естественная вентиляция в режиме свободного притока воздуха в среднем за год почти в 50% времени меньше расчетной (сечение вытяжного канала спроектировано по действующим нормам вентиляции многоквартирных жилых домов для условий Санкт-Петербурга на нормативный воздухообмен для наружной температуры +5 °С), в 13% времени вентиляция более чем в 2 раза меньше расчетной, и в 2% времени вентиляция отсутствует. Значительную часть отопительного периода при температуре наружного воздуха менее +5 °С вентиляция превышает нормативное значение. То есть, без специальной регулировки при низкой температуре наружного воздуха обеспечить нормативный воздухообмен невозможно, при температурах наружного воздуха более +5°С воздухообмен будет ниже нормативного, если не применять вентилятор.

6. Эволюция нормативных требований к воздухообмену помещений

Затраты на нагрев наружного воздуха определяются требованиями, приведенными в нормативной документации, которые на протяжении длительного периода строительства зданий претерпели ряд изменений.

Рассмотрим эти изменения на примере жилых многоквартирных домов.

В СНиП II-Л.1-62, часть II, раздел Л, глава 1, действовавших до апреля 1971 г., нормы воздухообмена для жилых комнат составляли 3 м 3 /ч на 1 м 2 площади комнат, для кухни с электроплитами кратность воздухообмена 3, но не менее 60 м 3 /ч, для кухни с газовой плитой - 60 м 3 /ч для двухконфорочных плит, 75 м 3 /ч – для трехконфорочных плит, 90 м 3 /ч – для четырехконфорочных плит. Расчетная температура жилых комнат +18 °С, кухни +15 °С.

В СНиП II-Л.1-71, часть II, раздел Л, глава 1, действовавших до июля 1986 г., указаны аналогичные нормы, но для кухни с электроплитами исключена кратность воздухообмена 3.

В СНиП 2.08.01-85, действовавших до января 1990 г., нормы воздухообмена для жилых комнат составляли 3 м 3 /ч на 1 м 2 площади комнат, для кухни без указания типа плит 60 м 3 /ч. Несмотря на разную нормативную температуру в жилых помещениях и на кухне, для теплотехнических расчетов предложено принимать температуру внутреннего воздуха +18°С.

В СНиП 2.08.01-89, действовавших до октября 2003 г., нормы воздухообмена такие же, как и в СНиП II-Л.1-71, часть II, раздел Л, глава 1. Сохраняется указание о температуре внутреннего воздуха +18 °С.

В действующих до сих пор СНиП 31-01-2003 появляются новые требования, приведенные в 9.2-9.4:

9.2 Расчетные параметры воздуха в помещениях жилого дома следует принимать по оптимальным нормам ГОСТ 30494. Кратность воздухообмена в помещениях следует принимать в соответствии с таблицей 9.1.

Таблица 9.1

Помещение Кратность или величина

воздухообмена, м 3 в час, не менее

в нерабочем в режиме

обслуживания

Спальная, общая, детская комнаты 0,2 1,0
Библиотека, кабинет 0,2 0,5
Кладовая, бельевая, гардеробная 0,2 0,2
Тренажерный зал, бильярдная 0,2 80 м 3
Постирочная, гладильная, сушильная 0,5 90 м 3
Кухня с электроплитой 0,5 60 м 3
Помещение с газоиспользующим оборудованием 1,0 1,0 + 100 м 3
Помещение с теплогенераторами и печами на твердом топливе 0,5 1,0 + 100 м 3
Ванная, душевая, уборная, совмещенный санузел 0,5 25 м 3
Сауна 0,5 10 м 3

на 1 человека

Машинное отделение лифта - По расчету
Автостоянка 1,0 По расчету
Мусоросборная камера 1,0 1,0

Кратность воздухообмена во всех вентилируемых помещениях, не указанных в таблице, в нерабочем режиме должна составлять не менее 0,2 объема помещения в час.

9.3 При теплотехническом расчете ограждающих конструкций жилых зданий следует принимать температуру внутреннего воздуха отапливаемых помещений не менее 20 °С.

9.4 Система отопления и вентиляции здания должна быть рассчитана на обеспечение в помещениях в течение отопительного периода температуры внутреннего воздуха в пределах оптимальных параметров, установленных ГОСТ 30494, при расчетных параметрах наружного воздуха для соответствующих районов строительства.

Отсюда видно, что, во-первых, появляются понятия режима обслуживания помещения и нерабочего режима, во время действия которых предъявляются, как правило, очень разные количественные требования к воздухообмену. Для жилых помещений (спальни, общие комнаты, детские комнаты), составляющих значительную часть площади квартиры, нормы воздухообмена при разных режимах отличаются в 5 раз. Температура воздуха в помещениях при расчете тепловых потерь проектируемого здания должна приниматься не менее 20°С. В жилых помещениях нормируется кратность воздухообмена, независимо от площади и количества жильцов.

