domvpavlino.ru

Как работает герконовый датчик. Герконы: способы управления, примеры использования. Назначение и область применения

Приобретались эти датчики по наводке из комментариев к одному из моих прошлых обзоров.
По большому счёту обозревать тут нечего, поскольку принцип их действия простой, но одному моему товарищу стало интересно, что это вообще такое и как оно работает - об этом и решил написать этот небольшой наглядный обзор.

Принцип работы

Геркон (гер метизированный кон такт) представляет собой стеклянную колбочку, внутри которой находятся две упругие контактные ферромагнитные пластины, которые при погружении в магнитное поле смыкаются и образуется контакт, по которому затем течёт ток.
Колбочка при этом обычно заполнена инертным газом или в ней содержится вакуум. Пример работы схематично отображён на анимации ниже, где подносится обычный магнит.

Почему пластины собственно смыкаются и размыкаются от наличия магнитного поля. Как уже было выше сказано, пластины сами по себе - ферромагнитные, т.е. они активно притягивают к себе магнит и в тоже время сами активно притягиваются магнитом. Аналогичные свойства есть у обычного железа. Магнит имеет две полярности - северную и южную, причём магнитные линии всегда идут от северного полюса к южному. При поднесении магнита к геркону, магнитные линии также будут проходить через эти упругие пластины. В данном случае на рисунке, северный полюс магнита расположен слева, южный - справа. Соответственно край верхней пластины становится южной полярности, а край нижней пластины - северной полярности - в итоге пластины замыкаются. При отдалении магнита - пластины за счёт своей упругости размыкаются. Если магнит по отношению к этим пластинам расположить неправильно, то магнитные линии будут проходить через них неравномерно, и контакты не смогут сомкнуться.

В продаже можно найти три основных типа герконовых датчиков:
1) Нормально открытые (обозреваемые), которые в обычном состоянии разомкнуты, а при погружении в магнитное поле - цепь замыкается.
2) Нормально закрытые, - уже обратный принцип: в обычном состоянии контакты замкнуты, но при погружении в магнитное поле контакты размыкаются.
3) Герконы-переключатели, - в отличии от двух первых, имеют уже 3 вывода и 3 пластины внутри соответственно. В спокойном состоянии замкнута одна пара контактов, при погружении в магнитное поле - уже другая пара.

Герконы также бывают рассчитанными на коммутацию большого тока или ртутными, где места соприкосновения пластин смочены каплей ртути для подавления дребезга контактов. Основное применение герконов - системы безопасности и автоматики, как наиболее простой пример - автоматический запуск какого-либо действия при открывании двери или окна, например посыл сигнала тревоги. На основе герконов делают герконовые реле - в высоковольтных установках такие используются для защиты от перегрузок по току, в этом случае геркон помещается в катушку.

Внешний вид. Размеры
Взял нормально открытые (разомкнутые) в количестве 10 штук.
Стеклянная капсула со слегка зеленоватым оттенком.

Размеры соответствуют 2x14мм



Собрал на макетке простую цепь со светодиодом, в разрыв которой поместил геркон, дабы проверить его работу, поднеся к нему плоский неодимовый магнит, и поскольку магнитные поля имеют разные полюса, то контакты в герконе стабильно замыкаются только если направить магнит на него торцом и поперёк.

В других положениях магнита, контакты в герконе не будут замкнуты:





Пример с магнитами из мотора: повернув одной стороной - контакты замыкаются, другой стороной - никакой реакции. Поэтому этот момент стоит учитывать.

Как происходит изменение состояния пластин - в увеличенном виде под цифровым микроскопом

Вдобавок ко всему неплохо было бы показать простейший наглядный тест работы этого датчика с выполнением какого-нибудь действия при открывании-закрывании двери комнаты, например включении настольной лампы посредством .

Сначала надо упаковать сам геркон.

Надевается кусочек термоусадки, обжимается горячим воздухом



Необходимо загнуть один вывод. Но тут меня поджидал первый блин комом - отогнув вывод практически у самого основания колбочки - стекло раскололось и геркон пришёл в негодность:

Чтобы этого не произошло, надо вывод, отступив от основания капсулы на 1-2мм, зажать пинцетом и только потом уже загибать его:



Второй вывод чуть укоротил, вместе с термоусадкой

Припаиваю провод к обоим выводам провод

Теперь всё это дело надо как-то закрепить. Поэтому мелкими ломтиками нашинковал стержень от клеевого пистолета:



Надел на геркон сверху ещё термоусадки, у основания немного набил внутрь обрезков термоклея:

Обдул горячим воздухом

Излишки клея убрал

Дело осталось за малым. Прикрепить магнит на дверь, а геркон на стену, напротив магнита. Для показательного теста здесь сгодился и обыкновенный скотч, благо и обратно можно быстро всё снять.



Магнит и геркон расположены поперёк друг другу

Электронно-программная часть проста: плата Pro Mini настроена на внешнее прерывание, где вывод прерывания через этот самый геркон соединён с питанием платы и пока дверь закрыта и возле геркона есть магнит, цепь замкнута, контроллер спит, а реле, управляющие светильником - выключено. Как только дверь открывается, а магнит отводится в сторону, геркон размыкается, возникает внешнее прерывание, которое подаёт импульс на реле и светильник включается.

Применений в самоделках может найтись много, особенно с простыми и дешёвыми контроллерами Attiny13 или, если проект совсем простой - с транзисторами. Ввиду своего мелкого размера, геркон можно хитро спрятать от посторонних глаз. Я буду использовать их в новой версии энергоэффективной GSM-сигнализации, правда для её полноценной сборки необходимо дождаться ещё нескольких компонентов. Из минусов отмечу хрупкость капсулы и уязвимость перед другими магнитными полями. Касаемо надёжности пишут, что у них довольно большой цикл замыкания-размыкания за счёт герметичности внутри капсулы. В общем, посмотрим.

Планирую купить +47 Добавить в избранное Обзор понравился +78 +137

Геркон – сверхточный быстродействующий герметичный переключатель, управляемый магнитным полем . Количество его срабатываний – до пяти миллиардов раз. На его основе выпускаются датчики магнитного поля и герконовые реле для самых различных применений – от бытовой техники до авиации и космонавтики. В статье описаны особенности выбора герконов и дан табличный обзор широкой линейки этих изделий производства Littelfuse .

