domvpavlino.ru

Как рассчитать отопление для помещения. Тепловой расчёт системы отопления: как грамотно сделать расчет нагрузки на систему

Тепловая нагрузка на отопление - это количество тепловой энергии, необходимое для достижения комфортной температуры в помещении. Существует также понятие максимальной почасовой нагрузки, которое следует понимать как наибольшее количество энергии, которое может понадобиться в отдельные часы при неблагоприятных условиях. Чтобы понять, какие условия можно считать неблагоприятными, необходимо разобраться с факторами, от которых зависит тепловая нагрузка.

Потребность здания в тепле

В разных строениях потребуется неодинаковое количество тепловой энергии, чтобы человек чувствовал себя комфортно.

Среди факторов, влияющих на потребность в тепле, можно выделить следующие:


Распределение приборов

Если речь идет о водяном отоплении, максимальная мощность источника тепловой энергии должна равняться сумме мощностей всех источников тепла в здании.

Распределение приборов по помещениям дома зависит от следующих обстоятельств:

  1. Площадь помещения, уровень потолка.
  2. Положение комнаты в строении. Помещения в торцевой части по углах отличаются повышенными теплопотерями.
  3. Расстояние до источника тепла.
  4. Оптимальная температура (с точки зрения жильцов). На температуру помещения, помимо прочих факторов, влияет перемещение воздушных потоков внутри жилья.
  1. Жилые помещения в глубине строения - 20 градусов.
  2. Жилые помещения в угловых и торцевых частях здания - 22 градуса.
  3. Кухня - 18 градусов. В кухонном помещении температура выше, так как в ней присутствуют дополнительные источники тепла (электрическая плита, холодильник и т.д.).
  4. Ванная комната и туалет - 25 градусов.

Если в доме обустроено воздушное отопление, объем потока тепла, поступающий в комнату, зависит от пропускной возможности воздушного рукава. Регулируется поток ручной настройкой вентиляционных решеток, а контролируется - термометром.

Дом может обогреваться распределенными источниками тепловой энергии: электро- или газовые конвекторы, теплые полы на электричестве, масляные батареи, ИК-обогреватели, кондиционеры. В этом случае нужные температуры определяются настройкой термостата. В этом случае нужно предусмотреть такую мощность оборудования, которой бы хватало при максимальном уровне тепловых потерь.

Методики расчета

Расчет тепловой нагрузки на отопление можно произвести на примере конкретного помещения. Пусть в данном случае это будет сруб из 25-сантиметрового бурса с чердачным помещение и полом из древесины. Размеры здания: 12×12×3. В стенах имеется 10 окон и пара дверей. Дом расположен в местности, для которой характерны очень низкие температуры зимой (до 30 градусов мороза).

Расчеты можно произвести тремя способами, о которых пойдет речь ниже.

Первый вариант расчета

Согласно существующим нормам СНиП, на 10 квадратных метров нужен 1 кВт мощности. Данный показатель корректируется с учетом климатических коэффициентов:

  • южные регионы - 0,7-0,9;
  • центральные регионы - 1,2-1,3;
  • Дальний Восток и Крайний Север - 1,5-2,0.

Вначале определяем площадь дома: 12×12=144 квадратных метра. В таком случае базовый показатель тепловой нагрузке равен: 144/10=14,4 кВт. Полученный результат умножаем на климатическую поправку (будем использовать коэффициент 1,5): 14,4×1,5=21,6 кВт. Столько мощности нужно, чтобы в доме была комфортная температура.

Второй вариант расчета

Способ, приведенный выше, страдает значительными погрешностями:

  1. Не учтена высота потолков, а ведь обогревать нужно не квадратные метры, а объем.
  2. Через оконные и дверные проемы теряется больше тепла, чем через стены.
  3. Не учтен тип здания - многоквартирное это здание, где за стенами, потолком и полом обогреваемые квартиры содей или это частный дом, где за стенами только холодный воздух.

Корректируем расчет:

  1. В качестве базового применим следующий показатель - 40 Вт на кубический метр.
  2. Для каждой двери предусмотрим по 200 Вт, а для окон - по 100 Вт.
  3. Для квартир в угловых и торцевых частях дома используем коэффициент 1,3. Если речь идет о самом высоком или самом низком этаже многоквартирного здания, используем коэффициент 1,3, а для частного строения - 1,5.
  4. Также снова применим климатический коэффициент.

Таблица климатического коэффициента

Производим расчет:

  1. Высчитываем объем помещения: 12×12×3=432 квадратных метра.
  2. Базовый показатель мощности равняется 432×40=17280 Вт.
  3. В доме есть десяток окон и пара дверей. Таким образом: 17280+(10×100)+(2×200)=18680Вт.
  4. Если речь идет о частном доме: 18680×1,5=28020 Вт.
  5. Учитываем климатический коэффициент: 28020×1,5=42030 Вт.

