domvpavlino.ru

Специализированные структуры клеточной мембраны. Клеточная мембрана: определение, функции мембран, физические свойства

Среди основных функций клеточной мембраны можно выделить барьерную, транспортную, ферментативную и рецепторную . Клеточная (биологическая) мембрана (она же плазмалемма, плазматическая или цитоплазматическая мембрана) ограждает содержимое клетки или ее органоидов от окружающей среды, обеспечивает избирательную проницаемость для веществ, на ней располагаются ферменты, а также молекулы, способные «улавливать» различные химические и физические сигналы.

Такая функциональность обеспечивается особым строением клеточной мембраны .

В эволюции жизни на Земле клетка вообще могла образоваться лишь после появления мембраны, которая отделила и стабилизировала внутреннее содержимое, не дало ему распасться.

В плане поддержания гомеостаза (саморегуляции относительного постоянства внутренней среды) барьерная функция клеточной мембраны тесно связана с транспортной .

Малые молекулы способны проходить сквозь плазмалемму без всяких «помощников», по градиенту концентрации, т. е. из области с высокой концентрацией данного вещества в область с низкой концентрацией. Так, например, обстоит дело для газов, участвующих в дыхании. Кислород и углекислый газ диффундируют через клеточную мембрану в том направлении, где их концентрация в данный момент меньше.

Поскольку мембрана в основной своей части гидрофобна (из-за двойного липидного слоя), то полярные (гидрофильные) молекулы, даже малых размеров, зачастую не могут сквозь нее проникнуть. Поэтому ряд мембранных белков выполняет функцию переносчиков таких молекул, связываясь с ними и перенося через плазмалемму.

Интегральные (пронизывающие мембрану насквозь) белки часто работают по принципу открывающихся и закрывающихся каналов. Когда какая-либо молекула подходит к такому белку, то он соединяется с ней, и канал открывается. Это вещество или другое проходит через белковый канал, после чего его конформация меняется, и канал закрывается для этого вещества, но может открыться для пропускания другого. По такому принципу работает натрий-калиевый насос, закачивающий в клетку ионы калия и выкачивающий из нее ионы натрия.

Ферментативная функция клеточной мембраны в большей степени реализована на мембранах органоидов клетки. Большинство синтезируемых в клетке белков выполняют ферментативную функцию. «Усаживаясь» на мембрану в определенном порядке, они организуют конвейер, когда продукт реакции, катализируемый одним белком-ферментом, переходит к следующему. Такой «конвейер» стабилизируют поверхностные белки плазмалеммы.

Несмотря на универсальность строения всех биологических мембран (построены по единому принципу, почти одинаковы у всех организмов и у разных мембранных клеточных структур), их химический состав все же может отличаться. Бывают более жидкие и более твердые, на одних больше определенных белков, на других меньше. Кроме того, отличаются и разные стороны (внутренняя и наружная) одной и той же мембраны.

У мембраны, которая окружает клетку (цитоплазматической) на внешней стороне располагается множество углеводных цепей, прикрепленных к липидам или белкам (в результате образуются гликолипиды и гликопротеины). Многие из таких углеводов выполняют рецепторную функцию , будучи восприимчивыми к определенным гормонам, улавливая изменения физических и химических показателей в окружающей среде.

Если, например, гормон соединяется со своим клеточным рецептором, то углеводная часть молекулы-рецептора изменяет свое строение, вслед за ней изменяет строение и связанная с ней белковая часть, пронизывающая мембрану. На следующем этапе в клетке запускаются или приостанавливаются различные биохимические реакции, т. е. меняется ее метаболизм, начинается клеточный ответ на «раздражитель».

Кроме перечисленных четырех функций клеточной мембраны выделяют и другие: матричную, энергетическую, маркировачную, формирование межклеточных контактов и др. Однако их можно рассмотреть как «подфункции» уже рассмотренных.

Клеточная мембрана.

Клеточная мембрана отделяет содержимое любой клетки от внешней среды, обеспечивая ее целостность; регулирует обмен между клеткой и средой; внутриклеточные мембраны разделяют клетку на специализированные замкнутые отсеки - компартменты или органеллы, в которых поддерживаются определенные условия среды.

Строение.

Клеточная мембрана представляет собой двойной слой (бислой) молекул класса липидов (жиров), большинство из которых представляет собой так называемые сложные липиды - фосфолипиды. Молекулы липидов имеют гидрофильную («головка») и гидрофобную («хвост») часть. При образовании мембран гидрофобные участки молекул оказываются обращены внутрь, а гидрофильные - наружу. Мембраны - структуры весьма сходные у разных организмов. Толщина мембраны составляет 7-8 нм. (10−9 метра)

Гидрофильность – способность вещества смачиваться водой.
Гидрофобность – неспособность вещества смачиваться водой.

Биологическая мембрана включает и различные белки:
- интегральные (пронизывающие мембрану насквозь)
- полуинтегральные (погруженные одним концом во внешний или внутренний липидный слой)
- поверхностные (расположенные на внешней или прилегающие к внутренней сторонам мембраны).
Некоторые белки являются точками контакта клеточной мембраны с цитоскелетом внутри клетки, и клеточной стенкой (если она есть) снаружи.

Цитоскелет – клеточный каркас внутри клетки.

Функции.

1) Барьерная - обеспечивает регулируемый, избирательный, пассивный и активный обмен веществ с окружающей средой.

2) Транспортная - через мембрану происходит транспорт веществ в клетку и из клетки.матричная - обеспечивает определенное взаиморасположение и ориентацию мембранных белков, их оптимальное взаимодействие.

3) Механическая - обеспечивает автономность клетки, ее внутриклеточных структур, также соединение с другими клетками (в тканях).Большую роль в обеспечение механической функции имеет межклеточное вещество.

4) Рецепторная - некоторые белки, находящиеся в мембране, являются рецепторами (молекулами, при помощи которых клетка воспринимает те или иные сигналы).

Например, гормоны, циркулирующие в крови, действуют только на такие клетки-мишени, у которых есть соответствующие этим гормонам рецепторы. Нейромедиаторы (химические вещества, обеспечивающие проведение нервных импульсов) тоже связываются с особыми рецепторными белками клеток-мишеней.

Гормоны - биологически активные сигнальные химические вещества.

5) Ферментативная - мембранные белки нередко являются ферментами. Например, плазматические мембраны эпителиальных клеток кишечника содержат пищеварительные ферменты.

6) Осуществление генерации и проведения биопотенциалов.
С помощью мембраны в клетке поддерживается постоянная концентрация ионов: концентрация иона К+ внутри клетки значительно выше, чем снаружи, а концентрация Na+ значительно ниже, что очень важно, так как это обеспечивает поддержание разности потенциалов на мембране и генерацию нервного импульса.

Нервный импульс волна возбуждения, передающаяся по нервному волокну.

7) Маркировка клетки - на мембране есть антигены, действующие как маркеры - «ярлыки», позволяющие опознать клетку. Это гликопротеины (то есть белки с присоединенными к ним разветвленными олигосахаридными боковыми цепями), играющие роль «антенн». Из-за бесчисленного множества конфигурации боковых цепей возможно сделать для каждого типа клеток свой особый маркер. С помощью маркеров клетки могут распознавать другие клетки и действовать согласованно с ними, например, при формировании органов и тканей. Это же позволяет иммунной системе распознавать чужеродные антигены.