Слово «геркон» является сокращением слов «герметичный контакт». Первый геркон был разработан в 1936 году американской компанией Bell Telephone Laboratories. Впоследствии они стали широко применяться в качестве датчиков, и на их основе были созданы герконовые реле.

Геркон (рисунок 1) состоит из двух ферромагнитных проводников, имеющих плоские контакты, герметизированные в стеклянной капсуле. Без внешнего магнитного поля контакты разомкнуты, и между ними есть небольшой диэлектрический зазор. В магнитном поле контакты замыкаются. Контактная область обеих пластин имеет напыленное или гальваническое покрытие, выполненное из очень стойкого к эрозии металла (обычно – родий, иридий или рутений). Структура слоев покрытия контактов приведена на рисунках 2а и 2б для родия и иридия соответственно.

Иридий, рутений и родий – очень стойкие к эрозии металлы платиновой группы. Благодаря напылению из этих металлов количество срабатываний контактов достигает пяти миллиардов раз. В полость капсулы обычно закачивают азот. Некоторые типы герконов вакуумируются для увеличения максимально допустимого коммутируемого напряжения. Контакты геркона в магнитном поле намагничиваются, и между ними возникает магнитодвижущая сила, равная напряженности магнитного поля. Если напряженность магнитного поля достаточно велика, чтобы преодолеть упругие силы в контактах, возникающие при их упругой деформации, то контакты замыкаются. Когда поле ослабевает, контакты снова размыкаются.

Существует два типа герконов: SPST-NO (Single Pole, Single Throw Normally Open, то есть «один полюс, один канал») – обычный выключатель, в котором два контакта нормально разомкнуты; SPDT-CO (Single Pole, Double Through Change Over, то есть «один полюс, два канала – переключение») – переключатель, в котором один контакт всегда нормально замкнут, а второй нормально разомкнут.

Геркон, описанный выше и представленный на рисунке 3, относится к SPST-типу.

На рисунке 4 представлен геркон SPDT-типа.

Общая пластина является единственной подвижной частью такого геркона, в отсутствие магнитного поля она замкнута с нормально замкнутым контактом реле. При возникновении магнитного поля соответствующей силы общая пластина замыкается с нормально разомкнутым контактом. Обе пластины нормально разомкнутого и нормально замкнутого контактов являются неподвижными. Разомкнутые контакты имеют ферромагнитное покрытие, а нормально замкнутый контакт выполнен из немагнитного материала. При помещении в магнитное поле подвижный и нормально-разомкнутый контакт намагничиваются в одинаковом направлении, и при достаточной напряжённости магнитного поля происходит замыкание подвижного контакта с неподвижным ферромагнитным контактом. При исчезновении внешнего магнитного поля намагниченность контактов ослабевает, и они размыкаются. Для того, чтобы остаточная намагниченность была минимальной, при изготовлении герконов применяют высокотемпературную обработку контактов. В качестве источника магнитного поля для геркона чаще всего используют постоянный магнит (рисунок 5) или соленоид.

Рассмотрим несколько наиболее распространённых систем геркон-магнит.

  1. Приближение и удаление магнита перпендикулярно (рисунок 6) или под углом (рисунок 7) к главной геометрической оси геркона:

В данном случае геркон будет замыкаться при приближении и размыкаться при отдалении магнита. Рассмотрим более подробно, обратившись к рисунку 8.

Концентрация силовых линий магнита уменьшается при удалении магнита от геркона. Наиболее сконцентрированы магнитные линии на полюсах магнита. Наиболее обширная зона взаимодействия магнита с герконом находится в центре геркона. При нахождении постоянного магнита в пределах этой зоны магнитное поле является достаточным для надежного срабатывания контактной группы. Пунктиром показана зона гистерезиса – при вхождении магнита в эту зону магнитное поле еще не обладает достаточной напряженностью для срабатывания контактной группы, но ее достаточно для удержания контактной группы в сработавшем состоянии. В случае иной конфигурации контактной группы геркона, отличной от рассматриваемой SPST, под срабатыванием будет пониматься размыкание нормально-замкнутого контакта и замыкание подвижного контакта с нормально-разомкнутым контактом SPDT геркона. Замыкание контактов геркона может активироваться с помощью параллельного движения кольцевого магнита вдоль оси геркона, как показано на рисунке 9.

Конфигурация зон взаимодействия будет схожа с предыдущей системой, так как ось геркона и направление магнитных линий магнита будут совпадать с описанной выше ситуацией, как видно на рисунке 10.

  1. Геркон может активироваться при помощи плоского магнита или кольцевого магнита с двумя или 2N полюсами (рисунок 11).

Для понимания зон взаимодействия геркона обратимся к рисункам 12 и 13.

Как видно, зоны взаимодействия находятся на концах геркона. В центральной части геркона находится «мертвая зона», в которой геркон остается открытым. Таким образом, двигающийся перпендикулярно геркону магнит, чьи полюса расположены подобным образом, активировать геркон не будет (рисунок 14).

  1. Геркон можно экранировать с помощью магнитного материала (например, стального листа). На рисунке 15 изображены неподвижный геркон и неподвижный магнит между которыми движется экранирующий предмет.

Основные типы герконов, выпускаемые компанией Littelfuse, приведены в таблице 1.

Таблица 1. Серии герконов Littelfuse

Серия Длина корпуса, мм Нагрузочная способность
(Стандартная: ≤10 Вт, ≤0,5 A, ≤200 В)
Тип контактов Key Features
7 Стандартная SPST Супер-компактный (7 мм стеклянный корпус)
10 Стандартная SPST Очень компактный (10 мм стеклянный корпус)
13 Стандартная SPST Компактный (12.7 мм стеклянный корпус)
14 Стандартная SPST Дешевый, более гибкие выводы
14 Стандартная SPST Малый гистерезис
15 Стандартная SPST Низкая цена
15 ~240 В (20 Вт) SPST ~ 240 В макс. рабочее напряжение
15 20 Вт SPST Малый гистерезис
15 20 Вт SPST Длинные выводы, повышенный ресурс
19 1000 В SPST Высоковольтный
20 ~240 В, 50 Вт SPST Напряжение переключения ~240 В, высокая мощность
50 100 Вт, 3 A, 400 В SPST Большой, высокая мощность
15 Стандартная SPDT Малый корпус
40 30 Вт, 0.5 A, 500 В SPDT Высокая мощность
40 50 Вт, 1.5 A, 500 В SPDT Большой, высокая мощность

Основные параметры герконов

Время срабатывания время между моментом приложения магнитного поля и моментом замыкания контактов геркона.