В актуализированной редакции СП 54.13330.2011 частично воспроизведена информация СНиП 31-01-2003 в первоначальной редакции. Нормы воздухообмена для спален, общих комнат, детских комнат при общей площади квартиры на одного человека менее 20 м 2 – 3 м 3 /ч на 1 м 2 площади комнат; то же при общей площади квартиры на одного человека более 20 м 2 – 30 м 3 /ч на одного человека, но не менее 0,35 ч -1 ; для кухни с электроплитами 60 м 3 /ч, для кухни с газовой плитой 100 м 3 /ч.

Следовательно, для определения среднесуточного часового воздухообмена необходимо назначать длительность каждого из режимов, определять расход воздуха в разных помещениях в течение каждого режима и затем вычислять среднечасовую потребность квартиры в свежем воздухе, а затем и дома в целом. Многократное изменение воздухообмена в конкретной квартире в течение суток, например, при отсутствии людей в квартире в рабочее время или в выходные дни приведет к существенной неравномерности воздухообмена в течение суток. В то же время очевидно, что неодновременное действие указанных режимов в разных квартирах приведет к выравниванию нагрузки дома на нужды вентиляции и к неаддитивному сложению этой нагрузки у разных потребителей.

Можно провести аналогию с неодновременным использованием нагрузки ГВС потребителями, что обязывает вводить коэффициент часовой неравномерности при определении нагрузки ГВС для теплоисточника. Как известно, его величина для значительного количества потребителей в нормативной документации принимается равной 2,4. Аналогичное значение для вентиляционной составляющей нагрузки отопления позволяет считать, что соответствующая суммарная нагрузка также будет по факту уменьшаться, как минимум, в 2,4 раза в связи с неодновременным открытием форточек и окон в разных жилых зданиях. В общественных и производственных зданиях наблюдается аналогичная картина с тем отличием, что в нерабочее время вентиляция минимальна и определяется только инфильтрацией через неплотности в световых ограждениях и наружных дверях.

Учет тепловой инерции зданий позволяет также ориентироваться на среднесуточные значения расходов тепловой энергии на нагрев воздуха. Тем более, что в большинстве систем отопления отсутствуют термостаты, обеспечивающие поддержание температуры воздуха в помещениях. Известно также, что центральное регулирование температуры сетевой воды в подающей линии для систем теплоснабжения ведется по температуре наружного воздуха, осредняемой за период длительностью порядка 6-12 часов, а иногда и за большее время.

Следовательно, необходимо выполнить расчеты нормативного среднего воздухообмена для жилых домов разных серий с целью уточнения расчетной отопительной нагрузки зданий. Аналогичную работу необходимо проделать для общественных и производственных зданий.

Следует отметить, что указанные действующие нормативные документы распространяются на вновь проектируемые здания в части проектирования систем вентиляции помещений, но косвенно они не только могут, но и должны быть руководством к действию при уточнении тепловых нагрузок всех зданий, в том числе тех, что были выстроены по другим, приведенным выше нормам.

Разработаны и опубликованы стандарты организаций, регламентирующие нормы воздухообмена в помещениях многоквартирных жилых зданий. Например, СТО НПО АВОК 2.1-2008, СТО СРО НП СПАС-05-2013, Энергосбережение в зданиях. Расчет и проектирование систем вентиляции жилых многоквартирных зданий (Утверждено общим собранием СРО НП СПАС от 27.03.2014 г.).

В основном, в этих документах приводимые нормы соответствуют СП 54.13330.2011 при некоторых снижениях отдельных требований (например, для кухни с газовой плитой к 90(100) м 3 /ч не добавляется однократный воздухообмен, в нерабочее время в кухне такого типа допускается воздухообмен 0,5 ч -1 , тогда как в СП 54.13330.2011 – 1,0 ч -1).

В справочном Приложении В СТО СРО НП СПАС-05-2013 приводится пример расчета требуемого воздухообмена для трехкомнатной квартиры.

Исходные данные:

Общая площадь квартиры F общ = 82,29 м 2 ;

Площадь жилых помещений F жил = 43,42 м 2 ;

Площадь кухни – F кх = 12,33 м 2 ;

Площадь ванной комнаты – F вн = 2,82 м 2 ;

Площадь уборной – F уб = 1,11 м 2 ;

Высота помещений h = 2,6 м;

На кухне установлена электроплита.

Геометрические характеристики:

Объём отапливаемых помещений V =221,8 м 3 ;

Объём жилых помещений V жил = 112,9 м 3 ;

Объём кухни V кх = 32,1 м 3 ;

Объём уборной V уб = 2,9 м 3 ;

Объём ванной комнаты V вн = 7,3 м 3 .

Из приведенного расчет воздухообмена следует, что система вентиляции квартиры должна обеспечивать расчетный воздухообмен в режиме обслуживания (в режиме проектной эксплуатации) – L тр раб = 110,0 м 3 /ч; в нерабочем режиме - L тр раб = 22,6 м 3 /ч. Приведенные расходы воздуха соответствуют кратности воздухообмена 110,0/221,8=0,5 ч -1 для режима обслуживания и 22,6/221,8=0,1 ч -1 для нерабочего режима.

