domvpavlino.ru

Полное погружение: как VR-приложения помогают детям учиться. Виртуальная реальность в образовании

Это новое захватывающее направление в разработке приложений. Оно знаменует собой новые форматы сторителлинга и более действенные способы передачи эмоций и ощущений.

Если раньше для создания подобных приложений требовалось дорогое оборудование и специальные навыки, то сейчас разработка виртуальной реальности стала доступна благодаря интуитивно понятным инструментам и технике, которую можно найти в ближайшем магазине электроники. В этом руководстве мы разберём, как создать видео-приложение с обзором в 360 градусов для Android за десять минут. Навыки программирования не требуются.

Что понадобится

Телефон с гироскопом под управлением Android KitKat или более новой версии.

Unity3D — кроссплатформенный игровой движок версии 5.6 и выше.

Видео с обзором в 360 градусов.

Как создать приложение?

Если обычное видео ограничено прямоугольной рамкой, то панорамное имеет форму сферы. Поэтому для начала создадим сферический экран, на который будет спроецировано видео с обзором в 360 градусов. Игрок (или наблюдатель) будет находиться внутри этой сферы и сможет смотреть видео в любом направлении.

Шаг 1: Построить сферу ?

Создадим новый Project в Unity или новую Scene, если хотим интегрировать видеоплеер в уже существующий проект. Считайте, что Scene - это один уровень в игре, а Project - вся игра.

Поместите сферу (3D object → Sphere) радиуса 50 (Scale = 50, 50, 50) в центр Scene (Position = 0, 0, 0). Установите позицию камеры на 0, 0, 0. Камера - это глаза игрока: если поместить её не в центр, то видео будет искажённым.

Поместив камеру внутрь сферы, мы больше не видим её на сцене. Так происходит из-за того, что большинство игровых движков не отображает внутреннюю сторону 3D-объектов, так как нам почти никогда не нужно её видеть, а значит можно не тратить ресурсы на отрисовку.

Шаг 2: Перевернуть нормали сферы ?

В нашем случае нужно смотреть на сферу изнутри, поэтому мы вывернем её наоборот.

В Unity сферы на самом деле являются многогранниками, составленными из тысяч крошечных граней. Их внешние стороны видимы, а внутренние - нет. Чтобы увидеть сферу изнутри, необходимо перевернуть эти грани. В терминах трёхмерной геометрии такая трансформация называется переворачиванием нормалей.

Применим программу Shader к Material сферы. Материалы в Unity контролируют внешний вид объектов. Шейдеры - это небольшие скрипты, которые рассчитывают цвет каждого рендерированного пикселя, основываясь на информации о материале и освещении.

Создадим новый Material для сферы, к нему применим Shader, код для которого можно скопировать отсюда . Этот шейдер вывернет каждый пиксель сферы, и изнутри сфера будет выглядеть как большой белый шар.

Шаг 3: Спроектировать панорамное видео внутрь сферы?

Импортируйте в проект видео с обзором в 360 градусов формата mp4, перенесите его на сферу. Появится компонент Video Player, и видео будет готово к воспроизведению. В окне этого компонента можно установить бесконечный повтор и отрегулировать настройки звука.

Прим. ред. Если у вас нет собственного видео такого типа, можно использовать чужие заготовки, свободно распространяемые в Интернете.

Шаг 4: Настроить поддержку Google Cardboard ?

Используя GoogleVR SDK, мы создадим стереоскопическое изображение. Совокупность эффекта рыбьего глаза, применённого к обеим частям разделённого наполовину экрана, и искажения пластиковых линз Google Cardboard создаёт иллюзию глубины картинки и погружения в виртуальную реальность.

Для того чтобы добавить GoogleVR SDK к проекту, скачайте и импортируйте плагин . Далее скорректируйте настройки Android:

  1. В верхнем меню выберите File → Build Settings . Добавьте сцену, если она еще не была добавлена, а из предлагаемых платформ выберите Android.
  2. Нажмите на Switch Platform . Переключение платформы займёт некоторое время.
  3. Нажмите на Player Settings . На панели инструктора появятся компоненты.

В окне Player Settings в секции Other settings :

  • Отметьте галочкой Virtual Reality Supported . В выпавшем окне Virtual Reality SDKs нажмите на +, добавьте в список Cardboard .
  • Выберите для вашего приложения уникальное имя и введите его в поле Bundle Identifier . Уникальные имена приложений под Android обычно имеют форму обратного доменного имени, например, com.example.CoolApp . Подробнее про это можно почитать в официальной документации и в Википедии .
  • В меню Minimal API Level выберите Android 4.4 Kit Kat (API Level 19) .

