domvpavlino.ru

Подключение датчиков с токовым выходом к вторичным приборам. Практические схемы включения датчиков Как подключить активный датчик к контроллеру

Получившие наибольшее распространение в сфере автоматизации производства датчики с унифицированным токовым выходом 4-20, 0-50 или 0-20 мА могут иметь различные схемы подключения к вторичным приборам. Современные датчики, имеющие низкое энергопотребление и токовый выход 4-20 мА, чаще всего подключают по двухпроводной схеме. То есть к такому датчику подключается всего один кабель с двумя жилами, по которым этот датчик запитывается, и по этим же двум жилам осуществляется передача .

Как правило, датчики с выходом 4-20 мА и двухпроводной схемой подключения имеют пассивный выход и им для работы необходим внешний источник питания. Этот источник питания может быть встроен непосредственно во вторичный прибор (в его вход) и при подключении датчика к такому прибору в сигнальной цепи сразу появляется ток. О приборах, которые имеют встроенный во вход источник питания для датчика, говорят, что это приборы с активным входом.

Большинство современных вторичных приборов и контроллеров имеет встроенные источники питания для работы с датчиками с пассивными выходами.

Если же вторичный прибор имеет пассивный вход - по сути, просто резистор, с которого измерительная схема прибора "считывает" падение напряжения, пропорциональное протекающему в цепи току, то для работы датчика необходим дополнительный . Внешний блок питания в этом случае включается последовательно с датчиком и вторичным прибором в разрыв токовой петли.

Вторичные приборы обычно проектируются и выпускаются с таким расчетом, чтобы к ним можно было подключить как двухпроводные датчики 4-20 мА, так и датчики 0-5, 0-20 или 4-20 мА, подключаемые по трехпроводной схеме. Для подключения двухпроводного датчика к входу вторичного прибора с тремя входными клеммами (+U, вход и общий) задействуют клеммы "+U" и "вход", клемма "общий" остается свободной.

Так как датчики, как уже было сказано выше, могут иметь не только выход 4-20 мА, а, например, 0-5 или 0-20 мА или их невозможно подключить по двухпроводной схеме из-за большого собственного энергопотребления (более 3 мА), то применяют трехпроводную схему подключения. В этом случае цепи питания датчика и цепи выходного сигнала разделены. Датчики имеющие трехпроводную схему подключения обычно имеют активный выход. То есть, если подать на датчик с активным выходом напряжение питания и между его выходными клеммами "выход" и "общий" подключить нагрузочное сопротивление, то в выходной цепи побежит ток, пропорциональный величине измеряемого параметра.

Вторичные приборы обычно имеют достаточно маломощный встроенный блок питания для запитки датчиков. Максимальный выходной ток встроенных блоков питания обычно находиться в пределах 22-50 мА, чего не всегда достаточно для питания датчиков имеющих большое энергопотребление: электромагнитных расходомеров, инфракрасных газоанализаторов и т.п. В этом случае для питания трехпроводного датчика приходиться использовать внешний, более мощный блок питания, обеспечивающий необходимую мощность. Встроенный во вторичный прибор источник питания при этом не используется.

Подобная схема включения трехпроводных датчиков обычно используется и в том случае, когда напряжение встроенного в прибор источника питания не соответствует тому напряжению питания, которое допускается подавать на этот датчик. Например, встроенный источник питания имеет выходное напряжение 24В, а датчик разрешается питать напряжением от 10 до 16В.

Некоторые вторичные приборы могут иметь несколько входных каналов и достаточно мощный блок питания для запитки внешних датчиков. Необходимо помнить, что суммарная потребляемая мощность всех подключенных к такому многоканальному прибору датчиков должна быть меньше мощности встроенного источника питания, предназначенного для их питания. Кроме того, изучая технические характеристики прибора необходимо четко различать назначение встроенных в него блоков (источников) питания. Один встроенный источник используется для питания непосредственно самого вторичного прибора - для работы дисплея и индикаторов, выходных реле, электронной схемы прибора и т.п. Этот источник питания может иметь достаточно большую мощность. Второй встроенный источник используется для запитки исключительно входных цепей - подключенных к входам датчиков.