Приведенная в настоящем разделе информация показывает, что в существующих нормативных документах при разной заселенности квартир максимальная кратность воздухообмена находится в диапазоне 0,35…0,5 ч -1 по отапливаемому объему здания, в нерабочем режиме – на уровне 0,1 ч -1 . Это означает, что при определении мощности системы отопления, компенсирующей трансмиссионные потери тепловой энергии и затраты на подогрев наружного воздуха, а также расхода сетевой воды на нужды отопления можно ориентироваться в первом приближении на среднее за сутки значение кратности воздухообмена жилых многоквартирных домов 0,35 ч -1 .

Анализ энергетических паспортов жилых дома, разработанных в соответствии со СНиП 23-02-2003 “Тепловая защита зданий”, показывает, что при вычислении нагрузки отопления дома кратность воздухообмена соответствует уровню 0,7 ч -1 , что в 2 раза превышает рекомендуемое выше значение, не противоречащее требованиям современных СТО.

Необходимо сделать уточнение отопительной нагрузки зданий, выстроенных по типовым проектам, исходя из уменьшенного среднего значения кратности воздухообмена, что будет соответствовать существующим российским нормам и позволит приблизиться к нормам ряда стран Евросоюза и США.

7. Обоснование снижения температурного графика

В разделе 1 показано, что температурный график 150-70 °С в связи с фактической невозможностью его применения в современных условиях должен быть понижен, либо модифицирован путем обоснования “срезки” по температуре.

Приведенные выше вычисления различных режимов работы системы теплоснабжения в нерасчетных условиях позволяют предложить следующую стратегию по внесению изменений в регулирование тепловой нагрузки потребителей.

1. На переходный период ввести температурный график 150-70 °С со “срезкой” 115 °С. При таком графике расход сетевой воды в тепловой сети для нужд отопления, вентиляции сохранить на существующем уровне, соответствующем проектному значению, либо с небольшим его превышением, исходя из производительности установленных сетевых насосов. В диапазоне температур наружного воздуха, соответствующем “срезке”, считать расчетную нагрузку отопления потребителей сниженной в сравнении с проектным значением. Уменьшение отопительной нагрузки относить за счет снижения затрат тепловой энергии на вентиляцию, исходя из обеспечения необходимого среднесуточного воздухообмена жилых многоквартирных зданий по современным нормам на уровне 0,35 ч -1 .

2. Организовать работу по уточнению нагрузок систем отопления зданий путем разработки энергетических паспортов зданий жилого фонда, общественных организаций и предприятий, обратив внимание, прежде всего, на вентиляционную нагрузку зданий, входящую в нагрузку систем отопления с учетом современных нормативных требований по воздухообмену помещений. С этой целью необходимо для домов разной этажности, прежде всего, типовых серий выполнить расчет тепловых потерь, как трансмиссионных, так и на вентиляцию в соответствии с современными требованиями нормативной документации РФ.

3. На основе натурных испытаний учесть длительность характерных режимов эксплуатации систем вентиляции и неодновременность их работы у разных потребителей.

4. После уточнения тепловых нагрузок систем отопления потребителей разработать график регулирования сезонной нагрузки 150-70 °С со “срезкой” на 115°С. Возможность перехода на классический график 115-70 °С без “срезки” при качественном регулировании определить после уточнения сниженных нагрузок отопления. Температуру обратной сетевой воды уточнить при разработке пониженного графика.

5. Рекомендовать проектировщикам, застройщикам новых жилых зданий и ремонтным организациям, выполняющим капитальный ремонт старого жилого фонда, применение современных систем вентиляции, позволяющих производить регулирование воздухообмена, в том числе механических с системами рекуперации тепловой энергии загрязненного воздуха, а также введение термостатов для регулировки мощности приборов отопления.

Литература

1. Соколов Е.Я. Теплофикация и тепловые сети, 7-е изд., М.: Издательство МЭИ, 2001 г.

2. Гершкович В.Ф. “Сто пятьдесят… Норма или перебор? Размышления о параметрах теплоносителя…” // Энергосбережение в зданиях. – 2004 - № 3 (22), Киев.

3. Внутренние санитарно-технические устройства. В 3 ч. Ч.1 Отопление/ В.Н. Богословский, Б.А. Крупнов, А.Н. Сканави и др.; Под ред. И.Г. Староверова и Ю.И. Шиллера, - 4-е изд., перераб. и доп. - М.: Стройиздат, 1990. -344 с.: ил. – (Справочник проектировщика).

4. Самарин О.Д. Теплофизика. Энергосбережение. Энергоэффективность / Монография. М.: Издательство АСВ, 2011.

6. А.Д. Кривошеин, Энергосбережение в зданиях: светопрозрачные конструкции и вентиляция помещений // Архитектура и строительство Омской области, №10 (61), 2008 г.

7. Н.И. Ватин, Т.В. Самопляс “Системы вентиляции жилых помещений многоквартирных домов”, СПб, 2004 г.

Для поддержания комфортной температуры в доме в отопительный период необходимо контролировать температуру теплоносителя в трубах тепловых сетей. Работниками системы центрального теплоснабжения жилых помещений разрабатывается специальный температурный график , который зависит от погодных показателей, климатических особенностей региона. Температурный график может отличаться в разных населенных пунктах, также он может меняться при модернизации сетей отопления.

