domvpavlino.ru

Как сделать аэрогель в домашних условиях. Аэрогель - необычное творение человеческих рук. Аэрогель, что это за материал

Аэроге́ли (от лат. aer — воздух и gelatus — замороженный) — класс материалов, представляющих собой гель, в котором жидкая фаза полностью замещена газообразной, вследствие чего вещество обладает рекордно низкой плотностью, всего в полтора раза превосходящей плотность воздуха, и рядом других уникальных качеств: твердостью, прозрачностью, жаропрочностью, чрезвычайно низкой теплопроводностью и отсутствием водопоглощения.

Общий вид аэрогеля

Аэрогель уникален еще и тем, что на 99.8% состоит из… воздуха!

Распространены аэрогели на основе аморфного диоксида кремния, глинозёмов, а также оксидов хрома и олова. В начале 1990-х получены первые образцы аэрогеля на основе углерода.

Аэрогель - весьма необычное творение человеческих рук, материал, удостоенный за свои уникальные качества 15 позициями в книге рекордов Гиннеса.

Аэрогели относятся к классу мезопористых материалов, в которых полости занимают не менее 50 % объёма. По структуре аэрогели представляют собой древовидную сеть из объединенных в кластеры наночастиц размером 2—5 нм и пор размерами до 100 нм.

На ощупь Аэрогели напоминают легкую, но твердую пену, что-то вроде пенопласта. При сильной нагрузке аэрогель трескается, но в целом это весьма прочный материал — образец аэрогеля может выдержать нагрузку в 2000 раз больше собственного веса. Аэрогели, в особенности кварцевые — хорошие теплоизоляторы.

Кварцевые Аэрогели наиболее распространены, им также принадлежит текущий рекорд по самой малой плотности у твердых тел — 1,9 кг/м³, это в 500 раз меньше плотности воды и всего в 1,5 раза больше плотности воздуха.

Кварцевые Аэрогели также популярны благодаря чрезвычайно низкой теплопроводности (~0,017 Вт/(м.К) в воздухе при нормальном атмосферном давлении), меньшей, чем теплопроводность воздуха (0,024 Вт/(м.К)).

Применение Аэрогеля

Аэрогели применяются в строительстве и в промышленности в качестве теплоизолирующих и теплоудерживающих материалов для теплоизоляции стальных трубопроводов,различного оборудования с высоко- и низкотемпературными процессами, зданий и других объектов. Он выдерживает температуру до 650°C, а слоя толщиной 2,5 см достаточно, чтобы защитить человеческую руку от прямого воздействия паяльной лампы.

Температура плавления кварцевого Аэрогеля составляет 1200°C.

Производство Аэрогеля

Процесс производства аэрогелей сложен и трудоемок. Сначала при помощи химических реакций гель полимеризуется. Эта операция занимает несколько суток и на выходе получается желеобразный продукт. Затем спиртом из желе удаляется вода. Полное ее удаление - залог успешности всего процесса. Следующий шаг - "суперкритическое" высыхание. Оно производится в автоклаве при высоком давлении и температуре, в процессе участвует сжиженный углекислый газ.

Первенство в изобретении аэрогеля признано за химиком Стивеном Кистлером (Steven Kistler) из Тихоокеанского колледжа (College of the Pacific) в Стоктоне, Калифорния, США, опубликовавшего в 1931 году в журнале Nature свои результаты.

Кистлер заменял жидкость в геле на метанол, а потом нагревал гель под давлением до достижения критической температуры метанола (240°C). Метанол уходил из геля, не уменьшаясь в объёме; соответственно, и гель «высыхал», почти не ужимаясь.

Когда затраты на энергию увеличиваются, возрастает потребность в ее рациональном использовании. По оценкам, 40% используемой нами энергии расходуется на поддержание тепла в домах. Более 30% этой энергии уходит сквозь стены (в строительстве данный процесс называют тепловым мостом).

На основе разработанной NASA технологии, самым высокоизолирующим из существующих материалов, торговой маркой Thermablok был создан удивительный продукт, который может найти спрос в строительной индустрии. Аэрогель, который также называют «замороженным дымом», было сложно приспособить для широкого использования из-за его хрупкой структуры. Однако запатентованный Thermablok материал содержит уникальные волокна, которые позволяют ему сгибаться и сжиматься, но при этом сохранять свои удивительные изолирующие свойства.

Всего одна полоска аэрогеля (6,25мм x 38мм), проложенная вдоль каждого профиля до обшивки стены гипсокартоном, увеличивает изоляционную способность стен более чем на 40%, как установили ученые из Ок-Риджской лаборатории при Департаменте энергетики США.

