domvpavlino.ru

Самые твердые материалы: виды, классификация, характеристики, интересные факты и особенности, химические и физические свойства. Легкий и прочный материал на основе алюминия Самый крепкий предмет в мире

Многим из нас хорошо известны основные свойства например обычной фанеры – ее прочность, жесткость, стабильность и размеры.

Но, скорее всего, вы мало знакомы со свойствами других листовых материалов, появившихся в последние годы.

Неважно, какой проект вам предстоит изготовить, – мы поможем найти материал, идеально подходящий для ваших задач.

Улучшенные свойства благодаря современным разработкам

Все листовые и плитные материалы, включая фанеру, относятся к обширной категории искусственных древесных материалов. В отличие от натуральной, природной древесины, когда доски и брусья просто выпиливаются из древесного ствола и высушиваются, искусственные материалы получают путем дальнейшей обработки, добиваясь улучшения или изменения некоторых свойств.

Например, фанера состоит из множества тонких слоев, склеенных друг с другом так, что направление волокон каждого слоя перпендикулярно соседним. Это увеличивает прочность, уменьшает колебания размеров и позволяет использовать древесину с красивой текстурой только на внешних слоях.

Хотя фанера до сих пор доминирует на рынке, появляется все больше новых листовых материалов, производимых из стружки, опилок или размолотой в порошок древесины, которые смешиваются с клеем и специальными добавками, а затем прессуются. Гак изготавливаются широко известные древесно-стружечные и древесноволокнистые плиты (ДСП и МДФ). Даже традиционная фанера изменилась путем частичной замены внутренних или внешних слоев другими материалами, а становящаяся популярной фанера высокой плотности склеивается из множества очень тонких слоев шпона.

В статье описаны назначение и свойства десятка листовых и плитных материалов. Примечание.

Мы не стали включать в нее некоторые материалы, такие как ОСИ (ориентированно-стружечную плиту) и антисептированную фанеру, предназначенные для строительствва, а не для столярной работы.

Описание листовых материалов

  • 1. Материал
  • 2. Описание
  • 3. Применение
  • 4. Стандартные размеры
  • 5. Сорта
  • 6. Преимущества
  • 7. Недостатки

Перечень:

1. Древесно-стружечная плита

2. Состоит из опилок и древесной муки со специальными добавками. Термическое прессование в листы и плиты.

3. Широко используется как подложка для напольных покрытий, для изготовления дешевой корпусной мебели. Ограниченно применяется в мастерских для изготовления некоторых приспособлений.

4. Листы и плиты толщиной 6; 12; 16; 19; 25 и 32 НИ.

5. PBU – для чернового пола M-S, М-1,М-2иМ-3-для изготовления корпусной мебели и столешниц.

6. Низкая стоимость и доступность, легкость обработки и относительная стабильность размеров.

7. Недостаточная жесткость, низкая влагостойкость. Крепеж удерживается плохо.

1. Древесно-стружечная плита с меламиновым покрытием (ЛДСП)

2. Одна или обе поверхности ДСП облицовываются бумагой, пропитанной меламиновыми смолами. На дешевых сортах пластик просто наклеивается, а на дорогих прочно связывается с основой путем нагрева.

3. Отлично подходит для изготовления корпусной мебели, так как пластиковая поверхность легко чистится. Используйте для изготовления приспособлений и простых фрезерных столов.

4. Листы и плиты размером 1250×2500 мм и толщиной 5; 12; 16 и 18 мм.

5. Стандартных градаций ЛДСП не существует, но есть так называемые «вертикальная» и «горизонтальная» разновидности. Дорогие сорта обычно имеют более толстую и прочную пленку покрытия.

6. Недорогой доступный материал с легко чистящейся поверхностью. Широкая гамма расцветок. Встречаются разновидности с покрытием из крафт-бумаги или натурального шпона.

7. Тяжелый материал с низкой влагостойкостью. Края распила часто повреждаются сколами при раскрое пильными дисками, не предназначенными для этого материала.

1. Оргалит

2. Смесь молотых древесных волокон со смолами, спрессованная в листы. Одна или обе стороны листа могут быть гладкими.

3. Отлично подходит для изготовления самодельных приспособлений и мебели для мастерской, особенно разновидности с двумя гладкими сторонами. Перфорированный оргалит-удобное средство для подвески инструментов.

4. Листы толщиной 3 и б мм.