Итак, исходя из второго вычисления видно, что разница с первым способом расчета практически двукратная. При этом нужно понимать, что подобная мощность нужна только во время самых низких температур. Иными словами, пиковую мощность можно обеспечить дополнительными источниками обогрева, например, резервным обогревателем.

Третий вариант расчета

Есть еще более точный способ подсчета, в котором учитываются теплопотери.

Схема потери тепла в процентах

Формула для расчета такова: Q=DT/R, где:

  • Q - потери тепла на квадратный метр ограждающей конструкции;
  • DT - дельта между наружной и внутренней температурами;
  • R - уровень сопротивления при передаче тепла.

Обратите внимание! Порядка 40% тепла уходит в вентиляционную систему.

Чтобы упростить подсчеты, примем усредненный коэффициент (1,4) потерь тепла через ограждающие элементы. Осталось определить параметры термического сопротивления из справочной литературы. Ниже приведена таблица для наиболее часто применяемых конструкционных решений:

  • стена в 3 кирпича - уровень сопротивления составляет 0,592 на кв. м×С/Вт;
  • стена в 2 кирпича - 0,406;
  • стена в 1 кирпич - 0,188;
  • сруб из 25-сантиметрового бруса - 0,805;
  • сруб из 12-сантиметрового бруса - 0,353;
  • каркасный материал с утеплением минватой - 0,702;
  • пол из древесины - 1,84;
  • потолок или чердак - 1,45;
  • деревянная двойная дверь - 0,22.

  1. Температурная дельта - 50 градусов (20 градусов тепла в помещении и 30 градусов мороза на улице).
  2. Потери тепла на квадратный метр пола: 50/1,84 (данные для пола из древесины)=27,17 Вт. Потери по всей площади пола: 27,17×144=3912 Вт.
  3. Теплопотери через потолок: (50/1,45)×144=4965 Вт.
  4. Рассчитываем площадь четырех стен: (12×3)×4=144 кв. м. Так как стены изготовлены из 25-сантиметрового бруса, R равняется 0,805. Тепловые потери: (50/0,805)×144=8944 Вт.
  5. Складываем полученные результаты: 3912+4965+8944=17821. Полученное число - общие теплопотери дома без учета особенностей потерь через окна и двери.
  6. Прибавляем 40% вентиляционных потерь: 17821×1,4=24,949. Таким образом, понадобится котел на 25 кВт.

Выводы

Даже самый продвинутый из перечисленных способов не учитывает всего спектра потерь тепла. Поэтому рекомендуется покупать котел с некоторым запасом мощности. В связи с этим приведем несколько фактов по особенностям КПД разных котлов:

  1. Газовое котельное оборудование работают с очень стабильным КПД, а конденсационные и соляровые котлы переходят на экономичный режим при небольшой нагрузке.
  2. Электрокотлы имеют 100% коэффициент полезного действия.
  3. Не допускается работа в режиме ниже номинальной мощности для твердотопливных котельных аппаратов.

Твердотопливные котлы регулируются ограничителем поступления воздуха в топочную камеру, однако при недостаточном уровне кислорода не происходит полного выгорания топлива. Это приводит к образованию большого количества золы и снижению КПД. Исправить положение можно при помощи теплового аккумулятора. Бак с теплоизоляцией устанавливается между трубами подачи и обратки, размыкая их. Таким образом, создается малый контур (котел - буферный бак) и большой контур (бак - отопительные приборы).

Схема функционирует следующим образом:

  1. После закладки топлива оборудование работает на номинальной мощности. Благодаря естественной или принудительной циркуляции, происходит передача тепла в буфер. После сгорания топлива, циркуляция в малом контуре прекращается.
  2. В течение последующих часов тепловой носитель циркулирует по большому контуру. Буфер медленно передает тепло батареям или теплому полу.

Увеличенная мощность потребует дополнительных затрат. При этом запас мощности оборудования дает важный положительный результат: интервал между загрузками топлива значительно увеличивается.

Тема этой статьи — тепловая нагрузка. Мы выясним, что представляет собой этот параметр, от чего он зависит и как может рассчитываться. Кроме того, в статье будет приведен ряд справочных значений теплового сопротивления разных материалов, которые могут понадобиться для расчета.

Что это такое

Термин, в сущности, интуитивно-понятный. Под тепловой нагрузкой подразумевается то количество тепловой энергии, которое необходимо для поддержания в здании, квартире или отдельном помещении комфортной температуры.

Максимальная часовая нагрузка на отопление, таким образом – это, то количество тепла, которое может потребоваться для поддержания нормированных параметров в течение часа в наиболее неблагоприятных условиях.

Факторы

Итак, что влияет на потребность здания в тепле?

  • Материал и толщина стен. Понятно, что стена в 1 кирпич (25 сантиметров) и стена из газобетона под 15-сантиметровой пенопластовой шубой пропустят ОЧЕНЬ разное количество тепловой энергии.
  • Материал и структура кровли. Плоская крыша из железобетонных плит и утепленный чердак тоже будут весьма заметно различаться по теплопотерям.
  • Вентиляция — еще один важный фактор. Ее производительность, наличие или отсутствие системы рекуперации тепла влияют на то, сколько тепла теряется с отработанным воздухом.
  • Площадь остекления. Через окна и стеклянные фасады теряется заметно больше тепла, чем через сплошные стены.

