domvpavlino.ru

Температурный коэффициент сопротивления металла. Температурный коэффициент. Тепло и холод в электронике Температурный коэффициент полупроводников

ЧТО ТАКОЕ температурный коэффициент сопротивления МЕТАЛЛА - это. Краткое ОПРЕДЕЛЕНИЕ ПОНЯТИЯ ТКС.

Ответ на вопрос: ПОНЯТИЕ ТКС, ОПРЕДЕЛЕНИЕ, ЧТО ТАКОЕ температурный коэффициент электросопротивления МЕТАЛЛА - ЭТО отношение относительного изменения электрического сопротивления МЕТАЛЛА к изменению температуры на одну единицу. В качестве единиц температуры подразумеваются градусы Кельвина (Кельвины) или градусы Цельсия. Именно такое определение понятия ТКС мы встречаем чаще всего в справочной и учебной литературе. Определение вполне понятное и, как мне кажется, достаточно ясно отражающее суть понятия.

КАК ОПРЕДЕЛЯЕТСЯ температурный коэффициент сопротивления МЕТАЛЛА - КАК РАССЧИТАТЬ, ФОРМУЛА РАСЧЕТА ТКС.

Ответ на вопрос: КАК ОПРЕДЕЛЯЕТСЯ температурный коэффициент электросопротивления МЕТАЛЛА , его величина может быть рассчитана математически, на основе данных физического эксперимента или справочных, табличных значений величины электрического сопротивления ЦИНКА при разных температурах. Для самостоятельного определения по формуле, вы можете использовать формулу расчета ТКС приведенную ниже.

α = (R1 - R2) / R1 Х (T1 - T2) .
  1. R1 - величина: электрическое сопротивление при начальной температуре.
  2. R2 - величина: электрическое сопротивление при изменившейся температуре.
  3. T1 - величина: первоначальная температура.
  4. T2 - величина: измененная температура.
  5. (R1 - R2) - величина: разница электрических сопротивлений.
  6. (T1 - T2) - величина: разница температур.
В ЧЕМ ИЗМЕРЯЕТСЯ температурный коэффициент сопротивления МЕТАЛЛА - ЕДИНИЦЫ ИЗМЕРЕНИЯ ТКС.

Ответ на вопрос: В ЧЕМ ИЗМЕРЯЕТСЯ температурный коэффициент электросопротивления МЕТАЛЛА . Общепринятыми единицами измерения величины ТКС считаются Кельвины. Точнее градусы Кельвина, взятые в минус 1 степени: К -1 . Реже, мы можем встретить другие единицы измерения ТКС. Какие? Тоже градусы, но Цельсия. На практике, в справочниках и справочных таблицах, данные в которых измеряется величина коэффициента сопротивления, для удобства выражения измерений физической величины ТКС, приводятся и указываются как отношение: 10 -3 /К. Существует универсальная формула, помогающая понять в чем измеряется величина коэффициента электросопротивления, выводимая из физического смысла понятия. И учитывающая возможность выбора любых градусов для оценки значения. Смотрите формулу для определения единиц измерения коэффициента электрического сопротивления ниже.

ТКС = 1 Ом / 1 Ом Х 1 Градус . Что в свою очередь сводится к соотношению: ТКС = Градус -1

Как мы видим из формулы, для определения величины (в общем случае) можно использовать любые градусы, например: градусы Цельсия (°C), градусы Фаренгейта (°F) или градусы Кельвина (K, устаревшее обозначение °K).

КАК ОБОЗНАЧАЕТСЯ температурный коэффициент сопротивления МЕТАЛЛА - какой буквой или символом ОБОЗНАЧАЕТСЯ ТКС.