Материал Thermablok был разработан исследовательской компанией Acoustiblok(R). Марк Нотстайн, руководящий научно-исследовательской работой, заявил: «Твердые тела, разумеется, лучше проводят тепло, чем воздух или вакуум. Таким образом, в стене на деревянных или металлических профилях именно профили участвуют в передаче тепла, механически соединяя две стороны стены. Термический анализ показывает, что профили являются точками проводимости. Поскольку на 95% аэрогель Thermablok(TM)состоит из воздуха, и располагается между профилем и гипсокартоном, он предотвращает механическое соприкосновение (тепловой мост).

NASA разрабатывало технологию изоляции аэрогелем в течение нескольких лет, применяя ее в космических шаттлах, скафандрах и для других передовых нужд, включая последнюю миссию на Марс. Эта технология – потенциальный прорыв в области рационального использования энергии и строительстве энергосберегающих зданий.

Президент и основатель Acoustiblok, Лахни Джонсон вдохновлен созданием нового продукта, который является продолжением уже созданного компанией экологически чистого продукта Acoustiblok. Джонсон гордится тем, что их компания выпускает продукты, не только безвредные для окружающей среды, но и энергосберегающие. «Возможности применения материала безграничны,» - говорит он, - « в традиционном строительстве, равно как и защищает частную жизнь благодаря своим акустическим свойствам».

Преимущества материала Thermablok:

  • снижает затраты на энергию,
  • полностью подлежит повторному использованию,
  • не содержит веществ, разрушающих озоновый слой,
  • более чем на 30% изготовлен из вторичного сырья,
  • композитный материал, более чем на 95% состоящий из воздуха,
  • водоотталкивающий, не подвержен влиянию влажности, плесени или воды,
  • легко наклеивается,
  • при пожаре легко гасится водой,
  • экономичен,
  • практически ничего не весит и не требует больших затрат при транспортировке,
  • способствует звукоизоляции,
  • долговечен, поскольку не реагирует с атмосферной влагой,
  • сделан в США.

Бывают ли материалы, на 90 процентов состоящие из воздуха? И при этом твердые, тепло- и звукоизолирующие, проводящие электричество и вообще способные найти себе применение сразу в нескольких отраслях промышленности? Читайте в очередной статье из нашего цикла «Пять стихий», который N+1 делает совместно с НИТУ «МИСиС», об аэрогелях - наноматериале, заполненном воздухом.

Свойства аэрогелей

На фото ниже представлен один из самых распространенных аэрогелей - из диоксида кремния. Его еще называют «голубым дымом» за красивый опалово-голубоватый оттенок. Внешне этот аэрогель выглядит как кусок льда, но на самом деле он удивительно легкий и твердый. И совершенно сухой. На ощупь похож на пенопласт, но никак не на желе или лед. Если уронить кусочек такого «дыма» на твердую поверхность, то он запрыгает, как надувной мячик, а звук будет похож на звон стеклянной елочной игрушки.

Существуют и другие аэрогели самых разных расцветок, но такие же невесомые. Какими свойствами обладает этот материал? Вот наиболее характерные:

  • очень низкая плотность (до 160 грамм на кубический метр), то есть в шесть раз легче воздуха;

  • крайне низкая теплопроводность (до 0,016 ватт на метр на кельвин), в 10 раз ниже, чем у дерева;

  • низкая скорость распространения звука (до 70 метров в секунду);

  • чрезвычайно низкий коэффициент преломления света (до 1.0002);

  • электрическая проводимость может меняться в широких пределах в зависимости от используемого материала.

  • Большинство аэрогелей легко ломаются руками, несмотря на свою твердость. То есть они хрупкие, но твердые - некоторые выдерживают без разрушения вес, превышающий собственный в 4000 раз.


    Кирпич поддерживается эфемерным брусочком из диоксида кремния

    Впрочем, уже созданы пластичные аэрогели, которые можно гнуть и по которым можно даже стучать молотком. Как раз такие материалы планируется использовать для утепления скафандров, создаваемых в рамках будущей марсианской экспедиции. И не только скафандров - производители одежды и туристического снаряжения уже сейчас активно экспериментируют с подобными материалами.