Однако: тройные стеклопакеты и стекла с энергосберегающим напылением уменьшают разницу в несколько раз.

  • Уровень инсоляции в вашем регионе, степень поглощения солнечного тепла внешним покрытием и ориентация плоскостей здания относительно сторон света. Крайние случаи — дом, находящийся в течение всего дня в тени других строений и дом, ориентированный черной стеной и наклонной кровлей черного цвета с максимальной площадью на юг.

  • Дельта температур между помещением и улицей определяет тепловой поток через ограждающие конструкции при постоянном сопротивлении теплопередаче. При +5 и -30 на улице дом будет терять разное количество тепла. Уменьшит, разумеется, потребность в тепловой энергии и снижение температуры внутри здания.
  • Наконец, в проект часто приходится закладывать перспективы дальнейшего строительства . Скажем, если текущая тепловая нагрузка равна 15 киловаттам, но в ближайшем будущем планируется пристроить к дому утепленную веранду — логично приобрести с запасом по тепловой мощности.

Распределение

В случае водяного отопления пиковая тепловая мощность источника тепла должна быть равна сумме тепловой мощности всех отопительных приборов в доме. Разумеется, разводка тоже не должна становиться узким местом.

Распределение отопительных приборов по помещениям определяется несколькими факторами:

  1. Площадью комнаты и высотой ее потолка;
  2. Расположением внутри здания. Угловые и торцевые помещения теряют больше тепла, чем те, которые расположены в середине дома.
  3. Удаленностью от источника тепла. В индивидуальном строительстве этот параметр означает удаленность от котла, в системе центрального отопления многоквартирного дома — тем, подключена батарея к стояку подачи или обратки и тем, на каком этаже вы живете.

Уточнение: в домах с нижним розливом стояки соединяются попарно. На подающем — температура убывает при подъеме с первого этажа к последнему, на обратном, соответственно, наоборот.

Как распределятся температуры в случае верхнего розлива — догадаться тоже нетрудно.

  1. Желаемой температурой в помещении. Помимо фильтрации тепла через внешние стены, внутри здания при неравномерном распределении температур тоже будет заметна миграция тепловой энергии через перегородки.
  1. Для жилых комнат в середине здания — 20 градусов;
  2. Для жилых комнат в углу или торце дома — 22 градуса. Более высокая температура, среди прочего, препятствует промерзанию стен.
  3. Для кухни — 18 градусов. В ней, как правило, есть большое количество собственных источников тепла — от холодильника до электроплиты.
  4. Для ванной комнаты и совмещенного санузла нормой являются 25С.

В случае воздушного отопления тепловой поток, поступающий в отдельную комнату, определяется пропускной способностью воздушного рукава. Как правило, простейший метод регулировки — ручная подстройка положений регулируемых вентиляционных решеток с контролем температур по термометру.

Наконец, в случае, если речь идет о системе обогрева с распределенными источниками тепла (электрические или газовые конвектора, электрические теплые полы, инфракрасные обогреватели и кондиционеры) необходимый температурный режим просто задается на термостате. Все, что требуется от вас — обеспечить пиковую тепловую мощность приборов на уровне пика теплопотерь помещения.

Методики расчета

Уважаемый читатель, у вас хорошее воображение? Давайте представим себе дом. Пусть это будет сруб из 20-сантиметрового бруса с чердаком и деревянным полом.

Мысленно дорисуем и конкретизируем возникшую в голове картинку: размеры жилой части здания будут равны 10*10*3 метра; в стенах мы прорубим 8 окон и 2 двери — на передний и внутренний дворы. А теперь поместим наш дом… скажем, в город Кондопога в Карелии, где температура в пик морозов может опуститься до -30 градусов.

Определение тепловой нагрузки на отопление может быть выполнено несколькими способами с разной сложностью и достоверностью результатов. Давайте воспользуемся тремя наиболее простыми.

Способ 1

Действующие СНиП предлагают нам простейший способ расчета. На 10 м2 берется один киловатт тепловой мощности. Полученное значение умножается на региональный коэффициент:

  • Для южных регионов (Черноморское побережье, Краснодарский край) результат умножается на 0,7 — 0,9.
  • Умеренно-холодный климат Московской и Ленинградской областей заставит использовать коэффициент 1,2-1,3. Думается, наша Кондопога попадет именно в эту климатическую группу.
  • Наконец, для Дальнего Востока районов Крайнего Севера коэффициент колеблется от 1,5 для Новосибирска до 2,0 для Оймякона.

Инструкция по расчету с использованием этого метода неимоверно проста:

  1. Площадь дома равна 10*10=100 м2.
  2. Базовое значение тепловой нагрузки равно 100/10=10 КВт.
  3. Умножаем на региональный коэффициент 1,3 и получаем 13 киловатт тепловой мощности, необходимых для поддержания комфорта в доме.