Особенности проницаемости.

Клеточные мембраны обладают избирательной проницаемостью: через них медленно проникают разными способами:

  • Глюкоза – основной источник энергии.
  • Аминокислоты - строительные элементы, из которых состоят все белки организма.
  • Жирные кислоты – структурная, энергетическая и др. функции.
  • Глицерол – аставляет организм удерживать воду и уменьшает выработку мочи.
  • Ионы – ферменты для реакций.
Причем сами мембраны в известной мере активно регулируют этот процесс - одни вещества пропускают, а другие нет. Существует четыре основных механизма для поступления веществ в клетку или вывода их из клетки наружу:

Пассивные механизмы проницаемости:

1) Диффузия.

Вариантом этого механизма является облегчённая диффузия, при которой веществу помогает пройти через мембрану какая-либо специфическая молекула. У этой молекулы может быть канал, пропускающий вещества только одного типа.

Диффузия- процесс взаимного проникновения молекул одного вещества между молекулами другого.

Осмос процесс односторонней диффузии через полупроницаемую мембрану молекул растворителя в сторону бо́льшей концентрации растворённого вещества.

Мембрана, окружающая нормальную клетку крови, проницаема лишь для молекул воды, кислорода, некоторых из растворенных в крови питательных веществ и продуктов клеточной жизнедеятельности

Активные механизмы проницаемости:

1) Активный транспорт.

Активный транспорт перенос вещества из области низкой концентрации в область высокой.

Активный транспорт требует затрат энергии, так как происходит из области низкой концентрации в область высокую. На мембране существуют специальные белки-насосы, которые активно вкачивают в клетку ионы калия (K+) и выкачивают из неё ионы натрия (Na+), в качестве энергии служат АТФ.

АТФ универсальный источник энергии для всех биохимических процессов. .(подробнее позже)

2) Эндоцитоз.

Частицы, по какой-либо причине не способные пересечь клеточную мембрану, но необходимые для клетки, могут проникнуть сквозь мембрану путем эндоцитоза.

Эндоцитоз процесс захвата внешнего материала клеткой.

Избирательная проницаемость мембраны при пассивном транспорте обусловлена специальными каналами - интегральными белками. Они пронизывают мембрану насквозь, образовывая своего рода проход. Для элементов K, Na и Cl есть свои каналы. Относительно градиента концентрации молекулы этих элементов движутся в клетку и из неё. При раздражении каналы натриевых ионов раскрываются, и происходит резкое поступление в клетку ионов натрия. При этом происходит дисбаланс мембранного потенциала. После чего мембранный потенциал восстанавливается. Каналы калия всегда открыты, через них в клетку медленно попадают ионы калия.

Строение мембраны

Проницаемость

Активный транспорт

Осмос

Эндоцитоз

Все живые организмы в зависимости от строения клетки делят на три группы (см. Рис. 1):

1. Прокариоты (безъядерные)

2. Эукариоты (ядерные)

3. Вирусы (неклеточные)

Рис. 1. Живые организмы

На этом уроке мы начнем изучать строение клеток эукариотических организмов, к которым относятся растения, грибы и животные. Их клетки наиболее крупные и более сложно устроены по сравнению с клетками прокариот.

Как известно, клетки способны к самостоятельной деятельности. Они могут обмениваться веществом и энергией с окружающей средой, а также расти и размножаться, поэтому внутреннее строение клетки очень сложное и в первую очередь зависит от той функции, которую клетка выполняет в многоклеточном организме.

Принципы построения всех клеток одинаковые. В каждой эукариотической клетке можно выделить следующие основные части (см. Рис. 2):

1. Наружная мембрана, которая отделяет содержимое клетки от внешней среды.

2. Цитоплазма с органеллами.

Рис. 2. Основные части эукариотической клетки

Термин «мембрана» был предложен около ста лет назад для обозначения границ клетки, но с развитием электронной микроскопии стало ясно, что клеточная мембрана входит в состав структурных элементов клетки.

В 1959 году Дж. Д. Робертсон сформулировал гипотезу о строении элементарной мембраны, согласно которой клеточные мембраны животных и растений построены по одному и тому же типу.

В 1972 году Сингером и Николсоном была предложена , которая в настоящее время является общепризнанной. Согласно этой модели основой любой мембраны является двойной слой фосфолипидов.

У фосфолипидов (соединений, содержащих фосфатную группу) молекулы состоят из полярной головки и двух неполярных хвостов (см. Рис. 3).

Рис. 3. Фосфолипид

В фосфолипидном бислое гидрофобные остатки жирных кислот обращены внутрь, а гидрофильные головки, включающие остаток фосфорной кислоты, - наружу (см. Рис. 4).

Рис. 4. Фосфолипидный бислой

Фосфолипидный бислой представлен как динамическая структура, липиды могут перемещаться, меняя свое положение.

Двойной слой липидов обеспечивает барьерную функцию мембраны, не давая содержимому клетки растекаться, и препятствует попаданию в клетку токсических веществ.

О наличии пограничной мембраны между клеткой и окружающей средой было известно задолго до появления электронного микроскопа. Физико-химики отрицали существование плазматической мембраны и считали, что есть граница раздела между живым коллоидным содержимым и окружающей средой, но Пфеффер (немецкий ботаник и физиолог растений) в 1890 году подтвердил ее существование.

В начале прошлого века Овертон (британский физиолог и биолог) обнаружил, что скорость проникновения многих веществ в эритроциты прямо пропорциональна их растворимости в липидах. В связи с этим ученый предположил, что мембрана содержит большое количество липидов и вещества, растворяясь в ней, проходят через нее и оказываются по ту сторону мембраны.

В 1925 году Гортер и Грендель (американские биологи) выделили липиды из клеточной мембраны эритроцитов. Полученные липиды они распределили по поверхности воды толщиной в одну молекулу. Оказалось, что площадь поверхности, занятой слоем липидов, в два раза больше площади самого эритроцита. Поэтому эти ученые сделали вывод, что клеточная мембрана состоит не из одного, а из двух слоев липидов.

Даусон и Даниэлли (английские биологи) в 1935 году высказали предположение, что в клеточных мембранах липидный бимолекулярный слой заключен между двумя слоями белковых молекул (см. Рис. 5).

Рис. 5. Модель мембраны, предложенная Даусоном и Даниэлли

С появлением электронного микроскопа открылась возможность познакомиться со строением мембраны, и тогда обнаружилось, что мембраны животных и растительных клеток выглядят как трехслойная структура (см. Рис. 6).

Рис. 6. Мембрана клетки под микроскопом

В 1959 году биолог Дж. Д. Робертсон, объединив имевшиеся в то время данные, выдвинул гипотезу о строении «элементарной мембраны», в которой он постулировал структуру, общую для всех биологических мембран.

Постулаты Робертсона о строении «элементарной мембраны»

1. Все мембраны имеют толщину около 7,5 нм.

2. В электронном микроскопе все они представляются трехслойными.

3. Трехслойный вид мембраны есть результат именно того расположения белков и полярных липидов, которое предусматривала модель Даусона и Даниэлли - центральный липидный бислой заключен между двумя слоями белка.