5. Черновой (2 зеленых полосы), стандартный (1 зеленая полоса), средней твердости (2 красных полосы), твердый (1 красная полоса), S1S (с одной гладкой стороной), S2S (с обеими гладкими сторонами).

6. Доступный и недорогой материал, легко обрабатывается, относительно стабилен, хорошо окрашивается.

7. Стандартный и черновой сорта не влагостойки, плохо шлифуются и плохо удерживают крепеж. Их края легко повреждаются.

1. Древесно-волокнистая плита средней плотности (МДФ)

2. Смесь целлюлозных волокон с синтетическими смолами, спрессованная при нагреве.

3. Отлично подходит для изготовления приспособлений, корпусной мебели, окрашиваемых изделий, отделочных профилей. Используется в качестве основы для наклейки шпона и пластиков.

5. Основная разновидность: Industrial. Дешевые сорта обозначаются маркой «В» или «shop». Также классифицируется по плотности: стандартная – MD, низкой плотности – LD.

6. Гладкие поверхности, отсутствие внутренних и наружных дефектов, стабильная толщина. Хорошо склеивается. Кромки легко обрабатываются.

7. Тяжелый материал. Обычные шурупы удерживаются плохо.

1. Хвойная фанера

2. Перекрестно склеенные слои шпона из древесины хвойных пород.

3. Садовая мебель, постройки и конструкции на открытом воздухе, мебель для мастерских, основание для напольных покрытий.

4. Листы и плиты толщиной 6; 10; 12; 16; 19 и 22 мм размерами 1220×2440 и 1225×2500 мм.

5. Сорта А, В, C,D (I,II, III, IV).

6. Дешевле фанеры из лиственных пород древесины. На первосортной фанере лицевой слой шпона часто имеет красивый рисунок текстуры.

7. Красивый внешний вид часто скрывает многие дефекты. Невысокая жесткость.

1. Кашированная фанера

2. Фанера с двухсторонним покрытием из плотной бумаги, пропитанной синтетическими смолами.

4. Листы и плиты толщиной 6; 8; 10; 12; 16 и 19 мм размерами 1220×2440 мм.

5. Классифицируется по сортам так же, как фанера из лиственных пород древесины. Внешние слои (оклеенные бумагой) из шпона сорта В (II) или А (I), внутренние слои из шпона сорта С (III).

6. Гладкие поверхности хорошо окрашиваются. Легко обрабатывается. Долговечный материал, устойчивый к атмосферным воздействиям.

7. Тяжелый материал. Ограниченная доступность.

1. Декоративная фанера

2. Фанера с наружными слоями шпона из ценных пород древесины.

3. Применяется для изготовления мебели и отделки интерьеров.

4. Листы толщиной 3;6; 10; 12; 16 и 19 мм.

5. Сорта шпона на лицевой стороне: АА, А, В, C/D/E на задней стороне: 1,2,3,4.

6. Стабильнее и дешевле массивной древесины. Отсутствие внешних дефектов на лицевой стороне. Красивый внешний вид.

7. Толстые листы могут быть тяжелыми. Тонкий шпон легко повредить. Кромки деталей приходится закрывать накладками.

1. Березовая фанера

2. Склеивается из тонких слоев шпона. В дорогих сортах отсутствуют внутренние дефекты.

3. Применяется для изготовления приспособлений, мебели, выдвижных ящиков.

4. Листы размером 1525×1525 мм и толщиной 4; 6; 5; 9; 12; 15 и 18 мм.

5. Сорта: АА, А, В, С, D.

6. Жесткость, стабильность, отсутствие дефектов. Хорошо удерживает шурупы. Обработанные кромки декоративны.

7. Тяжелый материал. Наружные слои только из березового шпона.

1. Фанера «Appleply»

2. Американская разновидность высококачественной березовой фанеры с наружными слоями шпона из древесины ценных пород.

3. Применяется так же, как европейская березовая фанера, преимущественно в декоративных целях.

4. Листы и плиты толщиной 6; 10; 13; 19; 25 и 32 мм размерами 1220×2440 мм.

5. Градации по сортам нет, но для внешних слоев используется шпон сорта «В» или «А».

6. Жесткость, стабильность, отсутствие дефектов. Хорошо удерживает крепеж. Разнообразие шпона на лицевых сторонах.

7. Ограниченная доступность, высокая стоимость.

1. Гибкая фанера

2. Все внутренние слои шпона перпендикулярны наружным, что позволяет изгибать фанеру поперек волокон наружного слоя.

3. Основное применение в качестве основы при изготовлении мебели.