На рисунке 16 представлен график зависимости величины магнитного поля от времени. Вначале геркон помещают в сильное магнитное поле до момента насыщения (при этом даже при увеличении магнитной индукции намагниченность, достигнув максимума, остается неизменной). После этого магнитное поле ослабляют до 0 и начинают постепенно увеличивать. Рабочая точка на данном графике означает такую величину магнитного поля, при которой контакты геркона замыкаются. Точка рассоединения – соответствует величине магнитного поля, при которой контакты размыкаются. Нужно заметить, что сила поля в точке рассоединения всегда ниже, чем в рабочей точке. Это связано с тем, что у контактов геркона всегда остается небольшая намагниченность.

Временем отпускания называется интервал между рабочей точкой и точкой рассоединения.

Магнитодвижущая сила (МДС) срабатывания ( pull in ) – это величина силовой характеристики магнитного поля, при которой происходит замыкание контактов геркона. В системе СИ единицами измерения магнитодвижущей силы являются Ампер*витки (AT или Amper*turns). Когда измеряют магнитодвижущую силу с помощью соленоида, рабочая точка (замыкание) обычно дается при температуре 20°С, так как из-за термического расширения медного провода в катушке магнитное поле будет меняться приблизительно на 0,4%/°С.

Отношение между размыканием и замыканием, выраженное, как правило, в процентах, называется гистерезисом. В зависимости от материалов металлических контактов, их жесткости, длины, площади соприкосновения, гистерезис будет сильно меняться (рисунок 17).

Гистерезис – это отношение магнитодвижущей силы срабатывания к магнитодвижущей силе в точке рассоединения. Обычно этот параметр выражают в процентах. Компания Littelfuse выпускает специальные серии герконов (MACD-14, MASM-14), в которых гистерезис сведен к минимуму. Обычно такие герконы применяются в датчиках уровня жидкостей, в системах позиционирования.

Контактное сопротивление ( contact resistance ) – максимальное сопротивление геркона в замкнутом состоянии.

Удельное сопротивление контактов геркона или герконового реле очень мало и обычно составляет от 7,8х10 -8 до 10х10 -8 Ом/м. Это выше удельного сопротивления меди, которое равняется 1,7х10 -8 Ом/м. Контактное сопротивление герконов обычно составляет около от 70 до 200 мОм, а сопротивление контактов в герконовом реле – около 150 мОм.

Динамическое сопротивление контактов ( Dynamic Contact Resistance ( DCR ) – это сопротивление контактов геркона в рабочем/динамическом режиме. Статичное контактное сопротивление геркона – достаточно малоинформативный параметр, который не позволяет выявить проблемы, связанные с реальным состоянием контактов. Замыкание и размыкание контактов геркона с частотой от 50 до 200 Гц дает намного больше информации. Подача на геркон напряжения 0,5 В и тока 50 мА может помочь выявить потенциальные проблемы. Эти измерения могут быть выполнены с помощью осциллографа и легко оцифрованы при автоматическом контроле качества (рисунок 18). Не стоит использовать более высокое напряжение, чтобы не изнашивать контакты геркона. Если на производстве контакты геркона не были правильно очищены перед корпусированием, то на них может находиться тончайшая диэлектрическая пленка толщиной в несколько ангстрем. Из-за нее может быть нарушена коммутация слабых сигналов. При использовании более высокого напряжения эта проблема может никак не проявиться.

Если на катушку подать сигнал с частотой 50…200 Гц, ток коммутации будет порядка 0,5 мА. Дребезг контактов после замыкания может продолжаться около 100 мс, и за ним последует динамический шум, который будет длиться около 0,5 мс. Природа этого динамического шума состоит в том, что после замыкания контактов происходят гармонические колебания, и в месте контакта изменяется сопротивление из-за меняющегося в зоне контакта давления. При этом размыкания не происходит. На рисунке 19 видно, что после завершения фазы динамического шума начинается «волновая» фаза, длящаяся 1 мс или чуть более. Вибрация контактов геркона в магнитном поле соленоида через 2…2,5 мс прекращается, и сопротивление стабилизируется.

Наблюдая за осциллограммой этого динамического теста, мы можем сделать некоторые выводы о качестве тестируемого геркона. Как только на соленоид подается напряжение, колебательный процесс должен завершиться за время, приблизительно равное 1,5 мс. Если колебания продолжаются более 2,5 мс, это может означать, что контакты плохо намагничиваются. В результате ресурс данного геркона будет небольшим, особенно если он будет работать с большой нагрузкой (рисунок 20).

Если динамический шум или дребезг контактов длятся значительно дольше 3 мс, это может быть следствием нарушения герметичности геркона, трещины в корпусе, перегрузки по току или напряжению. Также это может быть следствием загрязнения контактов при производстве или попадания влажного воздуха внутрь корпуса геркона. На рисунках 21 и 22 изображены такие случаи.

На рисунке 23 изображен случай, когда после завершения фазы динамического шума продолжаются стохастические колебания контактов, вследствие которого динамическое сопротивление контактов не стабилизируется.

Напряжение переключения/коммутации ( switching voltage ) – это обычно максимальное постоянное напряжение, которое может быть приложено к геркону в момент замыкания контактов. Если напряжение на герконе выше 5…6 В, при этом может произойти перенос микроскопического количества металла с одного контакта на другой. Несмотря на это, при работе с напряжениями до 12 В герконы и герконовые реле имеют наработку на отказ в десятки миллионов раз срабатываний. А при напряжении 5 В и меньше количество срабатываний увеличивается до миллиардов раз. Высококачественные герконовые реле Littelfuse могут работать в слабосигнальных цепях с напряжениями всего в несколько нановольт.

Ток переключения или коммутационный ток ( switching current ) – это максимальный постоянный ток или амплитудное значение переменного тока в момент замыкания контактов геркона. В случае превышения этого значения срок службы геркона значительно сократится.

Несущий ток ( carry current ) – это максимальное значение тока при замкнутых контактах геркона. Микросекундные импульсы тока могут значительно превосходить это значение без сокращения срока службы геркона. В то же время длительные импульсы тока или постоянный ток, превышающий несущий, приведут к сокращению срока службы геркона или выходу его из строя. Герконы и герконовые реле в отличие от своих электромеханических собратьев могут работать с очень малыми токами, на уровне нескольких фемтоампер (фемто = 10 -15).