Эта гипотеза о строении «элементарной мембраны» претерпела различные изменения, и в 1972 году была выдвинута жидкостно-мозаичная модель мембраны (см. Рис. 7), которая сейчас является общепризнанной.

Рис. 7. Жидкостно-мозаичная модель мембраны

В липидный бислой мембраны погружены молекулы белков, они образуют подвижную мозаику. По расположению в мембране и способу взаимодействия с липидным бислоем белки можно разделить на:

- поверхностные (или периферические) мембранные белки, связанные с гидрофильной поверхностью липидного бислоя;

- интегральные (мембранные) белки, погруженные в гидрофобную область бислоя.

Интегральные белки различаются по степени погруженности их в гидрофобную область бислоя. Они могут быть полностью погружены (интегральные ) или частично погружены (полуинтегральные ), а также могут пронизывать мембрану насквозь (трансмембранные ).

Мембранные белки по своим функциям можно разделить на две группы:

- структурные белки. Они входят в состав клеточных мембран и участвуют в поддержании их структуры.

- динамические белки. Они находятся на мембранах и участвуют в происходящих на ней процессах.

Выделяют три класса динамических белков.

1. Рецепторные . С помощью этих белков клетка воспринимает различные воздействия на свою поверхность. То есть они специфически связывают такие соединения, как гормоны, нейромедиаторы, токсины на наружной стороне мембраны, что служит сигналом для изменения различных процессов внутри клетки или самой мембраны.

2. Транспортные . Эти белки транспортируют через мембрану те или иные вещества, также они образовывают каналы, через которые осуществляется транспорт различных ионов в клетку и из нее.

3. Ферментативные . Это белки-ферменты, которые находятся в мембране и участвуют в различных химических процессах.

Транспорт веществ через мембрану

Липидные бислои в значительной степени непроницаемы для многих веществ, поэтому требуется большое количество энергетических затрат для переноса веществ через мембрану, а также требуется возникновение различных структур.

Различают два типа транспорта: пассивный и активный.

Пассивный транспорт

Пассивный транспорт - это перенос молекул по градиенту концентрации. То есть он определяется только разностью концентрации переносимого вещества на противоположных сторонах мембраны и осуществляется без затрат энергии.

Существует два вида пассивного транспорта:

- простая диффузия (см. Рис. 8), которая происходит без участия мембранного белка. Механизмом простой диффузии осуществляется трансмембранный перенос газов (кислорода и углекислого газа), воды и некоторых простых органических ионов. Простая диффузия отличается низкой скоростью.

Рис. 8. Простая диффузия

- облегченная диффузия (см. Рис. 9) отличается от простой тем, что проходит с участием белков-переносчиков. Этот процесс специфичен и протекает с более высокой скоростью, чем простая диффузия.

Рис. 9. Облегченная диффузия

Известны два типа мембранных транспортных белков: белки-переносчики (транслоказы) и белки каналообразующие. Транспортные белки связывают специфические вещества и переносят их через мембрану по градиенту их концентрации, и, следовательно, для осуществления этого процесса, как и при простой диффузии, не требуется затраты энергии АТФ.

Пищевые частицы не могут пройти через мембрану, они проникают в клетку путем эндоцитоза (см. Рис. 10). При эндоцитозе плазматическая мембрана образует впячивания и выросты, захватывает твердую частицу пищи. Вокруг пищевого комочка формируется вакуоль (или пузырек), которая далее отшнуровывается от плазматической мембраны, и твердая частичка в вакуоли оказывается внутри клетки.

Рис. 10. Эндоцитоз

Различают два типа эндоцитоза.

1. Фагоцитоз - поглощение твердых частиц. Специализированные клетки, осуществляющие фагоцитоз, называются фагоцитами .

2. Пиноцитоз - поглощение жидкого материала (раствор, коллоидный раствор, суспензии).

Экзоцитоз (см. Рис. 11) - процесс, обратный эндоцитозу. Вещества, синтезированные в клетке, например гормоны, упаковываются в мембранные пузырьки, которые подходят к клеточной мембране, встраиваются в нее, и содержимое пузырька выбрасывается из клетки. Таким же образом клетка может избавляться от ненужных ей продуктов обмена.

Рис. 11. Экзоцитоз

Активный транспорт

В отличие от облегченной диффузии, активный транспорт - это перемещение веществ против градиента концентрации. При этом вещества переходят из области с меньшей их концентрацией в область с большей концентрацией. Поскольку такое перемещение происходит в направлении, противоположном нормальной диффузии, клетка должна при этом затрачивать энергию.

Среди примеров активного транспорта лучше всего изучен так называемый натрий-калиевый насос. Этот насос откачивает ионы натрия из клетки и накачивает в клетку ионы калия, используя при этом энергию АТФ.

1. Структурная (клеточная мембрана отделяет клетку от окружающей среды).

2. Транспортная (через клеточную мембрану осуществляется транспорт веществ, причем клеточная мембрана является высокоизбирательным фильтром).

3. Рецепторная (находящиеся на поверхности мембраны рецепторы воспринимают внешние воздействия, передают эту информацию внутрь клетки, позволяя ей быстро реагировать на изменения окружающей среды).

Помимо перечисленных выше мембрана выполняет также метаболическую и энергопреобразующую функцию.

Метаболическая функция

Биологические мембраны прямо или косвенно участвуют в процессах метаболических превращений веществ в клетке, поскольку большинство ферментов связаны с мембранами.

Липидное окружение ферментов в мембране создает определенные условия для их функционирования, накладывает ограничения на активность мембранных белков и таким образом оказывает регуляторное действие на процессы метаболизма.

Энергопреобразующая функция

Важнейшей функцией многих биомембран служит превращение одной формы энергии в другую.

К энергопреобразующим мембранам относятся внутренние мембраны митохондрий, тилакоиды хлоропластов (см. Рис. 12).

Рис. 12. Митохондрия и хлоропласт

Список литературы

  1. Каменский А.А., Криксунов Е.А., Пасечник В.В. Общая биология 10-11 класс Дрофа, 2005.
  2. Биология. 10 класс. Общая биология. Базовый уровень / П.В. Ижевский, О.А. Корнилова, Т.Е. Лощилина и др. - 2-е изд., переработанное. - Вентана-Граф, 2010. - 224 стр.
  3. Беляев Д.К. Биология 10-11 класс. Общая биология. Базовый уровень. - 11-е изд., стереотип. - М.: Просвещение, 2012. - 304 с.
  4. Агафонова И.Б., Захарова Е.Т., Сивоглазов В.И. Биология 10-11 класс. Общая биология. Базовый уровень. - 6-е изд., доп. - Дрофа, 2010. - 384 с.
  1. Ayzdorov.ru ().
  2. Youtube.com ().
  3. Doctor-v.ru ().
  4. Animals-world.ru ().

Домашнее задание

  1. Какое строение имеет мембрана клетки?
  2. Благодаря каким свойствам липиды способны образовывать мембраны?
  3. Благодаря каким функциям белки способны участвовать в транспорте веществ через мембрану?
  4. Перечислите функции плазматической мембраны.
  5. Как происходит пассивный транспорт через мембрану?
  6. Как происходит активный транспорт через мембрану?
  7. Какова функция натрий-калиевого насоса?
  8. Что такое фагоцитоз, пиноцитоз?

