domvpavlino.ru

Понятие о кинетическом и диффузионном горении. Прогонозирование и оценка обстановки при пожарах и взрывах При диффузионном горении время химической стадии процесса

Более 90 % всей энергии, используемой человечеством сегодня, вырабатывается в процессе горения. Начало научным исследованиям теории горения было положено российским ученым Михельсоном В.А.

Горение – сложный физико-химический процесс превращения исходных горючих веществ и материалов в продукты сгорания, сопровождающийся интенсивным выделением тепла, дыма и световым излучением факела пламени.

Для возникновения такой физико-химической реакции, лежащей в основе любого пожара, необходимо наличие трех обязательных компонентов: горючей среды, источника зажигания и окислителя.

Горючая среда – среда, способная самостоятельно гореть после удаления источника зажигания.

Источник зажигания – это тепловой источник с достаточной для зажигания температурой, энергией и длительностью действия.

Различают горение кинетическое и диффузионное.

Кинетическое горение представляет собой горение предварительно перемешанных горючих газов и окислителя.

Диффузионное горение – это горение, при котором окислитель поступает в зону горения извне. Диффузионное горение, в свою очередь, бывает ламинарным (спокойным) и турбулентным (неравномерным) во времени и в пространстве.

В зависимости от агрегатного состояния исходного горючего вещества различают гомогенное , гетерогенное горение и горение конденсированных систем .

При гомогенном горении окислитель и горючее находятся в одинаковом агрегатном состоянии. К этому типу относится горение газовых смесей (природного газа, водорода, пропана и т.п. с окислителем – обычно кислородом воздуха).

При гетерогенном горении исходные вещества (например, твердое или жидкое горючее и газовый окислитель) находятся в разных агрегатных состояниях. Твердые вещества, превращенные в пыль (угольную, текстильную, растительную, металлическую), при перемешивании с воздухом образуют пожаровзрывоопасные пылевоздушные смеси.

Горение конденсированных систем связано с переходом вещества из конденсированного состояния в газ.

В зависимости от скорости распространения пламени горение может быть дефлаграционным − со скоростью несколько м/с, взрывным − скорость порядка десятков и сотен м/с и детонационным − сотни и тысячи м/с.

Для дефлаграционного или нормального распространения горения характерна передача тепла от слоя к слою. В результате этого фронт пламени перемещается в сторону горючей смеси.

Взрывным горением называется процесс горения со стремительным высвобождения энергии и образованием при этом избыточного давления (более 5 кПа).

При детонационном горении (детонации) распространение пламени происходит со скоростью, близкой к скорости звука или превышающей ее.

Детонация есть процесс химического превращения системы окислитель − восстановитель, представляющий собой совокупность ударной волны, распространяющейся с постоянной скоростью, и следующей за фронтом зоны химических превращений исходных веществ. Химическая энергия, выделяющаяся в детонационной волне, подпитывает ударную волну, не давая ее затухать.

Скорость детонационной волны есть характеристика каждой конкретной системы. Для гетерогенных систем характерна малоскоростная детонация, обусловленная спецификой реакции газ - твердое вещество. При детонации газовых смесей скорости распространения пламени составляют (1-3)∙10 3 м/с и более, а давление во фронте ударной волны (1-5)МПа и более.

Горению свойственны опасные факторы, которые называются опасными факторами пожара .

Под пожаром понимается неконтролируемое горение, причиняющее материальный ущерб, вред жизни и здоровью граждан, интересам общества и государства.

К опасным факторам пожара (согласно ГОСТ 12.1.004-91) относятся:

Пламя и искры;

Повышенная температура окружающей среды;

Пониженная концентрация кислорода;

Токсические продукты горения

Термического разложения.

Пламя − это видимая часть пространства (пламенная зона), внутри которой протекают процессы окисления, дымообразования и тепловыделения, а также генерируются токсические газообразные продукты и поглощается кислород из окружающего пространства.

Пламя в количественном отношении в основном характеризуется следующими величинами:

Площадью горения (F 0 , м 2), - скоростью выгорания (Ψ , кг/с), - мощностью тепловыделения (Q гор , Вт) - оптическим количеством дыма (ΨD , Непер∙м 2 ∙кг -1).

Особенностями горения на пожаре, в отличие от других видов горения, являются: склонность к самопроизвольному распространению огня; сравнительно невысокая степень полноты сгорания и интенсивное выделение дыма, содержащего продукты полного и неполного окисления.

На пожарах образуются три зоны:

- Зона горени я − часть пространства, в котором происходит подготовка веществ к горению (подогрев, испарение, разложение) и собственно горение.

- Зона теплового воздействия − часть пространства, примыкающая к зоне горения, в которой тепловое воздействие приводит к заметному изменению состояния материалов и конструкций, и где не возможно пребывание людей без специальной тепловой защиты.

- Зона задымления − часть пространства, примыкающая к зоне горения и расположенная как в зоне теплового воздействия, так и вне ее и заполненная дымовыми газами в концентрациях, угрожающих жизни и здоровью людей.

Горение может осуществляться в двух режимах: самовоспламенения и распространения фронта пламени .

Распространение пламени − процесс распространения горения по поверхности вещества и материалов за счет теплопроводности, тепловой радиации (излучения) и конвекции.

Оценивая динамику развития пожара можно выделить несколько его основных фаз:

- 1 фаза (до 10 мин) − начальная стадия, включающая переход возгорания в пожар за время примерно 1-3 минуты и рост зоны горения в течение 5-6 минут. При этом происходит преимущественно линейное распространение огня вдоль горючих веществ и материалов, что сопровождается обильным дымовыделением.

- 2 фаза − стадия объемного развития пожара, занимающая по времени 30-40 минут, характеризуется бурным процессом горения с переходом в объемное горение. Процесс распространения пламени происходит дистанционно за счет передачи энергии горения на другие материалы. Максимальных значений достигает температура (до 800-900 о С) и скорости выгорания.

Стабилизация пожара при максимальных его значениях происходит на 20-25 минуте и продолжается еще 20-30 минут, при этом выгорает основная масса горючих материалов.