В панели Project Browser в папке GoogleVR/Prefabs выберите элемент GvrViewerMain и перетащите его на сцену. Задайте ему такую же позицию, как у центра сферы: 0, 0, 0 .

Префаб GvrViewerMain контролирует все настройки режима виртуальной реальности, например, адаптацию экрана к линзам Cardboard. Он также получает данные с гироскопа телефона для отслеживания поворотов и наклонов головы. При повороте головы Camera в видеоплеере тоже повернётся.

Шаг 5: Запустить приложение на Android ?

Это можно сделать двумя разными способами:

  • Выберите File → Build Settings . С помощью USB-кабеля подключите телефон к компьютеру, включите отладку по USB и нажмите Build & Run . Приложение загрузится сразу на телефон.
  • Или нажмите Build only . Приложение не загрузится на телефон, но зато сгенерируется в APK-файл, который можно отправить другим людям или выложить в магазин мобильных приложений.

В течение процесса сборки вас могут попросить выбрать корневую папку Android SDK. В этом случае скачайте Android SDK и укажите расположение его папки.

Осталось только запустить приложение и вставить телефон в Cardboard. Теперь вы можете испытать погружение в виртуальную реальность с обзором в 360 градусов у себя дома.

Что дальше

Поздравляем, вы создали видео-приложение с обзором в 360 градусов! Теперь вы на шаг ближе к разработке видео-приложения виртуальной реальности. Да, между ними есть разница. В первом случае наблюдатель может только смотреть в любом направлении. Во втором случае добавляется интерактивность, то есть контроль над объектами.

Приложение, которое вы только что создали, может послужить отправной точкой в построении более разнообразной виртуальной реальности. Например, в Unity можно наложить на верхний слой видео 3D-объекты и эффекты частиц.

Вы также можете попробовать поместить внутрь панорамного видеоплеера трёхмерное изображение некоторой окружающей обстановки и использовать видеоплеер как skybox. Для навигации пользователя по созданному окружению можно использовать этот

Студия NMAS делится с новичками реальным опытом.

Среди клиентов Nanobotmodels Medical Animation - крупнейшие анимационные студии, институты, медицинские научно-исследовательские организации, региональные представительства крупнейших фармацевтических компаний в США, Австралии, Великобритании, России, Украине, Белоруссии, Казахстане и не только.

Во время создания очередного видео-ролика или интерактивного медицинского приложения Юрий видит что-то непонятное даже IT -журналисту:

Если перенести это на устройство виртуальной реальности, получится нечто подобное:

А примерно так эта демонстрация выглядела для меня в VR -шлеме:

С помощью трехмерной анимации от NMAS я совершил путешествие по простым герпесвирусам внутри нервной клетки в теле человека, увидел работу синапсов головного мозга и формирование иммунного ответа - красиво, интересно и, как я понял, научно достоверно. Думаю, к каждому совету создателя чего-то подобного нужно прислушаться .

1. Расскажите интересную историю - не надо никаких американских горок

Опыт работы в направлении виртуальной реальности не имеет первостепенного значения. Сегодня на рынке различного VR -контента предостаточно, но действительно интересных проектов очень немного. Поэтому в первую очередь определитесь с идеей - она должна быть максимально увлекательной и необычной .

Каких-то безумных американских горок в VR сегодня хватает - ими уже никого не удивишь. А вот захватывающих логических головоломок, если мы говорим об играх, практически нет - по крайней мере, ничего действительно стоящего в данном направлении пока не сделали.

Перед началом творческого процесса лучше ознакомьтесь с основами работы с виртуальной реальностью, которые отлично изложены в данном видео:

2. Выберите правильную платформу - начните с мобильной

Принципы создания контента для виртуальной реальности сегодня практически не отличаются от платформы к платформе. Более того, созданный для одного из доступных сегодня устройств материал можно без больших проблем портировать на другое - главное, чтобы у него производительности хватило.

Новичкам Юрий рекомендует начать с мобильной виртуальной реальности , для работы с которой будет достаточно мало-мальски производительного компьютера, современного смартфона, а также простого недорого VR -кейса - подойдут Gear VR , Mattel View-Master или самый обычный Cardboard от Google .

