domvpavlino.ru

Гидравлические и пневматические подшипники. Шпиндельные узлы с гидродинамическими опорами из пористого материала

Содержание статьи

ПОДШИПНИК, конструктивный узел машин и механизмов, поддерживающий или направляющий вращающийся вал или ось. Если шейка вала в подшипнике скользит непосредственно по опорной поверхности, то он называется подшипником скольжения. Если же между шейкой вала и опорной поверхностью имеются шарики или ролики, то такой подшипник называется подшипником качения. Назначение подшипника – уменьшать трение между движущейся и неподвижной частями машины, так как с трением связаны потери энергии, нагрев и износ.

Подшипники скольжения.

Подшипник скольжения представляет собой массивную металлическую опору с цилиндрическим отверстием, в которое вставляется втулка, или вкладыш, из антифрикционного материала. Шейка, или цапфа, вала с небольшим зазором входит в отверстие втулки подшипника. Для уменьшения трения и износа подшипник обычно смазывается, так что вал отделен от втулки пленкой вязкой маслянистой жидкости. Рабочие характеристики подшипника скольжения определяются его размерами (длиной и диаметром), а также вязкостью смазки и скоростью вращения вала.

Смазка.

Для смазки подшипника скольжения можно использовать любую достаточно вязкую жидкость – масло, воду, бензин и керосин, водные и масляные эмульсии, а в некоторых случаях даже газы (например, нагретый воздух и продукты сгорания в реактивных двигателях) и жидкие металлы. Применяются также пластичные и твердые («консистентные») смазки, но их смазывающие свойства отличны от свойств жидкостей и газов. В тех случаях, когда естественной циркуляции смазки в подшипнике недостаточно для его охлаждения, предусматривают систему принудительной циркуляции с теплоизлучающими радиаторами и теплопоглотителями.

Гидростатические подшипники.

Подшипник скольжения, в который смазка подается под давлением (обычно масляным насосом) из внешнего источника, называется гидростатическим подшипником. Несущая способность такого подшипника определяется в основном давлением подаваемой смазки и не зависит от окружной скорости вала.

Гидродинамические подшипники.

Подшипник скольжения, работающий со смазкой, можно рассматривать как насос. Для того чтобы перемещать вязкую среду из области низкого давления в область высокого давления, необходимо затрачивать энергию внешнего источника. Смазка, прилипшая к контактным поверхностям, при вращении вала сопротивляется полному стиранию и выдавливается в область, где давление повышается, благодаря чему поддерживается зазор между этими поверхностями. Подшипник скольжения, в котором описанным образом создается область повышенного давления, удерживающая нагрузку, называется гидродинамическим.

Подшипники качения.

В подшипнике качения трение скольжения заменяется трением качения, благодаря чему снижаются потери энергии на трение и уменьшается износ.

Шарикоподшипники.

Наиболее распространенным подшипником качения является шарикоподшипник. Форму канавок (беговых дорожек) внутреннего и наружного колец подшипника качения необходимо очень точно контролировать при изготовлении, чтобы, с одной стороны, не было проскальзывания шариков относительно кольца, а с другой – они имели достаточно большую площадь опоры. Сепаратор задает точное положение шариков и предотвращает их взаимное трение. Кроме однорядных шариковых подшипников выпускаются подшипники с двумя и несколькими рядами шариков (двухрядные, многорядные), а также подшипники других конструкций.

Роликоподшипники.

В роликовых подшипниках элементами качения являются ролики – цилиндрические, бочкообразные, конические, игольчатые или витые. Конструкции роликоподшипников тоже разнообразны.

Смазка.

Срок службы подшипника качения определяется усталостным износом шариков (роликов) и беговых дорожек в кольцах.Такие подшипники тоже требуют смазки для уменьшения трения и износа. Важное значение имеет рабочая температура, так как при повышенных температурах не только сказывается неодинаковое тепловое расширение элементов подшипника, что ведет к увеличению проскальзывания, а следовательно и износа, но и уменьшается твердость материалов подшипника.