4. Листы толщиной 3 и 10 мм размером 1220×2440 мм. По заказу изготавливаются листы другой толщины.

5. Изгибается по малым радиусам без растрескивания, не требует распаривания или поперечных пропилов.

6. Благодаря повышенной гибкости позволяет делать закругленные углы и декоративные формы.

7. Не применяется для нагруженных конструкций.Качество шпона на лицевых сторонах не нормируется.

1. Всегда тщательно измеряйте толщину листовых материалов, прежде чем выбрать пазы или шпунты в смежных деталях. Например, толщина фанеры часто бывает на 0,3-0,8 мм меньше номинальной.

2. Распиливая листовые материалы на пильном станке, располагайте их лицевой стороной вверх, чтобы избежать сколов. При раскрое циркулярной пилой их следует располагать лицевой стороной вниз.

Под определением прочность подразумевается способность материалов не поддаваться разрушению в результате воздействия внешних сил и факторов, приводящих к внутреннему напряжению. У материалов, обладающих высокой прочностью, широкая область применения. В природе существую не только твердые металлы и прочные породы древесины, но и искусственно созданные высокопрочные материалы. Многие люди уверены в том, что самый прочный материал в мире – это алмаз, но так ли это в действительности?

Общая информация:

    Дата открытия – начало 60-х годов;

    Первооткрыватели – Сладков, Кудрявцев, Коршак, Касаткин;

    Плотность – 1,9-2 г/см3.

В недавнем времени научные сотрудники из Австрии завершили работу по налаживанию устойчивого изготовления карбина, являющегося аллотропной формой углерода на основе sp-гибридизации углеродных атомов. Показатели его прочности в 40 раз превзошли показатели алмаза. Информация об этом была размещена в одном из номеров научного печатного периодического издания “Nature Materials”.

После тщательного изучения его свойств, ученые пояснили, что по прочности он не сравнится ни с одним ранее открытым и изученным материалом. Тем не менее в процессе производства возникли значительные трудности: структура карбина образована из атомов углерода, собранных в длинные цепочки, в результате чего он начинает разрушаться в процессе изготовления.

Для устранения выявленной загвоздки, физики из общественного университета в Вене создали специальное защитное покрытие, в котором и синтезировался карбин. В качестве защитного покрытия использовались слои графена, положенные друг на друга и свернутые в «термос». Пока физики прилагали все усилия для достижения стабильных форм, они выяснили, на электрические свойства материала влияет протяженность атомной цепочки.

Извлекать карбин из защитного покрытия без повреждений исследователи так и не научились, поэтому изучение нового материала продолжается, руководствуются ученые только лишь относительной устойчивостью атомных цепочек.

Карбин – малоизученная аллотропная модификация углерода, первооткрывателями которой стали советские ученые-химики: А.М.Сладков, Ю.П.Кудрявцев, В.В.Коршак и В.И.Касаточкин. Информация о результате проведения опыта с подробным описанием открытия материала в 1967 году появилась на страницах одного из крупнейших научных журналов – «Доклады академии наук СССР». Спустя 15 лет в американском научном журнале «Science» появилась статья, поставившая под сомнение результаты, которые получили советские химики. Выяснилось, что присвоенные малоизученной аллотропной модификации углерода сигналы могли быть связаны с присутствием примесей силикатов. С годами подобные сигналы обнаружили в межзвездном пространстве.

Общая информация:

    Первооткрыватели – Гейм, Новоселов;

    Теплопроводность – 1 ТПа.

Графен представляет собой двумерную аллотропную модификацию углерода, в которой атомы объединены в гексагональную решетку. Несмотря на высокую прочность графена, толщина его слоя составляет 1 атом.

Первооткрывателями материала стали русские физики, Андрей Гейм и Константин Новоселов. В своей стране ученые не заручились финансовой поддержкой и приняли решение о переезде в Нидерланды и Соединенное Королевство Великобритании и Северной Ирландии. В 2010 году ученым присудили Нобелевскую премию.

На листе графена, площадь которого равняется одному квадратному метру, а толщина – одному атому, свободно держатся предметы массой до четырех килограмм. Помимо того, что графен высокопрочный материал, он еще и очень гибкий. Из материала с такими характеристиками в будущем можно будет плести нити и другие веревочные структуры, не уступающие в прочности толстому стальному канату. При определенных условиях материал, открытый русскими физиками, может справляться с повреждениями в кристаллической структуре.