Эквивалентная емкость ( contact capacitance ) – емкость геркона в замкнутом состоянии. Для герконов SPST-типа эта величина обычно составляет 0,1…0,2 пФ. Для переключающих герконов SPDT-типа эквивалентная емкость обычно составляет 1…2 пФ.

Этот параметр имеет большое значение при применении геркона в высокочастотных цепях.

Коммутируемая мощность ( switching power ) – это максимальная мощность, которая может потребляться нагрузкой, подключенной через геркон. Так как мощность рассчитывается как произведение коммутируемого напряжения и тока переключения, то для 10 Вт геркона не стоит пропускать ток более 500 мА при напряжении 200 В, для такого тока максимальное коммутационное напряжение составит всего 20 В. Превышение данного параметра также неминуемо влечет за собой сокращение срока службы геркона.

Сопротивление изоляции ( insulation resistance ) сопротивление геркона в открытом состоянии. По этому параметру герконы превосходят большинство существующих на сегодняшний день ключей, так как их сопротивление изоляции измеряется в тераомах. Величина токов утечки геркона в открытом состоянии составляет единицы пикоампер.

Диэлектрическая абсорбция ( dielectric absorbtion ) – это эффект, связанный с поляризацией диэлектриков в герконе при разряде емкостного заряда контактов. Данный эффект проявляется в виде задержки или уменьшения протекания через замкнутый геркон очень малых токов на уровне наноампер.

Резонансная частота ( resonance frequency ) – это частота собственных колебаний геркона, при которой начинаются собственные вибрации контактов, которые, в свою очередь, влияют на такие параметры геркона как напряжение пробоя и напряжение коммутации. Герконы с капсулами 20 мм обычно имеют резонансную частоту в диапазоне 1500…2000 Гц. Более компактные 10 мм герконы имеют более высокую резонансную частоту: 7000…8000 Гц. Для того, чтобы избежать проблем в работе геркона, нужно учесть вибрации среды эксплуатации и резонансную частоту геркона.

Защита герконов и герконовых реле

В цепях, где геркон работает с индуктивной нагрузкой, такой как катушка реле, соленоид, трансформатор или миниатюрный мотор, энергия магнитного поля, накопленная в индуктивных компонентах, при коммутации будет испытывать высокие нагрузки по напряжению и току. Это обстоятельство будет негативно сказываться на сроке службы геркона.

Существует несколько способов устранить эту проблему.

  1. Использование шунтирующего диода (в зарубежной литературе он часто встречается под названием flyback или freewheeling diode) возможно в цепях постоянного тока (рисунок 24). Для переменного напряжения придется использовать защитный диод Зенера (он же лавинный диод или TVS-диод), варистор или RC-цепочку (снабберную RC-цепь). Каждый из способов имеет как достоинства, так и недостатки.

  1. Использование подавляющих RC-цепей (снабберных цепей).

Существует два варианта подключения снабберной цепи: параллельно геркону (рисунок 26) или параллельно нагрузке (рисунок 27). Первый способ является предпочтительным. Он позволяет снизить напряжение при коммутации и таким образом избежать образования искр. Но в этом случае при коммутации через геркон будет протекать больший ток, обусловленный разрядом конденсатора.

Таким образом, мы столкнемся с решением задачи по выбору подходящего по сопротивлению резистора и конденсатора по емкости. Малая емкость будет плохо сглаживать скачки напряжения при переходных процессах, особенно при большой реактивной составляющей нагрузки. А большая повысит стоимость снабберной цепи и при этом увеличит коммутационный ток, что также негативно скажется на долговечности геркона. Для ограничения тока во время замыкания контактов геркона используется резистор. Посчитаем сопротивление:

По закону Ома:

Напряжение на герконе должно лежать в пределах 0,5 от максимального пикового значения Vpk напряжения (1)

(1)

и троекратного его превышения 3*Vpk. Производим расчет по формуле (2):

(2)

где Isw – ток коммутации геркона.

Уменьшение сопротивления резистора в снабберной цепи уменьшит износ контактов геркона от электрических дуг, при этом высокое сопротивление будет положительно влиять на ограничение тока «конденсатор-геркон». Для подбора подходящей емкости рекомендуется начать с 0,1 мкФ. Это очень распространенная емкость и ее цена очень мала. Если этой емкостью не удается избавиться от искр при замыкании контактов геркона, то попробуйте ее постепенно увеличивать до исчезновения искр при коммутации. Параллельно с этим не забывайте про ток коммутации.

Формовка и обрезка выводов герконов

Длина и форма аксиальных выводов герконов не всегда удобны для применения в конкретном приборе. Однако необдуманная модификация может значительно сказаться на работе геркона. При резке и формировании выводов герконов важно использовать правильные опорные и режущие инструменты, чтобы избежать повреждения герметичных уплотнений «стекло-металл». Поврежденный корпус может иметь как незаметные глазу сколы, так и крупные трещины. Такие дефекты могут быть обнаружены визуально с использованием микроскопа с небольшим увеличением. Но бывают случаи, когда нарушается герметизация корпуса, и даже описанная выше методика измерения динамического сопротивления может не выявить заметного ухудшения. С течением времени в геркон будет попадать влага, и его функционирование будет нарушаться.

Для того, чтобы избежать повреждений, рекомендуется оставлять 1 мм длины вывода между точкой формовки либо обрезки – и корпусом геркона. При этом вывод геркона должен быть полностью зафиксирован, чтобы механическое напряжение при формовке или обрезке не передавалось на остальную часть вывода.

Рассмотрим основные способы формовки и обрезки выводов геркона.

  1. Обрезка выводов геркона с помощью бокорезов с двусторонней заточкой (рисунок 28) недопустима, так как при этом сила, деформирующая вывод, будет передаваться в сторону корпуса.

Обрезка выводов бокорезами с односторонней заточкой допустима (рисунок 29), при этом надо помнить, что плоская сторона губок бокорезов должна находится со стороны корпуса геркона. Также следует обратить внимание на качество заточки и наличия люфта у используемого инструмента.

  1. Обрезка выводов с помощью зажима, жестко фиксирующего контакты геркона (рисунки 30 и 31).

Обрезка выводов геркона с частичной фиксацией (рисунок 32) недопустима.

  1. Формовка выводов геркона без фиксации вывода запрещена (рисунок 33), так как в таком случае деформации подвергается и часть вывода, уходящая в корпус геркона.

Формовка выводов геркона при фиксации вывода в двух точках, как показано на рисунке 34, допустима, так как опора В не дает деформироваться выводу в направлении от нее к корпусу геркона.