- 3 фаза − фазы затухания пожара, т.е. догорание в виде медленного тления. После чего пожар прекращается.

Согласно ИСО № 3941-77 пожары делятся на следующие классы:

- класс А − пожары твердых веществ, в основном органического происхождения, горение которых сопровождается тлением (древесина, текстиль, бумага);

- класс В − пожары горючих жидкостей или плавящихся твердых веществ;

- класс С − пожары газов;

- класс Д − пожары металлов и их сплавов;

- класс Е − пожары, связанные с горением электроустановок.

Характеристиками горючей смеси по показателям пожаро- взрывоопасности являются:

Группы горючести,

Концентрационные пределы распространения пламени (воспламенения),

Температура вспышки, - температура воспламенения и самовоспламенения.

Группа горючести − показатель, который применим к следующим агрегатным состояниям веществ:

- газы − вещества, абсолютное давление паров которых при температуре 50 о С равно или более 300 кПа или критическая температура которых менее 50 о С;

- жидкости − вещества с температурой плавления (каплепадения) менее 50 о С;

- твердые вещества и материалы с температурой плавления (каплепадения) более 50 о С;

- пыли − диспергированные вещества и материалы с размером частиц менее 850 мкм.

Горючесть − способность вещества или материала к горению. По горючести они подразделяются на три группы.

Негорючие (несгораемые ) − вещества и материалы, не способные к горению на воздухе. Негорючие вещества могут быть пожароопасными, (например, окислители, а также вещества, выделяющие горючие продукты при взаимодействии в водой, кислородом воздуха или друг с другом).

Трудногорючие (трудносгораемые ) − вещества и материалы, способные возгораться в воздухе от источника зажигания, но неспособные самостоятельно гореть после его удаления.

Горючие (сгораемые ) − вещества и материалы, способные самовозгораться, а также возгораться в воздухе от источника зажигания и самостоятельно гореть после его удаления.

Из этой группы выделяют легко воспламеняющиеся вещества и материалы − способные воспламенятся от кратковременного (до 30 с) воздействия источника зажигания с низкой энергией (пламя спички, искра, тлеющая сигарета и т.п.).

Концентрационные пределы воспламенения − минимальная и максимальная концентрация (массовая или объемная доля горючего в смеси с окислительной средой), выраженная в %, г/м 3 или л/м 3 , ниже (выше) которой смесь становится неспособной к распространению пламени.

Различают нижний и верхний концентрационные пределы распространения пламени (соответственно НКПРП и ВКПРП ).

НКПРП (ВКПРП) − минимальное (максимальное) содержание горючего в смеси (горючее вещество – окислительная среда), при котором возможно распространение пламени по смеси на любое расстояние от источника зажигания. Например, для смеси природного газа, состоящего в основном из метана, концентрационный предел воспламенения (детонационного горения) составляет 5-16 %, а взрыв пропана возможен при содержании в 1 м 3 воздуха 21 л газа, а возгорание − при 95 л.

Температура вспышки (t всп ) − минимальная температура горючего вещества, при которой на его поверхности образуются газы и пары, способные вспыхивать в воздухе от источника зажигания, но скорость их образования еще недостаточна для устойчивого горения.

В зависимости от численного значения t всп жидкости их относят к легковоспламеняющимся (ЛВЖ) и горючим (ГЖ ). В свою очередь ЛВЖ подразделяются на три разряда в соответствии с ГОСТ 12.1.017-80.

Особо опасные ЛВЖ − это горючие жидкости с t всп от −18 о С и ниже в закрытом или от −13 о С в открытом пространстве. К ним относятся ацетон, диэтиловый эфир, изопентан и др.

Постоянно опасные ЛВЖ − это горючие жидкости с t всп от −18 о С до +23 о С в закрытом или от −13 о С до 27 о С в открытом пространстве. К ним относятся бензол, толуол, этиловый спирт, этилацетат и др.

Опасные при повышенной температуре ЛВЖ − это горючие жидкости с t всп от 23 о С до 61 о С в закрытом или выше 27 о С до 66 о С в открытом пространстве. К ним относятся скипидар, уайт-спирит, хлорбензол и др.

Температура вспышки используется для определения категорий помещений зданий и наружных установок по взрывопожарной и пожарной опасности согласно НПБ 105-03, а также при разработке мероприятий для обеспечения пожаро- и взрывобезопасности ведения процессов

Температура самовоспламенения − самая низкая температура вещества, при которой происходит резкое увеличение скорости энергии.

Понятие «взрыв » используется во всех процессах, которые могут вызвать существенное повышение давления в окружающей среде.

На основании ГОСТ Р 22.08-96 взрыв − это процесс выделения энергии за короткий промежуток времени, связанный с мгновенным физико-химическим изменением состояния вещества, приводящим к возникновению скачка давления или ударной волны, сопровождающейся образованием сжатых газов или паров, способных производить работу.

На взрывоопасных объектах возможны следующие виды взрывов:

- взрывные процессы − неконтролируемое резкое высвобождение энергии в ограниченном пространстве;

- объемный взрыв − образование облаков топливно-воздушных или других газообразных, пылевоздушных смесей и их быстрыми взрывными превращениями;

- физические взрывы − взрывы трубопроводов, сосудов, находящихся под высоким давлением или перегретой жидкостью.

Аварийный взрыв – чрезвычайная ситуация, возникающая на потенциально опасном объекте в любой момент времени в ограниченном пространстве спонтанно, по стечению обстоятельств или в результате ошибочных действий работающего на нем персонала

Причинами взрывов, в основном, являются:

Нарушение технологического регламента;

Внешние механические воздействия;

Старение оборудование и установок;

Конструкторские ошибки;

Изменение состояния герметизируемой среды;

Ошибки обслуживающего персонала;

Неисправность контрольно-измерительных, регулирующих и предохранительных устройств.