Общая информация:

    Год открытия – 1967;

    Цвет – коричнево-желтый;

    Измеренная плотность – 3,2 г/см3;

    Твердость – 7-8 единиц по шкале Мооса.

Структура лонсдейлита, обнаруженного в воронке метеорита, схожа с алмазом, оба материала – это аллотропные модификации углерода. Вероятнее всего, в результате взрыва графит, являющийся одним из компонентов метеорита, и превратился в лонсдейлит. На момент обнаружения материала ученые не отметили высоких показателей твердости, тем не менее, было доказано, если в нем не будет примесей, то он ничем не будет уступать высокой твердости алмаза.

Общая информация о нитриде бора:

    Плотность – 2,18 г/см3;

    Температура плавления – 2973 градуса по Цельсию;

    Кристаллическая структура – гексагональная решетка;

    Теплопроводность – 400 Вт/(м×К);

    Твердость – меньше 10 единиц по шкале Мооса.

Основные отличия вюрцитного нитрида бора, представляющего собой соединение бора с азотом, заключаются в термической и химической стойкости и огнеупорности. Материал может быть разной кристаллической формы. К примеру, графитная самая мягкая, но при этом стабильная, именно она используется в косметологии. Сфалеритная структура в кристаллической решетке подобна алмазам, но уступает по показателям мягкости, обладая при этом лучшей химической и термической стойкостью. Такие свойства вюрцитного нитрида бора позволяют использовать его в оборудовании для высокотемпературных процессов.

Общая информация:

    Твердость – 1000 Гн/м2;

    Прочность – 4 Гн/м2;

    Год открытия металлического стекла – 1960.

Металлическое стекло – материал с высоким показателем твердости, неупорядоченной структурой на атомарном уровне. Основное отличие структуры металлического стекла от обычного – высокая электропроводность. Получают такие материалы в результате твердотельной реакции, быстрого охлаждения или ионного облучения. Ученые научились изобретать аморфные металлы, показатели прочности которых в 3 раза больше, чем у стальных сплавов.

Общая информация:

    Предел упругости – 1500 Мпа;

    KCU – 0,4-0,6 МДж/м2.

Общая информация:

    Ударная вязкость КСТ – 0,25-0,3 МДж/м2;

    Предел упругости – 1500 Мпа;

    KCU – 0,4-0,6 МДж/м2.

Мартенситно-стареющие стали – сплавы железа, обладающие высокой прочностью при ударах, при этом не теряющие тягучести. Несмотря на такие характеристики, материал не держит режущую кромку. Полученные путем термообработки сплавы – это низкоуглеродистые вещества, берущие прочность от интерметаллидов. В состав сплава входит никель, кобальт и другие карбидообразующие элементы. Данная разновидность высокопрочной, высоколегированной стали легко поддается обработке, связано это с небольшим содержанием в ее составе углерода. Материал с такими характеристиками нашел применение в аэрокосмической области, его используют в качестве покрытия ракетных корпусов.

Осмий

Общая информация:

    Год открытия – 1803;

    Структура решетки – гексагональная;

    Теплопроводность – (300 К) (87,6) Вт/(м×К);

    Температура плавления – 3306 К.

Блестящий металл голубовато-белого цвета, обладающий высокой прочностью, принадлежит к платиноидам. Осмий, обладая высокой атомной плотностью, исключительной тугоплавкостью, хрупкостью, высокой прочностью, твердостью и стойкостью к механическим воздействиям и агрессивному влиянию окружающей среды, широко применяется в хирургии, измерительной технике, химической отрасли, электронной микроскопии, ракетной технике и электронной аппаратуре.

Общая информация:

    Плотность – 1,3-2,1 т/м3;

    Прочность углеродного волокна – 0,5-1 ГПа;

    Модуль упругости углеродного высокопрочного волокна – 215 Гпа.

Углерод-углеродные композиты – материалы, которые состоят из углеродной матрицы, а она в свою очередь армирована углеродными волокнами. Основные характеристики композитов – высокая прочность, гибкость и ударная вязкость. Структура композиционных материалов может быть как однонаправленной, так и трехмерной. Благодаря таким качествам композиты широко используются в различных областях, включая и аэрокосмическую отрасль.

Общая информация:

    Официальный год открытия паука – 2010;

>Ударная вязкость паутины – 350 МДж/м3.