Формовка при полной фиксации вывода геркона, как показано на рисунках 35 и 36, также допустима.

После правильной формовки и обрезки выводов геркона можно получить распространенные конфигурации, изображенные на рисунке 37.

Выбор магнитов

Для общего применения в основном используются четыре группы магнитов: ферросплавы, альнико AlNiCo, неодимовые NdFeB и самариевые SmCo (таблица 2). Для того чтобы подобрать подходящий магнит, следует учитывать такие факторы как температура среды, размагничивание близкорасположенными источниками магнитных полей, свободное пространство для движения, химический состав окружающей среды.

Неодимовые магниты обладают наибольшей энергией, наибольшей остаточной намагниченностью и коэрцитивной силой. Они имеют сравнительно невысокую цену и более высокую механическую прочность, чем самариевые SmCo. Могут использоваться при температурах среды до 200°C. Не рекомендуется использовать эти магниты в средах с повышенным содержанием кислорода.

Самариевые SmCo имеют высокую энергию и подходят для применений, где требуется высокая стойкость к размагничиванию. Имеют великолепную термическую стабильность и могут использоваться в средах до 300°C, обладают высокой коррозийной стойкостью. При этом их цена – самая высокая среди всех типов магнитов. Их недостатком является очень высокая хрупкость.

Альнико AlNiCo намного дешевле, чем магниты из редкоземельных элементов и подходят для большинства применений. Имея низкую коэрцитивную силу, отличаются великолепной термической стабильностью вплоть до 550°C.

Ферритовые магниты являются самыми дешевыми, но при этом хрупкими. Имеют неплохую термическую стабильность и могут использоваться при температурах до 300 °C. Очень стойки к коррозии. Требуют механической обработки для соответствия жестким габаритным допускам.

Таблица 2. Выбор магнитов для управления герконами

Показатели Увеличение показателей →
Цена Феррит AlNiCo NdFeB SmCo
Энергия Феррит AlNiCo SmCo NdFeB
Диапазон рабочих температур NdFeB Феррит SmCo AlNiCo
Коррозионная стойкость NdFeB SmCo AlNiCo Феррит
Коэрцитивная сила AlNiCo Феррит NdFeB SmCo
Механическая прочность Феррит SmCo NdFeB AlNiCo
Температурный коэффициент AlNiCo SmCo NdFeB Феррит

Заключение

В современном мире с каждым днем становится все больше «умных вещей», которые значительно упрощают наши повседневные задачи. Немалую роль в этом сыграли датчики на основе герконов. Фантастическая надежность, четкость срабатывания, отсутствие потребности в питании, простота применения и великолепные коммутационные свойства для слабосигнальных цепей сделали герконы одними их самых распространенных электронных компонентов, применяющихся всюду, от холодильников до самолетов.

В электронных агрегатах и радиотехнике активно используются устройства коммутации и контакты. Но такие детали считаются ненадёжными, так как частая эксплуатация оборудования изнашивает их. Из-за этого специалисты часто используют герконовое реле, которое представлено в виде магнитоуправляемого герметического контакта. Для более длительной эксплуатации на них установлены качественные выключатели.

Краткое описание

В современном мире герконы практически не используются, так как в массовую продажу поступили более универсальные датчики Холла. Но всё же встречаются ситуации, когда без такого реле просто не обойтись. А всё дело в том, что устройством просто управлять, и его можно устанавливать в схему любого оборудования. Когда же мастеру нужно добиться высокой степени надёжности и долговечности от агрегата, тогда без геркона просто не обойтись.

Сегодня такое реле можно встретить в различных датчиках и аналогичных устройствах. Функциональные возможности принято делить на три основные категории:

  1. Переключение.
  2. Замыкание.
  3. Размыкание.

Среди основных технических признаков можно выделить сухой и ртутный контакт. В последнем случае в стеклянном корпусе содержатся капли металла, которые особенно важны в процессе работы реле, так как улучшается качество контакта.

К тому же ртуть помогает избежать нежелательной вибрации, за счёт чего увеличивается время срабатывания установки. Именно поэтому специалисты всегда рекомендуют использовать этот тип контакта.

Характеристики устройства

Высококачественное герконовое реле состоит из двух контактов, которые изготовлены из специфического ферромагнитного сплава. Установлены они в прочной колбе, благодаря чему пользователь может всегда контролировать их работу. Если же к контактам поступает постоянный магнит, тогда происходит замыкание с формированием непрерывной цепи. Из-за такой специфичности герконовый коммутатор стали называть концевым выключателем.

Промышленные производители маркируют такие агрегаты в строгом соответствии с итоговой сферой применения. К примеру: если на реле нанесена аббревиатура КЭМ, то оно относится к категории коммутационных электрических механизмов. Большая буква «А» означает, что устройство можно эксплуатировать в любых погодных условиях, а вот детали с пометкой «В» предназначены исключительно для помещений. Часто можно увидеть сокращение МКА, которое означает, что этот магнитный коммутатор идеально подходит для любых условий использования.

Для стандартного переключающегося агрегата уровень сопротивления находится в пределах 0.2 Ом. Качественный геркон на размыкание отличается тем, что этот показатель составляет 1 кОм. Такие данные позволяют мастерам существенно ускорить переключение имеющихся цепей. Все магнитные выключатели такого типа применяются для силовых сетей напряжения, так как они обладают более высокими показателями. Магнитный размыкающий геркон активно используется в различных схемах, в компьютерной и охранной отрасли, а также контактных датчиках.

Разновидности моделей

Высококачественные герконовые реле принято делить на несколько категорий, которые отличаются между собой устройством контактной группы. Каждая разновидность обладает многочисленными положительными характеристиками, которые высоко ценятся как специалистами, так и домашними мастерами. В продаже представлено несколько видов герконов:

  • С переключающимся типом контактов.
  • Традиционные разомкнутые установки.
  • Специфические элементы с замкнутыми контактами.

Кроме основных функциональных признаков, специалисты выделяют и технологические параметры, которые разделяют коммутирующие герметичные агрегаты на сухие и ртутные.

Конструктивные отличия

Многофункциональный геркон представлен в виде герметичного баллона из стекла, внутри которого расположены чувствительные контакты. Эти элементы являются магнитными сердечниками, приваренными с торцовых сторон изделия. Все внешние части подключаются к имеющейся электросети.