Горючие системы могут быть химически однородными и неоднородными. К химически однородным относятся системы, в которых горючее вещество и воздух равномерно перемешаны (смеси горючих газов, паров или пылей с воздухом). К химически неоднородным относятся системы, в которых горючее вещество и воздух не перемешаны и имеют поверхности раздела: твердые горючие материалы и жидкости, находящиеся в воздухе, струи горючих газов и паров, поступающие в воздух, и т. д.

Примером горения паров и газов (гомогенное горение) является горение паров, поднимающихся со свободной поверхности жидкости, или горение газа, выходящего из трубы. Так как парциальное давление кислорода воздуха равно 21,2 кПа, а в зоне горения давление равно нулю, кислород из воздуха диффундирует через слой продуктов сгорания к зоне горения. Следовательно, скорость реакции горения зависит от скорости диффузии кислорода.

Примером горения на поверхности твердого вещества (гетерогенное горение) является горение антрацита, кокса, древесного угля. В этом случае диффузии кислорода к зоне горения также препятствуют продукты сгорания, что видно из схемы. Концентрация кислорода в объеме воздуха (С 1) значительно больше концентрации его вблизи зоны горения (Со). В отсутствие достаточного количества кислорода в зоне горения химическая реакция горения тормозится.

Таким образом, полное время сгорания химически неоднородной горючей системы складывается из времени, необходимого для возникновения физического контакта между горючим веществом и кислородом воздуха ф, и
времени, затрачиваемого на протекание самой химической реакции х

В случае гомогенного горения величина ф называется временем смесеобразования, а в случае гетерогенного горения - временем транспортировки кислорода из воздуха к твердой поверхности горения.

В зависимости от соотношения ф и х горение называют диффузионным или кинетическим. При горении химически неоднородных горючих систем время диффузии кислорода к горючему веществу несоизмеримо больше времени, необходимого для протекания химической реакции, т. е. ф >> х, и практически ф х,. Это значит, что скорость горения определяется скоростью диффузии кислорода к горючему веществу. В этом случае говорят, что процесс протекает в диффузионной области. Такое горение и называется диффузионным . Все пожары представляют собой диффузионное горение.

Если время физической стадии процесса оказывается несоизмеримо меньше времени, необходимого для протекания химической реакции, т. е. г << х, то можно принять г х. Скорость процесса практически определяется только скоростью химической реакции. Такое горение называется кинетическим . Так горят химически однородные горючие системы, в которых молекулы кислорода хорошо перемешаны с молекулами горючего вещества, и не затрачивается время на смесеобразование. Так как скорость химической реакции при высокой температуре велика, горение таких смесей происходит мгновенно и носит характер взрыва .



Диффузионное пламя

Пространство, в котором сгорают пары и газы, называется пламенем или факелом. Пламя может быть кинетическим или диффузионным в зависимости от того, горит ли заранее подготовленная смесь паров или газов с воздухом или такая смесь образуется в пламени в процессе горения. В условиях пожара газы, жидкости и твердые вещества горят диффузионным пламенем.

Структура диффузионного пламени существенно зависит от сечения потока горючих паров и газов и его скорости. По характеру потока различают ламинарное и турбулентное диффузионное пламя. Ламинарное пламя возникает при малых сечениях потока паров или газов, движущихся с небольшой скоростью (пламя свечи, спички, газа в горелке небольшого диаметра и т.д.). При пожарах образуется турбулентное пламя. Оно меньше изучено, и для объяснения этого явления используют положения теории ламинарного пламени.

Пламя состоит из зоны горения и зоны паров, последняя
занимает почти весь объем пламени. Подобное по строению пламя образуется также при горении газов и твердых веществ, если скорость движения газов и паров соответствует ламинарному режиму.

Зона горения в диффузионном пламени представляет собой очень тонкий слой, в котором протекает реакция горения. Превращение веществ и выделение тепла в этом слое вызывают возникновение молекулярной диффузии в прилегающих к нему слоях воздуха и горючего. Причиной молекулярной диффузии является разность парциальных давлений и температур газов, участвующих в горении.



Распределение концентраций газов и паров в ламинарном диффузионном пламени и окружающей его среде отражает процессы диффузии, происходящие в пламени. Образующиеся
в зоне горения продукты сгорания диффундируют как в воздух, так и в горючие пары и газы. В пламени малого размера продукты сгорания находятся во всем объеме зоны паров и газов, а в пламени большого размера только в слое, прилегающем к зоне горения. Концентрация кислорода в зоне горения равна нулю, так как он полностью вступает в реакцию. Вследствие
этого кислород в зону паров диффундировать не может, и горение в ней отсутствует.

Турбулентное пламя отличается от ламинарного тем, что не имеет четких очертаний и постоянного положения фронта пламени. Температура его при горении нефтепродуктов составляет: 1200 °С для бензина, 1100 °С для керосина тракторного, дизельного топлива, сырой нефти и 1000 °С для мазута. При горении древесины в штабелях температура турбулентного пламени составляет 1200-1300 °С.

Расход воздуха на горение

Минимальное количество воздуха, необходимого для полного сгорания единицы массы (кг) или объема (м 3) горючего вещества, называется теоретически необходимым и обозначается V о в.

Горючее вещество -

Для таких горючих веществ независимо от их агрегатного состояния теоретически необходимое количество воздуха определяется из уравнений реакции горения. На m кмоль горючего вещества приходится п кмоль кислорода и азота из уравнения реакции горения. Обозначив массу (в кг) горючего вещества, численно равную молекулярной массе его, через М, составляют пропорцию

тМ кг- п 22,4 м 3

1 кг - V о в м 3 ,

где 22,4 - объем 1 кмоль газов (при О °С и 101325 Па).

Теоретически необходимый объем воздуха для сгорания 1 кг вещества равен (из пропорции)

Если объем воздуха, полученный по формуле (1), необходимо привести к иным условиям, то пользуются формулой

где Т - заданная температура газов, К;

р - заданное давление, Па.