Клетка — саморегулируемая структурно-функциональная единица тканей и органов. Клеточная теория строения органов и тканей была разработана Шлейденом и Шванном в 1839 г. В дальнейшем с помощью электронной микроскопии и ультрацентрифугирования удалось выяснить строение всех основных органелл животных и растительных клеток (рис. 1).

Рис. 1. Схема строения клетки животных организмов

Главными частями клетки являются цитоплазма и ядро. Каждая клетка окружена очень тонкой мембраной, ограничивающей ее содержимое.

Клеточная мембрана называется плазматической мембраной и характеризуется избирательной проницаемостью. Это свойство позволяет необходимым питательным веществам и химическим элементам проникать внутрь клетки, а излишним продуктам выходить из нее. Плазматическая мембрана состоит из двух слоев липидных молекул с включением в нее специфических белков. Основными липидами мембраны являются фосфолипиды. Они содержат фосфор, полярную головку и два неполярных хвоста из длинноцепочечных жирных кислот. К мембранным липидам относятся холестерин и эфиры холестерина. В соответствии с жидкостно-мозаичной моделью строения, мембраны содержат включения протеиновых и липидных молекул, которые могут перемешаться относительно бислоя. Для каждого типа мембран любой животной клетки характерен свой относительно постоянный липидный состав.

Мембранные белки по структуре подразделяют на два вида: интегральные и периферические. Периферические белки могут удаляться из мембраны без ее разрушения. Имеется четыре типа мембранных белков: транспортные белки, ферменты, рецепторы и структурные белки. Одни мембранные белки обладают ферментативной активностью, другие связывают определенные вещества и способствуют их переносу внутрь клетки. Белки обеспечивают несколько путей передвижения веществ через мембраны: образуют большие поры, состоящие из нескольких белковых субъединиц, которые позволяют перемещаться молекулам воды и ионам между клетками; формируют ионные каналы, специализированные для передвижения ионов некоторых видов через мембрану при определенных условиях. Структурные белки связаны с внутренним липидным слоем и обеспечивают цитоскелет клетки. Цитоскелет придает механическую прочность клеточной оболочке. В различных мембранах на долю белков приходится от 20 до 80% массы. Мембранные белки могут свободно перемещаться в латеральной плоскости.

В мембране присутствуют и углеводы, которые могут ковалентно связываться с липидами или белками. Известно три вида мембранных углеводов: гликолипиды (ганглиозиды), гликопротеиды и протеогликаны. Большинство липидов мембраны находятся в жидком состоянии и обладают определенной текучестью, т.е. способностью перемещаться из одного участка в другой. На внешней стороне мембраны имеются рецепторные участки, связывающие различные гормоны. Другие специфические участки мембраны мог>т распознавать и связывать некоторые чужеродные для данных клеток белки и разнообразные биологически активные соединения.

Внутреннее пространство клетки заполнено цитоплазмой, в которой протекает большинство катализируемых ферментами реакций клеточного метаболизма. Цитоплазма состоит из двух слоев: внутреннего, называемого эндоплазмой, и периферического — эктоплазмы, которая имеет большую вязкость и лишена гранул. В цитоплазме находятся все компоненты клетки или органеллы. Важнейшими из органелл клетки являются — эндоплазматический ретикулум, рибосомы, митохондрии, аппарат Гольджи, лизосомы, микрофиламенты и микротрубочки, пероксисомы.

Эндоплазматический ретикулум представляет собой систему взаимосвязанных каналов и полостей, пронизывающих всю цитоплазму. Он обеспечивает транспорт вешеств из окружающей среды и внутри клеток. Эндоплазматический ретикулум также служит депо для внутриклеточных ионов Са 2+ и служит основным местом синтеза липидов в клетке.

Рибосомы - микроскопические сферические частицы диаметром 10-25 нм. Рибосомы свободно располагаются в цитоплазме или прикрепляются к наружной поверхности мембран эндоплазматической сети и ядерной мембраны. Они взаимодействуют с информационной и транспортной РНК, и в них осуществляется синтез белков. Они синтезируют белки, которые попадают внутрь цистерн или в аппарат Гольджи, и затем выделяются наружу. Рибосомы, свободно располагающиеся в цитоплазме, синтезируют белок для использования самой клеткой, а рибосомы, связанные с эндоплазматическим ретикулумом, производят белок, который выводится из клетки. В рибосомах синтезируются различные функциональные белки: белки-переносчики, ферменты, рецепторы, белки цитоскелета.

Аппарат Гольджи образован системой канальцев, цистерн и пузырьков. Он связан с эндоплазматическим ретикулумом, и поступившие сюда биологически активные вещества хранятся в уплотненном виде в секреторных пузырьках. Последние постоянно отделяются от аппарата Гольджи, транспортируются к клеточной мембране и сливаются с ней, а содержащиеся в пузырьках вещества выводятся из клетки в процессе экзоцитоза.

Лизосомы - окруженные мембраной частицы размером 0,25-0,8 мкм. Они содержат многочисленные ферменты, участвующие в расщеплении белков, полисахаридов, жиров, нуклеиновых кислот, бактерий и клеток.

Пероксисомы сформированы из гладкого эндоплазматического ретикулума, напоминают лизосомы и содержат ферменты, катализирующие разложение пероксида водорода, который расщепляется под влиянием пероксидаз и каталазы.

Митохондрии содержат наружную и внутреннюю мембраны и являются «энергетической станцией» клетки. Митохондрии представляют собой округлые или удлиненные образования с двойной мембраной. Внутренняя мембрана формирует выступающие внутрь митохондрии складки — кристы. В них происходит синтез АТФ, осуществляется окисление субстратов цикла Кребса и множество биохимических реакций. Образованные в митохондриях молекулы АТФ диффундируют во все части клетки. В митохондриях содержится небольшое количество ДНК, РНК, рибосомы, и с их участием происходит обновление и синтез новых митохондрий.

Микрофиламенты представляют собой тонкие белковые нити, состоящие из миозина и актина, и образуют сократительный аппарат клетки. Микрофиламенты участвуют в образовании складок или выпячиваний клеточной мембраны, а также при перемещении различных структур внутри клеток.

Микротрубочки составляют основу цитоскелета и обеспечивают его прочность. Цитоскелет придает клеткам характерные внешний вид и форму, служит местом прикрепления внутриклеточных органелл и различных телец. В нервных клетках пучки микротрубочек участвуют в транспорте веществ из тела клетки к концам аксонов. При их участии осуществляется функционирование митотического веретена во время деления клеток. Они играют роль двигательных элементов в ворсинках и жгутиках у эукариот.

Ядро является основной структурой клетки, участвует в передаче наследственных признаков и в синтезе белков. Ядро окружено ядерной мембраной, содержащей множество ядерных пор, через которые происходит обмен различными веществами между ядром и цитоплазмой. Внутри него находится ядрышко. Установлена важная роль ядрышка в синтезе рибосомной РНК и белков-гистонов. В остальных частях ядра содержится хроматин, состоящий из ДНК, РНК и ряда специфических белков.

Функции клеточной мембраны

В регуляции внутриклеточного и межклеточного обмена важнейшую роль играют клеточные мембраны. Они обладают избирательной проницаемостью. Их специфическое строение позволяет обеспечивать барьерную, транспортную и регуляторную функции.