Самыми востребованными сегодня считаются герконовые реле на замыкание. Контакты изготовлены из качественной ферромагнитной проволоки прямоугольной формы. Сердечники выпускаются из пермаллоя - материала, где основную роль играет мощность, а также размер геркона. В случае надобности покрытие может быть заменено на серебро, золото, родий.

Готовую колбу вакуумируют или же запускают в неё инертный газ, что предотвращает развитие коррозии в выключателе. В процессе изготовления специалисты также учитывают тот факт, что между сердечниками присутствует зазор определённого диаметра.

Принцип работы

Переключающий геркон с контактами замыкания укомплектован двумя сердечниками, которые отличаются повышенной магнитной проницаемостью. Эти два элемента расположены в герметичном стеклянном баллоне, который заполнен инертным газом либо газовой смесью. В самой колбе присутствует давление мощностью 50 кПа. Особая инертная среда не позволяет контактам окисляться.

Баллон геркона помещается во внутренний отсек управляющей обмотки, которая подключена к источнику постоянного тока. В момент включения питания на ответственном реле формируется необходимое магнитное поле, которое проходит по сердечникам контактов, а затем по зазору и замыкается на управляющей катушке. Рабочий поток энергии создаёт тяговую силу, которая соединяет контакты между собой.

Дополнительное покрытие контактов серебром, золотом, палладием или же радием помогает снизить сопротивление контактов. После включения питания в катушке электромагнита исчезает усилие, а сами пружины работают по принципу размыкания. Стоит отметить, что в герконовом реле полностью отсутствуют поверхности, где детали были бы подвержены трению между собой. Сами контакты отличаются разнообразием функций, так как они могут выполнять всю работу проводника, магнитопровода и пружин.

Повышение плотности тока помогает уменьшить габариты катушки магнита в несколько раз. Провод в эмали активно используют для намотки. Все узлы геркона проходят через штамповку, а соединения выполняются сваркой или же пайкой. В этих агрегатах активно используются магнитные экраны, которые помогают снизить зоны состояния включения.

Слаженная работа реле обусловлена тем, что все пружины устанавливаются без дополнительного натяга, за счёт чего устройство готово к работе сразу после запуска. Вместо привычных электромагнитов могут применяться постоянные магниты, из-за чего герконы называют поляризованными. Для нажатия контактов реле требуется некое усилие, которое обусловлено наличием магнитной катушки. Такой эффект нельзя встретить в обычных электромагнитных агрегатах, где вся сила зависит от пружины.

Принцип действия герконового реле на размыкание отличается тем, что система реле под воздействием электромагнита намагничивает сердечники, которые поэтапно отталкиваются между собой и размыкают цепь. Те модели, которые относятся к замкнутому типу, оснащены тремя контактами, один из них покрыт металлом, а остальные - ферромагнитным составом.

Преимущества и недостатки

Каждый агрегат отличается как положительными, так и отрицательными характеристиками. Если пользователь знает все сильные и слабые стороны приобретённого изделия, он может подобрать ему наиболее подходящую сферу применения. Именно поэтому перед покупкой герконового реле нужно изучить его преимущества:

Когда все положительные стороны изучены, можно ознакомиться и с недостатками. Если мастер обладает необходимым опытом работы, то он сможет устранить мелкие недочёты. Среди основных недостатков герконового коммутатора можно выделить следующие характеристики:

Несмотря на значительное преобладание положительных характеристик, герконовое реле постепенно вытесняется другими аналогами полупроводникового типа (к примеру, датчик Холла). Решающую роль сыграла более высокая прочность конструкции, полное отсутствие дребезжания, а также небольшой размер.

Сферы применения

Высококачественные и многофункциональные герконовые выключатели считаются востребованными в системах охраны, где они используются в качестве реле. Такие устройства также монтируются в специальные датчики. Не стоит забывать и о других сферах применения:

Правила управления герконом

В связи с тем, что такое оборудование используется не только в быту, но и во многих других отраслях, каждый пользователь должен знать, как с ним обращаться. Только в этом случае можно рассчитывать на качественную работу реле. Тем более что управлять герметичным коммутатором можно двумя основными способами:

  1. Используя магнит постоянного типа.
  2. Воздействуя катушкой, которая подсоединена к постоянному источнику тока.

В первом варианте пользователь может задействовать угловое или же линейное перемещение постоянного магнита. Кроме того, часто встречается способ, когда специальная шторка перекрывает рабочее поле. Такой вариант можно встретить в универсальных датчиках уровня и положения, а также в охранной сигнализации.

Второй способ позволяет специалистам соорудить мощное реле на основе геркона. В отличие от известных традиционных конструкций, такой агрегат будет более надёжным, качественным и долговечным, так как в его схеме будут отсутствовать какие-либо подвижные элементы. А вот что касается небольшого количества контактных групп, то этот небольшой минус можно легко устранить, если использовать сразу несколько герконов.

В качестве примера применения такого способа управления можно смело назвать токовое реле. Этот агрегат представлен в виде мощной катушки, которая обмотана прочным проводом большого сечения. Во внутреннем отсеке обязательно располагается герметичный коммутатор.

Универсальность этого приспособления может использоваться в качестве надёжной защитной системы от перегрузки в цепях постоянного тока. Вдобавок мастер может регулировать чувствительность прибора за счёт линейного перемещения коммутатора внутри катушки.

Любая техника может ориентироваться в окружающей среде только с помощью специальных датчиков, которые позволяют получить необходимую информацию. Они могут быть нацелены на выяснение скорости объекта, состояния, текущих целей или типа изменений в окружающей среде. Одними из самых полезных считаются герконовые датчики. Почему именно так?

Что такое герконовый датчик?

Для начала выясним, что собой представляет объект написания статьи. Геркон - это электромеханическое устройство, которое является парой ферромагнитных контактов, что запаяны в герметичную колбу из стекла. Если поднести к ней постоянный магнит или включить электромагнит, то произойдет замыкание. Вот так в общем выглядит схема герконового датчика. Благодаря таким свойствам данные приборы нашли своё применение в качестве концевых выключателей, индикаторов положения и других подобных устройств. Если добавить ещё и электромагнитную катушку, то получится герконовое реле.