Теоретически необходимый объем воздуха для сгорания 1 м 3 горючих газов определяется по формуле

Горючее вещество -

Такими веществами являются древесина, торф, каменный уголь и др. Для определения теоретически необходимого объема воздуха нужно знать элементный состав горючего вещества, выраженный в массовых процентах, т. е. содержание С, Н, О, S, N, золы (А), влаги (W). Элементный состав вещества определяют в аналитической лаборатории. Чтобы рассчитать V о в , запишем уравнение реакции горения углерода, водорода и серы и массовое соотношение реагирующих веществ

С + О 2 = СО 2 2Н 2 + О 2 = 2Н 2 О S + О 2 = SО 2

12 + 32 = 44 4 + 32 = 36 32 + 32 = 64

Если для сгорания 12 кг углерода требуется 32 кг кислорода, то для 0,01 кг углерода, т. е. 1% (масс.) его потребуется кислорода 0,01·32/12 = 0,01 · 8/3 кг, для водорода соответственно потребуется 0,01·32/4 = 0,01· 8 кг и для серы 0,01· 32/32 = 0,01 · 1 кг кислорода.

Для полного сгорания 1 кг горючего вещества потребуется кислорода (в кг)

[С] + 8· 0,01 [Н] + 0,01 [S] - 0,01 [О]

где [С], [Н], [S], [О] - содержание углерода, водорода, серы в кислорода в горючем веществе, % (масс.).

На вычисленное количество кислорода в воздухе приходится в 77/23 раза больше азота. Сумма азота и кислорода составляет массу воздуха L o в (в кг), необходимую для горения 1 кг вещества

После преобразования получим

L o в = 0,3478 (4)

Чтобы выразить количество воздуха в объемных единицах, нужно правую часть выражения (4) разделить на массу 1 м 3 воздуха при нормальных условиях, т. е. на 1,293 кг/м 3 . В результате получим

V о в = 0,269 (5)

Горючее вещество - смесь газов.

К этой группе веществ относятся горючие газы, например природный, доменный, коксовый и др. Все они в том или ином количестве содержат СО, СН 4 , Н 2 , Н 2 S, С 2 Н 4 и др. Состав горючих газов обычно выражают в объемных процентах. Для вывода формулы расчета V о в напишем уравнение
реакции горения наиболее распространенных газов:

СН 4 + 2О 2 = С0 2 + 2Н 2 О Н 2 S + 1,5О 2 = Н 2 О + S0 2

2СО + 0 2 = 2СО 2 2Н 2 + О 2 = 2Н 2 О

Если для сгорания 1 м 3 метана требуется 2 м 3 кислорода, как это видно из уравнения, то для сгорания 0,01 м 3 метана, т. е. 1% (об.) потребуется 0,01·2 м 3 кислорода. Для сгорания 1 м 3 оксида углерода потребуется 0,01/2 м 3 кислорода, такое же количество кислорода потребуется для сгорания 1 м 3 водорода, а для сгорания сероводорода необходимо 0,01·1,5 м 3 кислорода.

Для полного сгорания 1 м 3 горючего газа потребуется кислорода (в м 3)

0,01·2[СН 4 ] +

где [СН 4 ], [Н 2 ], [СО], [Н 2 S] и - содержание метана, водорода,
оксида углерода, сероводорода и кислорода, % (об.).

В воздухе на этот объем кислорода приходится в 79/21 раза больше азота. Сумма азота и кислорода составляет объем (м 3) воздуха, необходимый для сгорания 1 м 3 газа

После преобразования получим

Как видно из уравнения (6), числа в его числителе есть коэффициенты при кислороде в уравнениях реакций горения. Поэтому если в составе газа будут другие горючие компоненты, они могут быть поставлены в уравнение (6) с коэффициентами, взятыми из их уравнений горения.

Практически при горении во время пожара расходуется воздуха значительно больше теоретически необходимого. Разность между количеством воздуха, практически расходуемым на горение, и теоретически необходимым, называется избытком воздуха. Отношение же количества воздуха, практически расходуемого на горение (V в.пр), к теоретически необходимому называется коэффициентом избытка воздуха и обозначается

Учитывая, что концентрация кислорода в воздухе составляет 21 % (об.), а процентное содержание свободного кислорода в продуктах сгорания определится из анализа, можно легко найти коэффициент избытка
воздуха

Продукты сгорания. Дым

Продуктами сгорания называют газообразные, жидкие и твердые вещества, образующиеся в результате соединения горючего вещества с кислородом в процессе горения. Состав их зависит от состава горящего вещества и условий его горения. При горении их в достаточном количестве воздуха и при высокой температуре образуются продукты полного сгорания: СО 2 , Н 2 0, N 2 . При горении в недостаточном количестве воздуха или при низкой температуре кроме продуктов полного сгорания образуются продукты неполного сгорания: СО, С (сажа).

Продуктами сгорания - неорганические вещества, такие как сера, фосфор, натрий, калий, кальций, алюминий, титан, магний и др.
в большинстве случаев являются твердые вещества, например Р 2 О 5 , Nа 2 О 2 , СаО, МgО, Образуются они в дисперсном состоянии, поэтому поднимаются в воздух в виде плотного дыма. Продукты сгорания алюминия, титана и других металлов в процессе горения находятся в расплавленном состоянии.

Дым представляет собой дисперсную систему, состоящую из мельчайших твердых частиц, взвешенных в смеси продуктов сгорания с воздухом. Диаметр частиц дыма колеблется от 1 до 0,01 мкм.

В составе дыма содержатся продукты термоокислительного разложения горючих веществ. Образуются они при нагреве еще негорящих горючих веществ, находящихся в среде воздуха или дыма, содержащего кислород.

Продукты неполного сгорания и термоокислительного разложения, в большинстве случаев являются токсичными веществами, поэтому тушение пожаров в помещениях производят только в кислородных изолирующих противогазах.

Горючее вещество - индивидуальное химическое соединение.

В этом случае расчет ведут, исходя из уравнения реакции горения. Объем влажных продуктов сгорания единицы массы (кг) горючего вещества при нормальных условиях рассчитывают по формуле

V п..с. = (9)

где V п..с. - объем влажных продуктов сгорания, м 3 /кг; m со2 , m н2о, m N 2, m гор - число киломолей диоксида углерода, паров воды, азота и горючего вещества в уравнении реакции горения; М - масса горючего вещества, численно равная молекулярной массе, кг.