Составляется график в тепловой сети по простому принципу – чем ниже температура на улице, тем выше должна быть она у теплоносителя.

Такое соотношение является важным основанием для работы предприятий, которые обеспечивают город теплом.

Для расчета был применен показатель, в основе которого лежит среднедневная температура пяти наиболее холодных дней в году.

ВНИМАНИЕ! Соблюдение температурного режима является важным не только для поддержания тепла в многоквартирном доме. Он также позволяет сделать расход энергоресурсов в системе отопления экономичным, рациональным.

График, в котором указывается температура теплоносителя в зависимости от наружной температуры, позволяет самым оптимальным образом распределить между потребителями многоквартирного дома не только тепло, но и горячую воду.

Как регулируется тепло в системе отопления


Регулирование тепла в многоквартирном доме в отопительный период может осуществляться двумя методами:

  • Изменением расхода воды определенной постоянной температуры. Это количественный метод.
  • Изменением температуры теплоносителя при постоянном объеме расхода. Это качественный метод.

Экономным и практичным является второй вариант , при котором соблюдается режим температуры в помещении независимо от погоды. Подача достаточного тепла в многоквартирный дом будет стабильной, даже если отмечается резкий перепад температур на улице.

ВНИМАНИЕ! . Нормой считается температура 20-22 градуса в квартире. Если температурные графики соблюдаются, такая норма поддерживается весь отопительный период, независимо от погодных условий, направления ветра.

При понижении температурного показателя на улице осуществляется передача данных на котельную и автоматически увеличивается градус теплоносителя.

Конкретная таблица соотношения показателей температуры на улице и теплоносителя зависит от таких факторов, как климат, оборудования котельных, технико-экономических показателей.

Причины использования температурного графика

Основой работы каждой котельной, обслуживающей жилые, административные и другие здания, на протяжении отопительного периода является температурный график, в котором указываются нормативы показателей теплоносителя в зависимости от того, какой является фактическая наружная температура.

  • Составление графика дает возможность подготовить отопление к понижению температуры на улице.
  • Также это экономия энергоресурсов.

ВНИМАНИЕ! Для того, чтобы контролировать температуру теплоносителя и иметь право на перерасчет из-за несоблюдения теплового режима, теплодатчик должен быть установлен в систему централизованного отопления. Приборы учета должны проходить ежегодную проверку.

Современные строительные компании могут увеличивать стоимость жилья за счет использования дорогих энергосберегающих технологий при возведении многоквартирных зданий.

Несмотря на изменение строительных технологий, применение новых материалов для утепления стен и других поверхностей здания, соблюдение в системе отопления нормы температуры теплоносителя – оптимальный способ поддержать комфортные жилищные условия.

Особенности расчета внутренней температуры в разных помещениях

Правила предусматривают поддержание температуры для жилого помещения на уровне 18˚С , но существуют некоторые нюансы в этом вопросе.

  • Для угловой комнаты жилого здания теплоноситель должен обеспечить температуру 20˚С.
  • Оптимальный температурный показатель для ванной комнаты — 25˚С.
  • Важно знать, сколько градусов должно быть по нормативам в помещениях, предназначенных для детей. Установлен показатель от 18˚С до 23˚С. Если же это детский бассейн, нужно поддерживать температуру на уровне 30˚С.
  • Минимальная температура, допустимая в школах — 21˚С.
  • В заведениях, где проходят культурно-массовые мероприятия по нормативам поддерживается максимальная температура 21˚С , но показатель не должен опускаться ниже цифры 16˚С.

Для увеличения температуры в помещениях при резких похолоданиях или сильном северном ветре, работники котельной повышают градус отпуска энергии для отопительных сетей.

На теплоотдачу батарей влияет наружная температура, вид отопительной системы, направленность поступления теплоносителя, состояние коммунальных сетей, тип отопительного прибора, роль которого может выполнять как радиатор, так и конвектор.

ВНИМАНИЕ! Дельта температур между подачей на радиатор и обраткой не должна быть значительной. В противном случае будет ощущаться большая разница теплоносителя в разных комнатах и даже квартирах многоэтажного здания.

Главным фактором, все же, является погода , вот почему измерения наружного воздуха для поддержания температурного графика является первоочередной задачей.

Если на улице мороз до 20˚С, теплоноситель в радиаторе должен иметь показатель 67-77˚С, при этом норма для обратки 70˚С.

Если уличная температура нулевая, норма для теплоносителя 40-45˚С, а для обратки – 35-38˚С. Стоит отметить, что разница температур между подачей и обраткой не является большой.

Для чего потребителю нужно знать нормы подачи теплоносителя?

Оплата коммунальных услуг в графе отопление должна зависеть от того, какую температуру в квартире обеспечивает поставщик.

Таблица температурного графика, по которой должна осуществляться оптимальная работа котла, показывает, при какой температуре окружающего мира и на сколько котельная должна повышать градус энергии для источников тепла в доме.

ВАЖНО! Если параметры температурного графика не соблюдаются, потребитель может требовать перерасчет за коммунальные услуги.