Однако: если уж пользоваться столь простой методикой, лучше сделать запас как минимум в 20% для компенсации погрешностей и экстремальных холодов. Собственно, будет показательным сравнить 13 КВт со значениями, полученными другими способами.

Способ 2

Понятно, что при первом методе расчета погрешности будут огромными:

  • Высота потолков в разных строениях сильно различается. С учетом того, что греть нам приходится не площадь, а некий объем, причем при конвекционном отоплении теплый воздух собирается под потолком — фактор важный.
  • Окна и двери пропускают больше тепла, чем стены.
  • Наконец, будет явной ошибкой стричь под одну гребенку городскую квартиру (причем независимо от ее расположения внутри здания) и частный дом, у которого внизу, вверху и за стенами не теплые квартиры соседей, а улица.

Что же, скорректируем метод.

  • За базовое значение возьмем 40 ватт на кубометр объема помещения.
  • На каждую дверь, ведущую на улицу, добавим к базовому значению 200 ватт. На каждое окно — 100.
  • Для угловых и торцевых квартир в многоквартирном доме введем коэффициент 1,2 — 1,3 в зависимости от толщины и материала стен. Его же используем для крайних этажей в случае, если подвал и чердак плохо утеплены. Для частного дома значение умножим и вовсе на 1,5.
  • Наконец, применим те же региональные коэффициенты, что и в предыдущем случае.

Как там поживает наш домик в Карелии?

  1. Объем равен 10*10*3=300 м2.
  2. Базовое значение тепловой мощности равно 300*40=12000 ватт.
  3. Восемь окон и две двери. 12000+(8*100)+(2*200)=13200 ватт.
  4. Частный дом. 13200*1,5=19800. Мы начинаем смутно подозревать, что при подборе мощности котла по первой методике пришлось бы померзнуть.
  5. А ведь еще остался региональный коэффициент! 19800*1,3=25740. Итого — нам нужен 28-киловаттный котел. Разница с первым значением, полученным простым способом — двукратная.

Однако: на практике такая мощность потребуется лишь в несколько дней пика морозов. Зачастую разумным решением будет ограничить мощность основного источника тепла меньшим значением и купить резервный нагреватель (к примеру, электрокотел или несколько газовых конвекторов).

Способ 3

Не обольщайтесь: описанный способ тоже весьма несовершенен. Мы весьма условно учли тепловое сопротивление стен и потолка; дельта температур между внутренним и внешним воздухом тоже учтена лишь в региональном коэффициенте, то есть весьма приблизительно. Цена упрощения расчетов — большая погрешность.

Вспомним: для поддержания внутри здания постоянной температуры нам нужно обеспечить количество тепловой энергии, равное всем потерям через ограждающие конструкции и вентиляцию. Увы, и здесь нам придется несколько упростить себе расчеты, пожертвовав достоверностью данных. Иначе полученные формулы должны будут учитывать слишком много факторов, которые трудно измерить и систематизировать.

Упрощенная формула выглядит так: Q=DT/R, где Q — количество тепла, которое теряет 1 м2 ограждающей конструкции; DT — дельта температур между внутренней и внешней температурами, а R — сопротивление теплопередаче.

Заметьте: мы говорим о потерях тепла через стены, пол и потолок. В среднем еще около 40% тепла теряется через вентиляцию. Ради упрощения расчетов мы подсчитаем теплопотери через ограждающие конструкции, а потом просто умножим их на 1,4.

Дельту температур измерить легко, но где брать данные о термическом сопротивлении?

Увы — только из справочников. Приведем таблицу для некоторых популярных решений.

  • Стена в три кирпича (79 сантиметров) обладает сопротивлением теплопередаче в 0,592 м2*С/Вт.
  • Стена в 2,5 кирпича — 0,502.
  • Стена в два кирпича — 0,405.
  • Стена в кирпич (25 сантиметров) — 0,187.
  • Бревенчатый сруб с диаметром бревна 25 сантиметров — 0,550.
  • То же, но из бревен диаметром 20 см — 0,440.
  • Сруб из 20-сантиметрового бруса — 0,806.
  • Сруб из брус толщиной 10 см — 0,353.
  • Каркасная стена толщиной 20 сантиметров с утеплением минеральной ватой — 0,703.
  • Стена из пено- или газобетона при толщине 20 сантиметров — 0,476.
  • То же, но с толщиной, увеличенной до 30 см — 0,709.
  • Штукатурка толщиной 3 сантиметра — 0,035.
  • Потолочное или чердачное перекрытие — 1,43.
  • Деревянный пол — 1,85.
  • Двойная дверь из дерева — 0,21.

А теперь вернемся к нашему дому. Какими параметрами мы располагаем?