    У аэрогелей есть еще один уникальный параметр - отношение площади полной поверхности к весу: до 3200 квадратных метров на грамм. Это означает, что если представить площадь всей поверхности в виде единой плоскости, то одного грамма этого материала хватит, чтобы покрыть половину футбольного поля! Как такое может быть? Все дело в структуре этого удивительного материала. Оказывается, что аэрогель - это почти сплошная «дырка от бублика»: сверхтонкие твердые стеночки толщиной всего в несколько нанометров (одна миллионная миллиметра) образуют сложный трехмерный лабиринт из пор и слоев. Сами поры имеют размеры от десятков до сотен нанометров и в обычных земных условиях заполнены воздухом - он заполняет 90-99 процентов объема материала. А при случае эти супергубки отлично заполняются и чем-то еще. Например, нефтью, разлитой по поверхности моря из-за аварии танкера. Кроме того, такая огромная площадь при столь малом весе замечательно подходит для создания ионисторов - суперконденсаторов с емкостью в сотни и тысячи фарад (емкость обычного конденсатора обычно измеряется микрофарадами). Возможно, именно они заменят в ближайшем будущем классические аккумуляторы. И не забудем про катализаторы, ведь в них площадь поверхности также играет решающую роль - от нее зависит эффективность воздействия катализатора на химическую реакцию.

    Что такое гель

    Итак, в основе уникальных свойств аэрогелей в первую очередь лежит их пространственная структура с крошечными открытыми порами. Материал стенок, безусловно, также имеет значение. Например, от него в значительной мере зависят механические свойства, а также электропроводность конкретного аэрогеля.

    Но как на практике можно получить такие замысловатые полые «пузырики» с твердыми стенками? Ответ кроется в названии самого материала. Именно гели являются исходным материалом для создания аэрогелей. Те самые гели, влажные и тяжелые, вроде холодца. Всем известный желатин, между прочим, также подходит для создания этого наноматериала. Кстати, а что такое гель? На ощупь мы все хорошо представляем себе эту субстанцию, но что она представляет собой на микроуровне? Оказывается, любой гель состоит из двух компонентов с разными физическими свойствами: твердой фазы в виде непрерывной пористой пространственной структуры, пронизывающей весь образец, и жидкой фазы, заполняющей поры. Причем характерный размер твердой фазы - как раз десятки нанометров, ведь твердая фаза в гелях - это обычно конгломераты наночастиц или длинных макромолекул.

    Типичный гель можно себе представить в виде поролоновой губки для мытья посуды, пропитанной жидкостью. Только поры в такой губке в сотни тысяч раз меньше, чем в той, что у нас на кухне. А что получится, если удалить всю жидкость из такой губки? Получится сухая губка с заполненными воздухом порами. Так ведь это и есть аэрогель! Выходит, что для получения этого материала достаточно просто высушить любой гель? К сожалению, нет. Практика показывает, что при испарении жидкой фазы гель начинает быстро уменьшаться в объеме и, в конце концов, мы получим маленький плотный комочек сухого вещества, а не желаемый пористый наноматериал со сверхмалой плотностью. Но почему поролоновая губка высыхает, не уменьшаясь в объеме, а ее гелевый аналог ведет себя совершенно по-другому? И как с этим бороться?

    Собственно говоря, коренным отличием нашей модели с губкой от реального геля являются размеры пор: у губки они исчисляются миллиметрами, а у гелей – десятками нанометров, то есть разница составляет примерно пять порядков. Теперь представим себе, как происходит испарение жидкости из пор: в какой-то момент жидкость перестает полностью их заполнять, и появляется граница между жидкостью и парами этой жидкости, смешанными с воздухом. Как известно, на границе жидкости всегда действуют силы поверхностного натяжения, которые приводят к взаимодействию поверхности жидкости и стенок сосуда (в нашем случае стенок пор). Если стенки хорошо смачиваются, то поверхность жидкости приобретает вогнутую форму и на стенки действует сила, тянущая их внутрь сосуда. Величина этой силы, приходящаяся на единицу длины стенки поры вдоль границы жидкости, не зависит от радиуса поры. Но при этом в геле стенки этих пор в тысячи раз тоньше, чем в нашей губке. Получается, что прилагаемая к стенкам удельная сила в геле и в губке одна и та же, а вот толщина этих стенок и, соответственно, их механическая прочность - совсем разные. Не удивительно, что поры губки выдерживают высыхание наполняющей их жидкости, а поры геля - нет. Отсюда и «скукоживание» геля при высыхании - поверхность жидкости в порах просто ломает хрупкие стенки одну за другой по мере испарения, и в результате мы получаем сухой слипшийся комок из изломанных стенок, а не ажурную конструкцию, свойственную аэрогелям.