Чтобы измерить показатель теплоносителя, необходимо слить немного воды с радиатора и проверить ее градус тепла. Также успешно используются тепловые датчики, приборы учета тепла , которые можно установить дома.

Датчик является обязательным оборудованием и городских котельных, и ИТП (индивидуальных тепловых пунктов).

Без таких приборов невозможно сделать работу отопительной системы экономичной и продуктивной. Измерение теплоносителя осуществляется и в системах Гвс.

Полезное видео

Просматривая статистику посещения нашего блога я заметил, что очень часто фигурируют такие поисковые фразы как, например, «какая должна быть температура теплоносителя при минус 5 на улице?» . Решил выложить старый график качественного регулирования отпуска тепла по среднесуточной температуре наружного воздуха . Хочу предупредить тех, кто на основании этих цифр попытается выяснить отношения с ЖЭУ или тепловыми сетями: отопительные графики для каждого отдельного населенного пункта разные (я писал об этом в статье ). По данному графику работают тепловые сети в Уфе (Башкирия).

Так же хочу обратить внимание на то, что регулирование происходит по среднесуточной температуре наружного воздуха, так что, если, например, на улице ночью минус 15 градусов, а днем минус 5 , то температура теплоносителя будет поддерживаться в соответствии с графиком по минус 10 о С .

Как правило, используются следующие температурные графики: 150/70 , 130/70 , 115/70 , 105/70 , 95/70 . Выбирается график в зависимости от конкретных местных условий. Домовые системы отопления работают по графикам 105/70 и 95/70. По графикам 150, 130 и 115/70 работают магистральные тепловые сети.

Рассмотрим пример как пользоваться графиком. Предположим, на улице температура «минус 10 градусов». Тепловые сети работают по температурному графику 130/70 , значит при -10 о С температура теплоносителя в подающем трубопроводе тепловой сети должна быть 85,6 градусов, в подающем трубопроводе системы отопления — 70,8 о С при графике 105/70 или 65,3 о С при графике 95/70. Температура воды после системы отопления должны быть 51,7 о С.

Как правило, значения температуры в подающем трубопроводе тепловых сетей при задании на теплоисточник округляются. Например, по графику должно быть 85,6 о С, а на ТЭЦ или котельной задается 87 градусов.


Температура
наружного
воздуха
Тнв, о С
Температура сетевой воды в подающем трубопроводе
Т1, о С
Температура воды в подающем трубопроводе системы отопления
Т3, о С
Температура воды после системы отопления
Т2, о С
150 130 115 105 95
8 53,2 50,2 46,4 43,4 41,2 35,8
7 55,7 52,3 48,2 45,0 42,7 36,8
6 58,1 54,4 50,0 46,6 44,1 37,7
5 60,5 56,5 51,8 48,2 45,5 38,7
4 62,9 58,5 53,5 49,8 46,9 39,6
3 65,3 60,5 55,3 51,4 48,3 40,6
2 67,7 62,6 57,0 52,9 49,7 41,5
1 70,0 64,5 58,8 54,5 51,0 42,4
0 72,4 66,5 60,5 56,0 52,4 43,3
-1 74,7 68,5 62,2 57,5 53,7 44,2
-2 77,0 70,4 63,8 59,0 55,0 45,0
-3 79,3 72,4 65,5 60,5 56,3 45,9
-4 81,6 74,3 67,2 62,0 57,6 46,7
-5 83,9 76,2 68,8 63,5 58,9 47,6
-6 86,2 78,1 70,4 65,0 60,2 48,4
-7 88,5 80,0 72,1 66,4 61,5 49,2
-8 90,8 81,9 73,7 67,9 62,8 50,1
-9 93,0 83,8 75,3 69,3 64,0 50,9
-10 95,3 85,6 76,9 70,8 65,3 51,7
-11 97,6 87,5 78,5 72,2 66,6 52,5
-12 99,8 89,3 80,1 73,6 67,8 53,3
-13 102,0 91,2 81,7 75,0 69,0 54,0
-14 104,3 93,0 83,3 76,4 70,3 54,8
-15 106,5 94,8 84,8 77,9 71,5 55,6
-16 108,7 96,6 86,4 79,3 72,7 56,3
-17 110,9 98,4 87,9 80,7 73,9 57,1
-18 113,1 100,2 89,5 82,0 75,1 57,9
-19 115,3 102,0 91,0 83,4 76,3 58,6
-20 117,5 103,8 92,6 84,8 77,5 59,4
-21 119,7 105,6 94,1 86,2 78,7 60,1
-22 121,9 107,4 95,6 87,6 79,9 60,8
-23 124,1 109,2 97,1 88,9 81,1 61,6
-24 126,3 110,9 98,6 90,3 82,3 62,3
-25 128,5 112,7 100,2 91,6 83,5 63,0
-26 130,6 114,4 101,7 93,0 84,6 63,7
-27 132,8 116,2 103,2 94,3 85,8 64,4
-28 135,0 117,9 104,7 95,7 87,0 65,1
-29 137,1 119,7 106,1 97,0 88,1 65,8
-30 139,3 121,4 107,6 98,4 89,3 66,5
-31 141,4 123,1 109,1 99,7 90,4 67,2
-32 143,6 124,9 110,6 101,0 94,6 67,9
-33 145,7 126,6 112,1 102,4 92,7 68,6
-34 147,9 128,3 113,5 103,7 93,9 69,3
-35 150,0 130,0 115,0 105,0 95,0 70,0

Прошу не ориентироваться на диаграмму в начале поста — она не соответствует данным из таблицы.