Ответ на вопрос: КАК ОБОЗНАЧАЕТСЯ температурный коэффициент электросопротивления МЕТАЛЛА . Физическая величина ТКС чаще всего обозначается буквой греческого алфавита, как и многие другие величины (значения) в физике. Символом для обозначения коэф-та сопротивления выбрали букву альфа - α. При необходимости, можно использовать более расширенное обозначение. Например: указать рядом с α дополнительную информацию отражающую вид вещества, в нашем случае это α(metallum). Или указать при обозначении температуру, при которой действует этот коэффициент электрического сопротивления. Чаще всего нас интересует ТКС при, так называемых, НОРМАЛЬНЫХ УСЛОВИЯХ. Что подразумевает температуру 20° С. Выглядит это обозначение приблизительно так: α(20°С).

ФИЗИЧЕСКИЙ СМЫСЛ температурного коэффициента сопротивления МЕТАЛЛА.

Ответ на вопрос: ФИЗИЧЕСКИЙ СМЫСЛ температурного коэффициента электросопротивления МЕТАЛЛА . Под физическим смыслом термина понимается обычно то, что коэффициент сопротивления α отражает изменение сопротивления МЕТАЛЛА (ЕГО ДИНАМИКУ). Грубо говоря, это своеобразный градиент. Который показывает на сколько (во сколько раз, на какую величину) изменится электрическое сопротивление (а оно может как уменьшится, так и увеличиться) при изменении температуры на одну единицу (градус). Обратите внимание на то, что ТКС (α) - это динамическая характеристика электрических свойств МЕТАЛЛА.

Таблица 1. Температурный коэффициент электрического сопротивления МЕТАЛЛА.

Электрическое сопротивление проводника в общем случае зависит от материала проводника, от его длины и от поперечного сечения, или более кратко - от удельного сопротивления и от геометрических размеров проводника. Данная зависимость общеизвестна и выражается формулой:

Известен каждому и , из которого видно, что ток тем меньше, чем сопротивление выше. Таким образом, если сопротивление проводника постоянно, то с ростом приложенного напряжения ток должен бы линейно расти. Но в реальности это не так. Сопротивление проводников не постоянно.



За примерами далеко ходить не надо. Если к регулируемому блоку питания (с вольтметром и амперметром) подключить лампочку, и постепенно повышать напряжение на ней, доводя до номинала, то легко заметить, что ток растет не линейно: с приближением напряжения к номиналу лампы, ток через ее спираль растет все медленнее, причем лампочка светится все ярче.


Нет такого, что с увеличением вдвое приложенного к спирали напряжения, вдвое возрос и ток. Закон Ома как-будто не выполняется. На самом деле закон Ома выполняется, и точно, просто сопротивление нити накала лампы непостоянно, оно зависит температуры.


Вспомним, с чем связана высокая электрическая проводимость металлов. Она связана с наличием в металлах большого количества носителей заряда - составных частей тока - . Это электроны, образующиеся из валентных электронов атомов металла, которые для всего проводника являются общими, они не принадлежат каждый отдельному атому.

Под действием приложенного к проводнику электрического поля, свободные электроны проводимости переходят из хаотичного в более-менее упорядоченное движение - образуется электрический ток. Но электроны на своем пути встречают препятствия, неоднородности ионной решетки, такие как дефекты решетки, неоднородная структура, вызванные ее тепловыми колебаниями.

Электроны взаимодействуют с ионами, теряют импульс, их энергия передается ионам решетки, переходит в колебания ионов решетки, и хаос теплового движения самих электронов усиливается, от того проводник и нагревается при прохождении по нему тока.

В диэлектриках, полупроводниках, электролитах, газах, неполярных жидкостях - причина сопротивления может быть иной, однако закон Ома, очевидно, не остается постоянно линейным.

Таким образом, для металлов, рост температуры приводит к еще большему возрастанию тепловых колебаний кристаллической решетки, и сопротивление движению электронов проводимости возрастает. Это видно по эксперименту с лампой: яркость свечения увеличилась, но ток возрос слабее. То есть изменение температуры повлияло на сопротивление нити накаливания лампы.

