domvpavlino.ru

Открытия curiosity. Марсоход «Кьюриосити» (Марсианская научная лаборатория)

Марсоход Curiosity проделал большой путь. Чтобы попасть на Красную планету ему пришлось преодолеть 567 миллионов километров за 8 месяцев. И 6 августа 2012 года он совершил посадку в районе кратера Гейла.
За проведенные на Марсе годы Curiosity отправил на Землю 468 926 снимков, он стрелял лазером, сверлил, сделал бесчисленное количество работ разными инструментами. На счету марсохода множество интересных открытий, в частности, его данные помогли установить, миллиарды лет назад на Марсе существовали благоприятные условия для жизни микробов.

Снимки марсохода Curiosity и новости с Красной планеты за последние несколько лет.

2. С дальнего расстояния поверхность Марса выглядит рыжевато-красной из-за красной пыли, которая содержится в атмосфере. Вблизи цвет - желтовато-коричневый с примесью золотистого, бурого, рыжевато-коричневого и даже зеленого, в зависимости от цвета минералов планеты. В древности люди с легкостью отличали Марс от других планет, а также ассоциировали его с войной и слагали всевозможные легенды. Египтяне называли Марс «Хар Дечер», что означало «красный». (Фото JPL-Caltech | MSSS | NASA):

3. Марсоход Curiosity очень любит делать селфи. Как он это делает, ведь снять его со стороны некому?

У марсохода четыре цветных камеры, все они отличаются разным набором оптики, но только одна из них подходит для селфи. У автоматической руки под названием MAHLI 5 степеней свободы, что дает камере значительную гибкость и позволяет «облететь» марсианский ровер со всех сторон. Движением этой руки-камеры управляет специалист с Земли. Главная задача – следовать определенной последовательности перемещения автоматической руки, чтобы камера могла сделать достаточное количество снимков для последующей склейки панорамы. Сценарий подготовки каждого такого селфи отрабатывают сначала на Земле на специальном тестовом модуле, который носит название Мэгги. (Фото NASA):

4. Марсианский закат, 15 апреля 2015. В полдень небо Марса жёлто-оранжевое. Причина таких отличий от цветовой гаммы земного неба - свойства тонкой, разреженной, содержащей взвешенную пыль атмосферы Марса. На Марсе рэлеевское рассеяние лучей (которое на Земле и является причиной голубого цвета неба) играет незначительную роль, эффект его слаб, но проявляется в виде голубого свечения при восходе и закате Солнца, когда свет проходит более толстый слой воздуха. (Фото JPL-Caltech | MSSS | Texas A&M Univ via Getty | NASA):

5. Колеса марсохода 9 сентября 2012 года. (Фото JPL-Caltech | Malin Space Science Systems | NASA):

6. А это снимок 18 апреля 2016. Видно, как износилась “обувка” у трудяги. С августа 2012 года по январь прошлого года марсоход Curiosity прошёл 15.26 км. (Фото JPL-Caltech MSSS | NASA):

7. Продолжаем смотреть снимки марсохода Curiosity. Дюна Намиб - область с темным песком, состоящая из дюн на северо-западе от горы Шарп. (Фото JPL-Caltech | NASA):

8. Две трети поверхности Марса занимают светлые области, получившие название материков, около трети - тёмные участки, называемые морями. А это подножие горы Шарп.

Шарп - марсианская гора, находящаяся в кратере Гейл. Высота горы составляет около 5 километров. На Марсе же находится и самая высокая гор в Солнечной системе - потухший вулкан Олимп высотой 26 км. Диаметр Олимпа - около 540 км. (Фото JPL-Caltech | MSSS | NASA):

9. Фотография с орбитального аппарата, здесь и марсоход виден. (Фото JPL-Caltech | Univ. of Arizona | NASA):

10. Как сформировался этот необычный холм Иресон на Марсе? Его история стала предметом исследований. Его форма и двухцветная структура делают его одним из самых необычных холмов, около которых проезжал автоматический марсоход. Он достигает высоты около 5 метров, а размер его основания - около 15 метров. (Фото JPL-Caltech | MSSS | NASA0:

11. Так выглядят “следы” марсохода на Марсе. (Фото JPL-Caltech | NASA):

12. Полушария Марса довольно сильно различаются по характеру поверхности. В южном полушарии поверхность находится на 1-2 км выше среднего уровня и густо усеяна кратерами. Эта часть Марса напоминает лунные материки. На севере большая часть поверхности находится ниже среднего уровня, здесь мало кратеров и основную часть занимают относительно гладкие равнины, вероятно, образовавшиеся в результате затопления лавой и эрозии. (Фото JPL-Caltech | MSSS | NASA):

13. На переднем плане, примерно в трех километрах от ровера, находится длинный хребет, изобилующий оксидом железа. (Фото JPL-Caltech | MSSS | NASA):