Подшипниковые материалы.

Подшипники скольжения изготавливаются из различных металлов, сплавов, пластмасс, композитов и других материалов. Длительное время основным подшипниковым материалом был баббит, запатентованный А.Баббитом в 1839. Этот сплав на основе олова или свинца с небольшими добавками сурьмы, меди, никеля и др. допускает ряд вариантов состава, различающихся относительным содержанием компонентов. Сплавы баббита стали как бы эталоном для оценки других подшипниковых материалов, среди которых – сочетания материалов, хорошо зарекомендовавших себя по отдельности: баббит и сталь; баббит, сталь и бронза; свинец с индием; серебро и сталь; графит и бронза. Среди пластмассовых материалов для подшипников скольжения выделяются найлон и тефлон, не требующие смазки. В качестве материалов втулок подшипников скольжения применяются также углеграфиты, металлокерамики и композиты.

В гидродинамическом подшипнике отсутствует прямой контакт между трущимися поверхностями, так как зазор между ними под действием гидродинамических сил заполняется смазывающей жидкостью.

Использование гидродинамического подшипника позволяет заменить трение скольжения на жидкостное трение , и снизить потери энергии.

В гидродинамическом подшипнике нагрузку воспринимает и передает на опору тонкий слой жидкости.

Условия возникновения жидкостного трения

Для работы гидродинамического подшипника необходимо создание гидродинамического слоя смазки, для этого нужно обеспечить следующие условия:

  • смазывающая жидкость должна удерживаться в зазоре (например между валом и корпусом подшипника)
  • в смазывающей жидкости должно поддерживаться давление достаточное для уравновешивания нагрузки
  • жидкость должна полностью разделять скользящие поверхности, а значит ее слой должен быть выше, чем сумма шероховатостей поверхностей
  • толщина слоя жидкости должна быть больше минимального значения

Принцип работы гидродинамического подшипника

Рассмотрим схему работы гидродинамического подшипника.

Вал установлен в корпусе заполненном маслом с зазором, под действием нагрузки прижимается к нижней поверхности корпуса. Получается, что в начальном положении вал расположен в корпусе с эксцентриситетом.

При вращении вала, небольшой слой жидкость за счет адсорбции приходит в движение и увлекается вслед за поверхностью вала. Последующие слои также могут увлекаться во вращательное движение за счет вязкости рабочего масла. Получается, что вал выполняет роль насоса, создавая поток рабочей жидкости, и нагнетая ее в клиновидную щель между корпусом и валом. В результате воздействия вращающегося вала масло стремится заполнить клиновидную щель и поднять вал, с другой стороны этому препятствует нагрузка действующая на вал.

При создании достаточного для того, чтобы приподнять вал, и обеспечить протекание масла по всей окружности наступает равновесное состояние.

Гидродинамический подшипник с клиновыми расточками вкладыша


Для обеспечения высоких антивибрационных свойств используют гидродинамический подшипник с клиновыми расточками, в котором цапфа вала опирается на несколько масляных клиньев. Это снижает вероятность возникновения вибраций.

Расчет гидродинамического подшипника

Условие обеспечения жидкостного трения:

H≥1,1(R z1 +R z2 +y)

  • где h - толщина слоя смазки
  • R z1 шероховатость детали 1
  • R z2 шероховатость детали 2
  • y - стрела прогиба шипа (вала)

Наименьшее отношение относительного эксцентриситета можно вычислить по формуле:

Х=1-(h/0,5s)

  • где s - средний зазор
  • х - относительный эксцентриситет х = e / 0,5 s

Необходимую вязкость жидкости, при которой удастся достичь режима жидкостного трения можно определить по формуле:

μ=PΨ 2 /ωldФр

  • l - длина вала, м
  • d - диаметр вала, м
  • ω - угловая скорость вращения вала
  • P - величина нагрузки
  • Ψ - относительный зазор Ψ = s/d
  • Фр - безразмерный коэффициент несущей способности

При работе гидродинамического подшипника скольжения масло будет нагреваться, а значит его вязкость будет изменяться. Зависимость вязкости от температуры рабочей жидкости отражена в . В случае если начальная температура масла неизвестна расчет производят методом последовательных приближений, задаваясь начальным значением - 50 °С.