В итоге становится ясно, что сопротивление зависит почти линейно от температуры. А если принять во внимание, что при нагревании геометрические размеры проводника меняются слабо, то и удельное электрическое сопротивление почти линейно зависит от температуры. Зависимости эти можно выразить формулами:

Обратим внимание на коэффициенты. Пусть при 0°C сопротивление проводника равно R0, тогда при температуре t°C оно примет значение R(t), и относительное изменение сопротивления будет равно α*t°C. Вот этот коэффициент пропорциональности α и называется температурным коэффициентом сопротивления . Он характеризует зависимость электрического сопротивления вещества от его текущей температуры.

Данный коэффициент численно равен относительному изменению электрического сопротивления проводника при изменении его температуры на 1К (на один градус Кельвина, что равноценно изменению температуры на один градус Цельсия).

Для металлов ТКС (температурный коэффициент сопротивления α) хоть и относительно мал, но всегда больше нуля, ведь при прохождении тока электроны тем чаще сталкиваются с ионами кристаллической решетки, чем выше температура, то есть чем выше тепловое хаотичное их движение и чем выше их скорость. Сталкиваясь в хаотичном движении с ионами решетки, электроны металла теряют энергию, что мы и видим в результате - сопротивление при нагревании проводника возрастает. Данное явление используется технически в .

Итак, температурный коэффициент сопротивления α характеризует зависимость электрического сопротивления вещества от температуры и измеряется в 1/К - кельвин в степени -1. Величину с обратным знаком называют температурным коэффициентом проводимости.

Что касается чистых полупроводников, то для них ТКС отрицателен, то есть сопротивление снижается с ростом температуры, это связано с тем, что с ростом температуры все больше электронов переходят в зону проводимости, растет при этом и концентрация дырок. Этот же механизм свойственен для жидких неполярных и твердых диэлектриков.

Полярные жидкости свое сопротивление резко уменьшают с ростом температуры из-за снижения вязкости и роста диссоциации. Это свойство применяется для защиты электронных ламп от разрушительного действия больших пусковых токов.

У сплавов, легированных полупроводников, газов и электролитов тепловая зависимость сопротивления более сложна чем у чистых металлов. Сплавы с очень малым ТКС, такие как манганин и константан, применяют в .

На результаты измерений удельного сопротивления сильно влияют усадочные раковины, газовые пузыри, включения и другие дефекты. Более того, рис. 155 показывает, что малые количества примеси, входящей в твердый раствор, также оказывают большое влияние на измеренную проводимость. Поэтому для измерений электросопротивления изготовить удовлетворительные образцы значительно труднее, чем для

дилатометричеокого исследования. Это привело к другому методу построения диаграмм состояния, в котором измеряется температурный коэффициент сопротивления .

Температурный коэффициент сопротивления

Электросопротивление при температуре

Маттиссен установил, что увеличение сопротивления металла вследствие присутствия малого количества второго компонента в твердом растворе не зависит от температуры; отсюда следует, что для такого твердого раствора значение не зависит от концентрации. Это значит, что температурный коэффициент сопротивления пропорционален т. е. проводимости, и график коэффициента а в зависимости от состава подобен графику проводимости твердого раствора. Известно много исключений из этого правила, особенно для переходных металлов, но для большинства случаев оно приблизительно верно.

Температурный коэффициент сопротивления промежуточных фаз - обычно величина того же порядка, что и для чистых металлов, даже в тех случаях, когда само соединение имеет высокое сопротивление. Есть, однако, промежуточные фазы, температурный коэффициент которых в некотором интервале температур равен нулю или отрицателен.

Правило Маттиссена применимо, строго говоря, только к твердым растворам, но известно много случаев когда оно, повидимому, верно также для двухфазных сплавов. Если нанести температурный коэффициент сопротивления в зависимости от состава, кривая обычно имеет ту же форму, что и кривая проводимости, так что фазовое превращение можно обнаружить тем же путем. Этот метод удобно применять, когда из-за хрупкости или по другим причинам нельзя изготовить образцы, пригодные для измерений проводимости.