    Как высушить гель

    Каким образом можно удалить жидкость из хрупких пор геля, не разрушив его структуру? Решение было найдено еще в 1931 году американским ученым Самуэлем Кистлером (Samuel Stephens Kistler). По некоторым сведениям, он поспорил со своим коллегой, что первым сможет провести эту деликатную операцию, и выиграл спор. Идея Кистлера состояла в том, чтобы избавиться от поверхности жидкости и связанных с ней сил натяжения, раз уж именно поверхность и является причиной всех бед. Представим себе, что мы имеем запаянную стеклянную колбу, которая наполовину заполнена жидкостью. Через прозрачные стенки мы будем видеть границу жидкости и газа над ней. Теперь начнем нагревать колбу. Жидкость внутри будет испаряться, что приведет к повышению количества и давления пара над ее поверхностью. А также, естественно, и температуры этого пара. Если продолжать нагревание достаточно долго, то в определенный момент давление и температура внутри колбы достигнут такого уровня, что плотность пара сравняется с плотностью жидкости и граница между ними просто исчезнет. А сам пар и жидкость потеряют знакомые нам характеристики (например, жидкость станет сжимаемой) и превратятся в одно неразделимое целое. Вместе с поверхностью раздела фаз исчезнут и силы поверхностного натяжения. Такие температура и давление, при которых пар перестает отличаться от жидкости, а жидкость от пара, в термодинамике называются критическими и изображаются в качестве критической точки на фазовой диаграмме:


    Для воды критическая температура и давление составляют 374 градуса Цельсия и 218 атмосфер соответственно. То есть, если мы повысим давление в камере с гелем на водной основе до 218 атмосфер и выше и затем поднимем температуру выше 374 градусов Цельсия, то какое-либо различие между паром и водой исчезнет - мы получим так называемую сверхкритическую жидкость . Внутри каждой поры геля окажется очень плотный пар или вода, что при таких условиях по сути одно и то же. Если теперь начать понижать давление до критического и ниже, сохраняя температуру выше критической, то этот плотный пар начнет постепенно выходить из геля без какой-либо конденсации. Затем можно начать понижать и температуру до тех пор, пока остатки пара не покинут гель и он не превратится в нужный нам сухой аэрогель, заполненный воздухом. Описанный процесс называется суперкритической сушкой и показан красной стрелкой.


    Так как, по этому сценарию, в процессе превращения жидкости в пар не возникает границы раздела жидкой и газообразной сред, то не возникает и сил поверхностного натяжения внутри пор и они остаются целыми в процессе сушки. Зеленая стрелка обозначает сценарий сушки, когда жидкость превращается в пар обычным порядком. В этом случае мы имеем одновременное существование двух фазовых состояний, границу раздела и, соответственно, разрушение структуры геля. Синяя стрелка показывает, что возможен и третий путь, который называется сублимационной сушкой. По этому сценарию жидкость внутри пор сначала переводится в твердое состояние путем заморозки, а затем, при пониженном давлении, твердая фаза превращается в газообразную, минуя жидкую (и связанные с ней проблемы с поверхностным натяжением). На практике такой вариант действительно позволяет получать некоторые виды аэрогелей.

    В реальной жизни прямое использование гелей на водной основе для изготовления аэрогелей очень неудобно из-за высоких критических температуры и давления воды. Поэтому до начала сушки обычно производится замещение первоначальной жидкой составляющей геля на более подходящую в смысле критической точки. Таким заместителем может выступать, например, метиловый спирт (критическая температура - 250 градусов Цельсия, критическое давление - 77 атмосфер). Именно спирты использовал Кистлер для получения аэрогелей со стенками из неорганических соединений. Для органики он рекомендовал сжиженный пропан в качестве жидкой составляющей геля при суперкритической сушке. Также находят применение ацетон и сжиженный углекислый газ. Вообще «рецептов» приготовления аэрогелей существует на настоящий день довольно много. В Интернете даже можно найти рекомендации по его изготовлению в домашних условиях.

    В России исследованием аэрогелей занимаются сразу несколько научных центров, в том числе и Центр композитных материалов при НИТУ «МИСиС». Научный сотрудник Центра, кандидат физико-математических наук Федор Сенатов дал следующий комментарий относительно технологических возможностей применения сверхкритического состояния вещества: «Интересной и полезной особенностью вещества в сверхкритическом состоянии (флюид) является то, что с помощью него можно не только формировать пористость в геле, но и модифицировать сам материал, а также удалять из него ненужные примеси. Например, можно растворить в сверхкритическом флюиде лекарственное вещество и обработать этим флюидом полимерный гель. Когда флюид проникнет в гель, то принесет с собой и лекарство, которое останется в полимере после снижения давления и ухода флюида. Таким образом, получится аэроэгель, который можно использовать в медицине для ультрафильтрации биологических жидкостей с одновременным лекарственным действием.