  • Дельта температур в пик морозов будет равной 50 градусам (+20 внутри и -30 снаружи).
  • Теплопотери через квадратный метр пола составят 50/1,85 (сопротивление теплопередачи деревянного пола) =27,03 ватта. Через весь пол — 27,03*100=2703 ватта.
  • Посчитаем потери тепла через потолок: (50/1,43)*100=3497 ватт.
  • Площадь стен равна (10*3)*4=120 м2. Поскольку у нас стены выполнены из 20-санттиметрового бруса, параметр R равен 0,806. Потери тепла через стены равны (50/0,806)*120=7444 ватта.
  • Теперь сложим полученные значения: 2703+3497+7444=13644. Именно столько наш дом будет терять через потолок, пол и стены.

Заметьте: чтобы не высчитывать доли квадратных метров, мы пренебрегли разницей в теплопроводности стен и окон с дверьми.

  • Затем добавим 40% потерь на вентиляцию. 13644*1,4=19101. Согласно этому расчету нам должно хватить 20-киловаттного котла.

Выводы и решение проблем

Как видите, имеющиеся способы расчета тепловой нагрузки своими руками дают весьма существенные погрешности. К счастью, избыточная мощность котла не повредит:

  • Газовые котлы на уменьшенной мощности работают практически без падения КПД, а конденсационные так и вовсе выходят на наиболее экономичный режим при неполной нагрузке.
  • То же самое касается соляровых котлов.
  • Электрическое нагревательное оборудование любого типа всегда имеет КПД, равный 100 процентам (разумеется, это не относится к тепловым насосам). Вспомните физику: вся мощность, не потраченная на совершения механической работы (то есть перемещения массы против вектора гравитации) в конечном счете, расходуется на нагрев.

Единственный тип котлов, для которых работа на мощности меньше номинальной противопоказана — твердотопливные. Регулировка мощности в них осуществляется довольно примитивным способом — ограничением притока воздуха в топку.

Что в результате?

  1. При недостатке кислорода топливо сгорает не полностью. Образуется больше золы и сажи, которые загрязняют котел, дымоход и атмосферу.
  2. Следствие неполного сгорания — падение КПД котла. Логично: ведь часто топлива покидает котел до того, как сгорела.

Однако и здесь есть простой и изящный выход — включение в схему отопления теплоаккумулятора. Теплоизолированный бак емкостью до 3000 литров подключается между подающим и обратным трубопроводом, размыкая их; при этом формируется малый контур (между котлом и буферной емкостью) и большой (между емкостью и отопительными приборами).

Как работает такая схема?

  • После растопки котел работает на номинальной мощности. При этом за счет естественной или принудительной циркуляции его теплообменник отдает тепло буферной емкости. После того, как топливо прогорело, циркуляция в малом контуре останавливается.
  • Следующие несколько часов теплоноситель движется по большому контуру. Буферная емкость постепенно отдает накопленное тепло радиаторам или водяным теплым полам.

Заключение

Как обычно, некоторое количество дополнительной информации о том, как еще может быть рассчитана тепловая нагрузка, вы найдете в видео в конце статьи. Теплых зим!

Тепловой расчёт системы отопления большинству представляется легким и не требующим особого внимания занятием. Огромное количество людей считают, что те же радиаторы нужно выбирать исходя из только площади помещения: 100 Вт на 1 м.кв. Всё просто. Но это и есть самое большое заблуждение. Нельзя ограничиваться такой формулой. Значение имеет толщина стен, их высота, материал и многое другое. Конечно, нужно выделить час-другой, чтобы получить нужные цифры, но это по силам каждому желающему.

Исходные данные для проектирования системы отопления

Чтобы произвести расчет расхода тепла на отопление, нужен, во-первых, проект дома.

План дома позволяет получить практически все исходные данные, которые нужны для определения теплопотерь и нагрузки на отопительную систему

Во-вторых, понадобятся данные о расположении дома по отношению к сторонам света и районе строительства – климатические условия в каждом регионе свои, и то, что подходит для Сочи, не может быть применено к Анадырю.

В-третьих, собираем информацию о составе и высоте наружных стен и материалах, из которых изготовлены пол (от помещения до земли) и потолок (от комнат и наружу).

После сбора всех данных можно приступать к работе. Расчет тепла на отопление можно выполнить по формулам за один-два часа. Можно, конечно, воспользоваться специальной программой от компании Valtec.

Для расчёта теплопотерь отапливаемых помещений, нагрузки на систему отопления и теплоотдачи от отопительных приборов в программу достаточно внести только исходные данные. Огромное количество функций делают её незаменимым помощником и прораба, и частного застройщика

Она значительно всё упрощает и позволяет получить все данные по тепловым потерям и гидравлическому расчету системы отопления.

Формулы для расчётов и справочные данные

Расчет тепловой нагрузки на отопление предполагает определение тепловых потерь(Тп) и мощности котла (Мк). Последняя рассчитывается по формуле:

Мк=1,2* Тп , где:

  • Мк – тепловая производительность системы отопления, кВт;
  • Тп – тепловые потери дома;
  • 1,2 – коэффициент запаса (составляет 20%).