Барьерная функция проявляется в ограничении проникновения через мембрану растворенных в воде соединений. Мембрана непроницаема для крупных белковых молекул и органических анионов.

Регуляторная функция мембраны состоит в регуляции внутриклеточного метаболизма в ответ на химические, биологические и механические воздействия. Различные воздействия воспринимаются специальными мембранными рецепторами с последующим изменением активности ферментов.

Транспортная функция через биологические мембраны может осуществляться пассивно (диффузия, фильтрация, осмос) или с помощью активного транспорта.

Диффузия - движение газа или растворимого вещества по концентрационному и электрохимическому градиенту. Скорость диффузии зависит от проницаемости клеточной мембраны, а также градиента концентрации для незаряженных частиц, электрического и концентрационного градиентов для заряженных частиц. Простая диффузия происходит через липидный бислой или через каналы. Заряженные частицы движутся согласно электрохимическому градиенту, а незаряженные — химическому градиенту. Например, простой диффузией через липидный слой мембраны проникают кислород, стероидные гормоны, мочевина, спирт и т.д. Через каналы перемещаются различные ионы и частицы. Ионные каналы образованы белками и подразделяются на управляемые и неуправляемые каналы. В зависимости от селективности различают ионоселективные канаты, пропускающие только один ион, и каналы, не обладающие селективностью. Каналы имеют устье и селективный фильтр, а управляемые каналы — и воротный механизм.

Облегченная диффузия - процесс, при котором вещества переносятся через мембрану с помощью специальных мембранных белков- переносчиков. Таким путем в клетку проникают аминокислоты и моносахара. Этот вид транспорта происходит очень быстро.

Осмос - движения воды через мембрану из раствора с более низким в раствор с более высоким осмотическим давлением.

Активный транспорт - перенос веществ против градиента концентрации с помощью транспортных АТФаз (ионных насосов). Этот перенос происходит с затратой энергии.

В большей мере изучены Na + /K + -, Са 2+ - и Н + -насосы. Насосы располагаются на клеточных мембранах.

Разновидностью активного транспорта являются эндоцитоз и экзоцитоз. С помощью этих механизмов транспортируются более крупные вещества (белки, полисахариды, нуклеиновые кислоты), которые не могут переноситься по каналам. Этот транспорт более распространен в эпителиальных клетках кишечника, почечных канальцев, эндотелии сосудов.

При эндоцитозе клеточные мембраны образуют впячивания внутрь клетки, которые отшнуровываясь, превращаются в пузырьки. При экзоцитозе пузырьки с содержимым переносятся к клеточной мембране и сливаются с ней, а содержимое пузырьков выделяется во внеклеточную среду.

Строение и функции клеточной мембраны

Для понимания процессов, обеспечивающих существование электрических потенциалов в живых клетках, прежде всего нужно представлять строение клеточной мембраны и ее свойства.

В настоящее время наибольшим признанием пользуется жидкостно-мозаичная модель мембраны, предложенная С. Сингером и Г. Николсоном в 1972 г. Основу мембраны составляет двойной слой фосфолипидов (бислой), гидрофобные фрагменты молекулы которого погружены в толщу мембраны, а полярные гидрофильные группы ориентированы наружу, т.е. в окружающую водную среду (рис. 2).

Мембранные белки локализованы на поверхности мембраны или могут быть внедрены на различную глубину в гидрофобную зону. Некоторые белки пронизывают мембрану насквозь, и различные гидрофильные группы одного и того же белка обнаруживаются по обе стороны клеточной мембраны. Белки, обнаруженные в плазматической мембране, играют очень важную роль: они участвуют в образовании ионных каналов, играют роль мембранных насосов и переносчиков различных веществ, а также могут выполнять рецептор- ную функцию.

Основные функции клеточной мембраны: барьерная, транспортная, регуляторная, каталитическая.

Барьерная функция заключается в ограничении диффузии через мембрану растворимых в воде соединений, что необходимо для защиты клеток от чужеродных, токсических веществ и сохранения внутри клеток относительного постоянного содержания различных веществ. Так, клеточная мембрана может замедлить диффузию различных веществ в 100 000-10 000 000 раз.

Рис. 2. Трехмерная схема жидкостно-мозаичной модели мембраны Сингера-Николсона

Изображены глобулярные интегральные белки, погруженные в липидный бислой. Часть белков является ионными каналами, другие (гликопротеины) содержат олигосахаридные боковые цепи, участвующие в узнавании клетками друг друга и в межклеточной ткани. Молекулы холестерола вплотную примыкают к фосфолипидным головкам и фиксируют прилегающие участки «хвостов». Внутренние участки хвостов молекулы фосфолипидов не ограничены в своем движении и ответственны за текучесть мембраны (Bretscher, 1985)

В мембране располагаются каналы, через которые проникают ионы. Каналы бывают потенциал зависимыми и потен циалнезависимыми. Потенциалзависимые каналы открываются при изменении разности потенциалов, а потенциалнезависимые (гормонрегулируемые) открываются при взаимодействии рецепторов с веществами. Каналы могут быть открыты или закрыты благодаря воротам. В мембрану встроены два вида ворот: активационные (в глубине канала) и инактивационные (на поверхности канала). Ворота могут находиться в одном из трех состояний:

  • открытое состояние (открыты оба вида ворот);
  • закрытое состояние (закрыты активационные ворота);
  • инактивационное состояние (закрыты инактивационные ворота).

Другой характерной особенностью мембран является способность осуществлять избирательный перенос неорганических ионов, питательных веществ, а также различных продуктов обмена. Различают системы пассивного и активного переноса (транспорта) веществ. Пассивный транспорт осуществляется через ионные каналы с помощью или без помощи белков-переносчиков, а его движущей силой является разность электрохимических потенциалов ионов между внутри- и внеклеточным пространством. Избирательность ионных каналов определяется его геометрическими параметрами и химической природой групп, выстилающих стенки канала и его устье.

В настоящее время наиболее хорошо изучены каналы, обладающие избирательной проницаемостью для ионов Na + , К+ , Са 2+ а также для воды (так называемые аквапорины). Диаметр ионных каналов, по оценкам разных исследований, составляет 0,5-0,7 нм. Пропускная способность каналов может изменяться, через один ионный канал может проходить 10 7 - 10 8 ионов в секунду.

Активный транспорт происходит с затратой энергии и осуществляется так называемыми ионными насосами. Ионные насосы — это молекулярные белковые структуры, встроенные в мембрану и осуществляющие перенос ионов в сторону более высокого электрохимического потенциала.

Работа насосов осуществляется за счет энергии гидролиза АТФ. В настоящее время хорошо изучены Na+/K+ — АТФаза, Са 2+ — АТФаза, Н + — АТФаза, Н + /К + — АТФаза, Mg 2+ — АТФаза, которые обеспечивают перемещение соответственно ионов Na + , К + , Са 2+ , Н+, Mg 2+ изолированно или сопряжено (Na+ и К+; Н+ и К+). Молекулярный механизм активного транспорта до конца не выяснен.