Расчет температурного графика

Методика расчета температурного графика описана в справочнике (Глава 4, п. 4.4, с. 153,).

Это довольно трудоемкий и долгий процесс, так как для каждой температуры наружного воздуха нужно считать несколько значений: Т 1 , Т 3 , Т 2 и т. д.

К нашей радости у нас есть компьютер и табличный процессор MS Excel. Коллега по работе поделился со мной готовой таблицей для расчета температурного графика. Её в свое время сделала его жена, которая трудилась инженером группы режимов в тепловых сетях.

Для того, чтобы Excel расчитал и построил график достаточно ввести несколько исходных значений:

  • расчетная температура в подающем трубопроводе тепловой сети Т 1
  • расчетная температура в обратном трубопроводе тепловой сети Т 2
  • расчетная температура в подающем трубопроводе системы отопления Т 3
  • Температура наружного воздуха Т н.в.
  • Температура внутри помещения Т в.п.
  • коэффициент «n » (он, как правило, не изменен и равен 0,25)
  • Минимальный и максимальный срез температурного графика Срез min, Срез max .

Все. больше ничего от вас не требуется. Результаты вычислений будут в первой таблице листа. Она выделена жирной рамкой.

Диаграммы также перестроятся под новые значения.

Также таблица считает температуру прямой сетевой воды с учетом скорости ветра.

Построить для закрытой системы теплоснабжения график центрального качественного регулирования отпуска теплоты по совмещенной нагрузке отопления и горячего водоснабжения (повышенный или скорректированный температурный график).

Принять расчетные температуры сетевой воды в подающей магистрали t 1 = 130 0 С в обратной магистрали t 2 = 70 0 С, после элеватора t 3 = 95 0 С. Расчетная температура наружного воздуха для проектирования отопления tнро = -31 0 С. Расчетная температура воздуха внутри помещения tв= 18 0 С. Расчетные тепловые потоки принять те же. Температура горячей воды в системах горячего водоснабжения tгв = 60 0 С, температура холодной воды t с = 5 0 С. Балансовый коэффициент для нагрузки горячего водоснабжения a б = 1,2. Схема включения водоподогревателей систем горячего водоснабжения двухступенчатая последовательная.

Решение. Предварительно выполним расчет и построение отопительно-бытового графика температур с температурой сетевой воды в подающем трубопроводе для точки излома =70 0 С. Значения температур сетевой воды для систем отопления t 01 ; t 02 ; t 03 определим используя расчетные зависимости (13), (14), (15) для температур наружного воздуха t н = +8; 0; -10; -23; -31 0 С

Определим, используя формулы (16),(17),(18), значения величин

Для t н = +8 0С значения t 01, t 02 ,t 03 соответственно составят:

Аналогично выполняются расчеты температур сетевой воды и для других значений t н. Используя расчетные данные и приняв минимальную температуру сетевой воды в подающем трубопроводе = 70 0 С, построим отопительно-бытовой график температур (см. рис. 4). Точке излома температурного графика будут соответствовать температуры сетевой воды = 70 0 С, = 44,9 0 С, = 55,3 0 С, температура наружного воздуха = -2,5 0 С. Полученные значения температур сетевой воды для отопительно-бытового графика сведем в таблицу 4. Далее приступаем к расчету повышенного температурного графика. Задавшись величиной недогрева Dt н = 7 0 С определим температуру нагреваемой водопроводной воды после водоподогревателя первой ступени

Определим по формуле (19) балансовую нагрузку горячего водоснабжения

По формуле (20) определим суммарный перепад температур сетевой воды d в обеих ступенях водоподогревателей

Определим по формуле (21) перепад температур сетевой воды в водоподогревателе первой ступени для диапазона температур наружного воздуха от t н = +8 0 С до t" н = -2,5 0 С

Определим для указанного диапазона температур наружного воздуха перепад температур сетевой воды во второй ступени водоподогревателя

Определим используя формулы (22) и (25) значения величин d 2 и d 1 для диапазона температур наружного воздуха t н от t" н = -2,5 0 С до t 0 = -31 0 С. Так, для t н = -10 0 С эти значения составят:



Аналогично выполним расчеты величин d 2 и d 1 для значений t н = -23 0 С и t н = –31 0 С. Температуры сетевой воды и в подающем и обратном трубопроводах для повышенного температурного графика определим по формулам (24) и (26).

Так, для t н = +8 0 С и t н = -2,5 0 С эти значения составят

для t н = -10 0 С

Аналогично выполним расчеты для значений t н = -23 0 С и -31 0 С. Полученные значения величин d 2, d 1, , сведем в таблицу 4.