Перед подключением датчика к вторичному прибору следует внимательно изучить руководства по эксплуатации на данное оборудование, определить типы входов и выходов (активный/пассивный), проверить соответствие потребляемой датчиком мощности и мощности источника питания (встроенного или внешнего) и только после этого производить подключение. Реальные обозначения входных и выходных клемм датчиков и приборов могут отличаться от тех, что приведены выше. Так клеммы "Вх (+)" и "Вх (-)" могут иметь обозначение +J и -J, +4-20 и -4-20, +In и -In и т.п. Клемма "+U пит" может быть обозначена как +V, Supply, +24V и т.п., клемма "Выход" - Out, Sign, Jout, 4-20 mA и т.п., клемма "общий" - GND, -24V, 0V и т.п., но смысла это не меняет.

Датчики с токовым выходом имеющие четырехпроводную схему подключения имеют аналогичную схему подключения, что и двухпроводные датчики с той лишь разницей, что питание четырепроводных датчиков осуществляется по отдельной паре проводов. Кроме того, четырехпроводные датчики могут иметь как , что необходимо учитывать при выборе схемы подключения.

Здесь же я отдельно вынес такой важный практический вопрос, как подключение индуктивных датчиков с транзисторным выходом, которые в современном промышленном оборудовании – повсеместно. Кроме того, приведены реальные инструкции к датчикам и ссылки на примеры.

Принцип активации (работы) датчиков при этом может быть любым – индуктивные (приближения), оптические (фотоэлектрические), и т.д.

В первой части были описаны возможные варианты выходов датчиков. По подключению датчиков с контактами (релейный выход) проблем возникнуть не должно. А по транзисторным и с подключением к контроллеру не всё так просто.

Схемы подключения датчиков PNP и NPN

Отличие PNP и NPN датчиков в том, что они коммутируют разные полюсы источника питания. PNP (от слова “Positive”) коммутирует положительный выход источника питания, NPN – отрицательный.

Ниже для примера даны схемы подключения датчиков с транзисторным выходом. Нагрузка – как правило, это вход контроллера.

Датчика. Нагрузка (Load) постоянно подключена к “минусу” (0V), подача дискретной “1” (+V) коммутируется транзистором. НО или НЗ датчик – зависит от схемы управления (Main circuit)

Датчика. Нагрузка (Load) постоянно подключена к “плюсу” (+V). Здесь активный уровень (дискретный “1”) на выходе датчика – низкий (0V), при этом на нагрузку подается питание через открывшийся транзистор.

Призываю всех не путаться, работа этих схем будет подробно расписана далее.

На схемах ниже показано в принципе то же самое. Акцент уделён на отличия в схемах PNP и NPN выходов.

Схемы подключения NPN и PNP выходов датчиков

На левом рисунке – датчик с выходным транзистором NPN . Коммутируется общий провод, который в данном случае – отрицательный провод источника питания.

Справа – случай с транзистором PNP на выходе. Этот случай – наиболее частый, так как в современной электронике принято отрицательный провод источника питания делать общим, а входы контроллеров и других регистрирующих устройств активировать положительным потенциалом.

Как проверить индуктивный датчик?

Для этого нужно подать на него питание, то есть подключить его в схему. Затем – активировать (инициировать) его. При активации будет загораться индикатор. Но индикация не гарантирует правильной работы индуктивного датчика. Нужно подключить нагрузку, и измерить напряжение на ней, чтобы быть уверенным на 100%.

Замена датчиков

Как я уже писал, есть принципиально 4 вида датчиков с транзисторным выходом, которые подразделяются по внутреннему устройству и схеме включения:

  • PNP NO
  • PNP NC
  • NPN NO
  • NPN NC

Все эти типы датчиков можно заменить друг на друга, т.е. они взаимозаменяемы.

Это реализуется такими способами:

  • Переделка устройства инициации – механически меняется конструкция.
  • Изменение имеющейся схемы включения датчика.
  • Переключение типа выхода датчика (если имеются такие переключатели на корпусе датчика).
  • Перепрограммирование программы – изменение активного уровня данного входа, изменение алгоритма программы.

Ниже приведён пример, как можно заменить датчик PNP на NPN, изменив схему подключения:

PNP-NPN схемы взаимозаменяемости. Слева – исходная схема, справа – переделанная.

Понять работу этих схем поможет осознание того факта, что транзистор – это ключевой элемент, который можно представить обычными контактами реле (примеры – ниже, в обозначениях).