Подавляющее большинство организмов, обитающих на Земле, состоит из клеток, во многом сходных по своему химическому составу, строению и жизнедеятельности. В каждой клетке происходит обмен веществ и превращение энергии. Деление клеток лежит в основе процессов роста и размножения организмов. Таким образом, клетка представляет собой единицу строения, развития и размножения организмов.

Клетка может существовать только как целостная система, неделимая на части. Целостность клетки обеспечивают биологические мембраны. Клетка - элемент системы более высокого ранга - организма. Части и органоиды клетки, состоящие из сложных молекул, представляют собой целостные системы более низкого ранга.

Клетка - открытая система, связанная с окружающей средой обменом веществ и энергии. Это функциональная система, в которой каждая молекула выполняет определенные функции. Клетка обладает устойчивостью, способностью к саморегуляции и самовоспроизводству.

Клетка - самоуправляемая система. Управляющая генетическая система клетки представлена сложны ми макромолекулами - нуклеиновыми кислотами (ДНК и РНК).

В 1838-1839 гг. немецкие биологи М. Шлейден и Т. Шванн обобщили знания о клетке и сформулировали основное положение клеточной теории, сущность которой заключается в том, что все организмы, как растительные, так и живот ные, состоят из клеток.

В 1859 г. Р. Вирхов описал процесс деления клетки и сформулировал одно из важнейших положений клеточной теории: "Всякая клетка происходит из другой клетки". Новые клетки образуются в результате деления материнской клетки, а не из неклеточного вещества, как это считалось ранее.

Открытие российским ученым К. Бэром в 1826 г. яйцеклеток млекопитающих привело к выводу, что клетка лежит в основе развития многоклеточных организмов.

Современная клеточная теория включает следующие положения:

1) клетка - единица строения и развития всех организмов;

2) клетки организмов разных царств живой природы сходны по строению, химическому составу, обмену веществ, основным проявлениям жизнедеятельности;

3) новые клетки образуются в результате деления материнской клетки;

4) в многоклеточном организме клетки образуют ткани;

5) из тканей состоят органы.

С введением в биологию современных биологических, физических и химических методов исследования стало возможным изучить структуру и функционирование различных компонентов клетки. Один из методов изучения клетки - микроскопирование . Современный световой микроскоп увеличивает объекты в 3000 раз и позволяет увидеть наиболее крупные органоиды клетки, наблюдать движение цитоплазмы, деление клетки.

Изобретенный в 40-е гг. XX в. электронный микроскоп дает увеличение в десятки и сотни тысяч раз. В электронном микроскопе вместо света используется поток электронов, а вместо линз - электромагнитные поля. Поэтому электронный микроскоп дает четкое изображение при значительно больших увеличениях. При помощи такого микроскопа удалось изучить строение органоидов клетки.

Строение и состав органоидов клетки изучают с помощью метода центрифугирования . Измельченные ткани с разрушенными клеточными оболочками помещают в пробирки и вращают в центрифуге с большой скоростью. Метод основан на том, что различные клеточные ор ганоиды имеют разную массу и плотность. Более плотные органоиды осаждаются в пробирке при низких скоростях центрифугирования, менее плотные - при высоких. Эти слои изучают отдельно.

Широко используют метод культуры клеток и тканей , который состоит в том, что из одной или нескольких клеток на специальной питательной среде можно получить группу однотипных животных или растительных клеток и даже вырас тить целое растение. С помощью это го метода можно получить ответ на вопрос, как из одной клетки образуются разнообразные ткани и органы организма.

Основные положения клеточной теории были впервые сформулированы М. Шлейденом и Т. Шванном. Клетка - единица строения, жизнедеятельности, размножения и развития всех живых организмов. Для изучения клетки используют методы микроскопирования, центрифугирования, культуры клеток и тканей и др.

Клетки грибов, растений и животных имеют много общего не только в химическом составе, но и в строении. При рассматривании клетки под микроскопом в ней видны различные структуры - органоиды . Каждый органоид выполняет определенные функции. В клетке различают три основные части: плазматическую мембрану, ядро и цитоплазму (рис 1).

Плазматическая мембрана отделяет клетку и ее содержимое от окружающей среды. На рисунке 2 вы видите: мембрана образована двумя слоями липидов, а белковые молекулы пронизывают толщу мембраны.

Основная функция плазматической мембраны транспортная . Она обеспечивает поступление питательных веществ в клетку и выведение из нее продуктов обмена.

Важное свойство мембраны - избирательная проницаемость , или полупроницаемость, позволяет клетке взаимодействовать с окружающей средой: в нее поступают и вы водятся из нее лишь определенные вещества. Мелкие молекулы воды и некоторых других веществ проникают в клетку путем диффузии, частично через поры в мембране.

В цитоплазме, клеточном соке вакуолей растительной клетки, растворены сахара, органические кислоты, соли. Причем их концентрация в клетке значительно выше, чем в окружающей среде. Чем больше концентрация этих веществ в клетке, тем больше она поглощает воды. Известно, что вода постоянно расходуется клеткой, благодаря чему концентрация клеточного сока увеличивается и вода снова поступает в клетку.

Поступление более крупных молекул (глюкозы, аминокислот) в клетку обеспечивают транспортные белки мембраны, которые, соединяясь с молекулами транспортируемых веществ, переносят их через мембрану. В этом процессе участвуют ферменты расщепляющие АТФ.

Рисунок 1. Обобщённая схема строения эукариотической клетки.
(для увеличения изображения нажмите на рисунок)

Рисунок 2. Строение плазматической мембраны.
1 - пронзающие белки, 2 - погруженные белки, 3 - внешние белки

Рисунок 3. Схема пиноцитоза и фагоцитоза.

Еще более крупные молекулы белков и полисахаридов проникают в клетку путем фагоцитоза (от греч. фагос - пожирающий и китос - сосуд, клетка), а капли жидкости - путем пиноцитоза (от греч. пино - пью и китос ) (рис 3).

Клетки животных, в отличие от клеток растений, окружены мягкой и гибкой "шубой", образованной преимущественно молекулами полисахаридов, которые, присоединяясь к некоторым белкам и липидам мембраны, окружают клетку снаружи. Состав полисахаридов специфичен для разных тканей, благодаря чему клетки "узнают" друг друга и соединяются между собой.

У клеток растений такой "шубы" нет. У них над плазматической мембраной находится пронизанная порами клеточная оболочка , состоящая преимущественно из целлюлозы. Через поры из клетки в клетку тянутся нити цитоплазмы, соединяющие клетки между собой. Так осуществляется связь между клетками и достигается целостность организма.

Клеточная оболочка у растений играет роль прочного скелета и защищает клетку от повреждения.

Клеточная оболочка есть у большинства бактерий и у всех грибов, только химический состав ее другой. У грибов она состоит из хитиноподобного вещества.

Клетки грибов, растений и животных имеют сходное строение. В клетке различают три основные части: ядро, цитоплазму и плазматическую мембрану. Плазматическая мембрана состоит из липидов и белков. Она обеспечивает поступление веществ в клетку и выделение их из клетки. В клетках растений, грибов и большинства бактерий над плазматической мембраной имеется клеточная оболочка. Она выполняет защитную функцию и играет роль скелета. У растений клеточная оболочка состоит из целлюлозы, а у грибов из хитиноподобного вещества. Клетки животных покрыты полисахаридами, обеспечивающими контакты между клетками одной ткани.