Впервые паука, плетущего сети огромных размеров, обнаружили неподалеку от Африки, на островном государстве Мадагаскар. Официально этот вид пауков открыли в 2010 году. Ученых, прежде всего, заинтересовали паутины, сплетенные членистоногим. Диаметр кругов на несущей нити может доходить до двух метров. Показатели прочности паутины Дарвина превышают показатели прочности синтетического кевлара, используемого в авиационной и автомобильной промышленности.

Общая информация:

    Теплопроводность – 900-2300 Вт/(м×К);

    Температура плавления при давлении 11 Гпа – 3700-4000 градусов по Цельсию;

    Плотность – 3,47-3,55 г/см3;

    Показатель преломления – 2,417-2,419.

Алмаз в переводе с древнегреческого означает «несокрушимый», однако ученые открыли еще 9 элементов, превосходящих его по показателям прочности. Несмотря на бесконечное существование алмаза в обычной среде, при высокой температуре и инертном газе он может превратиться в графит. Алмаз – эталонный элемент (по шкале Мооса), обладающий одним из самых высоких показателей твердости. Для него, как и для многих драгоценных камней, характерна люминесценция, позволяющая блестеть при попадании на него солнечных лучей.

Самый легкий материал в мире January 8th, 2014

Если вы следите за новинками в мире современных технологий, то данный материал не будет для вас большой новостью. Тем не менее, рассмотреть более детально самый легкий материал в мире и узнать еще немного подробностей полезно.

Менее года назад звание самого легкого в мире материала получил материал под названием аэрографит. Но этому материалу не получилось долго удерживать пальму первенства, ее не так давно перехватил другой углеродный материал под названием графеновый аэрогель. Созданный исследовательской группой лаборатории Отдела науки о полимерах и технологиях университета Чжэцзяна (Zhejiang University), которую возглавляет профессор Гэо Чэо (Gao Chao), сверхлегкий графеновый аэрогель имеет плотность немного ниже плотности газообразного гелия и чуть выше плотности газообразного водорода.

Аэрогели, как класс материалов, были разработаны и получены в 1931 году инженером и ученым-химиком Сэмюэлем Стивенсом Кистлером (Samuel Stephens Kistler). С того момент ученые из различных организаций вели исследования и разработку подобных материалов, невзирая на их сомнительную ценность для практического использования. Аэрогель, состоящий из многослойных углеродных нанотрубок, получивший название «замороженный дым» и имевший плотность 4 мГ/см3, потерял звание самого легкого материала в 2011 году, которое перешло к материалу из металлической микрорешетки, имеющему плотность 0.9 мГ/см3 . А еще год спустя звание самого легкого материала перешло к углеродному материалу под названием аэрографит , плотность которого составляет 0.18 мг/см3.

Новый обладатель звания самого легкого материала, графеновый аэрогель, созданный командой профессора Чэо, имеет плотность 0.16 мГ/см3. Для того, чтобы создать столь легкий материала ученые использовали один из самых удивительных и тонких материалов на сегодняшний день — графен. Используя свой опыт в создании микроскопических материалов, таких, как «одномерные» графеновые волокна и двухмерные графеновые ленты, команда решила добавить к двум измерениями графена еще одно измерение и создать объемный пористый графеновый материал.

Вместо метода изготовления по шаблону, в котором используется материал-растворитель и с помощью которого обычно получают различные аэрогели, китайские ученые использовали метод сублимационной сушки. Сублимационная сушка коолоидного раствора, состоящего из жидкого наполнителя и частиц графена, позволила создать углеродистую пористую губку, форма которой почти полностью повторяла заданную форму.

«Отсутствие потребности использования шаблонов размеры и форма создаваемого нами углеродного сверхлегкого материала зависит только от формы и размеров контейнера» — рассказывает профессор Чэо, — «Количество изготавливаемого аэрогеля зависит только от величины контейнера, который может иметь объем, измеряемый тысячами кубических сантиметров».

Получившийся графеновый аэрогель является чрезвычайно прочным и упругим материалом. Он может поглотить органические материалы, в том числе и нефть, по весу превышающие в 900 раз его собственный вес с высокой скоростью поглощения. Один грамм аэрогеля поглощает 68.8 грамма нефти всего за одну секунду, что делает его привлекательным материалом для использования в качестве поглотителя разлитой в океане нефти и нефтепродуктов.

Помимо работы в качестве поглотителя нефти графеновый аэрогель имеет потенциал для использования в системах аккумулирования энергии, в качестве катализатора для некоторых химических реакциях и в качестве наполнителя для сложных композитных материалов.