Разнообразие и принцип работы

Как же осуществляется разделение на рабочие виды? Как решают, что к чему отнести? Для этого используется деление на три группы, каждая из которых работает по своему принципу. Как функционирует герконовый датчик? Принцип работы:

  1. Имеют замыкающийся контакт. В таких случаях, когда отсутствует магнитное поле, то датчик в разомкнутом состоянии. Когда оно есть, то он замыкается.
  2. Имеют размыкающийся контакт. Когда отсутствует магнитное поле, то датчик в замкнутом состоянии. Когда оно есть, он размыкается.
  3. Имеют переключающийся контакт. Конструктивно отличаются от двоих предыдущих. В первую очередь тем, что имеют три вывода. Так, если отсутствует магнитное поле, то замыкается одна пара. Когда оно есть, то другая.

Классификация может быть проведена исходя из особенностей конструкции:

  1. Используются «смоченные» контакты. Сюда относятся герконы, выводы которых соприкасаются с каплями ртути. Её присутствие уменьшает контактное электрическое сопротивление. Также данный тип отличается низкой вероятностью возникновения дребезга.
  2. Используются «сухие» контакты.

Особенности

Какие же существуют особенности герконового датчика, которые необходимо учитывать при выборе необходимого прибора? Следует сказать, что их довольно много:

  1. Значение напряженности, которое должно быть у магнитного поля, чтобы произошло замыкание контактов.
  2. Коммутируемый ток.
  3. Значение напряженности, которым должно обладать магнитное поле, чтобы происходило размыкание контактов.
  4. Максимальная мощность, что может быть коммутируемая герконом.
  5. Значение электрического сопротивления, которое имеет зазор между сердечниками (интересует только разомкнутое состояние).
  6. Напряжение, при котором возникает пробой геркона.
  7. Сопротивление в контактной области, которое возникает во время замыкания сердечников.
  8. Время, которое проходит между моментами влияния управляющего магнитного поля и замыканием электрической цепи.
  9. Электрическая емкость, которая имеется между выводами геркона, когда он в разомкнутом состоянии.
  10. Время, которое необходимо, чтобы после удаления эффекта магнитного поля произошло размыкание электрической цепи.
  11. Коммутируемое напряжение.
  12. Число срабатываний геркона, при котором основные его параметры будут оставаться в допустимых пределах.

Преимущества

Какие позитивные стороны имеют герконовые датчики? Их список таков:

  1. Отсутствует дребезг контактов (относится к герконам, у которых выводы смочены ртутью).
  2. Долговечность. Считается, что если датчик не поддаётся физическим ударам (вследствие падения или при неосторожном обращении), через него не пропускают слишком большой ток, то он может работать бесконечно. Хотя согласно технической документации, число срабатываний всё же ограничено значением в 10 3 —10 8 .
  3. Поскольку контакты геркона расположены в инертном газе или вакууме, то они слабо обгорают, даже когда происходит размыкание или размыкание с возникновением искры.
  4. Данные датчики обладают меньшим размером, чем классические реле, и при этом рассчитаны на точно такой же ток.
  5. При производстве для контактов не применяются драгоценные и тугоплавкие металлы, что позитивно сказывается на стоимости.
  6. Герконы почти не создают шум.
  7. Датчики обладают высоким быстродействием (если сравнивать их с классическими реле).

Недостатки

Как и у любого прибора, у геркона есть не только плюсы, но и минусы:

  1. Обладают значительным весом (если сравнивать с открытыми контактами).
  2. Необходимо создавать магнитное поле.
  3. Хрупкие. Не подлежат использованию в условиях ударных нагрузок и при сильных вибрациях.
  4. Попадают под влияние внешних магнитных полей, из-за чего возникает необходимость в защите.
  5. Иногда контакты геркона могут остаться в замкнутом состоянии, из которого их нельзя вывести.
  6. Ограничение скорости срабатывания.
  7. При больших токах контакты геркона могут самопроизвольно разомкнуться.

Применение

Где же нашли своё применение герконовые датчики? Но прежде чем говорить о них, стоит упомянуть, что наметилась тенденция их замены. В качестве более совершенной технологии используются твердотельные датчики Холла. Но вернёмся к теме статьи:

  1. Клавиатура клавишных синтезаторов и промышленных приборов, где необходима взрывобезопасность и долговечность, что особенно важным является в промышленности. Поскольку детали хотя и являются мелкими, необходимы для того, чтобы управлять различными механизмами. И если данная функция недоступна - страдает производительность.
  2. Герконовые датчики уровня жидкости в различных емкостях.
  3. В телерадиоаппаратуре.
  4. В датчиках, которые отображают состояние (открыто/закрыто) или позицию предмета. Сферы применения: компьютерные, охранные, строительные технологии. Они могут сообщать, в каком положении окна и двери, таким образом возможно построение автоматизированных систем со своими целями.
  5. В электронных счетчиках тока.

Заключение

Мы разобрали, чем является герконовый датчик, принцип работы этого устройства, и сейчас можно сказать, что вы обладаете необходимым теоретическим минимумом, чтобы начинать работать с ними на практике. Причем может быть реализовано что угодно. Использовать герконовый датчик уровня воды в емкости на даче или что-то другое - решать вам.

Ни одна современная система охраны, контроля, пожаротушения, экстренного оповещения не может функционировать без применения датчиков, связывающих ее с окружающим миром. Датчики определяют наличие задымления, пыли в воздухе, движение объектов и еще множество других изменений.

Герконовый датчик по-прежнему используется во многих подобных системах благодаря своей надежности.

Что такое геркон

Геркон – электромеханическое устройство, замыкающее либо размыкающее электрические контакты под влиянием магнитного поля, генерируемого электромагнитом, либо постоянным магнитом.

Термин «геркон» означает герметичный контакт. Обусловлено это его конструкцией. Состоит он из двух ферромагнитных пластин, запаянных в стеклянную капсулу с двумя выходными контактами и заполненную инертным газом. Такая оболочка минимизирует воздействие окружающей среды и обеспечивает надежное функционирование устройства.

Колба может содержать азот, иссушенный воздух, иной инертный газ. Также из колбы может быть откачан весь газ до состояния вакуума. Этим добиваются повышения уровня коммутируемого напряжения.

Назначение и область применения

Герконовые датчики, несмотря на вытеснение их датчиками Холла, по-прежнему находят применение во многих устройствах и системах:

  1. Клавиатуры синтезаторов и промышленного оборудования. Конструкция датчиков исключает возможность возникновения искры. Поэтому в первую очередь их применяют на взрывоопасном производстве, где присутствуют горючие испарения или пыль.
  2. Бытовые счетчики.
  3. Автоматические системы охраны и контроля положения.
  4. Оборудование, работающее под водой или в условиях высокой влажности.
  5. Телекоммуникационные системы.
  6. Медицинское оборудование.