    Тем же способом можно удалять ненужные примеси из материала. Данный метод, получивший в литературе название сверхкритическая флюидная экстракция (СФЭ), достаточно давно используется как в лабораторных исследованиях, так и в промышленном производстве. Самым распространенным примером экстракции сверхкритическими флюидами является применение скСО 2 для декофеинизации кофе. Более чем сто тысяч тонн декофеинизированного кофе производится в мире ежегодно с применением скСО 2 ».

    Оксиды металлов . Соответствующие аэрогели широко используются для изготовления катализаторов. Обычно в их состав входит оксид алюминия с добавкой никеля. NASA использует алюминиевый аэрогель с добавкой гадолиния и тербия для регистрации космических частиц сверхвысоких энергий. Дело в том, что эти аэрогели флуоресцируют при попадании в них таких частиц, что позволяет их регистрировать. Причем мощность излучения зависит от энергии частицы. Окраска аэрогелей на основе оксида металла варьирует в широких пределах.

    Органические полимеры . Например, аэрогель из агар-агара, того самого, который добавляют во фруктовое желе. Другой органический материал - целлюлоза - используется для производства гибких аэрогелей.

    Халькогены . К этой группе относятся: сера, селен, теллур и т.д.

    Селенид кадмия . Аэрогель, изготовленный из этого материала, обладает полупроводниковыми свойствами.

    Более того, свойства аэрогелей можно дополнительно изменять с помощью введения различных модифицирующих добавок в состав твердой фазы.

    В настоящее время выделяют основные сегменты промышленности, в которых аэрогели нашли свое применение:

  • термоизоляция, шумоизоляция;

  • электроника;

  • химия;

  • медицина;

  • военные технологии;

  • энергетика;

  • сенсоры и инструменты;

  • космос;

  • потребительские товары;

  • биология;

  • фармацевтика;

  • охрана окружающей среды.

  • Себестоимость производства аэрогелей в последние годы снижается рекордными темпами, и уже сегодня любой желающий может купить относительно недорогие теплоизоляторы на основе гибкого аэрогеля, в том числе и в России. Ожидается, что объем рынка аэрогелей составит 2 миллиарда долларов к 2022 году. Широкое внедрение этого удивительного представителя наноматериалов - дело ближайшего будущего, так что не удивляйтесь, если через несколько лет вы приедете на переговоры в офис с прозрачными стенами из аэрогелевых стеклопакетов, и там вам предложат чай из воды, отфильтрованной в аэрогелевом фильтре, а звонить начальнику вы будете со смартфона, который питается от аэрогелевого суперконденсатора.

    Сергей Петров

    tvirian
    Оригинал на Blogspot.

    Я следовал инструкциям из рецепта с ТМОС (тетраметилортосиликат), который приведён на http://www.aerogel.org и успешно получил несколько кусочков аэрогеля в своей домашней мастерской.
    Два момента вызвали наибольшую сложность: 1. Достать ТМОС или ТЭОС (ключевой химический ингредиент) и 2. Соорудить сверхкритическую сушильную камеру. Детали для камеры можно купить на http://www.mcmaster.com или у любого другого поставщика промышленных фитингов для труб. Вам также потребуется запас жидкой двуокиси углерода. Я использовал 20 фунтовый (9,1 кг) цилиндр, купленный в местном магазине сварочных материалов. Большую часть стоимости составил именно сам цилиндр, расходные материалы обошлось всего в $20 или $30. Возможно, вам удастся найти поставщика, у которого можно было бы арендовать цилиндр.

    Достать ТМОС довольно сложно, поскольку поставщики химической продукции очень неохотно продают что-либо физическим лицам.