Листовые строительные материалы представляют собой плиты, которые имеют определенные размеры, выполненные из разных материалов путем применения различных технологий. Применяются листовые материалы как при строительстве, так и в отделочных работах. Помимо этого, листовой материал может быть использован для возведения перегородок или для воплощения разнообразных идей дизайнера. Работа с данным строительным материалом не представляет особой сложности, а правильная его обработка обеспечит минимальное количество мусора в процессе выполнения строительных работ. Монтаж листов к потолку или стене осуществляется с применением специальной обрешетки, которая изготавливается из металлического профиля или деревянного бруса. Крепеж выполняют на саморезы. Укладка листовых материалов на пол выполняется при помощи специального строительного клея.

Ниже рассмотрены основные виды листовых строительных материалов.

Древесноволокнистая плита )

Древесноволокнистая плита ) или оргалит - спрессованные под воздействием высокой температуры опилки и мелкая деревянная стружка с применением специальной добавки для склейки. Добавка служит связующим компонентом, содержание которой довольно низкое. Данный фактор относит ДВП к экологически чистым строительным материалам. ДВП относится к материалам, которые могут использоваться в помещениях с невысокой влажностью. Его нельзя применять во влажных помещениях. Наиболее часто применяют для выравнивания пола и стен, а так же при производстве мебели. Листы имеют толщину 3,2-5 мм.

Древесно-слоистая плита (фанера) - материал, имеющий в основе деревянный шпон. Особенность этого вида листового материала в том, что, слои шпона укладываются перпендикулярно, относительно друг друга, и соединяются путем прессования с введением связующего компонента. Материал имеет высокую прочность, гигроскопичен. Используется для изготовления мебели, строительстве стен и основы под напольное покрытие. Фанерный лист имеет толщину от 4 до 24 мм.

Плита ориентировано -стружечная (ОSB )

Плита ориентировано -стружечная (ОSB ) - изготавливается из тонких щепок длинной до 150 мм путем прессования, с введением дополнительных компонентов. В качестве компонентов выступают смолы, борная кислота, синтетический воск. Относится к довольно прочным видам листовых стройматериалов. Используют при выполнении кровельных работ, при строительстве каркасно-щитовых домов. Один лист имеет толщину 9-10 мм. ОСБ бывают трех типов: лакированная, ламинированная и шпунтированная.

Гипсокартонный лист )

Гипсокартонный лист ) - самый распространенный листовой материал, основой которого служит гипс, оклеенный с двух сторон картоном. Применяют его как в сфере строительства, так и при отделке отдельных помещений. Лист имеет толщину 7-12 мм. Выделяют несколько видов гипсокартонных листов: влаго-огнестойкий (ГКЛВО), огнестойкий (ГКЛО), влагостойкий (ГКЛВ), обычный (ГКЛ). Наиболее часто применяют при строительстве перегородок и подвесных конструкций потолка, а так же для выравнивания стен.

Гипсоволокнистый лист )

Гипсоволокнистый лист ) - строительный материал, в состав которого входит гипс с распущенной целлюлозной макулатурой. Отличается от ГКЛ повышенной прочностью. Сфера применения - сухая стяжка пола, создание межкомнатных перегородок, подвесного потолка. ГВЛ прост в применении и легко поддается финишной обработке. Лист имеет толщину 10-12,3 мм.

Стекломагниевый лист )

Стекломагниевый лист ) - листовой отделочный материал, в основе которого используют магнезиальное вяжущее. Высокий показатель прочности, звукоизоляции, эластичен. Относится к огнеупорным листовым материалам. Поддается финишной и механической обработке. Применяют во влажных помещениях в качестве основы под напольное покрытие, в качестве облицовочного материала для потолка, при выравнивании стен, для устройства межкомнатных перегородок.

Плита древесноволокнистая (МДФ)

Плита древесноволокнистая со средней плотностью (или аббревиатура от Medium Density Fibreboard) - изготавливается прессованием древесной стружки (сухой метод) под высоким давлением и температурой. В качестве клеевого состава применяются карбидные смол. Используют при отделки мебели, устройстве межкомнатных дверей, в качестве декоративной отделки.

Плита древесно -стружечная )

Плита древесно -стружечная ) - материал, изготовленный из стружки древесины крупного размера, соединенный при помощи клея, под воздействием пресса. Данный строительный материал легко обрабатывается, а также имеет небольшую стоимость, в сравнение с другими листовыми материалами. Из ДСП изготавливают, панели для отделки внутри помещения. Минусом является то, что при монтаже достаточно сложно использовать крепёжные элементы. Саморезы и шурупы прикручиваются плохо.