В системах безопасности применяются устройства, состоящие из геркона и магнита. Они сообщают об открытии или закрытии дверей.

Также применяются герконовые реле, состоящие из контактного датчика и проволочной обмотки. Такая система обладает некоторыми преимуществами: простота, компактность, влагостойкость, отсутствие движущихся деталей.

Используются герконы и в особых областях – это механизмы защиты от перегрузок и короткого замыкания высоковольтных и радиотехнических электроустановок. Также это высокомощные радары, лазеры, радиопередатчики и прочее оборудование, работающее под напряжением до 100 кВ.

Разновидности

В зависимости от нормального состояния контактов устройства разделяют на:

  • замкнутые – цепь размыкается под воздействием магнитного поля;
  • переключаемые – под воздействием поля замыкается один контакт, а при отсутствии поля – другой;
  • разомкнутые – срабатывание геркона происходит при появлении магнитного поля.

В зависимости от конструкции датчики бывают:

  • газовые – стеклянная гильза заполнена сухим воздухом или инертным газом;
  • ртутные – на контакты, дополнительно наносится ртуть, которая способствует улучшению коммутации, минимизирует сопротивление и убирает вибрацию замыкаемых пластин.

Герконы по техническим характеристикам подразделяются на:

  1. Герконы.
  2. Газакон – устройство, обладающее функцией памяти. То есть положение контактов сохраняется после отключения магнитного поля.
  3. Геркотроны – реле с высоковольтной изоляцией. Предназначено для работы в устройствах с напряжением от 10 до 100 кВ.
  4. Герсикон – реле, предназначенное для управления оборудованием и автоматикой с мощностью до 3 кВт. Конструкция характеризуется увеличенным коммутационным током и наличием дугогасительных контактов.

Благодаря разнообразию конструкций герконы продолжают использовать во многих областях.

Принцип действия

Геркон по принципу работы схож с выключателем. Реле состоит из пары токопроводящих сердечников с зазором между ними. Они герметично запаяны в стеклянной колбе с инертной средой, исключающей процесс окисления.

Вокруг колбы размещается управляющая обмотка, питаемая постоянным током. При подаче питания обмотка генерирует магнитное поле, воздействующее на сердечники, и приводит к замыканию контактов между собой.

При отключении катушки от питания магнитный поток исчезает и контакты размыкаются пружинами. Надежность обеспечивается отсутствием трения между контактами, которые, в свою очередь, выполняют роль проводника, пружины и магнитопровода.

Особенностью герконового датчика является то, что на пружины реле в состоянии покоя не действуют никакие силы. Это позволяет им замыкать контакт за доли секунды.

Применяться могут и постоянные магниты. Такие устройства называют поляризованными.

Нормально замкнутые устройства имеют другой принцип функционирования. Под воздействием электромагнитной силы система магнитов заряжает сердечники одним потенциалом, заставляя их отталкиваться друг от друга, размыкая цепь.

Переключаемые герконы состоят из трех контактов. Один из них установлен стационарно и не магнитится, 2 других сделаны из ферромагнитного сплава. При наведении магнитного поля пара разомкнутых контактов замыкается, размыкая пару с немагнитным контактом.

Подключение герконового датчика

Документация, поставляемая в комплекте с датчиками, дает исчерпывающую информацию о том, как подключить геркон.

Для функционирования и безопасности датчика часть реле, генерирующая магнитное поле, монтируется на подвижную часть конструкции. Сам геркон крепится на стационарно установленный элемент конструкции или здания.

Подвижная часть плотно примыкает, воздействуя магнитным полем катушки на контактную сеть геркона и замыкая этим электрическую цепь. Датчик системы информирует о правильном функционировании системы. Как только катушка, расположенная на подвижной части, перестает воздействовать на датчик, сеть размыкается и автоматика сообщает о нарушении целостности системы.

По способу монтажа датчики бывают:

  • скрытого крепления;
  • наружного крепления.

В зависимости от физических свойств поверхности, на которой происходит подключение геркона, бывают:

  • датчики для монтажа на стальных конструкциях;
  • датчики, монтируемые на магнитопассивных конструкциях.

При монтаже герконового реле необходимо помнить о некоторых особенностях установки:

  1. Рекомендуется избегать расположения вблизи источников ультразвука. Он в состоянии оказать негативное воздействие на параметры датчика.
  2. Не допускать расположения рядом с источником постороннего магнитного поля.
  3. Обезопасить колбу датчика от ударов и повреждений. В противном случае газ испарится, нарушится контакт, и сердечники быстро придут в негодность.

Герконовые переключатели не могут коммутировать большие токи в силу маломощности сердечников. Поэтому их нельзя использовать для включения и выключения мощных электрических устройств.

Их включают в маломощную коммутационную схему для контроля реле, которое осуществляет управление оборудованием.

Преимущества

Герконовые датчики обладают следующими преимуществами:

  1. Полная герметичность позволяет использовать их в пожароопасных помещениях и агрессивных средах.
  2. Моментальное срабатывание позволяет использовать их в устройствах с высокой коммутационной частотой.
  3. Исключение дребезга контактов у ртутных датчиков. Они применяются в оборудовании с повышенными требованиями к чистоте сигнала.
  4. Малые габариты от 4 мм, простота конструкции, низкая стоимость изготовления.
  5. Высокая функциональность и универсальность реле.
  6. Возможность коммутировать маломощные сигналы.
  7. Большой температурный диапазон работы – от -55 до + 110 ºC.
  8. Высокая прочность сердечников.
  9. Отсутствие поверхностей трения.

Высокая универсальность, надежность и цена по-прежнему позволяют герконам соперничать с прямыми конкурентами.

Недостатки

Как и все устройства, герконы обладают и недостатками:

  1. Низкая чувствительность магнитов.
  2. Высокая восприимчивость к внешним магнитным потокам. Как следствие, может потребоваться использование дополнительных экранов.
  3. Иногда контакты после снятия магнитного поля могут остаться в замкнутом положении, из которого их не вывести.
  4. Капсула выполнена из тонкого стекла и легко разрушается при падениях и ударах.
  5. При подаче напряжения с низкой частотой контакты самопроизвольно размыкают и замыкают цепь.
  6. При подаче больших токов контакты сердечников могут самопроизвольно размыкаться.

По этим причинам при использовании реле необходимо соблюдать ряд ограничительных мер, указанных в сопроводительной документации.

Загрузка...