В этом видео отлично раскрыт вопрос различных устройств для входа в виртуальную реальность - тут же показывают, как сложить свой первый Cardboard из картона:

3. Изучите движок и заинтересуйте - не переставайте удивлять

В студии NMAS уверены, что у разработчика есть не более 15 минут , чтобы заинтересовать пользователя трехмерной видеозаписью или интерактивным приложением в виртуальной реальности. Больше времени даже самый пытливый просто не вытерпит, поэтому нужно начать удивлять уже с самого начала.

Более того, в виртуальном мире должны быть четко выделены маркеры внимания, чтобы пользователь не пропустил самое интересное, соблюдена непрерывность повествования и определены точки входа-выхода в каждое из показываемых ему пространств.

Чтобы данный вопрос стал более прозрачным, рекомендуем ознакомиться с записью, в которой как нельзя лучше раскрыты основные вопросы работы с самым популярным VR -движком - Unity :

4. Сконцентрируйтесь на качестве - пользователей не должно укачать

Юрий советует сконцентрироваться не на количественных показателях, а на качественных. Чем лучше продуманным и детальней прорисованным окажется окружающий пользователя виртуальный мир, тем больше времени он в нем с удовольствием проведет.

Тем не менее, в данном случае нужно учитывать ограничение производительности разных платформ. Ее сегодня крайне недостаточно, поэтому чем-то в любом случае придется жертвовать - качеством текстур, размером локаций и так далее. Главное, во время изучения виртуального мира не должно быть лагов или глюков - это сразу вызовет тошноту и головокружение у пользователя.

Быть может, ключевой фишкой вашего первого проекта, которая заставит закрыть глаза на качество реализации, окажется смешанная реальность - информация о ней лучше всего подана в этом видео:

5. Наберитесь терпения и не упустите момент - начните прямо сейчас

Лучшее время для любого начинания - сегодня. Чем раньше к изучению виртуальной реальности в принципе и разработки контента для нее в частности вы приступите, тем лучше. В NMAS уверены, что за VR и AR будущее, поэтому студия для своей медицинской специфики давно сконцентрировалась на создании именно таких материалов.

Сегодня прогресс достиг действительно небывалых высот, а новое поколение способно использовать такие возможности, о которых еще 10-15 лет назад люди лишь мечтали. То, что было мистикой и волшебством, сегодня стало техническим прогрессом. Один из таких моментов – это виртуальная реальность. Сегодня мы поговорим о том, что такое VR и как ее используют в различных сферах.

Определение виртуальной реальности

Виртуальная реальность – это созданный с помощью технического и программного обеспечения виртуальный мир, передающийся человеку через осязание, слух, а также зрение и, в некоторых случаях, обоняние. Именно объединение всех этих воздействий на чувства человека в сумме носит название интерактивного мира

Она, VR, способна с высокой точностью имитировать воздействия окружающей виртуальной действительности на человека, но для того, чтобы создать действительно правдоподобный компьютерный синтез из реакций и свойств в рамках интерактивного мира, все процессы синтеза просчитываются, анализируются и выводятся в качестве поведения в реальном времени.

Использование виртуальной реальности многогранно: в 99 процентах случаев одушевленным и неодушевленным предметам, созданным при помощи такой технологии, присущи точно такие свойства, поведение и движение, какие есть у их настоящих прототипов. При этом пользователь в состоянии оказывать на все одушевленные и неодушевленные объекты влияние согласно реальным законам физики (если игровым процессом не предусмотрены другие законы физики, что случается крайне редко).

Принцип работы

Многим интересно, как именно действует технология. Вот три главных компонента, которые используются практически при любом взаимодействии с виртуальной средой:

  1. Голова . Виртуальная среда внимательно, при помощи специализированной гарнитуры, отслеживает положение головы. Так, гарнитура двигает картинку согласно тому, в какие из сторон и когда пользователь поворачивает свою голову – в бок, вниз или вверх. Такая система официально называется шестью степенями свободы.
  2. Движения . В более дорогих модификациях технического обеспечения отслеживаются и движения пользователя, при этом виртуальная картинка будет двигаться согласно им. Речь идет здесь не об играх, в которых пользователь просто находится на месте и взаимодействует с окружением, но о тех, где он перемещается в виртуальном пространстве.
  3. Глаза . Еще один основополагающий в реальности датчик анализирует то направление, в котором смотрят глаза. Благодаря этому игра позволяет пользователю погрузиться в интерактивную реальность более глубоко.