14. Взгляд на путь, который проделал марсоход, 9 февраля 2014. (Фото JPL-Caltech | MSSS | NASA):

15. Отверстие, которое пробурил марсоход Curiosity. Такой цвет породы под красной поверхностью сразу не очевиден. Дрель марсохода способна делать в камне отверстия диаметром 1.6 см и глубиной 5 см. Добытые манипулятором образцы могут также исследоваться приборами SAM и CheMin, расположенными в передней части корпуса ровера. (Фото JPL-Caltech | MSSS | NASA):

16. Еще одно селфи, самое свежее, сделанное 23 января 2018. (Фото NASA | JPL-Caltech | MSSS):

NASA запустила к Красной планете очередной марсоход. В отличие от проектов, связанных с этой планетой в нашей стране, американским исследователям удается довольно успешно осуществлять такие миссии. Напомним, российский аналог Curiosity – Фобос-Грунт потерпел фиаско из-за ошибки в программном обеспечении при выходе на околоземную орбиту.

Задачи миссии Curiosity. Curiosity это не просто марсоход. Проект осуществляется в рамках миссии Mars Science Laboratory и является платформой, на которой установлено множество научного оборудования, которое готовилось для решения нескольких задач.

Первая задача, которая стоит перед Curiosity, не оригинальна – поиск жизни на этой суровой планете. Для этого марсоходу нового поколения нужно будет обнаружить и изучить природу органических углеродных соединений. Найти такие вещества как водород, азот, фосфор, кислород, углерод и серу. Наличие таких веществ позволяет предположить о предпосылках зарождения жизни.

Кроме того, на Curiosity возлагают и другие задачи. Марсоход с помощью своего оборудования должен будет передать сведения о климате и геологии планеты, а так же провести подготовку к высадке человека.

Характеристики марсохода Curiosity. Curiosity имеет 3 метра в длину и 2,7 метра в ширину. Он оснащен шестью 51-см колесами. Каждое колесо работает от автономного электродвигателя. Передние и задние колеса помогут марсоходу повернуть в нужное направление. Благодаря особой конструкции и оптимальному диаметру, Curiosity способен преодолевать препятствие высотой 75 см и разгоняться до 90 метров в час.

Питание марсохода осуществляется за счет миниреактора. Заложенного в него плутония-238 хватит на 14 лет работы. От солнечных батарей решили отказаться из-за проблемы большого запыления атмосферы Марса.

Полет и посадка марсохода Curiosity. В качестве места посадки марсохода Curiosity был выбран кратер Гейла. Довольно ровное место, которое не должно преподнести проблемы.

На геостационарную орбиту марсоход вывела двухступенчатая ракета Atlantis-5 541. Откуда станция проследует до Марса. И тут начнется очень интересный момент – посадка Curiosity.

Атмосфера Марса довольна сложна. Ее плотные слои не позволяют посадочным двигателям корректировать этот процесс. Из-за чего была разработана довольно интересная технология, которая должна обойти эти трудности.

Во время входа в атмосферу Curiosity будет находиться в сложенном виде внутри специальной защитной капсулы. От высоких температур при вхождении в плотные слои атмосферы на большой скорости ее будет защищать специальное покрытие из углеродных волокон, пропитанных фенолформальдегидной смолой.

В плотной атмосфере Марса скорость аппарата снизится с 6 км/c до двукратной скорости звука. Сбрасываемые балласты откорректируют положение капсулы. Теплозащитное “покрывало” отстрелится и при скорости 470 м/c раскроется сверхзвуковой парашют.

При прохождении высоты 3,7 км над планетой, должна запуститься фотокамера, установленная в нижней части марсохода. Она снимет поверхность планеты, кадры высокой точности помогут избежать проблем с тем местом, куда Curiosity должен сесть.

Все это время парашют выполнял функцию тормоза, и на высоте 1,8 км над Красной планетой, марсоход отделяется от спускаемой установки, и дальнейшее снижение будет происходить при помощи платформы, которая снабжена посадочными двигателями.

Двигатели с переменной тягой корректируют положение платформы. В этот момент Curiosity должен успеть разложиться и подготовиться к посадке. Для того, чтоб этот процесс получился довольно плавным, была придумана еще одна технология – “летучий кран”.

“Летучий кран” это 3 троса, которые плавно опустят марсоход к поверхности планеты в то время как, платформа будет парить на высоте 7,5 метров.

Оборудование марсохода Curiosity. На марсоходе Curiosity установлено большое количество научного оборудования. Среди них есть и прибор, который разработали российские специалисты. Марсоход оснащен роботизированной рукой, которая довольно чувствительна. В нее вмонтированы бур, лопатка и другое оборудование, которое позволит собирать грунт и образцы пород.