Вам известно, что основную часть клетки составляет цитоплазма . В ее состав входят вода, аминокислоты, белки, углеводы, АТФ, ионы не органических веществ. В цитоплазме расположены ядро и органоиды клетки. В ней вещества перемещаются из одной части клетки в другую. Цитоплазма обеспечивает взаимодействие всех органоидов. Здесь протекают химические реакции.

Вся цитоплазма пронизана тонкими белковыми микротрубочками, образующими цитоскелет клетки , благодаря которому она сохраняет постоянную форму. Цитоскелет клетки гибкий, так как микротрубочки способны изменять свое положение, перемещаться, с одного конца и укорачиваться с другого. В клетку поступают разные вещества. Что же происходит с ними в клетке?

В лизосомах - мелких округлых мембранных пузырьках (см. рис. 1) молекулы сложных органических веществ с помощью гидролитических ферментов расщепляются на более простые молекулы. Например, белки расщепляются на аминокислоты, полисахариды - на моносахариды, жиры - на глицирин и жирные кислоты. За эту функцию лизосомы часто называют "пищеварительными станциями" клетки.

Если разрушить мембрану лизосом, то содержащиеся в них ферменты могут переварить и саму клетку. Поэтому иногда лизосомыназывают "орудиями убийства клетки".

Ферментативное окисление образовавшихся в лизосомах мелких молекул аминокислот, моносахаридов, жирных кислот и спиртов до угле кислого газа и воды начинается в цитоплазме и заканчивается в других органоидах - митохондриях . Митохондрии - палочковидные, нитевидные или шаровидные органоиды, отграниченные от цитоплазмы двумя мембранами (рис. 4). Внешняя мембрана гладкая, а внутренняя образует складки - кристы , которые увеличивают ее поверхность. На внутренней мембране и размещаются ферменты, участвующие в реакциях окисления органических веществ до углекислого газа и воды. При этом освобождается энергия, которая запасается клеткой в молекулах АТФ. Поэтому митохондрии называют "силовыми станциями" клетки.

В клетке органические вещества не только окисляются, но и синтезируются. Синтез липидов и углеводов осуществляется на эндоплазматической сети - ЭПС (рис. 5), а белков - на рибосомах. Что представляет собой ЭПС? Это система канальцев и цистерн, стенки которых образованы мембраной. Они пронизывают всю цитоплазму. По каналам ЭПС вещества перемещаются в разные части клетки.

Существует гладкая и шероховатая ЭПС. На поверхности гладкой ЭПС при участии ферментов синтезируются углеводы и липиды. Шероховатость ЭПС придают расположенные на ней мелкие округлые тельца - рибосомы (см. рис. 1), которые участвуют в синтезе белков.

Синтез органических веществ происходит и в пластидах , которые содержатся только в клетках растений.

Рис. 4. Схема строения митохондрии.
1.- внешняя мембрана; 2.- внутренняя мембрана; 3.- складки внутренней мембраны - кристы.

Рис. 5. Схема строения шероховатой ЭПС.

Рис. 6. Схема строения хлоропласта.
1.- наружная мембрана; 2.- внутрення мембрана; 3.- внутреннее содержимое хлоропласта; 4.- складки внутренней мембраны, собранные в "стопки" и образующие граны.

В бесцветных пластидах - лейкопластах (от греч. леукос - белый и пластос - созданный) накапливается крахмал. Очень богаты лейкопластами клубни картофеля. Желтую, оранжевую, красную окраску плодам и цветкам придают хромопласты (от греч. хрома - цвет и пластос ). В них синтезируются пигменты, участвующие в фотосинтезе, - каротиноиды . В жизни растений особенно велико значение хлоропластов (от греч. хлорос - зеленоватый и пластос ) - зеленых пластид. На рисунке 6 вы видите, что хлоропласты покрыты двумя мембранами: наружной и внутренней. Внутренняя мембрана образует складки; между складками находятся пузырьки, уложенные в стопки, - граны . В гранах имеются молекулы хлорофилла, которые участвуют в фотосинтезе. В каждом хлоропласте около 50 гран, расположенных в шахматном порядке. Такое расположение обеспечивает максимальную освещенность каждой граны.

В цитоплазме белки, липиды, углеводы могут накапливаться в виде зерен, кристаллов, капелек. Эти включения - запасные питательные вещества, которые расходуются клеткой по мере необходимости.

В клетках растений часть запасных питательных веществ, а также продукты распада накапливаются в клеточном соке вакуолей (см. рис. 1). На их долю может приходиться до 90% объема растительной клетки. Животные клетки имеют временные вакуоли, занимающие не более 5% их объема.

Рис. 7. Схема строения комплекса Гольджи.

На рисунке 7 вы видите систему полостей, окруженных мембраной. Это комплекс Гольджи , который выполняет в клетке разнообразные функции: участвует в накоплении и транспортировке веществ, выведении их из клетки, формировании лизосом, клеточной оболочки. Например, в полости комплекса Гольджи поступают молекулы целлюлозы, которые при помощи пузырьков перемещаются на поверхность клетки и включаются в клеточную оболочку.

Большинство клеток размножается путем деления. В этом процессе участвует клеточный центр . Он состоит из двух центриолей, окруженных уплотненной цитоплазмой (см. рис. 1). В начале деления центриоли расходятся к полюсам клетки. От них расходятся белковые нити, которые соединяются с хромосомами и обеспечивают их равно мерное распределение между двумя дочерними клетками.

Все органоиды клетки тесно связаны между собой. Например, в рибосомах синтезируются молекулы белков, по каналам ЭПС они транспортируются к разным частям клетки, а в лизосомах белки разрушаются. Вновь синтезируемые молекулы используются на построение структур клетки или накапливаются в цитоплазме и вакуолях как запасные питательные вещества.

Клетка заполнена цитоплазмой. В цитоплазме располагаются ядро и разнообразные органоиды: лизосомы, митохондрии, пластиды, вакуоли, ЭПС, клеточный центр, комплекс Гольджи. Они различаются по своему строению и функциям. Все органоиды цитоплазмы взаимодействуют между собой, обеспечивая нормальное функционирование клетки.