    Процесс изготовления аэрогеля:

    1. Смешайте ТМОС, метанол и гидроксид аммония. Вылейте смесь в формы и дайте гелю застыть.
    2. Погрузите гель в метанол и подождите день, пока оставшаяся в геле вода растворится в метаноле.
    3. Вылейте использованный метанол и замените его чистым. Подождите ещё день и повторите процесс. Так нужно будет сделать несколько раз в течение трёх дней.
    4. Переместите гель сверхкритическую сушильную камеру и наполните её метанолом.
    5. Добавьте жидкий диоксид углерода, откройте сливной вентиль камеры и слейте метанол. Убедитесь, что кусочки геля всё время находятся в жидком CO2.
    6. Подождите день, пока метанол растворится в жидком CO2.
    7. Откройте сливной вентиль и вылейте ещё немного метанола, растворившегося в CO2.
    8. Повторите процедуру слива метанола, но убедитесь, что гель всё время остаётся погруженным в жидкий CO2. Пару раз в течение 2-3 дней повторите слив/замену CO2.
    9. Поднимите температуру в камере, чтобы CO2 стал сверхкритическим . Медленно откройте отдушину, продолжая нагревать камеру, чтобы CO2 перешёл из сверхкритического в газообразное состояние. Медленно выпустите весь CO2 из камеры, после чего извлеките из неё готовый аэрогель.

    Раз уж было сказано об аэрогелях - вот некоторое развитие темы. Это перевод записи из блога человека, который делал силикатный аэрогель у себя в мастерской по рецепту с сайта.

    Достать ТМОС довольно сложно, поскольку поставщики химической продукции очень неохотно продают что-либо физическим лицам.

    Процесс изготовления аэрогеля:

    1. Смешайте ТМОС, метанол и гидроксид аммония. Вылейте смесь в формы и дайте гелю застыть.
    2. Погрузите гель в метанол и подождите день, пока оставшаяся в геле вода растворится в метаноле.
    3. Вылейте использованный метанол и замените его чистым. Подождите ещё день и повторите процесс. Так нужно будет сделать несколько раз в течение трёх дней.
    4. Переместите гель сверхкритическую сушильную камеру и наполните её метанолом.
    5. Добавьте жидкий диоксид углерода, откройте сливной вентиль камеры и слейте метанол. Убедитесь, что кусочки геля всё время находятся в жидком CO2.
    6. Подождите день, пока метанол растворится в жидком CO2.
    7. Откройте сливной вентиль и вылейте ещё немного метанола, растворившегося в CO2.
    8. Повторите процедуру слива метанола, но убедитесь, что гель всё время остаётся погруженным в жидкий CO2. Пару раз в течение 2-3 дней повторите слив/замену CO2.
    9. Поднимите температуру в камере, чтобы CO2 стал сверхкритическим . Медленно откройте отдушину, продолжая нагревать камеру, чтобы CO2 перешёл из сверхкритического в газообразное состояние. Медленно выпустите весь CO2 из камеры, после чего извлеките из неё готовый аэрогель.

    Из комментариев:

    jstults написал...
    Почему они так боятся продавать ТМОС отдельным людям?

    Ben Krasnow написал...
    jstults, большинство химических поставщиков не станут ничего продавать отдельным покупателям - вне зависимости от того, опасно вещество или нет. Несчастный случай или ненадлежащее использование химического препарата может привести к судебному иску и плохо сказаться на репутации поставщика, поэтому начальство многих компаний решило, что им выгоднее забыть о деньгах физических лиц, но избежать связанных с этим рисков. Плохая новость для тех, кто занимается наукой дома, но это вряд ли изменится. Лучшее, на что мы можем надеяться - это что хакерспейсы зарекомендуют себя достаточно хорошо, чтобы получить возможность заказывать химикалии для своих членов. Сейчас, подозреваю, многие хакерспейсы столкнутся с трудностями, пытаясь что-нибудь заказать у компаний вроде Sigma Aldrich.

    Will Walker написал...
    Привет, Бен -

    Отличная работа с аэрогелями и документацией. Вот несколько хитростей, которые ты мог бы попробовать применить, чтобы трещин было меньше:

    1. Доверху заполни сушилку MeOH перед тем как начнёшь нагнетать давление. Нужно убедиться, что когда ты поднимешь давление, гель будет полностью скрыт жидкостью.

    2. Вначале спускай сжатый метанол по частям (20-30% за раз) с перерывами, прежде чем заменить чистым CO2. Смешение различных растворителей создаёт внутри геля перепад давления, когда чистый MeOH пытается испариться. Именно это в действительности - главный "таинственный" источник трещин.

    3. Вопреки тому, что подсказывает интуиция, похоже, что термальное расширение, НЕ главная причина появления трещин в аэрогелях. Что и в самом деле существенно в этом случае - это скорость, с которой повышается и понижается давление. Также важно изначально замедлить замену MeOH на CO2, как это описано выше.

    Загрузка...