Эффект полного присутствия

Уже по термину полного присутствия понятно, о чем именно идет речь: мир – это виртуальная реальность. Это значит, что пользователь будет ощущать себя именно там, где находится игра, и он может взаимодействовать с ней. Пользователь поворачивает голову – персонаж тоже поворачивает голову, человек шагает в своей комнате – игрок движется в интерактивной реальности. До сих пор идут споры — возможно ли

The Leap – отслеживание пальцев и кистей

Эффект от полного присутствия достигается за счет устройства The Leap. Это устройство, использующее сложную систему отслеживания каждого движения, все еще остается частью очень дорогих и ТОПовых шлемов. Однако алгоритм работы достаточно прост, и он присутствует в немного измененном виде в другом устройстве, а именно в шлеме HTC Vive.

Как контроллер, так и шлем в HTC Vive, оснащены множеством фотодиодов – небольших приборов, преобразовывающих световую энергию в электрическую.

Важный момент! Вообще человек ежедневно сталкивается с фотодиодами и их работой. Как пример, это фотодиод, отвечающий за освещение смартфона. Фотодиод определяет, сколько именно освещения падает на него, и, на основе этих данных, регулирует уровень яркости

Такой же принцип полного присутствия используется и в шлеме. В комплекте со стандартным ВР-шлемом идут две станции, которые через временные интервалы пускают пару лучей – это горизонтальный и вертикальный лучи. Они пронизывают комнату и добираются до фотодиодов на устройстве шлема и контроллера. После этого фотодиоды начинают свою работу, и за несколько секунд происходит обмен информационными данными, в ходе которого датчики передают положение контроллеров и шлема.

В этом заключается алгоритм создания полного присутствия.

Какие существует разновидности VR

Официально сейчас существует три разновидности виртуальной реальности:

  1. Имитация и компьютерное моделирование.
  2. Мнимая деятельность.
  3. Киберпространство и аппаратные средства.

VR шлемы

Главная разница между этими тремя гаджетами заключается лишь в компаниях-производителях. В остальном же они похожи. Все три шлема отличаются портативностью и обеспечением полного погружения в игровой процесс.

Плюсы и минусы виртуальной реальности

Плюсы:

  1. Возможность полностью окунуться в интерактивное измерение.
  2. Получение новых эмоций.
  3. Профилактика стресса.
  4. Создание электронных информационных и обучающих ресурсов.
  5. Проведение конференций.
  6. Создание объектов культурного наследия.
  7. Возможность визуализации различных объектов и физических явлений.
  8. Возможность для каждого перейти на новый уровень развлечений.

Минусы:

К минусам можно отнести следующие моменты:

  1. Зависимость.
  2. Еще один явный минус: виртуальная реальность и ее психологическое воздействие на человека – оно далеко не всегда бывает позитивным, так как есть риск слишком сильно погрузиться в виртуальным мир, что иногда влечет за собой проблемы в социальной и других сферах жизни.
  3. Высокая стоимость устройств.

Применение виртуальной реальности

VR можно использовать в таких сферах, как:

  1. Обучение . Сегодня интерактивная реальность позволяет смоделировать тренировочную среду в тех сферах и для тех занятий, для которых необходимой и важной является предварительная подготовка. Как пример, это может быть операция, управление техникой и другие сферы.
  2. Наука . VR дает возможность значительно ускорить исследования как атомного, так и молекулярного мира. В мире компьютерной реальности человек способен манипулировать даже атомами так, словно это конструктор.
  3. Медицина . Как и было отмечено, при помощи VR можно тренировать и обучать медицинских специалистов: проводить операции, изучать оборудование, улучшать профессиональные навыки.
  4. Архитектура и дизайн . Что может быть лучше, чем показать заказчику макет нового дома или любого другого строительного объекта при помощи такой реальности? Именно она позволяет создавать эти объекты в виртуальном пространстве, в полном размере, для демонстрации, тогда как раньше использовались ручные макеты и воображение. Это касается не только строительных объектов, но и техники.
  5. Развлечение . VR безумно популярен в игровой среде. Причем, спросом пользуются как игры, так и культурные мероприятия и туризм.

VR – вредно это или нет?

Пока что можно отметить, что никаких глобальных исследований в этой области не проводилось, однако первые выводы сделать уже можно. Так как VR еще только-только разрабатывается (и это действительно так), у многих могут появляться неприятные ощущения при продолжительном использовании этой технологии. В частности, человек будет ощущать головокружение и тошноту.

Пока что нет никаких доказательств того, что . Отрицательный эффект, несомненно, есть, однако он не настолько велик, чтобы бить тревогу. Поэтому пока неизвестно, виртуальная реальность, что это такое – вред или польза.