Горючее вещество - сложная смесь химических соединений.

Если известен элементный состав сложного горючего вещества, то состав и количество продуктов сгорания 1 кг вещества можно определить по уравнению реакции горения отдельных элементов. Для этого
составляют уравнения реакции горения углерода, водорода, серы и определяют объем продуктов сгорания, приходящийся на 1 кг горючего вещества. Уравнение реакции горения углерода имеет вид

С + О 2 + 3,76 = СО 2 + 3,76 N 2

При сгорании 1 кг углерода получается 22,4/12=1,86 м 3
СО 2 и 22,4 ·3,76/12 = 7,0 м 3 N 2 .

При горении углерода, водорода и серы кислород поступает из воздуха. Однако в состав горючего вещества может входить кислород, который также принимает участие в горении. В этом случае воздуха на горение вещества расходуется соответственно меньше.

В составе горючего вещества могут находиться азот и влага, которые в процессе горения переходят в продукты сгорания. Для учета их необходимо знать объем 1 кг азота и паров воды при нормальных условиях. Объем 1 кг азота равен 0,8 м 3 , а паров воды 1,24 м 3 .

В воздухе при 0°С и давлении 101325 Па на 1 кг кислорода приходится 3,76 ·22,4/32 = 2,63 м 3 азота.

На основании приведенных данных определяют состав и объем продуктов сгорания 1 кг горючего вещества

Горючее вещество - смесь газов .

Количество и состав продуктов сгорания для смеси газов определяют по уравнению реакции горения компонентов, составляющих
смесь. Затем определяют состав и количество продуктов сгорания смеси газов.

Анализ продуктов сгорания, взятых на пожарах в различных помещениях, показывает, что в них всегда содержится значительное количество кислорода. Если пожар возникает в помещении с закрытыми оконными, дверными или другими проемами, то пожар при наличии горючего может продолжаться до тех пор, пока содержание кислорода в смеси воздуха с продуктами сгорания в помещении не снизится до 14-16% (об.). Следовательно, на пожарах в закрытых помещениях содержание кислорода в продуктах сгорания может быть в пределах от 21 до 14% (об.).

Теплота сгорания

Реакции, сопровождающиеся поглощением тепла, а также образующиеся при этом соединения называются эндотермическими. Без нагревания извне эндотермическая реакция прекращается.

Реакции, сопровождающиеся выделением тепла, а также образующиеся при этом соединения называются экзотермическими. Все реакции горения относятся к экзотермическим. Вследствие выделения тепла они, возникнув в одной точке, способны распространяться на всю массу реагирующих веществ.

Закон Гесса состоит в следующем: тепловой эффект химического превращения не зависит от пути, по которому реакция протекает, а зависит лишь от начального и конечного состояний системы при условии, что тем- пература и давление (или объем) в начале и конце реакции одинаковы.

Метан можно получить из 1 моль углерода и 2 моль водорода. При сжигании метана получаются 2 моль воды и 1 моль диоксида углерода

С + 2Н 2 = СН 4 + 74,8 кДж (Q)

СН 4 + 2О 2 = СО 2 + 2Н 2 О + Q гор

Те же продукты образуются при сгорании водорода и углерода. При этих реакциях общее количество выделившегося тепла равно 963,5 кДж.

2Н 2 + О 2 = 2Н 2 О + 570,6 кДж

С+ О 2 = СО 2 + 392,9 кДж

963,5 кДж (Q)

Поскольку начальные и конечные продукты в обоих случаях одинаковы, их общие тепловые эффекты должны быть равны согласно закону Гесса, т. е.

Q 1 + Q гор = Q

Q гор = Q - Q 1

следовательно, теплота сгорания метана будет равна

Q гор = 963,5 - 74,8 = 888,7 кДж/моль

Таким образом, теплота сгорания химического соединения (или их смеси) равна разности между суммой теплот образования продуктов сгорания и теплотой образования сгоревшего химического соединения (или веществ, составляющих горючую смесь). Следовательно, для определения теплоты сгорания химических соединений необходимо знать теплоту их образования и теплоту образования продуктов, получающихся после сгорания.

Теплоту сгорания экспериментально определяют в калориметрической бомбе и газовом калориметре. Различают высшую и низшую теплоты сгорания. Высшей теплотой сгорания Q в называют количество тепла, выделяемое при полном сгорании 1 кг или 1 м 3 горючего вещества при условии, что содержащийся в нем водород сгорает с образованием жидкой воды.

Низшей теплотой сгорания Q н называют количество тепла, выделяемое при полном сгорании 1 кг или 1 м 3 горючего вещества при условии сгорания водорода до образования водяного пара и испарении влаги горючего вещества.

Высшую и низшую теплоты сгорания твердых и жидких горючих веществ можно определить по формулам Д. И. Менделеева

Q в = 339,4 + 1257 - 108,9 (12)

Q н = 339,4 + 1257 - 108,9 - 25,1(9 + W), (13)

где Q в, Q н - высшая и низшая теплота сгорания, кДж/кг; [С], [Н],
[О], [S], W- содержание в горючем веществе углерода, водорода,
кислорода, горючей серы и влаги, %.

Существует нижний предел теплоты сгорания, ниже которого вещества становятся не способными к горению в атмосфере воздуха. Эксперименты показывают, что вещества являются негорючими, если они не относятся к
взрывоопасным и если их низшая теплота сгорания в воздухе не превышает 2100 кДж/кг. Следовательно, теплота сгорания может служить для ориентировочной оценки горючести веществ. Однако следует отметить, что горючесть твердых веществ и материалов в значительной степени зависит и от их состояния. Так, лист бумаги, легко воспламеняющийся от пламени спички, будучи нанесенным на гладкую поверхность металлической плиты или бетонной стены, становится трудногорючим. Следовательно, горючесть веществ зависит также от скорости отвода тепла из зоны горения.