Достоинства гидродинамических подшипников

  • высокий ресурс
  • низкий уровень шума
  • малые вибрации при работе
  • демпфирование ударных нагрузок

Недостатки гидродинамических подшипников

  • возможность работы только при высоких частотах вращения
  • влияние температуры на режим работы, характеристики

Статья написана исключительно для ознакомления интернет-пользователей с основными разновидностями подшипников. Будет полезна студентам ВТУЗов и, возможно, молодым специалистам.

Мы не несем ответственности за непосредственный, опосредственный или непреднамеренный ущерб, нанесенный в результате использования информации представленной в данной статье.

Постоянный адрес статьи:

При любом использовании данного материала ссылка на него обязательна!

Вы также можете принять участие в написание статьи, оставив свои дополнения , замечания и комментарии на электронном адресе: Указание имени автора того или иного изменения гарантируется!

Внимание! Доступна новая версия статьи! Подробнее: http://www.prompk.ru/ntn-snr/e/about_bearings/about_bearing.htm

Обсуждение новой версии статьи: http://www.liveinternet.ru/users/prompk_ru/post205546614/

Основные разновидности подшипников

Подшипники - это технические устройства , являющиеся частью опор вращающихся осей и валов. Они воспринимают радиальные и осевые нагрузки, приложенные к валу или оси, и передают их на раму, корпус или иные части конструкции. При этом они должны также удерживать вал в пространстве, обеспечивать вращение, качание или линейное перемещение с минимальными энергопотерями. От качества подшипников в значительной мере зависит коэффициент полезного действия, работоспособность и долговечность машины.

В настоящее время широко находят применение подшипники:

    контактные (имеющие трущиеся поверхности) - подшипники качени я и скольжения ;

    бесконтактные (не имеющие трущихся поверхностей) - магнитные подшипники .

По виду трения различают:

    подшипники скольжения , в которых опорная поверхность оси или вала скользит по рабочей поверхности подшипника;

    подшипники качения , в которых используется трение качения благодаря установке шариков или роликов между подвижным и неподвижным кольцами подшипника.

Подшипники скольжения

Принципиальная схема опоры с подшипником скольжения

Подшипник скольжения представляет собой корпус, имеющий цилиндрическое отверстие, в которое вставляется вкладыш или втулка из антифрикционного материала (часто используются цветные металлы), и смазывающее устройство. Между валом и отверстием втулки подшипника имеется зазор, который позволяет свободно вращаться валу. Для успешной работы подшипника зазор предварительно рассчитывается.

В зависимости от конструкции, окружной скорости цапфы, условий эксплуатации трение скольжения бывает:

    жидкостным, когда поверхности вала и подшипника разделены слоем жидкого смазочного материала , непосредственного контакта между этими поверхностями либо нет, либо он происходит на отдельных участках;

    граничным – поверхности вала и подшипника соприкасаются полностью или на участках большой протяженности, причем смазочный материал в виде тонкой пленки ;

    сухим – непосредственный контакт поверхностей вала и подшипника по всей длине или на участках большой протяженности , жидкостной или газообразный смазочный материал отсутствует;

    газовое – поверхности вала и подшипника разделены слоем газа , трение минимально.