Итак, схема слева. Предположим, что тип датчика – НО. Тогда (независимо от типа транзистора на выходе), когда датчик не активен, его выходные “контакты” разомкнуты, и ток через них не протекает. Когда датчик активен, контакты замкнуты, со всеми вытекающими последствиями. Точнее, с протекающим током через эти контакты)). Протекающий ток создает падение напряжения на нагрузке.

Внутренняя нагрузка показана пунктиром неспроста. Этот резистор существует, но его наличие не гарантирует стабильную работу датчика, датчик должен быть подключен к входу контроллера или другой нагрузке. Сопротивление этого входа и является основной нагрузкой.

Если внутренней нагрузки в датчике нет, и коллектор “висит в воздухе”, то это называют “схема с открытым коллектором”. Эта схема работает ТОЛЬКО с подключенной нагрузкой.

Так вот, в схеме с PNP выходом при активации напряжение (+V) через открытый транзистор поступает на вход контроллера, и он активизируется. Как того же добиться с выходом NPN?

Бывают ситуации, когда нужного датчика нет под рукой, а станок должен работать “прям щас”.

Смотрим на изменения в схеме справа. Прежде всего, обеспечен режим работы выходного транзистора датчика. Для этого в схему добавлен дополнительный резистор, его сопротивление обычно порядка 5,1 – 10 кОм. Теперь, когда датчик не активен, через дополнительный резистор напряжение (+V) поступает на вход контроллера, и вход контроллера активизируется. Когда датчик активен – на входе контроллера дискретный “0”, поскольку вход контроллера шунтируется открытым NPN транзистором, и почти весь ток дополнительного резистора проходит через этот транзистор.

В данном случае происходит перефазировка работы датчика. Зато датчик работает в режиме, и контроллер получает информацию. В большинстве случаев этого достаточно. Например, в режиме подсчета импульсов – тахометр, или количество заготовок.

Да, не совсем то, что мы хотели, и схемы взаимозаменяемости npn и pnp датчиков не всегда приемлемы.

Как добиться полного функционала? Способ 1 – механически сдвинуть либо переделать металлическую пластинку (активатор). Либо световой промежуток, если речь идёт об оптическом датчике. Способ 2 – перепрограммировать вход контроллера чтобы дискретный “0” был активным состоянием контроллера, а “1” – пассивным. Если под рукой есть ноутбук, то второй способ и быстрее, и проще.

Условное обозначение датчика приближения

На принципиальных схемах индуктивные датчики (датчики приближения) обозначают по разному. Но главное – присутствует квадрат, повёрнутый на 45° и две вертикальные линии в нём. Как на схемах, изображённых ниже.

НО НЗ датчики. Принципиальные схемы.

На верхней схеме – нормально открытый (НО) контакт (условно обозначен PNP транзистор). Вторая схема – нормально закрытый, и третья схема – оба контакта в одном корпусе.

Цветовая маркировка выводов датчиков

Существует стандартная система маркировки датчиков. Все производители в настоящее время придерживаются её.

Однако, нелишне перед монтажом убедиться в правильности подключения, обратившись к руководству (инструкции) по подключению. Кроме того, как правило, цвета проводов указаны на самом датчике, если позволяет его размер.

Вот эта маркировка.

  • Синий (Blue) – Минус питания
  • Коричневый (Brown) – Плюс
  • Чёрный (Black) – Выход
  • Белый (White) – второй выход, или вход управления, надо смотреть инструкцию.

Система обозначений индуктивных датчиков

Тип датчика обозначается цифро-буквенным кодом, в котором зашифрованы основные параметры датчика. Ниже приведена система маркировки популярных датчиков Autonics.

Скачать инструкции и руководства на некоторые типы индуктивных датчиков: я встречаю в своей работе.

Всем спасибо за внимание, жду вопросов по подключению датчиков в комментариях!

Подключение датчика тока к микроконтроллеру

Ознакомившись с основами теории, мы можем переходить к вопросу считывания, преобразования и визуализации данных. Другими словами мы спроектируем простой измеритель постоянного тока.

Аналоговый выход датчика подключается к одному из каналов АЦП микроконтроллера. Все необходимые преобразования и вычисления реализуются в программе микроконтроллера. Для отображения данных используется 2-строчный символьный ЖК индикатор.