Двадцатипроцентный коэффициент запаса позволяет учесть возможное падение давления в газопроводе в холодное время года и непредвиденные потери тепла (например, разбитое окно, некачественная теплоизоляция входных дверей или небывалые морозы). Он позволяет застраховаться от ряда неприятностей, а также даёт возможность широкого регулирования режима температур.

Как видно из этой формулы мощность котла напрямую зависит от теплопотерь. Они распределяются по дому не равномерно: на наружные стены приходится порядка 40% от общей величины, на окна – 20%, пол отдаёт 10%, крыша 10%. Оставшиеся 20% улетучиваются через двери, вентиляцию.

Плохо утеплённые стены и пол, холодные чердак, обычное остекление на окнах - всё это приводит к большим потерям тепла, а, следовательно, к увеличению нагрузки на систему отопления. При строительстве дома важно уделить внимание всем элементам, ведь даже непродуманная вентиляция в доме будет выпускать тепло на улицу

Материалы, из которых построен дом, оказывают самое непосредственное влияние на количество потерянного тепла. Поэтому при расчётах нужно проанализировать, из чего состоят и стены, и пол, и всё остальное.

В расчётах, чтобы учесть влияние каждого из этих факторов, используются соответствующие коэффициенты:

  • К1 – тип окон;
  • К2 – изоляция стен;
  • К3 – соотношение площади пола и окон;
  • К4 – минимальная температура на улице;
  • К5 – количество наружных стен дома;
  • К6 – этажность;
  • К7 – высота помещения.

Для окон коэффициент потерь тепла составляет:

  • обычное остекление – 1,27;
  • двухкамерный стеклопакет – 1;
  • трёхкамерный стеклопакет – 0,85.

Естественно, последний вариант сохранит тепло в доме намного лучше, чем два предыдущие.

Правильно выполненная изоляция стен является залогом не только долгой жизни дома, но и комфортной температуры в комнатах. В зависимости от материала меняется и величина коэффициента:

  • бетонные панели, блоки – 1,25-1,5;
  • брёвна, брус – 1,25;
  • кирпич (1,5 кирпича) – 1,5;
  • кирпич (2,5 кирпича) – 1,1;
  • пенобетон с повышенной теплоизоляцией – 1.

Чем больше площадь окон относительно пола, тем больше тепла теряет дом:

Температура за окном тоже вносит свои коррективы. При низких показателях теплопотери возрастают:

  • До -10С – 0,7;
  • -10С – 0,8;
  • -15C - 0,90;
  • -20C - 1,00;
  • -25C - 1,10;
  • -30C - 1,20;
  • -35C - 1,30.

Теплопотери находятся в зависимости и от того, сколько внешних стен у дома:

  • четыре стены – 1,33;%
  • три стены – 1,22;
  • две стены – 1,2;
  • одна стена – 1.

Хорошо, если к нему пристроен гараж, баня или что-то ещё. А вот если его со всех сторон обдувают ветра, то придётся покупать котёл помощнее.

Количество этажей или тип помещения, которые находится над комнатой определяют коэффициент К6 следующим образом: если над дом имеет два и более этажей, то для расчётов берём значение 0,82, а вот если чердак, то для теплого – 0,91 и 1 для холодного.

Что касается высоты стен, то значения будут такими:

  • 4,5 м – 1,2;
  • 4,0 м – 1,15;
  • 3,5 м – 1,1;
  • 3,0 м – 1,05;
  • 2,5 м – 1.

Помимо перечисленных коэффициентов также учитываются площадь помещения (Пл) и удельная величина теплопотерь (УДтп).

Итоговая формула для расчёта коэффициента тепловых потерь:

Тп = УДтп * Пл * К1 * К2 * К3 * К4 * К5 * К6 * К7 .

Коэффициент УДтп равен 100 Ватт/м2.

Разбор расчетов на конкретном примере

Дом, для которого будем определять нагрузку на систему отопления, имеет двойные стеклопакеты (К1 =1), пенобетонные стены с повышенной теплоизоляцией (К2= 1), три из которых выходят наружу (К5=1,22). Площадь окон составляет 23% от площади пола (К3=1,1), на улице около 15С мороза (К4=0,9). Чердак дома холодный (К6=1), высота помещений 3 метра (К7=1,05). Общая площадь составляет 135м2.

Пт = 135*100*1*1*1,1*0,9*1,22*1*1,05=17120,565 (Ватт) или Пт=17,1206 кВт

Мк=1,2*17,1206=20,54472 (кВт).

Расчёт нагрузки и теплопотерь можно выполнить самостоятельно и достаточно быстро. Нужно всего потратить пару часов на приведение в порядок исходных данных, а потом просто подставить значения в формулы. Цифры, которые вы в результате получите помогут определиться с выбором котла и радиаторов.

Здравствуйте, уважаемые читатели! Сегодня небольшой пост про расчет количества тепла на отопление по укрупненным показателям. Вообще то нагрузка на отопление принимается по проекту, то есть в договор теплоснабжения вносятся те данные, которые просчитал проектировщик.