Если при горении образуется сажа, то, следовательно, горючее вещество выделяет тепла меньше того количества, которое указано в таблицах. Для веществ, богатых углеродом, коэффициент недожога составляет 0,8 -0,9. Следовательно, на пожарах при горении 1 кг резины может выделиться не 33520 кДж, а только 33520 0,8 = 26816 кДж.

Размер пожара обычно характеризуется площадью пожара. Количество тепла, выделяющееся с единицы площади пожара в единицу времени, называется теплотой пожара Q п

где v м - массовая скорость выгорания, кг/(м 2 ·с).

Температура горения

Та температура, до которой в процессе горения нагреваются продукты сгорания, называется температурой горения. Различают калориметрическую, теоретическую и действительную температуры горения. Действительная температура горения для условий пожараназывается температурой пожара.

Под калориметрической температурой горения понимают ту температуру, до которой нагреваются продукты полного сгорания при следующих условиях:

I) все выделяющееся при горении тепло расходуется на нагрева-
ние продуктов сгорания (потери тепла равны нулю);

2) начальные температуры воздуха и горючего вещества
равны 0°С;

3) количество воздуха равно теоретически необходимому ( =1);

4)происходит полное сгорание.

Калориметрическая температура горения зависит только от состава горючего вещества и не зависит от его количества.

Для оценки условий пожара используют только калориметрическую тем-
пературу горения и температуру пожара. Различают температуру внутреннего и наружного пожара.

Температура внутреннего пожара - это средняя температура дыма в помещении, где происходит пожар.

Температура наружного пожара - температура пламени.

При расчете калориметрической температуры горения и температуры внутреннего пожара исходят из того, что низшая теплота сгорания Q н горючего вещества равна энергии q г необходимой для нагревания продуктов сгорания от 0°С до калориметрической температуры горения

Величину q г назовем условно теплосодержанием продуктов сгорания

q г = С´ pm ·t г

где V п.с. - объем продуктов сгорания, м 3 /кг; С´ pm - средняя объем-
ная теплоемкость продуктов сгорания, кДж/(м 3 К); t г - температура горения, °С.

Поскольку продукты сгорания состоят из нескольких газообразных веществ, теплоемкость которых различна, суммарное теплосодержание их может быть выражено следующим образом:

q г =q RO2 + q Н2О + q N2 = V RO2 С´ СО2 t г + V Н2О С´ Н2О t г + V N2 С´ N2 t г

гдеV RO2 , V Н2О, V N2 - объемы компонентов продуктов сгорания
(RО 2 =СО 2 +S0 2); С´ СО2 , С´ Н2О, С´ N2 - теплоемкость компонентов продуктов сгорания (теплоемкость СО 2 принимается для смеси СО 2
и S0 2).

Для определения t г рассчитывают теплосодержание продуктов сгорания при нескольких температурах и выбирают два значения, между которыми находится значение низшей теплоты сгорания вещества. Искомую температуру определяют затем интерполяцией.

Чтобы судить о характере изменения температуры при пожаре в зависимости от различных условий горения, введено понятие сред необъемной температуры пожара, под которой понимают среднее значение из величины
температур, измеренных термопарами в различных точках внутреннего пожара.

Горючие системы могут быть химически однородными и неоднородными. К химически однородным относятся системы, в которых горючее вещество и воздух равномерно перемешаны: смеси горючих газов, паров или пылей с воздухом. К химически

неоднородным относятся системы, в которых горючее вещество и воздух не перемешаны и имеют поверхности раздела: твердые горючие материалы и жидкости, находящиеся в воздухе, струи горючих газов и паров, поступающие в воздух и т.д.

Примером горения газов и паров (гомогенное горение) является горение паров, поднимающихся со свободной поверхности жидкости (рис. 1.1) или горение газа, выходящего из трубы. Так как парциальное давление кислорода воздуха равно 21,2 кПа, а в зоне горения давление равно нулю, кислород из воздуха диффундирует через слой продуктов сгорания к зоне горения. Следовательно, скорость реакции горения зависит от скорости диффузии кислорода.

Примером горения на поверхности твердого вещества (гетерогенное горение) является горение антрацита, кокса, древесного угля. В этом случае диффузии кислорода к зоне горения также препятствуют продукты сгорания, что видно из схемы, показанной на рис. 1.2. Концентрация кислорода в объеме воздуха (С 1) значительно больше концентрации его вблизи зоны горения (С 0). В отсутствие достаточного количества кислорода в зоне горения химическая реакция тормозится.

Рис. 1.2. Схема диффузии кислорода в зону горения твердого вещества

(гетерогенное горение)

Таким образом, полное время сгорания химически неоднородной горючей системы складывается из времени, необходимого для возникновения физического контакта

между горючим веществом и кислородом воздуха , и времени, затрачиваемого на протекание самой химической реакции :

В случае гомогенного горения величина называется временем смесеобразования, а в случае гетерогенного горения – временем транспортировки кислорода из воздуха к твердой поверхности горения.

В зависимости от соотношения и горение называется диффузионным или кинетическим. При горении химически неоднородных горючих систем время диффузии кислорода к горючему веществу несоизмеримо больше времени, необходимого для протекания химической реакции, т.е. >> и практически .


Это значит, что скорость горения определяется скоростью диффузии кислорода к горючему веществу. В этом случае говорят, что процесс протекает в диффузионной области. Такое горение и называется диффузионным. Все пожары представляют собой диффузионное горение.

Если время физической стадии процесса оказывается несоизмеримо меньше времени, необходимого для протекания химической реакции, т.е. << , то можно принять . Скорость процесса практически определяется только скоростью химической реакции. Такое горение называется кинетическим. Так горят химически однородные горючие системы, в которых молекулы кислорода хорошо перемешаны с молекулами горючего вещества, и не затрачивается время на смесеприготовление. Так как скорость химической реакции при высокой температуре велика, горение таких смесей происходит мгновенно и носит характер взрыва. Если продолжительность химической реакции и физическая стадия процесса горения соизмеримы, то горение протекает в так называемой промежуточной области, в которой на скорость горения влияют как химические, так и физические факторы.