VR – что ждет в будущем?

Сегодня виртуальная реальность не до конца доделана, поэтому могут появляться неприятные ощущения. В будущем же появится множество устройств, копий и аналогов, которые не будут отрицательно действовать на человеческий организм и психику.

Также устройства VR смогут решить проблемы с потреблением информационных данных, а сеансы станут такими же стандартными и обыденными, как и обычные игры на компьютере или приставках в наши дни.

Вывод

Виртуальная реальность – пока что бездонная пропасть для исследования и улучшения алгоритмов работы. Сегодня технологии продвигаются очень быстро, поэтому можно с уверенностью сказать, что в ближайшем будущем рыночная стоимость комплекта будет по карману человеку со средним достатком.

Система образования – довольно консервативна. Несмотря на множество инновационных разработок и открытий, образовательный сектор практически не использует революционных методов обучения, в большинстве своем предпочитая «классику». Но информационные технологии предлагают новые правила для этой сферы – обучение в формате дополненной реальности.

Обучение в формате виртуальной реальности

Прежде всего, стоит отметить, что дополненная и виртуальная реальность – это не одно и то же. Для создания виртуальной реальности понадобятся или очки, которые нарисуют новый мир. Компоненты для создания виртуальной реальности (мощное и современное «железо», очки) достаточно дорого стоят. Еще одним камнем преткновения для внедрения виртуальной реальности в сферу образования может стать «потеря контакта» учителя-ученика: школьник путешествует в виртуальном мире, забывая о реальности в классной комнате.

С дополнительной реальностью дела обстоят на порядок проще. Дополненная реальность – инновационный способ демонстрации учебного материала. Унылая и весьма «заезженная» картинка оживает. Это не только не препятствует, но и в большей степени способствует (заинтересовывает) взаимодействию между учениками и учителем.


Разработка AR (анг. augmented reality) достаточно молода – с момента создания не прошло еще 10 лет, и массово в системе образования (даже развитых стран) пока не используется. Свое широкое применение она нашла в музейном деле («оживление» предметов) и уличной рекламе.
Чтобы привести систему в действие не потребуется хитроумных и дорогостоящих гаджетов: камера (подойдет даже камера в смартфоне), экран (телевизор, планшет, телефон), программное обеспечение, совместимое с имеющимся устройством, и маркер AR. В качестве маркера может быть использован чертеж, рисунок, графическое изображение или реальный объект (постройка, открытка или шоколадка). Приложение идентифицирует предложенный маркер и воспроизводит на экране графический объект или анимацию.

VR делает обучение увлекательным

Как это происходит на практике. На парте перед учеником лежит обычный учебник. На иллюстрации в книге направляется камера гаджета с установленным ПО. Программа распознает книжные рисунки как маркер, и вместо плоского рисунка атома появляется трехмерный объект, который можно рассмотреть со всех сторон. Уроки с дополненной реальностью позволяют ученикам становится частью происходящих процессов как микро- (молекулярный уровень), так и макромире (на уровне солнечной системы и галактик). Едва ли кто-то захочет прогуливать такие уроки физики.

Также многим людям гораздо легче воспринимать информацию, полученную в зрительном контакте, а не сквозь формулу или чертеж. Таким образом данная технология поможет без лишних усилий и серьезных вложений преодолеть барьер получения знаний для школьников и студентов. AR будет полезна при развитии пространственного мышления.

От разработок к реальности.

Стартап HoloGroup (Россия) сегодня активно работает над внедрением технологии дополненной реальности в образовательные будни школьников.
HoloGroup стала лауреатом независимой премии «Время инноваций-2016» в категории «Компьютерные и беспроводные технологии» в номинации «Открытие года».

Обучение в формате виртуальной реальности от HoloStydy ©photo holo.group

Команда специалистов работает над разработкой уроков в формате AR, адаптированных под Microsoft HoloLens (разработанное ими приложение). С помощью данного приложения можно уже сегодня познакомится с устройством нашей планеты.
Дополненная реальность превращает монотонные уроки в захватывающее приключение.

Виртуальная реальность ещё не стала частью нашей повседневности, но на уровне разработок уже проникла в сферы от медицины до искусства и становится всё более доступна пользователю: самые простые VR-очки изготавливаются из картона. Постепенно VR находит своё место и в сфере детского образования, значительно меняя сам процесс обучения.