Виды смазки подшипников скольжения

Основные виды смазки

Смазочные материалы и материалы для создания смазочных покрытий. Варианты смазки

В наноструктурном состоянии: С, BN , MoS 2 и WS 2 ;

В виде нанокомпозиционных покрытий: WC / C , MoS 2 / C , WS 2 / C , TiC / C и наноалмаза;

В виде алмазных и алмазоподобных углеродистых покрытий: пленок из алмаза, гидрогенизированного углерода (a - C : H ), аморфного углерода (a -С), нитрида углерода (C 3 N 4 ) и нитрида бора (BN );

В виде твердых и сверхтвердых покрытий из VC , B 4 C , Al 2 O 3 , SiC , Si 3 O 4 , TiC , TiN , TiCN , AIN и BN ,

В виде чешуйчатых пленок из MoS 2 и графита;

В виде неметаллических пленок из диоксида титана, фтористого кальция, стекла, оксида свинца, оксида цинка и оксида олово,

В виде пленки из мягких металлов: свинца, золото, серебра, индия, меди и цинка,

В виде самосмазывающихся композитов из нанотрубок, полимеров, углерода, графита и металлокерамики,

В виде чешуйчатых пленок из углеродных составов: фторированного графита и фторид графита;

Углерод;

Полимеры: PTFE, нейлон и полиэтилен,

Жиры, мыло, воск (стеариновая кислота),

Керамика и металлокерамика.

Жидкостная

Гидродинамическая смазка: толстослойная и эластогидродинамическая;
- гидростатическая смазка;
- смазка под высоким давлением.

Тонкопленочная

Смешанная смазка (полужидкостная);

Граничная смазка.

Газодинамическая смазка

Существует большое количество конструктивных типов подшипников скольжения : самоустанавливающиеся, сегментные, самосмазывающиеся и т.д.

г )

а - внешний вид,

б - типичный шарнирный подшипник с поверхностью скольжения типа " металл-металл",

в - типичный шарнирный подшипник с самосмазывающейся поверхностью,

г - благодаря возможности самоустановки и восприятия больших нагрузок шарнирные подшипники находят применение в узлах тяжелой техники (например, в гидроцилиндре экскаватора)

Шарнирные подшипники скольжения - одни из немногих типов подшипников скольжения, которые стандартизированы и выпускаются промышленностью серийно

Подшипники скольжения имеют следующие преимущества:

    допускают высокую скорость вращения;

    позволяют работать в воде, при вибрационных и ударных нагрузках;

    экономичны при больших диаметрах валов;

    возможность установки на валах, где подшипник должен быть разъемным (для коленчатых валов);

    допускают регулирование различного зазора и, следовательно, точную установку геометрической оси вала.

а - двигатель шпинделя HDD c подшипником качения,

б - двигатель шпинделя HDD c гидродинамическим подшипником скольжения,

в - расположение гидродинамического подшипника скольжения в HDD (Hard Disk Drive)

Использование гидродинамических подшипников скольжения вместо подшипников качения в компьютерных HDD (Hard Disk Drive ) дает возможность регулировать скорость вращения шпинделейв широком диапазоне (до 20 000 об/мин), уменьшить шум и влияние вибраций на работу устройств, тем самым позволив увеличить скорость передачи данных, обеспечить сохранность записанной информации и срок службы устройства в целом (до 10 лет), а также - создать более компактные HDD ( 0,8-дюймовые )

Сравнение типов подшипников используемых в шпинделях HDD (Hard Disk Drive)

Требования к HDD

Требования к подшипнику

Подшипник качения

Гидродинамический подшипник

Типичное применение

из твердого металла

из пористого материала*

Большой объем хранения данных

Однократные биения

Персональный компьютер, сервер

Высокие скорости вращения

Низкий уровень шума

Низкий уровень шума

Пользовательский компьютер (нетбуки, SOHO)

Низкое потребление тока

Низкий крутящий момент

Устойчивость к ударам

Устойчивость к ударам

Мобильные компьютеры (ноутбуки)

Безотказность

Устойчивость к заклиниванию

Все компьютеры

Жесткость

Жесткость

Примечание:

* - данные приведены для NTN BEARPHITE;

** - обозначения: ++ - очень хорошо, + - хорошо, о - посредственно.

Недостатки подшипников скольжения:

    высокие потери на трение и, следовательно, пониженный коэффициент полезного действия (0,95... 0,98);

    необходимость в непрерывном смазывании;

    неравномерный износ подшипника и цапфы;

    применение для изготовления подшипников дорогостоящих материалов;

    относительно высокая трудоемкость изготовления.