Для построения графика температуры сетевой воды в обратном трубопроводе после калориферов систем вентиляции в диапазоне температур наружного воздуха t н = +8 ¸ -2,5 0 С используем формулу (32)

Определим значение t 2v для t н = +8 0 С. Предварительно зададимся значением 0 С. Определим температурные напоры в калорифере и соответственно для t н = +8 0 С и t н = -2,5 0 С

Вычислим левые и правые части уравнения

Левая часть

Правая часть

Поскольку численные значения правой и левой частей уравнения близки по значению (в пределах 3%), примем значение как окончательное.

Для систем вентиляции с рециркуляцией воздуха определим, используя формулу (34), температуру сетевой воды после калориферов t 2v для t н = t нро = -31 0 C.

Здесь значения Dt ; t ; t соответствуют t н = t v = -23 0 С. Поскольку данное выражение решается методом подбора, предварительно зададимся значением t 2v = 51 0 С. Определим значения Dt к и Dt

Поскольку левая часть выражения близка по значению правой (0,99»1), принятое предварительно значение t 2v = 51 0 С будем считать окончательным. Используя данные таблицы 4 построим отопительно-бытовой и повышенный температурные графики регулирования (см. рис. 4).

Таблица 4 - Расчет температурных графиков регулирования для закрытой системы теплоснабжения.

t Н t 10 t 20 t 30 d 1 d 2 t 1П t 2П t 2V
+8 70 44,9 55,3 5,9 8,5 75,9 36,4 17
-2,5 70 44,9 55,3 5,9 8,5 75,9 36,4 44,9
-10 90,2 5205 64,3 4,2 10,2 94,4 42,3 52,5
-23 113,7 63,5 84,4 1,8 12,5 115,6 51 63,5
-31 130 70 95 0,4 14 130,4 56 51


Рис.4. Температурные графики регулирования для закрытой системы теплоснабжения (¾ отопительно-бытовой; --- повышенный)

Построить для открытой системы теплоснабжения скорректированного (повышенного) графика центрального качественного регулирования . Принять балансовый коэффициент a б = 1,1. Принять минимальную температуру сетевой воды в подающем трубопроводе для точки излома температурного графика 0 С. Остальные исходные данные взять из предыдущей части.

Решение . Вначале строим графики температур , , , используя расчеты по формулам (13); (14); (15). Далее построим отопительно-бытовой график, точке излома которого соответствуют значения температур сетевой воды 0 С; 0 C; 0 C, и температура наружного воздуха 0 C. Далее приступаем к расчету скорректированного графика. Определим балансовую нагрузку горячего водоснабжения

Определим коэффициент отношения балансовой нагрузки на горячее водоснабжение к расчетной нагрузке на отопление

Для ряда температур наружного воздуха t н = +8 0 С; -10 0 С; -25 0 С; -31 0 С, определим относительный расход теплоты на отопление по формуле (29)`; Например для t н = -10 составит:

Затем, приняв известные из предыдущей части значения t c ; t h ; q ; Dt определим, используя формулу (30), для каждого значения t н относительные расходы сетевой воды на отопление .

Например, для t н = -10 0 С составит:

Аналогично выполним расчеты и для других значений t н.

Температуры сетевой воды в подающем t 1п и обратном t 2п трубопроводах для скорректированного графика определим по формулам (27) и (28).

Так, для t н = -10 0 С получим

Выполним расчеты t 1п и t 2п и для других значений t н. Определим используя расчетные зависимости (32) и (34) температуры сетевой воды t 2v после калориферов систем вентиляции для t н = +8 0 С и t н = -31 0 С (при наличии рециркуляции). При значении t н = +8 0 С зададимся предварительно величиной t 2v = 23 0 C.

Определим значения Dt к и Dt к

;

Поскольку численные значения левой и правой частей уравнения близки, принятое предварительно значение t 2v = 23 0 C ,будем считать окончательным. Определим также значения t 2v при t н = t 0 = -31 0 C. Зададимся предварительно значением t 2v = 47 0 C

Вычислим значения Dt к и

Полученные значения расчетных величин сведем в таблицу 3.5

Таблица 5 - Расчет повышенного (скорректированного) графика для открытой системы теплоснабжения.

t н t 10 t 20 t 30 `Q 0 `G 0 t 1п t 2п t 2v
+8 60 40,4 48,6 0,2 0,65 64 39,3 23
1,9 60 40,4 48,6 0,33 0,8 64 39,3 40,4
-10 90.2 52.5 64.3 0,59 0,95 87.8 51.8 52.5
-23 113.7 63.5 84.4 0,84 1,02 113 63,6 63.5
-31 130 70 95 1 1,04 130 70 51

Используя данные таблицы 5, построим отопительно-бытовой, а также повышенный графики температур сетевой воды.

Рис.5 Отопительно - бытовой ( ) и повышенный (----) графики температур сетевой воды для открытой системы теплоснабжения

Гидравлический расчет магистральных теплопроводов двухтрубной водяной тепловой сети закрытой системы теплоснабжения .

Расчетная схема теплосети от источника теплоты (ИТ) до кварталов города (КВ) приведена на рис.6. Для компенсации температурных деформаций предусмотреть сальниковые компенсаторы. Удельные потери давления по главной магистрали принять в размере 30-80 Па/м.