Гипсостружечная плита )

Гипсостружечная плита ) — прочный материал, изготовленный прессованием гипса с древесной стружкой без применения клея и смол. Полусухой способ производства включает в себя добавление воды и равномерное нанесение стружки по всей площади поверхности. Это выполняется с целью увеличения несущей способности конструкции. ГСП относится к экологичным, безопасным строительным материалам. Плотность листа составляет 1250 кг/м3. Применяют при облицовки внутренних стен, потолка, пола, устройстве межкомнатных перегородок. Сочетание гипса и древесной стружки в ГСП обеспечивает материалу такие свойства, как: хорошая звукоизоляция (до 32-35 дБ), поддержание баланса влагообмена в помещении, удароустойчивость, негорючесть, высокопрочность. Лицевая сторона плиты имеет светлую и гладкую поверхность. Толщина листа 8-12 мм. Различают следующие типы ГСП: обычная и влагостойкая (ГСПВ).

Читайте подробнее про ГСП: Применение, особенности работы и характеристики гипсостружечных плит (ГСП)

Цементно -стружечная плита )

Цементно -стружечная плита ) - высокопрочный, влагоустойчивый строительный продукт, изготавливается путем соединения цемента с тонкой древесной стружкой. Дополнительным компонентом является химическая добавка, которая снижает вредное воздействие стружки на цемент. Данный материал отличается своей долговечностью, имеет хорошие звуко- и теплоизоляционные свойства. Перечисленные факторы позволяют применять плиты в качестве материала для обшивки стен, как внутри, так и снаружи здания в различных условиях климата. ЦСП легок в работе и обработке, как и дерево. Правда в отличие от последнего ЦСП не подвержен влиянию насекомых, грызунов, грибковых бактерий. Цемент обеспечивает хорошую сопротивляемость воспламенению. А древесная стружка не дает плите растрескиваться от мороза или высокой температуры воздуха.

Аквапанель

Аквапанель - влагостойкий, листовой, композитный материал, основой которого служит цемент (без примеси асбеста) и сетчатая стеклоткань. В качестве добавки применяется минеральный заполнитель - керамзит мелкой фракции, выполняющий роль «сердечника». Стеклоткань укладывается равномерным слоем на всю поверхность панели. Края строительного материала имеют округлую форму. Продукт относится к экологически безопасным, за счет отсутствия в составе асбеста и органических веществ. Сфера применения - выполнение отделочных работ внутри и снаружи помещения (фасады, облицовки, перегородки). Плита имеет высокую устойчивость к механическим воздействиям и высоким показателям влажности воздуха, поэтому в процессе эксплуатации не будет деформироваться. Материал не подвержен гниению. Края аквапанели обрезаются, а кромки усиливаются. Толщина листового материала составляет 12,5 мм.

Читайте подробнее про Аквапанели: Применение аквапанелей, особенности работы и технические характеристики

Асбестовый картон (Асбокартон) - строительный материал, который изготавливается на основе волокна хризолитового асбеста, с добавлением связующего компонента (крахмала). Данный вид листового материала относится к огнестойким, обладает изоляционными свойствами, высокой механической прочностью, щелочестойкостью, долговечностью. Листы асбокартона применяются для огнезащиты и теплоизоляции, для уплотнения стыков аппаратуры и коммуникаций. Выделяют три его типа: КАОН-1, КАОН-2 — общего назначения; КАП — прокладочный. Способ укладки на изолируемую поверхность не требует специальных навыков работы и использования специальных инструментов. Толщина листового материала составляет 1,3-10 мм в зависимости от типа.

Асбестоцементная электротехническая доска ) - листовой материал, в основе которого цемент. Представляет собой прочную доску или плиту. Этот вид листового материала имеет повышенную термостойкость и стойкость к высокому напряжению. Используется АЦЭИД в качестве отделочного материала для печей, для изготовления электрических щитов, ограждений электропечей и т.п. То есть там, где необходима высокая прочность и защита от высокого напряжения. Также используют при отделке фасада здания, создание строительных перегородок. Используется как звукоизоляционный материал. Почти не пропускает воду и электрический ток. Используется как основание для электрических машин и аппаратов, при производстве тигельных и индукционных печей, корпусов для дугогасильных камер. Толщина ацеида может быть от 6 до 40 мм. Требуется специальный инструмент для его резки.