Таблица 1. СТРОЕНИЕ КЛЕТКИ

ОРГАНЕЛЛЫ СТРОЕНИЕ И СВОЙСТВА ФУНКЦИИ
Оболочка Состоит из целлюлозы. Окружает растительные клетки. Имеет поры Придает клетке прочность, поддерживает определенную форму, защищает. Является скелетом растений
Наружная клеточная мембрана Двумембранная клеточная структура. Состоит из билипидного слоя и мозаично вкрапленных белков, снаружи располагаются углеводы. Обладает полупроницаемостью Ограничивает живое содержимое клеток всех организмов. Обеспечивает избирательную проницаемость, защищает, регулирует водно-солевой баланс, обмен с внешней средой.
Эндоплазматическая сеть (ЭПС) Одномембранная структура. Система канальцев, трубочек, цистерн. Пронизывает всю цитоплазму клетки. Гладкая ЭПС и гранулярная ЭПС с рибосомами Делит клетку на отдельные отсеки, где происходят химические процессы. Обеспечивает сообщение и транспорт вещества в клетке. На гранулярной ЭПС идет синтез белка. На гладкой - синтез липидов
Аппарат Гольджи Одномембранная структура. Система пузырьков, цистерн, в которой находятся продукты синтеза и распада Обеспечивает упаковку и вынос веществ из клетки, образует первичные лизосомы
Лизосомы Одномембранные шарообразные структуры клетки. Содержат гидролитические ферменты Обеспечивают расщепление высокомолекулярных веществ, внутриклеточное переваривание
Рибосомы Немембранные структуры грибовидной формы. Состоят из малой и большой субъединиц Содержатся в ядре, цитоплазме и на гранулярной ЭПС. Участвует в биосинтезе белка.
Митохондрии Двумембранные органеллы продолговатой формы. Наружная мембрана гладкая, внутренняя образует кристы. Заполнена матриксом. Имеются митохондриальные ДНК, РНК, рибосомы. Полуавтономная структура Являются энергетическими станциями клеток. Обеспечивают дыхательный процесс - кислородное окислене органических веществ. Идет синтез АТФ
Пластиды Хлоропласты Характерны для растительных клеток. Двумембранные, полуавтономные органеллы продолговатой формы. Внутри заполнены стромой, в которой располагаются граны. Граны образованы из мембранных структур - тилакоидов. Имеются ДНК, РНК, рибосомы Протекает фотосинтез. На мембранах тилакоидов идут реакции световой фазы, в строме - темновой фазы. Синтез углеводов
Хромопласты Двумембранные органеллы шаровидной формы. Содержат пигменты: красный, оранжевый, желтый. Образуются из хлоропластов Придают окраску цветкам, плодам. Образуются осенью из хлоропластов, придают листьям желтую окраску
Лейкопласты Двумембранные неокрашенные пластиды шарообразной формы. На свету могут переходить в хлоропласты Запасают питательные вещества в виде крахмальных зерен
Клеточный центр Немембранные структуры. Состоят их двух центриолей и центросферы Образует веретено деления клетки, участвуют в делении. После деления клетки удваиваются
Вакуоль Характерна для растительной клетки. Мембранная полость, заполнена клеточным соком Регулирует осмотическое давление клетки. Накапливает питательные вещества и продукты жизнедеятельности клетки
Ядро Главный компонент клетки. Окружено двухслойной пористой ядерной мембраной. Заполнено кариоплазмой. Содержит ДНК в виде хромосом (хроматина) Регулирует все процессы в клетке. Обеспечивает передачу наследственной информации. Число хромосом постоянно для каждого вида. Обеспечивает репликацию ДНК и синтез РНК
Ядрышко Темное образование в ядре, от кариоплазмы не отделено Место образования рибосом
Органеллы движения. Реснички. Жгутики Выросты цитоплазмы, окруженные мембраной Обеспечивают движение клетки, удаление частичек пыли (мерцательный эпителий)

Важнейшая роль в жизнедеятельности и делении клеток грибов, растений и животных принадлежит ядру и находящимся в нем хромосомам. Большинство клеток этих организмов имеет одно ядро, но есть и многоядерные клетки, например мышечные. Ядро расположено в цитоплазме и имеет округлую или овальную форму. Оно покрыто оболочкой, состоящей из двух мембран. Ядерная оболочка имеет поры, через которые происходит обмен веществ между ядром и цитоплазмой. Ядро заполнено ядерным соком, в котором расположены ядрышки и хромосомы.

Ядрышки - это "мастерские по производству" рибосом, которые формируются из образуемых в ядре рибосомных РНК и синтезированных в цитоплазме белков.

Главная функция ядра - хранение и передача наследственной информации - связана с хромосомами . Каждый вид организма имеет свой набор хромосом: определенное их число, форму и размеры.

Все клетки тела, кроме половых, называются соматическими (от греч. сома - тело). Клетки организма одного вида содержат одинаковый набор хромосом. Например, у человека в каждой клетке тела содержится 46 хромосом, у плодовой мухи дрозофилы - 8 хромосом.

Соматические клетки, как правило, имеют двойной набор хромосом. Он называется диплоидным и обозначается 2n . Так, у человека 23 пары хромосом, то есть 2n = 46. В половых клетках содержится в два раза меньше хромосом. Это одинарный, или гаплоидный , набор. У человека 1n = 23.

Все хромосомы в соматических клетках, в отличие от хромосом в половых клетках, парные. Хромосомы, составляющие одну пару, идентичны друг другу. Парные хромосомы называют гомологичными . Хромосомы, которые относятся к разным парам и различаются по форме и размерам, называют негомологичными (рис. 8).

У некоторых видов число хромо сом может совпадать. Например, у клевера красного и гороха посевного 2n = 14. Однако хромосомы у них различаются по форме, размерам, нуклеотидному составу молекул ДНК.

Рис. 8. Набор хромосом в клетках дрозофилы.

Рис. 9. Строение хромосомы.

Чтобы понять роль хромосом в передаче наследственной информации, необходимо познакомиться с их строением и химическим составом.

Хромосомы неделящейся клетки имеют вид длинных тонких нитей. Каждая хромосома перед делением клетки состоит из двух одинаковых нитей - хроматид , которые соединяются между ласти перетяжки - (рис. 9).

Хромосомы состоят из ДНК и белков. Поскольку нуклеотидный состав ДНК различается у разных видов, состав хромосом уникален для каждого вида.

Каждая клетка, кроме бактериальной, имеет ядро, в котором находятся ядрышки и хромосомы. Для каждого вида характерен определенный набор хромосом: число, форма и размеры. В соматических клетках большинства организмов набор хромосом диплоидный, в половых - гаплоидный. Парные хромосомы называют гомологичными. Хромосомы состоят из ДНК и белков. Молекулы ДНК обеспечивают хранение и передачу наследственной информации от клетки к клетке и от организма к организму.

Проработав эти темы, Вы должны уметь:

  1. Рассказать, в каких случаях следует применять световой микроскоп (строение), трансмиссионный электронный микроскоп.
  2. Описать структуру клеточной мембраны и пояснить связь между структурой мембраны и ее способностью осуществлять обмен веществами между клеткой и средой.
  3. Дать определение процессам: диффузия, облегченная диффузия, активный транспорт, эндоцитоз, экзоцитоз и осмос. Указать различия между этими процессами.
  4. Назвать функции структур и указать, в каких клетках (растительных, животных или прокариотических) они находятся: ядро, ядерная мембрана, нуклеоплазма, хромосомы, плазматическая мембрана, рибосома, митохондрия, клеточная стенка, хлоропласт, вакуоль, лизосома, эндоплазматическая сеть гладкая (агранулярная) и шероховатая (гранулярная), клеточный центр, аппарат Гольджи, ресничка, жгутик, мезосома, пили или фимбрии.
  5. Назвать не менее трех признаков, по которым можно отличить растительную клетку от животной.
  6. Перечислить важнейшие различия между прокариотической и эукариотической клеткой.

Иванова Т.В., Калинова Г.С., Мягкова А.Н. "Общая биология". Москва, "Просвещение", 2000

  • Тема 1. "Плазматическая мембрана." §1, §8 стр. 5;20
  • Тема 2. "Клетка." §8-10 стр. 20-30
  • Тема 3. "Прокариотическая клетка. Вирусы." §11 стр. 31-34
Загрузка...