Рис.6. Расчетная схема магистральной тепловой сети.

Решение. Расчет выполним для подающего трубопровода. Примем за главную магистраль наиболее протяженную и загруженную ветвь теплосети от ИТ до КВ 4 (участки 1,2,3) и приступим к ее расчету. По таблицам гидравлического расчета, приведенным в литературе , а также в приложении №12 учебного пособия, на основании известных расходов теплоносителя, ориентируясь на удельные потери давления R в пределах от 30 до 80 Па/м, определим для участков 1, 2, 3 диаметры трубопроводов d н xS , мм, фактические удельные потери давления R , Па/м, скорости воды V , м/с.

По известным диаметрам на участках главной магистрали определим сумму коэффициентов местных сопротивлений Sx и их эквивалентные длины L э. Так, на участке 1 имеется головная задвижка (x = 0,5), тройник на проход при разделении потока (x = 1,0), Количество сальниковых компенсаторов (x = 0,3) на участке определим в зависимости от длины участка L и максимального допустимого расстояния между неподвижными опорами l . Согласно приложению №17 учебного пособия для D у = 600 мм это расстояние составляет 160 метров. Следовательно, на участке 1 длиной 400 м следует предусмотреть три сальниковых компенсатора. Сумма коэффициентов местных сопротивлений Sx на данном участке составит

Sx = 0,5+1,0 + 3 × 0,3 = 2,4

По приложению №14 учебного пособия (при К э = 0,0005м) эквивалентная длина l э для x = 1,0 равна 32,9 м. Эквивалентная длина участка L э составит

L э = l э × Sx = 32,9 ×2,4 = 79 м

L п =L + L э = 400 + 79 = 479 м

Затем определим потери давления DP на участке 1

DP = R × L п = 42 × 479 = 20118 Па

Аналогично выполним гидравлический расчет участков 2 и 3 главной магистрали (см. табл. 6 и табл.7).

Далее приступаем к расчету ответвлений. По принципу увязки потери давления DP от точки деления потоков до концевых точек (КВ) для различных ветвей системы должны быть равны между собой. Поэтому при гидравлическом расчете ответвлений необходимо стремиться к выполнению следующих условий:

DP 4+5 = DP 2+3 ; DP 6 = DP 5 ; DP 7 = DP 3

Исходя из этих условий, найдем ориентировочные удельные потери давления для ответвлений. Так, для ответвления с участками 4 и 5 получим

Коэффициент a , учитывающий долю потерь давления на местные сопротивления, определим по формуле

тогда Па/м

Ориентируясь на R = 69 Па/м определим по таблицам гидравлического расчета диаметры трубопроводов, удельные потери давления R , скорости V , потери давления DР на участках 4 и 5. Аналогично выполним расчет ответвлений 6 и 7, определив предварительно для них ориентировочные значения R .

Па/м

Па/м

Таблица 6 - Расчет эквивалентных длин местных сопротивлений

№ участка dн х S, мм L, м Вид местного сопротивления x Кол-во åx l э,м Lэ,м
1 630x10 400 1. задвижка 2. сальниковый компенсатор 0.5 0.3 1.0 1 3 1 2,4 32,9 79
2 480x10 750 1. внезапное сужение 2. сальниковый компенсатор 3. тройник на проход при разделении потока 0.5 0.3 1.0 1 6 1 3,3 23,4 77
3 426x10 600 1. внезапное сужение 2. сальниковый компенсатор 3. задвижка 0.5 0.3 0.5 1 4 1 2,2 20,2 44,4
4 426x10 500 1.тройник на ответвление 2. задвижка 3. сальниковый компенсатор 4. тройник на проход 1.5 0.5 0.3 1.0 1 1 4 1 4.2 20.2 85
5 325x8 400 1. сальниковый компенсатор 2. задвижка 0.3 0.5 4 1 1.7 14 24
6 325x8 300 1. тройник на ответвление 2. сальниковый компенсатор 3. задвижка 1.5 0.5 0.5 1 2 2 3.5 14 49
7 325x8 200 1.тройник на ответвление при разделении потока 2.задвижка 3.сальниковый компенсатор 1.5 0.5 0.3 1 2 2 3.1 14 44

Таблица 7 - Гидравлический расчет магистральных трубопроводов

№ участка G, т/ч Длина, м dнхs, мм V, м/с R, Па/м DP, Па åDP, Па
L Lп
1 2 3 1700 950 500 400 750 600 79 77 44 479 827 644 630x10 480x10 426x10 1.65 1.6 1.35 42 55 45 20118 45485 28980 94583 74465 28980
4 5 750 350 500 400 85 24 585 424 426x10 325x8 1.68 1.35 70 64 40950 27136 68086 27136
6 400 300 49 349 325x8 1.55 83 28967 28967
7 450 200 44 244 325x8 1.75 105 25620 25620

Определим невязку потерь давления на ответвлениях. Невязка на ответвлении с участками 4 и 5 составит:

Невязка на ответвлении 6 составит:

Невязка на ответвлении 7 составит.

Загрузка...