domvpavlino.ru

Примеры продольных и поперечных волн. Продольные механические волны могут распространяться в любых средах – твердых, жидких и газообразных

Продольные волны

Определение 1

Волна, в которой колебания происходят в направлении ее распространения. Примером продольной волны может служить звуковая волна.

Рисунок 1. Продольная волна

Механические продольные волны также называют компрессионными волнами или волнами сжатия, так как они производят сжатие при движении через среду. Поперечные механические волны также называют "Т-волны" или "волны сдвига".

Продольные волны включают в себя акустические волны (скорость частиц, распространяющихся в упругой среде) и сейсмические Р-волны (созданные в результате землетрясений и взрывов). В продольных волнах, смещение среды параллельно направлению распространения волны.

Звуковые волны

В случае продольных гармонических звуковых волн , частота и длина волны может быть описана формулой:

$y_0-$ амплитуда колебаний;\textit{}

$\omega -$ угловая частота волны;

$c-$ скорость волны.

Обычная частота $\left({\rm f}\right)$волны задается

Скорость звука распространения зависит от типа, температуры и состава среды, через которую он распространяется.

В упругой среде, гармоническая продольная волна проходит в положительном направлении вдоль оси.

Поперечные волны

Определение 2

Поперечная волна - волна, в которой направление молекул колебаний среды перпендикулярно к направлению распространения. Примером поперечных волн служит электромагнитная волна.

Рисунок 2. Продольная и поперечная волны

Рябь в пруду и волны на струне легко представить в виде поперечных волн.

Рисунок 3. Световые волны являются примером поперечной волны

Поперечные волны являются волнами, которые колеблются перпендикулярно к направлению распространения. Есть два независимых направления, в которых могут возникать волновые движения.

Определение 3

Двумерные поперечные волны демонстрируют явление, называемое поляризацией.

Электромагнитные волны ведут себя таким же образом, хотя это немного сложнее увидеть. Электромагнитные волны также являются двухмерными поперечными волнами.

Пример 1

Докажите, что уравнение плоской незатухающей волны ${\rm y=Acos}\left(\omega t-\frac{2\pi }{\lambda }\right)x+{\varphi }_0$ для волны, которая представлена на рисунке, можно записать в виде ${\rm y=Asin}\left(\frac{2\pi }{\lambda }\right)x$. Убедитесь в этом, подставив значения координаты$\ \ x$, которые раны $\frac{\lambda}{4}$; $\frac{\lambda}{2}$; $\frac{0,75}{\lambda}$.

Рисунок 4.

Уравнение $y\left(x\right)$ для плоской незатухающей волны не зависит от $t$, значит, момент времени $t$ можно выбрать произвольным. Выберем момент времени $t$ таким, что

\[\omega t=\frac{3}{2}\pi -{\varphi }_0\] \

Подставим это значение в уравнение:

\ \[=Acos\left(2\pi -\frac{\pi }{2}-\left(\frac{2\pi }{\lambda }\right)x\right)=Acos\left(2\pi -\left(\left(\frac{2\pi }{\lambda }\right)x+\frac{\pi }{2}\right)\right)=\] \[=Acos\left(\left(\frac{2\pi }{\lambda }\right)x+\frac{\pi }{2}\right)=Asin\left(\frac{2\pi }{\lambda }\right)x\] \ \ \[{\mathbf x}{\mathbf =}\frac{{\mathbf 3}}{{\mathbf 4}}{\mathbf \lambda }{\mathbf =}{\mathbf 18},{\mathbf 75}{\mathbf \ см,\ \ \ }{\mathbf y}{\mathbf =\ }{\mathbf 0},{\mathbf 2}{\cdot}{\mathbf sin}\frac{{\mathbf 3}}{{\mathbf 2}}{\mathbf \pi }{\mathbf =-}{\mathbf 0},{\mathbf 2}\]

Ответ: $Asin\left(\frac{2\pi }{\lambda }\right)x$

Механические волны

Если в каком-нибудь месте твердой, жидкой или газообразной среды возбуждены колебания частиц, то вследствие взаимодействия атомов и молекул среды колебания начинают передаваться от одной точки к другой с конечной скоростью. Процесс распространения колебаний в среде называется волной .

Механические волны бывают разных видов. Если в волне частицы среды испытывают смещение в направлении, перпендикулярном направлению распространения, то волна называется поперечной . Примером волны такого рода могут служить волны, бегущие по натянутому резиновому жгуту (рис. 2.6.1) или по струне.

Если смещение частиц среды происходит в направлении распространения волны, то волна называется продольной . Волны в упругом стержне (рис. 2.6.2) или звуковые волны в газе являются примерами таких волн.

Волны на поверхности жидкости имеют как поперечную, так и продольную компоненты.

Как в поперечных, так и в продольных волнах переноса вещества в направлении распространения волны не происходит. В процессе распространения частицы среды лишь совершают колебания около положений равновесия. Однако волны переносят энергию колебаний от одной точки среды к другой.