На рис. 1.3 показана зависимость скорости реакции горения от температуры в различных областях. Кривая 1 показывает изменение скорости реакции при кинетическом горении. При низких температурах скорость реакции окисления в смеси слабо зависит от изменения температуры, и кривая 1 на этом участке медленно поднимается вверх. При более высоких температурах скорость реакция окисления начинает сильно ускоряться с повышением температуры, и кривая 1 круто поднимается. Таким образом, скорость реакции в кинетической области зависит только от температуры реагирующих веществ.

Рис. 1.3. Зависимость скорости кинетического (1) и диффузионного (2)

горения от температуры

Кривая 2 показывает изменение скорости реакции при диффузном горении. При низких температурах ход кривой 2 одинаков с кривой 1 , так скорость реакции окисления меньше скорости диффузии кислорода в зону горения и, следовательно, реакция протекает в кинетической области. При повышении температуры реагирующих веществ скорость реакции становится равной скорости диффузии кислорода в зону горения, а затем значительно превышает ее. В этих условиях скорость всего процесса определяется скоростью диффузии кислорода. Кривая 2 в точке А изменяет свое направление, отклоняясь вправо от кривой 1 . Дальнейший ход кривой 2 показывает, что скорость процесса горения в диффузионной области, определяемая скоростью диффузии, очень мало зависит от температуры.

Все горючие (сгораемые) вещества содержат углерод и водород - основные компоненты газовоздушной смеси, участвующие в реакции го­рения. Температура воспламенения горючих веществ и материалов различна и не превышает для большинства 300°С.

Физико-химические основы горения заключаются в термическом раз­ложении вещества или материала до углеводородных паров и газов, кото­рые под воздействием высоких температур вступают в химическое воздейст­вие с окислителем (кислородом воздуха), превращаясь в процессе сгорания в углекислый газ (двуокись углерода), угарный газ (окись углерода), сажу (углерод) и воду, и при этом выделяется тепло и световое излучение.

Воспламенение представляет собой процесс распространение пламе­ни по газопаровоздушной смеси. При скорости истечения горючих паров и газов с поверхности вещества равной скорости распространения пламе­ни по ним наблюдается устойчивое пламенное горение. Если же скорость пламени больше скорости истечения паров и газов, то происходит выго­рание газопаровоздушной смеси и самозатухание пламени, т.е. вспышка.

В зависимости от скорости истечения газов и скорости распростра­нения пламени по ним можно наблюдать:

горение на поверхности материала, когда скорость выделения горючей сме­си с поверхности материала равна скорости распространения огня по ней;

горение с отрывом от поверхности материала, когда скорость выделения горючей смеси больше скорости распространения пламени по ней.

Горение газопаровоздушной смеси подразделяется на диффузион­ное или кинетическое.

Кинетическое горение представляет собой горение предварительно перемешанных горючих газов и окислителя (кислорода воздуха). На пожа­рах этот вид горения встречается крайне редко. Однако он часто встреча­ется в технологических процессах: в газовой сварке, резке и т.п.

При диффузионном горении окислитель поступает в зону горения извне. Поступает он, как правило, снизу пламени вследствие разрежения, которое создается у его основания. В верхней части пламени, выделяющее­ся в процессе горения тепло, создает давление. Основная реакция горения (окисления) происходит на границе пламени, поскольку истекающие с поверхности вещества газовые смеси препятствуют проникновению окис­лителя вглубь пламени (вытесняют воздух). Большая часть горючей смеси в центре пламени, не вступившая в реакцию окисления с кислородом, пред­ставляет собой продукты неполного горения (СО, СН4, углерод и пр.).

Диффузионное горение, в свою очередь, бывает ламинарным (спо­койным) и турбулентным (неравномерным во времени и пространстве). Ламинарное горение характерно при равенстве скоростей истечения го­рючей смеси с поверхности материала и скорости распространения пла­мени по ней. Турбулентное горение наступает, когда скорость выхода го-

рючей смеси значительно превышает скорость распространения пламени. В этом случае граница пламени становится неустойчивой вследствие боль­шой диффузии воздуха в зону горения. Неустойчивость вначале возникает у вершины пламени, а затем перемещается к основанию. Такое горение встречается на пожарах при объемном его развитии (см. ниже).

Горение веществ и материалов возможно только при определенном количестве кислорода в воздухе. Содержание кислорода, при котором ис­ключается возможность горения различных веществ и материалов, устанав­ливается опытным путем. Так, для картона и хлопка самозатухание наступает при 14% (об.) кислорода, а полиэфирной ваты - при 16% (об.) .

Исключение окислителя (кислорода воздуха) является одной из мер пожарной профилактики. Поэтому хранение легковоспламеняющихся и горючих жидкостей, карбида кальция, щелочных металлов, фосфора долж­но осуществляться в плотно закрытой таре.

7.3.2. Источники зажигания

Необходимым условием воспламенения горючей смеси являются источники зажигания. Источники зажигания подразделяются на откры­тый огонь, тепло нагревательных элементов и приборов, электрическую энергию, энергию механических искр, разрядов статического электриче­ства и молнии, энергию процессов саморазогревания веществ и материа­лов (самовозгорание) и т.п. Выявлению имеющихся на производстве источников зажигания должно быть уделено особое внимание.

Характерные параметры источников зажигания принимаются по :

Температура канала молнии - 30000°С при сипе тока 200000 А и времени действия около 100 мкс. Энергия искрового разряда вторичного воздействия молнии превышает 250 мДж и достаточна для воспламенения горючих материалов с мини­мальной энергией зажигания до 0,25 Дж. Энергия искровых разрядов при заносе вы­сокого потенциала в здание по металлическим коммуникациям достигает значений 100 Дж и более, что достаточно для воспламенения всех горючих материалов.

Поливинипхлоридная изоляция электрического кабеля (провода) воспла­меняется при кратности тока короткого замыкания более 2,5.