Подшипники качения


Принципиальная схема опоры с подшипником качения

Подшипники качения работают преимущественно при трении качения и состоят из двух колец, тел качения , сепаратора, отделяющего тела качения друг от друга, удерживающего на равном расстоянии и направляющего их движение. По наружной поверхности внутреннего кольца и внутренней поверхности наружного кольца (на торцевых поверхностях колец упорных подшипников качения) выполняют желоба – дорожки качения, по которым при работе подшипника катятся тела качения.


а)


б)


в)

г) д)

а - с шариковыми телами качения, б - с короткими цилиндрическими роликами, в - с длинными цилиндрическими или игольчатыми роликами, г - с коническими роликами ,

д - с бочкообразными роликами

Примечание: приведены только некоторые виды тел качения

В подшипниках качения применяются тела качения различных форм

В некоторых узлах машин в целях уменьшения габаритов, а также повышения точности и жесткости , применяются так называемые совмещенные опоры: дорожки качения выполняются непосредственно на валу или на поверхности корпусной детали. Некоторые подшипники качения изготовляют без сепаратора. Такие подшипники имеют большое число тел качения и, следовательно, большую грузоподъемность. Однако предельные частоты вращения бессепараторных подшипников значительно ниже вследствие повышенных моментов сопротивления вращению.

Для сокращения радиальных размеров и массы используются “безобоемные” подшипники

Сравнение подшипников качения по эксплуатационным характеристикам

Тип подшипника

Высокая частота вращения

Восприятие перекоса

радиальная

осевая

комбинированная

Шариковый радиальный

Шариковый радиальный двухрядный сферический

Радиально-упорный однорядный шариковый

Радиально-упорные шариковые двухрядный и однорядный сдвоенный ("спина к спине")

Шариковый с четырехточечным контактом

С коротким цилиндрическими роликами без бортов на одном из колец

С коротким цилиндрическими роликами с бортами на противоположных сторонах наружного и внутреннего колец

Радиальный игольчатый

Сферический роликовый

Конический роликовый

Упорный шариковый

Упорный с коническими роликами

Упорно-радиальный роликовый сферический

Примечание:

* - обозначения: +++ - очень хорошо, ++ - хорошо, + - удовлетворительно, о - плохо, х - непригодно.

По сравнению с подшипниками скольжения имеют следующие преимущества:

    значительно меньше потери на трение, а, следовательно, более высокий КПД (до 0,995) и меньший нагрев;

    в 10...20 раз меньше момент трения при пуске;

    экономия дефицитных цветных материалов, которые чаще всего используются при изготовлении подшипников скольжения;

    меньшие габаритные размеры в осевом направлении;

    простота обслуживания и замены;

    меньше расход смазочного материала;

    невысокая стоимость вследствие массового производства стандартных подшипников;

    простота ремонта машины вследствие взаимозаменяемости подшипников.

e )

а - повреждение внутреннего кольца сферического роликового подшипника, вызванное чрезмерным натягом при посадке ;

б - фреттинг-коррозия внутреннего кольца радиального роликового цилиндрического подшипника, вызванное действием вибрации ;

в - повреждение внутреннего кольца радиального шарикового подшипника, вызванное действием чрезмерной осевой нагрузки ;

г - повреждение внутреннего кольца радиального роликового цилиндрического подшипника, вызванное действием чрезмерной радиальной нагрузки ;

д - следы ржавчины на поверхности ролика сферического роликового подшипника, вызванные попаданием воды внутрь подшипника ;

e - повреждение сепаратора роликового конического подшипника, вызываемое действием больших нагрузок и/или вибраций , и/или неправильным монтажом, и/ или смазыванием, и/или работойна высоких частотах вращения

Повреждения подшипников качения

Недостатками подшипников качения являются:

    ограниченная возможность применения при очень больших нагрузках и высоких скоростях;

    непригодность для работы при значительных ударных и вибрационных нагрузках из-за высоких контактных напряжений и плохой способности демпфировать колебания;

    значительные габаритные размеры в радиальном направлении и масса;

    шум во время работы, обусловленный погрешностями форм;

    сложность установки и монтажа подшипниковых узлов;

    повышенная чувствительность к неточности установки;

    высокая стоимость при мелкосерийном производстве уникальных по размерам подшипников.