Но зачастую таких данных просто нет, особенно если здание небольшое, например гараж, или какое нибудь подсобное помещение. В этом случае нагрузку на отопление в Гкал/ч просчитывают по так называемым укрупненным показателям. Об этом я писал . И уже эта цифра идет в договор как расчетная отопительная нагрузка. Как же считается эта цифра? А считается она по формуле:

Qот = α*qо*V*(tв-tн.р)*(1+Kн.р)*0,000001; где

α — поправочный коэффициент, который учитывает климатические условия района, он применяется в тех случаях, когда расчетная температура воздуха на улице отличается от -30 °С;

qо — удельная отопительная характеристика здания при tн.р = -30 °С, ккал/куб.м*С;

V — объем здания по наружному обмеру, м³ ;

tв — расчетная температура внутри отапливаемого здания, °С;

tн.р — расчетная температура наружного воздуха для проектирования отопления, °С;

Kн.р — коэффициент инфильтрации, который обусловлен тепловым и ветровым напором, то есть соотношением тепловых потерь зданием с инфильтрацией и теплопередачей через наружные ограждения при температуре воздуха на улице, которая является расчетной для проектирования отопления.

Вот так, в одну формулу можно посчитать тепловую нагрузку на отопление любого здания. Конечно, расчет этот в значительной степени приближенный, однако он рекомендуется в технической литературе по теплоснабжению. Теплоснабжающие организации также вносят эту цифру отопительной нагрузки Qот, в Гкал/ч, в договоры теплоснабжения. Так что расчет нужный. Расчет этот хорошо представлен в книге — В.И.Манюк, Я.И.Каплинский, Э.Б.Хиж и др. «Справочник по наладке и эксплуатации водяных тепловых сетей». Эта книжка у меня одна из настольных, очень хорошая книга.

Также этот расчет тепловой нагрузки на отопление здания можно делать по «Методике определения количеств тепловой энергии и теплоносителя в водяных системах коммунального водоснабжения» РАО «Роскоммунэнерго» Госстроя России. Правда, в расчете в этой методике есть неточность (в формуле 2 в приложении №1 указано 10 в минус третьей степени, а должно быть 10 в минус шестой степени, в расчетах это необходимо учитывать), более подробно об этом можно прочитать в комментариях к этой статье.

Я этот расчет полностью автоматизировал, добавил справочные таблицы, в том числе таблицу климатических параметров всех регионов бывшего СССР (из СНиП 23.01.99 «Строительная климатология»). Приобрести расчет в виде программы за 100 рублей можно, написав мне по электронной почте [email protected].

Буду рад комментариям к статье.

При проектировании систем обогрева всех типов строений нужно провести правильные вычисления, а затем разработать грамотную схему отопительного контура. На этом этапе особое внимание следует уделить расчету тепловой нагрузки на отопление. Для решения поставленной задачи важно использовать комплексный подход и учесть все факторы, влияющие на работу системы.

    Показать всё

    Важность параметра

    С помощью показателя тепловой нагрузки можно узнать количество теплоэнергии, необходимой для обогрева конкретного помещения, а также здания в целом. Основной переменной здесь является мощность всего отопительного оборудования, которое планируется использовать в системе. Кроме этого, требуется учитывать потери тепла домом.

    Идеальной представляется ситуация, в которой мощность отопительного контура позволяет не только устранить все потери теплоэнергии здания, но и обеспечить комфортные условия проживания. Чтобы правильно рассчитать удельную тепловую нагрузку, требуется учесть все факторы, оказывающие влияние на этот параметр:

    Оптимальный режим работы системы обогрева может быть составлен только с учетом этих факторов. Единицей измерения показателя может быть Гкал/час или кВт/час.

    расчет нагрузки на отопление

    Выбор метода

    Перед началом проведения расчета нагрузки на отопление по укрупненным показателям нужно определиться с рекомендуемыми температурными режимами для жилого строения. Для этого придется обратиться к нормам СанПиН 2.1.2.2645−10. Исходя из данных, указанных в этом нормативном документе, необходимо обеспечить режимы работы системы обогрева для каждого помещения.

    Используемые сегодня способы выполнения расчетов часовой нагрузки на отопительную систему позволяют получать результаты различной степени точности. В некоторых ситуациях требуется провести сложные вычисления, чтобы минимизировать погрешность.

    Если же при проектировании системы отопления оптимизация расходов на энергоноситель не является приоритетной задачей, допускается использование менее точных методик.

    Расчет тепловой нагрузки и проектирование систем отопления Audytor OZC + Audytor C.O.

    Простые способы

    Любая методика расчета тепловой нагрузки позволяет подобрать оптимальные параметры системы обогрева. Также этот показатель помогает определиться с необходимостью проведения работ по улучшению теплоизоляции строения. Сегодня применяются две довольно простые методики расчета тепловой нагрузки.