Как технологии меняют образование

Сразу скажем: речь не о том, чтобы приложения и гаджеты заменили школьникам учебники или работу в классе с учителем. Но современные технологии, такие как виртуальная и дополненная реальность, могут существенно дополнить традиционные методы и обеспечить более полное погружение в предмет изучения.

Исследования показываютThe Brain May Use Only 20 Percent of Its Memory-Forming Neurons , что мы запоминаем только 20% от того, что мы слышим, 30% - от того, что видим, и до 90% - от того, что делаем сами или испытываем во время симуляции. Виртуальная реальность позволяет получить реальный опыт присутствия, повышая эффективность обучения и вероятность запоминания.

Погулять внутри человеческого тела, совершить экспедицию на Марс, оказаться внутри химической реакции вещества - всё это позволяет совершенно иначе понимать и воспринимать предмет.

Кроме того, использование современных технологий во время школьных занятий кажется детям очень увлекательным, они с энтузиазмом погружаются в процесс. Если во время традиционного урока учителю трудно удерживать внимание всех учеников, то во время виртуального тура дети полностью вовлечены и фокусируются на 100%, поэтому процесс обучения идет с максимальной эффективностью.

Чему можно научиться в виртуальной реальности

Виртуальная реальность, как никакая другая технология, может обеспечить эффект погружения. VR - это не абстрактная информация, которую ребёнку надо запомнить, а полноценный визуальный опыт, на котором многим легче учиться.

Многие VR-приложения основаны на простой демонстрации 3D-объектов, фото или видео, но даже это фундаментально меняет процесс познания. И уже существует немало VR-приложений, в которых пользователь может активно влиять на виртуальную реальность и преобразовывать её. Мы подобрали несколько интересных VR-проектов, чтобы показать, чему школьник может научиться и что узнать с их помощью.

Путешествовать с Google Expeditions

Приложение Google содержит сотни туров и объектов в виртуальной или дополненной реальности, с которыми можно отправиться на раскопки археологов, совершить экспедицию под водой, превратить класс в музей. Пока преподаватель рассказывает, например, об океане, ученики «погружаются» на дно океана и «плавают» рядом с акулами. Или, используя дополненную реальность, учитель может устроить извержение вулкана прямо в классе, рассмотрев и обсудив его вместе с учениками.

Недорогие картонные очки Google Cardboard вместе с приложением Expeditions уже используются преподавателями в тысячах школ по всему миру.

Разобраться со сложными научными понятиями в MEL Chemistry VR

VR-уроки от Mel Science позволяют оказаться внутри химических реакций и увидеть своими глазами, что происходит с частицами веществ. Ученики могут взаимодействовать и экспериментировать с атомами и молекулами, а учитель контролирует ход VR-урока и видит прогресс каждого ученика. Мощная визуализация и эффект присутствия помогают понять суть химических явлений без бессмысленного зазубривания формул.


Рисовать в Tilt Brush

Это приложение позволяет рисовать в виртуальной реальности, где всё, что вы задумаете, возникает прямо из воздуха. Представляете, какой взрыв фантазии такие возможности вызовут у творческого школьника?

Даже если ребёнок не будет связывать свою дальнейшую жизнь с искусством, вполне вероятно, что к моменту, когда он будет получать профессиональное образование, проектирование в виртуальной реальности для многих специальностей станет обычным делом. К сожалению, VR-шлемы, необходимые для этой программы, всё ещё довольно дорогое оборудование.


Узнать о строении организма в InMind и InCell

Два очень красивых приложения, наглядно раскрывающих принципы работы мозга и клеток организма в виде игр. Анатомия вдохновляет разработчиков VR-приложений, и интересных решений в этой области можно найти немало. Мы остановились на этих двух, потому что, во-первых, это примеры российской разработки (их выпустила студия Nival VR), а во-вторых, они полностью бесплатны. Кстати, медицина - одна из сфер, где VR-технологии уже сегодня заняли заметное место в науке, практике и профессиональном обучении.



Познакомиться с виртуальной реальностью в The Lab и создавать её в CoSpaces Edu

Ещё один распространённый тип образовательных VR-приложений даёт представление о самой этой технологии. The Lab - альманах мини-игр, демонстрирующих возможности виртуальной реальности. С этого полностью бесплатного приложения рекомендуют начинать знакомство с VR.

Если ребёнок уже заинтересовался виртуальной реальностью, то ему можно предложить площадку для самостоятельного творчества. Подойдёт CoSpaces Edu: 3D-конструктор можно собирать из готовых объектов или строить их самостоятельно, а можно и писать код.


Загрузка...