Магнитные подшипники

Принцип работы магнитного подшипника (подвеса) основан на использовании левитации, создаваемой электрическими и магнитными полями. Магнитные подшипники позволяют без физического контакта осуществлять подвес вращающегося вала и его относительное вращение без трения и износа.

Детская игрушка Левитрон наглядно демонстрирует, на что способны электромагнитные поля

Электрические и магнитные подвесы, в зависимости от принципа действия, принято разбивать на девять типов:

    Электростатические;

    на постоянных магнитах;

    активные магнитные;

    LC- резонансные;

    индукционные;

    кондукционные;

    диамагнитные;

    Сверхпроводящие;

    Магнитогидродинамические.


Принципиальная схема типичной системы на основе активного магнитного подшипника (АМП)

Наибольшую популярность в настоящее время получили активные магнитные подшипники. Активный магнитный подшипник (АМП) - это управляемое мехатронное устройство, в котором стабилизация положения ротора осуществляется силами магнитного притяжения, действующими на ротор со стороны электромагнитов, ток в которых регулируется системой автоматического управления по сигналам датчиков перемещений ротора. Полный неконтактный подвес ротора может быть осуществлен с помощью либо двух радиальных и одного осевого АМП, либо двух конических АМП. Поэтому система магнитного подвеса ротора включает в себя как сами подшипники, встроенные в корпус машины, так и электронный блок управления, соединенный проводами с обмотками электромагнитов и датчиками. В системе управления может использоваться как аналоговая, так и более современная цифровая обработка сигналов.


Принципиальная схема управления типичной системы на основе активного магнитного подшипника

Основными преимуществами АМП являются:

    относительно высокая грузоподъемность;

    высокая механическая прочность;

    возможность осуществления устойчивой неконтактной подвески тела;

    возможность изменения жесткости и демпфирования в широких пределах;

    возможность использования при высоких скоростях вращения, в вакууме, высоких и низких температурах, стерильных технологиях...

а)

а - схема компрессора с подшипниками качения,

б - схема компрессора с магнитными подшипниками

Применение магнитных подшипников дает возможность сделать конструкцию более жесткой, что, например, позволяет уменьшить динамический прогиб вала при высоких частотах вращения

В настоящие время для АМП идет создание международного стандарта, для чего был создан специальный комитет ISO TC108/SC2/WG7.

АМП могут эффективно применяться в следующем оборудовании :

    Турбокомпрессоры и турбовентиляторы;

    Турбомолекулярные насосы;

    Электрошпиндели (фрезерные, сверлильные, шлифовальные);

    Турбодетандеры;

    газовые турбины и турбоэлектрические агрегаты;

    инерционные накопители энергии.

Шпиндели для вакуумных машин с активными магнитными подшипниками

Однако АМП требуют сложную и дорогостоящую аппаратуру управления, внешнего источника электроэнергии, что снижает эффективность и надежность всей системы. Поэтому идут активные работы по созданию пассивных магнитных подшипников (ПМП), которые не требуют сложных систем регулирования: например, на основе высокоэнергетических постоянных магнитов NdFeB (неодим-жедезо-бор).