    В зависимости от площади

    Если в строении все помещения имеют стандартные размеры и обладают хорошей теплоизоляцией, можно воспользоваться методом расчета необходимой мощности отопительного оборудования в зависимости от площади. В этом случае на каждые 10 м 2 помещения должен производиться 1 кВт тепловой энергии. Затем полученный результат необходимо умножить на поправочный коэффициент климатической зоны.

    Это самый простой способ расчета, но он имеет один серьезный недостаток - погрешность очень высока. Во время проведения вычислений учитывается лишь климатический регион. Однако на эффективность работы системы обогрева влияет много факторов. Таким образом, использовать эту методику на практике не рекомендуется.

    Укрупненные вычисления

    Применяя методику расчета тепла по укрупненным показателям, погрешность вычислений окажется меньшей. Этот способ сначала часто применялся для определения теплонагрузки в ситуации, когда точные параметры строения были неизвестны. Для определения параметра применяется расчетная формула:

    Qот = q0*a*Vн*(tвн - tнро),

    где q0 - удельная тепловая характеристика строения;

    a - поправочный коэффициент;

    Vн - наружный объем строения;

    tвн, tнро - значения температуры внутри дома и на улице.


    В качестве примера расчета тепловых нагрузок по укрупненным показателям можно выполнить вычисления максимального показателя для отопительной системы здания по наружным стенам 490 м 2 . Строение двухэтажное с общей площадью в 170 м 2 расположено в Санкт-Петербурге.

    Сначала необходимо с помощью нормативного документа установить все нужные для расчета вводные данные:

    • Тепловая характеристика здания - 0,49 Вт/м³*С.
    • Уточняющий коэффициент - 1.
    • Оптимальный температурный показатель внутри здания - 22 градуса.


    Предположив, что минимальная температура в зимний период составит -15 градусов, можно все известные величины подставить в формулу - Q =0.49*1*490 (22+15)= 8,883 кВт. Используя самую простую методику расчета базового показателя тепловой нагрузки, результат оказался бы более высоким - Q =17*1=17 кВт/час. При этом укрупненный метод расчета показателя нагрузки учитывает значительно больше факторов:

    • Оптимальные температурные параметры в помещениях.
    • Общую площадь строения.
    • Температуру воздуха на улице.

    Также эта методика позволяет с минимальной погрешностью рассчитать мощность каждого радиатора, установленного в отдельно взятом помещении. Единственным ее недостатком является отсутствие возможности рассчитать теплопотери здания.

    Расчет тепловых нагрузок, г. Барнаул

    Сложная методика

    Так как даже при укрупненном расчете погрешность оказывается довольно высокой, приходится использовать более сложный метод определения параметра нагрузки на отопительную систему. Чтобы результаты оказались максимально точными, необходимо учитывать характеристики дома. Среди них важнейшей является сопротивление теплопередачи ® материалов, использовавшихся для изготовления каждого элемента здания - пол, стены, а также потолок.

    Эта величина находится в обратной зависимости с теплопроводностью (λ), показывающей способность материалов переносить теплоэнергию. Вполне очевидно, что чем выше теплопроводность, тем активнее дом будет терять теплоэнергию. Так как эта толщина материалов (d) в теплопроводности не учитывается, то предварительно нужно вычислить сопротивление теплопередачи, воспользовавшись простой формулой - R=d/λ.

    Рассматриваемая методика состоит из двух этапов. Сначала рассчитываются теплопотери по оконным проемам и наружным стенам, а затем - по вентиляции. В качестве примера можно взять следующие характеристики строения:

    • Площадь и толщина стен - 290 м² и 0,4 м.
    • В строении находятся окна (двойной стеклопакет с аргоном) - 45 м² (R =0,76 м²*С/Вт).
    • Стены изготовлены из полнотелого кирпича - λ=0,56.
    • Здание было утеплено пенополистиролом - d =110 мм, λ=0,036.


    Исходя из вводных данных, можно определить показатель сопротивления телепередачи стен - R=0.4/0.56= 0,71 м²*С/Вт. Затем определяется аналогичный показатель утеплителя - R=0,11/0,036= 3,05 м²*С/Вт. Эти данные позволяют определить следующий показатель - R общ =0,71+3,05= 3,76 м²*С/Вт.

    Фактические теплопотери стен составят - (1/3,76)*245+(1/0.76)*45= 125,15 Вт. Параметры температур остались без изменений в сравнении с укрупненным расчетом. Очередные вычисления проводятся в соответствии с формулой - 125,15*(22+15)= 4,63 кВт/час.

    Расчет тепловой мощности систем отопления

    На втором этапе рассчитываются теплопотери вентиляционной системы. Известно, что объем дома равен 490 м³, а плотность воздуха составляет 1,24 кг/м³. Это позволяет узнать его массу - 608 кг. На протяжении суток в помещении воздух обновляется в среднем 5 раз. После этого можно выполнить расчет теплопотерь вентиляционной системы - (490*45*5)/24= 4593 кДж, что соответствует 1,27 кВт/час. Остается определить общие тепловые потери строения, сложив имеющиеся результаты, - 4,63+1,27=5,9 кВт/час.

Загрузка...