Характерной особенностью механических волн является то, что они распространяются в материальных средах (твердых, жидких или газообразных). Существуют волны, которые способны распространяться и в пустоте (например, световые волны). Для механических волн обязательно нужна среда, обладающая способностью запасать кинетическую и потенциальную энергию. Следовательно, среда должна обладать инертными и упругими свойствами . В реальных средах эти свойства распределены по всему объему. Так, например, любой малый элемент твердого тела обладает массой и упругостью. В простейшей одномерной модели твердое тело можно представить как совокупность шариков и пружинок (рис. 2.6.3).

Продольные механические волны могут распространяться в любых средах – твердых, жидких и газообразных.

Если в одномерной модели твердого тела один или несколько шариков сместить в направлении, перпендикулярном цепочке, то возникнет деформация сдвига . Деформированные при таком смещении пружины будут стремиться возвратить смещенные частицы в положение равновесия. При этом на ближайшие несмещенные частицы будут действовать упругие силы, стремящиеся отклонить их от положения равновесия. В результате вдоль цепочки побежит поперечная волна.

В жидкостях и газах упругая деформация сдвига не возникает. Если один слой жидкости или газа сместить на некоторое расстояние относительно соседнего слоя, то никаких касательных сил на границе между слоями не появится. Силы, действующие на границе жидкости и твердого тела, а также силы между соседними слоями жидкости всегда направлены по нормали к границе – это силы давления. То же относится к газообразной среде. Следовательно, поперечные волны не могут существовать в жидкой или газообразной средах .


Значительный интерес для практики представляют простые гармонические или синусоидальные волны . Они характеризуются амплитудой A колебания частиц, частотой f идлиной волны λ. Синусоидальные волны распространяются в однородных средах с некоторой постоянной скоростью υ.

Смещение y (x , t ) частиц среды из положения равновесия в синусоидальной волне зависит от координаты x на оси OX , вдоль которой распространяется волна, и от времени t по закону.

Различают продольные и поперечные волны. Волна называется поперечной , если частицы среды совершают колебания в направлении, перпендикулярном к направлению распространения волны (рис. 15.3). Поперечная волна распространяется, например, вдоль натянутого горизонтального резинового шнура, один из концов которого закреплен, а другой приведен в вертикальное колебательное движение.

Волна называется продольной, если частицы среды совершают колебания в направлении распространения волны (рис. 15.5).

Продольную волну можно наблюдать на длинной мягкой пружине большого диаметра. Ударив по одному из концов пружины, можно заметить, как по пружине будут распространяться последовательные сгущения и разрежения ее витков, бегущие друг за другом. На рисунке 15.6 точками показано положение витков пружины в состоянии покоя, а затем положения витков пружины через последовательные промежутки времени, равные четверти периода.

Таким образом, продольная волна в рассматриваемом случае представляет собой чередующиеся сгущения (Сг) и разрежения (Раз) витков пружины.

Энергия бегущей волны. Вектор плотности потока энергии

Упругая среда, в которой распространяется волна, обладает как кинетической энергией колебательного движения частиц так и потенциальной энергией, обусловленной деформацией среды. Можно показать, что объемная плотность энергии для плоской бегущей гармонической волны S = Acos(ω(t-) + φ 0) где r = dm/dV - плотность среды, т.е. периодически изменяется от 0 до rА2w2 за время p/w = Т/2. Среднее значение плотности энергии за промежуток времени p/w = Т/2

Для характеристики переноса энергии вводят понятие вектора плотности потока энергии - вектор Умова. Выведем выражение для него. Если через площадку DS^ , перпендикулярную к направлению распространения волны, переносится за время Dt энергия DW, то плотность потока энергии Рис. 2 где DV = DS^ uDt - объем элементарного цилиндра, выделенного в среде. Поскольку скорость переноса энергии или групповая скорость есть вектор, то и плотность потока энергии можно представить в виде вектора, Вт/м2 (18)

Этот вектор ввел профессор Московского университета Н.А. Умов в 1874 г. Среднее значение его модуля называют интенсивностью волны(19) Для гармонической волны u = v , поэтому для такой волны в формулах (17)-(19) u можно заменить на v. Интенсивность определяется плотностью потока энергий — этовектор совпадает с направлением, в котором переносится энергия и равен потоку энергии перенсимой через.

Когда говорят о интенсивности, то подразумевают физическое значение вектора —потока энергии. Интенсивность волны пропорциональна квадрату амплитуды.


Вектор Пойнтинга S можно определить через векторное произведение двух векторов:

(в системе СГС),

(в системе СИ),

где E и H — векторы напряжённости электрического и магнитного полей соответственно.

(в комплексной форме) ,

где E и H — векторы комплексной амплитуды электрического и магнитного полей соответственно.

Этот вектор по модулю равен количеству энергии, переносимой через единичную площадь, нормальную к S , в единицу времени. Своим направлением вектор определяет направление переноса энергии.