Пассивный магнитный подшипник на основе высокоэнергетических постоянных магнитов

1 ) Albert Kascak , Robert Fusaro & Wilfredo Morales. Permanent Magnetic Bearing for Spacecraft Applications. NASA/TM-2003-211996;
2) Ball and Roller Bearings. Сat. №2202. NTN, 2001; 3) Care andMaintenanceof Bearings. Сat. № 3017. NTN;
4) Henrik Strand. Design, Testing and Analysis of Journal Bearings for Construction Equipment. Department of Machine Design. Royal Institute of Technology. Stockholm, Sweden, 2005;

5) ISO Standardization for Active Magnetic Bearing Technology. Published 2005 ;

6) Kazuhisa Miyoshi. Solid Lubricants and Coatings for Extreme Environments: State-of-the-Art Survey. NASA, 2007 ;
7) Needle Roller Bearings. Cat.№ 2300-VII/E. NTN;
8) Needle Roller Bearing Series General Catalogue. IKO;

10 ) Lei Shi, Lei Zhao, Guojun Yang и др. DESIGN AND EXPERIMENTS OF THE ACTIVE MAGNETIC
BEARING SYSTEM FOR THE HTR-10. 2nd International Topical Meeting on HIGH TEMPERATURE REACTOR TECHNOLOGY
. Beijing, CHINA, September 22-24, 2004;
11)
Linear Motion Rolling Guide Series General Catalogue , IKO ;
12 ) Precision Rolling Bearings. Cat .№ 2260-II/E. NTN; 13 ) Spherical Plain Bearings. Сat.№5301-II/E. NTN;

14) Torbjorn A. Lembke. Induction Bearings. A Homopolar Concept for High Speed Machines. Electrical Machines and Power Electronics. Department of Electrical Engineering. Royal Institute of Technology. Stockholm, Sweden, 2003 ;
15 ) Анурьев В.И. Справочник конструктора-машиностроителя. М.: Машиностроение, 2001;
16) Журавлев Ю. Н. Активные магнитные подшипники: Теория, расчет, применение. - СПб.: Политехника, 2003
;
17 ) Орлов П.И. Основы конструирования/Справочно-методическое пособие в 2-х книгах. М.: Машиностроение, 1988;

18) Черменский О.Н., Федотов Н.Н. Подшипники качения. Справочник-каталог. М: Машиностроение, 2003.

Применяются в шлифовальных станках.

На схеме приведен многоклиновый гидродинамический подшипник. F 1 , F 2 , F 3 – силы от действия масляных клиньев.

Создаются несколько клиновых зазоров, куда вращающимся валом увлекается масло. Возникает результирующая гидродинамическая сила F д , которая воспринимает внешнюю нагрузку F в любом направлении.

Клиновые зазоры создаются с помощью башмаков, самоустанавливающихся от внешней нагрузки.

1 – башмаки; 2 – опоры

Самоустановка башмаков достигается их поворотом на сферических опорах.

Рассчитывают длину башмака вдоль оси шпинделя, длину его по дуге и максимально допустимую нагрузку на один башмак.

Кроме этого, расчет гидродинамических подшипников сводится к определению нагрузочной способности F g подшипника и определению жесткости подшипника.

,

к – число вкладышей.

,

где - жесткость слоя смазки;

- жесткость элементов и сопряжений конструкции.

Недостатки гидродинамических опор : изменение положения оси шпинделя при изменении частоты его вращения.

Гидростатические подшипники.

Обеспечивают высокую точность вращения, обладают демфирующей способностью, высокой долговечностью, высокой нагрузочной способностью при любой частоте вращения шпинделя.

Различают осевые и радиальные гидростатические подшипники.

Осевой гидростатический подшипник.

Насос нагнетает масло под давлением, которое заполняет зазоры как показано на схеме. Образуется масляной слой, исключающий контакт сопряженных поверхностей при неработающем шпинделе.

Радиальный гидростатический подшипник.

По окружности располагаются полости – карманы, куда через дроссели подается масло от насоса. При приложении внешней нагрузки F вал занимает смещенное положение: h 1 > h 2 . Это приводит к повышению давления в одних карманах и понижению в противоположных. Разность давлений создает результирующую силу, воспринимающую внешнюю нагрузку F .