На практике средней температурный коэффициент между двумя температурами определяется измерением электросопротивления сплава при этих температурах. Если в рассматриваемом интервале температур не происходит фазового превращения, то коэффициент определяемый по формуле:

будет иметь такое же значение, как если интервал невелик. Для закаленных сплавов в качестве температур и

Удобно взять соответственно 0° и 100° и измерения дадут области фаз при температуре закалки. Однако, если измерения проводят при высоких температурах, интервал должен быть намного меньше, чем 100°, если граница фаз может находиться где-то между температурами

Рис. 158. (см. скан) Электропроводность и температурный коэффициент электросопротивления в системе серебро-магиий (Тамман)

Большое преимущество этого метода заключается в том, что коэффициент а зависит от относительного сопротивления образца при двух температурах, и таким образом на него не влияют раковины и другие металлургические дефекты образца. Кривые проводимости и температурного коэффициента

сопротивления в некоторых системах сплавов повторяют одна другую. Рис. 158 взят из ранней работы Таммана (кривые относятся к сплавам серебра с магнием); более поздняя работа показала, что область -твердого раствора уменьшается с понижением температуры и в районе фазы существует сверхструктура. Некоторые другие границы фаз в последнее время также претерпели изменения, так что диаграмма, представленная на рис. 158, имеет лишь исторический интерес и не может быть использована для точных измерений.

Знают, наверно, все. Во всяком случае, слышали о нем. Суть этого эффекта в том, что при минус 273 °С сопротивление проводника протекающему току пропадает. Уже одного этого примера достаточно для того, чтобы понять, что существует его зависимость от температуры. А описывает специальный параметр - температурный коэффициент сопротивления.

Любой проводник препятствует протекающему через него току. Это противодействие для каждого токопроводящего материла разное, определяется оно многими факторами, присущими конкретному материалу, но речь дальше будет не об этом. Интерес в данный момент представляет его зависимость от температуры и характер этой зависимости.

Проводниками электрического тока обычно выступают металлы, у них при повышении температуры сопротивление растет, при понижении оно уменьшается. Величина такого изменения, приходящаяся на 1 °С, и называется температурный коэффициент сопротивления, или сокращённо ТКС.

Значение ТКС может быть положительным и отрицательным. Если он положительный, то при увеличении температуры растёт, если отрицательный, то уменьшается. Для большинства металлов, применяющихся как проводники электрического тока, ТКС положительный. Одним из лучших проводников является медь, температурный коэффициент сопротивления меди не то чтобы лучший, но по сравнению с другими проводниками, он меньше. Надо просто помнить, что значение ТКС определяет, каким при изменении параметров окружающей среды будет значение сопротивления. Его изменение будет тем значительнее, чем этот коэффициент больше.

Такая температурная зависимость сопротивления должна быть учтена при проектировании радиоэлектронной аппаратуры. Дело в том, что аппаратура должна работать при любых условиях окружающей среды, те же автомобили эксплуатируются от минус 40 °С до плюс 80 °С. А электроники в автомобиле много, и если не учесть влияние окружающей среды на работу элементов схемы, то можно столкнуться с ситуацией, когда электронный блок отлично работает при нормальных условиях, но отказывается работать при воздействии пониженной или повышенной температуры.

Вот эту зависимость от условий внешней среды и учитывают разработчики аппаратуры при ее проектировании, используя для этого при расчётах параметров схемы температурный коэффициент сопротивления. Существуют таблицы с данными ТКС для применяемых материалов и формулы расчетов, по которым, зная ТКС, можно определить значение сопротивления в любых условиях и учесть в режимах работы схемы возможное его изменение. Но для понимания того, ТКС, сейчас ни формулы, ни таблицы не нужны.

Надо отметить, что существуют металлы с очень маленьким значением ТКС, и именно они используются при изготовлении резисторов, параметры которых от изменений окружающей среды зависят слабо.