Экспериментальная схема

Для экспериментов с датчиком тока необходимо собрать конструкцию согласно схеме, приведенной на Рисунке 8. Автор использовал для этого макетную плату и модуль на базе микроконтроллера (Рисунок 9).

Модуль датчика тока ACS712-05B можно приобрести готовый (на eBay он продается совсем недорого), или изготовить самостоятельно. Емкость конденсатора фильтра выбрана равной 1 нФ, по питанию установлен блокировочный конденсатор 0.1 мкФ. Для индикации включения питания припаян светодиод с гасящим резистором. Питание и выходной сигнал датчика подведены на разъем с одной стороны платы модуля, 2-контактный разъем для измерения протекающего тока расположен с противоположной стороны.

Для экспериментов по измерению тока регулируемый источник постоянного напряжения подключим к токоизмерительным выводам датчика через последовательный резистор 2.7 Ом / 2 Вт. Выход датчика подключен к порту RA0/AN0 (вывод 17) микроконтроллера. Двухстрочный символьный ЖК индикатор подключен к порту B микроконтроллера и работает в 4-битном режиме.

Микроконтроллер питается напряжением +5 В, это же напряжение используется в качестве опорного для АЦП. Необходимые вычисления и преобразования реализуются в программе микроконтроллера.

Математические выражения, используемые в процессе преобразования, приведены ниже.

Чувствительность датчика тока Sens = 0.185 В/А. При питании Vcc = 5 В и опорном напряжении Vref = 5 В расчетные соотношения будут следующими:

Выходной код АЦП

Следовательно

В итоге, формула для вычисления тока получается следующей:

Важное замечание. Представленные выше соотношения основаны на предположении, что напряжение питания и опорное напряжение для АЦП равны 5 В. Однако последнее выражение, связывающее ток I и выходной код АЦП Count, сохраняет силу даже при флуктуациях напряжения источника питания. Об этом шла речь в теоретической части описания.

Из последнего выражения видно, что разрешение датчика по току составляет 26.4 мА, чему соответствуют 513 отсчетов АЦП, что на один отсчет превышает ожидаемый результат. Таким образом, мы можем заключить, что данная реализация не позволяет измерять малые токи. Для увеличения разрешения и повышения чувствительности при измерении малых токов потребуется использование операционного усилителя. Пример такой схемы показан на Рисунке 10.

Программа микроконтроллера

Программа микроконтроллера PIC16F1847 написана на языке Си и скомпилирована в среде mikroC Pro (mikroElektronika). Результаты измерений отображаются на двухстрочном ЖК индикаторе с точностью до двух десятичных знаков.

Выход

При нулевом входном токе выходное напряжение датчика ACS712 в идеальном случае должно быть строго Vcc/2, т.е. с АЦП должно быть считано число 512. Дрейф выходного напряжения датчика на 4.9 мВ вызывает смещение результата преобразования на 1 младший разряд АЦП (Рисунок 11). (Для Vref = 5.0 В, разрешение 10-битного АЦП будет 5/1024= 4.9 мВ), что соответствует 26 мА входного тока. Заметим, что для уменьшения влияния флуктуаций желательно производить несколько измерений, и затем усреднять их результаты.

Если выходное напряжение регулируемого источника питания установить равным 1 В, через
резистор должен протекать ток порядка 370 мА. Измеренное значение тока в эксперименте - 390 мА, что превышает правильный результат на одну единицу младшего разряда АЦП (Рисунок 12).

Рисунок 12.

При напряжении 2 В индикатор покажет 760 мА.

На этом мы завершим обсуждение датчика тока ACS712. Однако мы не коснулись еще одного вопроса. Как с помощью этого датчика измерять переменный ток? Имейте ввиду, что датчик обеспечивает мгновенный отклик, соответствующий току, протекающему через измерительные выводы. Если ток течет в положительном направлении (от выводов 1 и 2 к выводам 3 и 4), чувствительность датчика положительная, и выходное напряжение больше Vcc/2. Если же ток меняет направление, чувствительность будет отрицательной, и выходное напряжение датчика опустится ниже уровня Vcc/2. Это означает, что при измерении переменного сигнала АЦП микроконтроллера должен делать выборки достаточно быстро, чтобы иметь возможность вычислять среднеквадратичное значение тока.

Загрузки

Исходный код программы микроконтроллера и файл для прошивки -

Загрузка...