Температура сварочных частиц и никелевых частиц ламп накаливания достигает 2100°С. Температура капель при резке металла 1500°С. Температура дуги при сварке и резке достигает 4000°С.

Зона разлета частиц при коротком замыкании при высоте расположения провода 10 м колеблется от 5 (вероятность попадания 92%) до 9 (вероятность попадания 6%) м; при расположении провода на высоте 3 м - от 4 (96%) до 8 м (1%); при расположении на высоте 1 м - от 3 (99%) до 6 м (6%).

Максимальная температура, °С, на колбе электрической лампочки нака­ливания зависит от мощности, Вт: 25 Вт - 100°С; 40 Вт - 150°С; 75 Вт - 250°С; 100 Вт - 300°С; 150 Вт - 340°С; 200 Вт - 320°С; 750 Вт - 370°С.

Искры статического электричества, образующегося при работе людей с движущимися диэлектрическими материалами, достигают величин от 2,5 до 7,5 мДж.

Температура пламени (тления) и время горения (тления), °С (мин), неко­торых малокалорийных источников тепла: тлеющая папироса - 320-410 (2-2,5); тлеющая сигарета - 420-460 (26-30); горящая спичка - 620-640 (0,33).

Для искр печных труб, котельных, труб паровозов и тепловозов, а также

других машин, костров установлено, что искра диаметром 2 мм пожароопасна, если имеет температуру около 1000°С, диаметром 3 мм - 800°С, диаметром 5 мм - 600°С.

1.3.3. Самовозгорание

Самовозгорание присуще многим горючим веществам и материалам. Это отличительная особенность данной группы материалов.

Самовозгорание бывает следующих видов: тепловое, химическое, микробиологическое.

Тепловое самовозгорание выражается в аккумуляции материалом тепла, в процессе которого происходит самонагревание материала. Тем­пература самонагревания вещества или материала является показателем его пожароопасности. Для большинства горючих материалов этот показа­тель лежит в пределах от 80 до 150°С : бумага - 100°С; войлок строи­тельный - 80°С; дерматин - 40°С; древесина: сосновая - 80, дубовая - 100, еловая - 120°С; хлопок-сырец - 60°С.

Продолжительное тление до начала пламенного горения является отличительной характеристикой процессов теплового самовозгорания. Дан­ные процессы обнаруживаются по длительному и устойчивому запаху тлею­щего материала.

Процесс горения зависит от множества условий, главнейшим из которых являются:

· состав горючей смеси;

· давление в зоне горения;

· температура реакции;

· геометрические размеры системы;

· агрегатное состояние горючего и окислителя и др.

В зависимости от агрегатного состояния горючего и окислителя различают следующие виды горения:

· гомогенное;

· гетерогенное;

· горение ВВ.

Гомогенное горение происходит в газо- или парообразных горючих системах (рис. 1.1) (горючее и окислитель равномерно перемешаны друг с другом).

Так как парциальное давление кислорода в зоне горения (равно) близко к нулю – кислород довольно свободно проникает к зоне горения (практически он находится в ней), поэтому скорость горения определяется главным образом скоростью протекания химической реакции, увеличивающейся с ростом температуры. Такое горение (или горение таких систем) называется кинетическим.

Рис.1.1. Схема процесса горения паров или газов

Полное время сгорания в общем случае определяется по формуле

t р = t Ф + t Х,

где t Ф – время физической стадии процесса (диффузии О 2 к очагу через слой); t Х – время протекания химической стадии (реакции).

При горении однородных систем (смеси паров, газов с воздухом) время физической стадии процесса несоизмеримо меньше скорости протекания химической реакций, поэтому t Р » t Х – скорость определяется кинетикой химической реакции и горение называется кинетическим.

При горении химически неоднородных систем время проникновения О 2 к горючему веществу сквозь продукты сгорания (диффузия) несоизмеримо больше времени протекания химической реакции, таким образом определяет общую скорость процесса, т.е. t Р » t Ф. Такое горение называется диффузионным.

Примерами диффузионного горения (рис. 1.2) является горение каменного угля, кокса (продукты горения препятствуют диффузии кислорода в зону горения)

Рис.1.2. Схема диффузии кислорода в зону горения твердого вещества

(гетерогенное горение)

Концентрация кислорода в объеме воздуха С 1 значительно больше его концентрации вблизи зоны горения С 0 . При отсутствии достаточного количество О 2 в зоне горения химическая реакция тормозится (и определяется скоростью диффузии).

Если продолжительность химической реакции и физической стадии процесса соизмеримы, то горение протекает в промежуточной области (на скорость горения влияют как физические, так и химические факторы).

При низких температурах скорость реакции слабо зависит от температуры (кривая медленно поднимается вверх). При высоких температурах скорость реакции сильно увеличивается (т.е. скорость реакции в кинетической области зависит главным образом от температуры реагирующих веществ).



Скорость реакции окисления (горения) в диффузионной области определяется скоростью диффузии и очень мало зависит от температуры. Точка А – переход из кинетической в диффузионную область (рис.1.3).

Процесс горения всех веществ и материалов независимо от их агрегатного состояния происходит, как правило, в газовой фазе (жидкость – испаряется, твердые горючие вещества выделяют летучие продукты). Но горение твердых веществ имеет многостадийный характер. Под воздействием тепла – нагрев твердой фазы – разложение и выделение газообразных продуктов (деструкция, летучие вещества) – сгорание – тепло нагревает поверхность твердого вещества – поступление новой порции горючих газов (продуктов деструкции) – горение.

Рис. 1.3. Зависимость скорости V кинетического (1)

и диффузионного (2) от температуры. Точка А – переход

из кинетической области в диффузионную

Многие твердые горючие вещества (древесина, хлопок, солома, полимеры) в своем составе имеют кислород. Поэтому для их сгорания требуется меньший объем кислорода воздуха. А горение взрывчатого вещества (ВВ) практически вообще не нуждается во внешнем окислителе.

Таким образом, горение ВВ – это самораспространение зоны экзотермической реакции его разложения или взаимодействие его компонентов путем передачи тепла от слоя к слою.

Загрузка...