Расчет гидростатических подшипников сводится к определению нагрузочной способности F с , жесткости масляного слоя , расхода масла и потерь на трение.

,

где е – относительное смещение шпинделя в опоре;

Δ – диаметральный зазор Δ =(0,0008÷0,001)∙Д (мм);

Д – диаметр шейки шпинделя,

l – расстояние между опорами;

Р н – давление нагнетаемое насосом.

- жесткость слоя смазки.

[мм 3 /с] – расход масла.

где μ – динамическая вязкость масла (1÷10)∙10 3 Па 3 ∙с.

l 0 =0,1∙Д – размеры перемычек, ограничивающих карманы.

- потери на трение.

Р Т – потери на трение в рабочем зазоре.

Р Q – потери на прокачивание масла.

Недостатки гидростатических опор : сложная система питания и сбора масла.

Применение : шпинделя особо точных станков и тяжело-нагруженных станков с низкой частотой вращения, где образовывается масляной слой за счет гидродинамического эффекта.

Опоры с газовой смазкой.

По конструкции аналогичны гидростатическим опорам, только вместо масла используется сжатый воздух под давлением Р =0,3÷0,4 МПа.

Преимущества : малые потери на трение.

Недостаток : малая нагрузочная способность.

Применение : прецизионные станки небольших размеров.

Привод подач станков.

Гидродинамический подшипник является машиностроительным узлом, в котором основная нагрузка приходится на тонкий слой изолирующей смывающей жидкости, нагнетаемой при помощи смазываемого вала в конструкцию. Часто изделие называют гидравлическим.

Современные гидродинамические подшипники применяют в различных прецизионных механизмах, особенно, когда обычные роликовые или шариковые разновидности не удовлетворяют требованиям, которые предъявляются к ним для обеспечения работы отдельных узлов или конструкций.

К примеру, использование гидравлических элементов позволяет обеспечить минимальную вибрацию, малый при этом устройства обладают длительным сроком службы. Такие виды подшипников в процессе дальнейших усовершенствований и разработок приобретают все большую конкурентоспособность, поскольку себестоимость их производства постоянно снижается.

В отличии от гидростатических изделий, гидродинамический подшипник имеет несколько иной принцип работы. Если в первом случае рабочее производится посредством специального насоса, то в последнем варианте самосмазывание выполняется при вращении рабочего вала. Следует заметить, что сам по себе эффект самосмазывания происходит только при достижении определенных скоростей вращения вала, которые указываются в паспорте изделия.

В противном случае толщина смазки под валом будет недостаточной, что приведет к увеличению а в итоге вызовет преждевременный износ механизма. Таким образом, чтобы исключить данные ситуации, которые часто возникают, например, при запуске и остановке устройства, имеет смысл использование специального пускового насоса, который будет применяться в описанных переходных режимах.

Гидродинамический подшипник имеет ряд достоинств. Во-первых, изделия отличаются надежностью и простотой конструкции.

Обычно в своем устройстве они состоят из внутреннего и внешнего кольца с тороидальной формой, в местах стыков изделия имеют герметичные уплотнения. Благодаря усовершенствованной конструкции, гидродинамический подшипник практически не имеет затрат по эксплуатации (или они минимальны). Механизм характеризуется длительным периодом службы.

При производстве изделий предъявляемые требования к уровню точности намного ниже, чем при изготовлении шариковых или роликовых видов. Уровень шума от гидравлических устройств значительно ниже, чем звук, исходящий от Изделия производят минимальные вибрации. Благодаря конструктивным особенностям, обладают высокой демпфирующей способностью.

К недостаткам изделий можно отнести их высокую чувствительность к неточностям, возникающим при изготовлении валов. Кроме этого, они обладают значительной потерей энергии.

Гидродинамические подшипники нашли применение в компьютерных устройствах. С их помощью работает жесткий диск, а также вентиляторы охлаждения системного блока. Помимо этого, их используют в они приводят в действие элементы

Загрузка...