Читайте подробнее про Ацэид: Свойства и область применения асбестоцементной доски (Ацэид)

Эмалированное стекло (ЭМАЛИТ , СТЕМАЛИТ )

Эмалированное стекло (ЭМАЛИТ , СТЕМАЛИТ ) - устойчивое к агрессивным средам (кислотам, щелочам) стекло, покрытое с одной стороны эмалированной краской. Краска различного цвета наносится на стеклянную поверхность, после чего выполняется ее закалка. Продукт не подвержен воздействию высокой влажности, имеет физическую стойкость к стираниям (царапинам), обладает механической прочностью. Довольно широко применяется в фасадном и интерьерном остеклении, в качестве функционального или декоративного элемента. Используется в облицовке зданий (внутри и снаружи); производстве оборудования, мебели, стеновых панелей, цельностеклянных дверей; устройство межкомнатных перегородок.

Читайте подробнее про эмалированное стекло: Эмалированное стекло (Стемалит)

Заключение. В статье представлены основные виды и характеристики листовых материалов применяемых при строительстве и ремонте, а также указана область наибольшего его применения и способы обработки каждого из описанных выше видов.


Если вы следите за новинками в мире современных технологий, то данный материал не будет для вас большой новостью. Тем не менее, рассмотреть более детально самый легкий материал в мире и узнать еще немного подробностей полезно.


Менее года назад звание самого легкого в мире материала получил материал под названием аэрографит. Но этому материалу не получилось долго удерживать пальму первенства, ее не так давно перехватил другой углеродный материал под названием графеновый аэрогель. Созданный исследовательской группой лаборатории Отдела науки о полимерах и технологиях университета Чжэцзяна (Zhejiang University), которую возглавляет профессор Гэо Чэо (Gao Chao), сверхлегкий графеновый аэрогель имеет плотность немного ниже плотности газообразного гелия и чуть выше плотности газообразного водорода.

Аэрогели, как класс материалов, были разработаны и получены в 1931 году инженером и ученым-химиком Сэмюэлем Стивенсом Кистлером (Samuel Stephens Kistler). С того момент ученые из различных организаций вели исследования и разработку подобных материалов, невзирая на их сомнительную ценность для практического использования. Аэрогель, состоящий из многослойных углеродных нанотрубок, получивший название «замороженный дым» и имевший плотность 4 мГ/см3, потерял звание самого легкого материала в 2011 году, которое перешло к материалу из металлической микрорешетки, имеющему плотность 0.9 мГ/см3 . А еще год спустя звание самого легкого материала перешло к углеродному материалу под названием аэрографит , плотность которого составляет 0.18 мг/см3.

Новый обладатель звания самого легкого материала, графеновый аэрогель, созданный командой профессора Чэо, имеет плотность 0.16 мГ/см3. Для того, чтобы создать столь легкий материала ученые использовали один из самых удивительных и тонких материалов на сегодняшний день - графен. Используя свой опыт в создании микроскопических материалов, таких, как «одномерные» графеновые волокна и двухмерные графеновые ленты, команда решила добавить к двум измерениями графена еще одно измерение и создать объемный пористый графеновый материал.

Вместо метода изготовления по шаблону, в котором используется материал-растворитель и с помощью которого обычно получают различные аэрогели, китайские ученые использовали метод сублимационной сушки. Сублимационная сушка коолоидного раствора, состоящего из жидкого наполнителя и частиц графена, позволила создать углеродистую пористую губку, форма которой почти полностью повторяла заданную форму.


«Отсутствие потребности использования шаблонов размеры и форма создаваемого нами углеродного сверхлегкого материала зависит только от формы и размеров контейнера» - рассказывает профессор Чэо, - «Количество изготавливаемого аэрогеля зависит только от величины контейнера, который может иметь объем, измеряемый тысячами кубических сантиметров».

Получившийся графеновый аэрогель является чрезвычайно прочным и упругим материалом. Он может поглотить органические материалы, в том числе и нефть, по весу превышающие в 900 раз его собственный вес с высокой скоростью поглощения. Один грамм аэрогеля поглощает 68.8 грамма нефти всего за одну секунду, что делает его привлекательным материалом для использования в качестве поглотителя разлитой в океане нефти и нефтепродуктов.


Помимо работы в качестве поглотителя нефти графеновый аэрогель имеет потенциал для использования в системах аккумулирования энергии, в качестве катализатора для некоторых химических реакциях и в качестве наполнителя для сложных композитных материалов.

Загрузка...