Поскольку тангенциальные к границе раздела двух сред компоненты E и H непрерывны (см. граничные условия ), то вектор S непрерывен на границе двух сред.

Стоячая волна — колебания в распределённых колебательных системах с характерным расположением чередующихся максимумов (пучностей) и минимумов (узлов)амплитуды. Практически такая волна возникает при отражениях от преград и неоднородностей в результате наложения отражённой волны на падающую. При этом крайне важное значение имеет частота, фаза и коэффициент затухания волны в месте отражения.

Примерами стоячей волны могут служить колебания струны , колебания воздуха в органной трубе; в природе — волны Шумана .

Чисто стоячая волна, строго говоря, может существовать только при отсутствии потерь в среде и полном отражении волн от границы. Обычно, кроме стоячих волн, в среде присутствуют и бегущие волны , подводящие энергию к местам её поглощения или излучения.

Для демонстрации стоячих волн в газе используют трубу Рубенса .

Пусть колеблющееся тело находится в среде, все частицы которой связаны между собой. Соприкасающиеся с ним частицы среды придут в колебательное движение, в результате чего в прилегающих к этому телу участках среды возникают периодические деформации (например, сжатие и растяжение). При деформациях в среде появляются упругие силы, которые стремятся вернуть частицы среды в первоначальное состояние равновесия.

Таким образом, периодические деформации, которые появились в каком-нибудь месте упругой среды, будут распространяться с некоторой скоростью, зависящей от свойств среды. При этом частицы среды не вовлекаются волной в поступательное движение, а совершают колебательные движения около своих положений равновесия, от одних участков среды к другим передается только упругая деформация.

Процесс распространения колебательного движения в среде называется волновым процессом или просто волной . Иногда эту волну называют упругой, потому что она обусловлена упругими свойствами среды.

В зависимости от направления колебаний частиц по отношению к направлению распространения волны, различают продольные и поперечные волны. Интерактивная демонстрация поперечной и продольной волны









Продольная волна это волна, в которой частицы среды колеблются вдоль направления распространения волны.



Продольную волну можно наблюдать на длинной мягкой пружине большого диаметра. Ударив по одному из концов пружины, можно заметить, как по пружине будут распространяться последовательные сгущения и разрежения ее витков, бегущие друг за другом. На рисунке точками показано положение витков пружины в состоянии покоя, а затем положения витков пружины через последовательные промежутки времени, равные четверти периода.


Таким образом, про дольная волна в рассматриваемом случае представляет собой чередующиеся сгущения (Сг) и разрежения (Раз) витков пружины .
Демонстрация распространения продольной волны


Поперечная волна - это волна, в которой частицы среды колеблются в направлениях, перпендикулярных к направлению распространения волны.


Рассмотрим подробнее процесс образования поперечных волн. Возьмем в качестве модели реального шнура цепочку шариков (материальных точек), связанных друг с другом упругими силами. На рисунке изображен процесс распространения поперечной волны и показаны положения шариков через последовательные промежутки времени, равные четверти периода.

В начальный момент времени (t 0 = 0) все точки находятся в состоянии равновесия. Затем вызываем возмущение, отклонив точку 1 от положения равновесия на величину А и 1-я точка начинает колебаться, 2-я точка, упруго связанная с 1-й, приходит в колебательное движение несколько позже, 3-я - еще позже и т.д. Через четверть периода колебания ( t 2 = T 4 ) распространятся до 4-й точки, 1-я точка успеет отклониться от своего положения равновесия на максимальное расстояние, равное амплитуде колебаний А. Через половину периода 1-я точка, двигаясь вниз, возвратится в положение равновесия, 4-я отклонилась от положения равновесия на расстояние, равное амплитуде колебаний А, волна распространилась до 7-й точки и т.д.

К моменту времени t 5 = T 1-я точка, совершив полное колебание, проходит через положение равновесия, а колебательное движение распространится до 13-й точки. Все точки от 1-й до 13-й расположены так, что образуют полную волну, состоящую из впадины и гребня.

Демонстрация распространения поперечной волны

Вид волны зависит от вида деформации среды. Продольные волны обусловлены деформацией сжатия - растяжения, поперечные волны - деформацией сдвига. Поэтому в газах и жидкостях, в которых упругие силы возникают только при сжатии, распространение поперечных волн невозможно. В твердых телах упругие силы возникают и при сжатии (растяжении) и при сдвиге, поэтому в них возможно распространение как продольных, так и поперечных волн.

Как показывают рисунки, и в поперечной и в продольной волнах каждая точка среды колеблется около своего положения равновесия и смещается от него не более чем на амплитуду, а состояние деформации среды передается от одной точки среды к другой. Важное отличие упругих волн в среде от любого другого упорядоченного движения ее частиц заключается в том, что распространение волн не связано с переносом вещества среды.

Следовательно, при распространении волн происходит перенос энергии упругой деформации и импульса без переноса вещества. Энергия волны в упругой среде состоит из кинетической энергии совершающих колебания частиц и из потенциальной энергии упругой деформации среды.


Загрузка...