Температурный коэффициент сопротивления можно использовать не только для учета влияния колебаний параметров окружающей среды, но и для Для чего достаточно Зная материал, который подвергался воздействию, по таблицам можно определить, какой температуре соответствует измеренное сопротивление. В качестве такого измерителя может использоваться обычный медный провод, правда, придётся его использовать много и намотать в виде, например, катушки.

Всё вышеописанное не охватывает полностью всех вопросов использования температурного коэффициента сопротивления. Есть очень интересные возможности применения, связанные с этим коэффициентом в полупроводниках, в электролитах, но и того, что изложено, достаточно для понимания понятия ТКС.

На единицу.

Температурный коэффициент сопротивления характеризует зависимость электрического сопротивления от температуры и измеряется в кельвинах в минус первой степени (K −1).

Также часто применяется термин «температурный коэффициент проводимости» . Он равен обратному значению коэффициента сопротивления.

Температурная зависимость сопротивления металлических сплавов , газов , легированных полупроводников и электролитов носит более сложный характер.


Wikimedia Foundation . 2010 .

  • Дворец Корнякта
  • Частная жизнь Шерлока Холмса (фильм)

Смотреть что такое "Температурный коэффициент электрического сопротивления" в других словарях:

    температурный коэффициент удельного электрического сопротивления проводникового материала - Отношение производной удельного электрического сопротивления проводникового материала по температуре к этому сопротивлению. [ГОСТ 22265 76] Тематики материалы проводниковые … Справочник технического переводчика

    Температурный коэффициент удельного электрического сопротивления проводникового материала - 29. Температурный коэффициент удельного электрического сопротивления проводникового материала Отношение производной удельного электрического сопротивления проводникового материала по температуре к этому сопротивлению Источник: ГОСТ 22265 76:… …

    ГОСТ 6651-2009: Государственная система обеспечения единства измерений. Термопреобразователи сопротивления из платины, меди и никеля. Общие технические требования и методы испытаний - Терминология ГОСТ 6651 2009: Государственная система обеспечения единства измерений. Термопреобразователи сопротивления из платины, меди и никеля. Общие технические требования и методы испытаний оригинал документа: 3.18 время термической реакции … Словарь-справочник терминов нормативно-технической документации

    ГОСТ Р 8.625-2006: Государственная система обеспечения единства измерений. Термометры сопротивления из платины, меди и никеля. Общие технические требования и методы испытаний - Терминология ГОСТ Р 8.625 2006: Государственная система обеспечения единства измерений. Термометры сопротивления из платины, меди и никеля. Общие технические требования и методы испытаний оригинал документа: 3.18 время термической реакции: Время … Словарь-справочник терминов нормативно-технической документации

    Термометр сопротивления - Условное графическое обозначение термометра сопротивления Термометр сопротивления электронный прибор, предназначенный для измерения температуры и основанный на зависимости электрического сопротивления … Википедия

    Термометр сопротивления - прибор для измерения температуры (См. Температура), принцип действия которого основан на изменении электрического сопротивления чистых металлов, сплавов и полупроводников с температурой (на увеличении сопротивления R с повышением… …

    Алюминий - (Aluminum) Сплавы и производство алюминия, общая характеристика Al Физические и химические свойства алюминия, получение и нахождение в природе Al, применение алюминия Содержание Содержание Раздел 1. Название и история открытия. Раздел 2. Общая… … Энциклопедия инвестора

    Тепловой расходомер - Тепловой расходомер расходомер, в котором для измерения скорости потока жидкости или газа используется эффект переноса тепла от нагретого тела подвижной средой. Различают калориметрические и термоанемометрические расходомеры. Содержание 1… … Википедия

    Алюминий - 13 Магний ← Алюминий → Кремний B Al ↓ Ga … Википедия

    Железо - (латинское Ferrum) Fe, химический элемент VIII группы периодической системы Менделеева; атомный номер 26, атомная масса 55,847; блестящий серебристо белый металл. Элемент в природе состоит из четырёх стабильных изотопов: 54Fe (5,84%),… … Большая советская энциклопедия

Загрузка...