На марсоходе установлено 10 приборов о некоторых из них, мы расскажем ниже.

MastCam – это камера, расположенная на высокой мачте над марсоходом. Она является глазами операторов, которые получая картинку на Земле, будут управлять аппаратом.

SAM – это масс-спектрометр, лазерный спектрометр и газовый хроматограф “в одном флаконе”, которые позволяют вести анализ проб грунта. Именно SAM должен найти органические соединения, азот, кислород и водород.

Роботизированная рука должна доставлять пробы в специальное место, на марсоходе, где их будет исследовать прибор SAM.

CheMin – еще один прибор для анализа пород. Он определяет химические и минеральные соединения.

CheCam – это самое интересное оборудование на борту марсохода Curiositi. Если говорить по-простому, то это лазер, которые способен растопить образцы грунта или скальных пород на расстоянии 9 метров от марсохода и исследовав пары, должен определить их структуру.

APXS – спектрометр который облучая образцы рентгеновским излучением и альфа-частицами сможет идентифицировать их. APXS располагается на роботизированной руке марсохода.

DAN – прибор разработанный нашими соотечественниками. Он способен определить наличие воды или льда даже на небольшой глубине под поверхностью планеты.

RAD – определит наличие радиоактивного излучения на планете.

REMS – чувствительная метеостанция на борту Curiosity.

Марсоход Curiosity это амбициозный проект человечества, который выведет нас на новый уровень изучения Марса. Посадка и изучение Красной планетой этим аппаратом, поможет ответить на два вопроса, которые давно не дают покоя человечеству: есть ли жизнь на Марсе и возможно ли колонизировать эту планету в ближайшем будущем.

Наука

Марсоход НАСА Curiosity , который работает на Марсе уже более полутора лет , успел сделать немало открытий, расширив наши знания и представления о Красной планете, особенно о ее далеком прошлом.

Марс и Земля, как оказалось, на ранних этапах существования, были весьма похожи . Появилось даже предположение, что жизнь вначале зародилась на Марсе, а затем уже попала на Землю. Однако это всего лишь догадки. Многие вещи мы не знаем наверняка, однако очень близко подходим к разгадке.

Марсоход Curiosity

1) Ранний Марс был населен живыми существами, возможно, в течение долгого времени

После того, как группа исследователей, которые работают с марсоходом Curiosity , выяснила, что когда-то в кратере Гейла текли реки и ручьи, они сообщили, что там также плескалось целое озеро . Это небольшое вытянутое озеро с пресной водой, вероятно, существовало примерно 3,7 миллиарда лет назад

Эта вода на поверхности планеты, как и подземные воды, которые ушли на глубину несколько сот метров , содержали все необходимое для зарождения микроскопической жизни.

Кратер Гейла был более теплым, влажным и обитаемым примерно 3,5 - 4 миллиарда лет назад . Именно тогда и на Земле стали появляться первые живые организмы, по мнению ученых.

Был ли Марс домом для примитивных внеземных существ? Марсоход Curiosity не может и никогда не сможет дать 100-процентно точный ответ на этот вопрос, однако открытия, которые он сделал, позволяют сделать вывод, что вероятность того, что примитивные марсиане все же существовали, очень велика.

Кратер Гейла

2) Вода когда-то текла во многих уголках Марса

Ученые еще совсем недавно не могли даже предположить, что на Марсе когда-то были бурные реки и большие водоемы жидкой воды. Наблюдения с помощью искусственных спутников, которые находятся на орбите Марса, позволяли исследователям догадываться об этом. Однако именно марсоход Curiosity помог доказать, что реки и озера действительно существовали.

Фото, сделанные марсоходом на поверхности Красной планеты, демонстрируют множество окаменелых структур , которые являются следами существовавших тут когда-то рек и ручьев, каналов, дельт и озер.

Марсоход новости

3) На Марсе найдены следы органических веществ

Поиск органических компонентов на основе углерода - одна из основных целей миссии марсохода Curiosity , задача, которую он будет выполнять и дальше. И хотя миниатюрная химическая лаборатория на его борту под названием Sample Analysis at Mars (SAM) уже обнаружила целых шесть различных органических компонентов , их происхождение пока остается загадкой.

Химическая лаборатория на борту марсохода Sample Analysis at Mars

"Нет сомнений в том, что SAM выявила органические вещества, но мы не можем сказать с уверенностью, что эти компоненты марсианского происхождения", - говорят исследователи. Существует несколько вариантов происхождения этих веществ, например, просачивание в печи SAM органических растворителей с Земли, которые необходимы для некоторых химических экспериментов.

Впрочем, поиски органики на Марсе весьма продвинулись за время работы Curiosity . Каждая новая коллекция марсианского грунта и песка содержала все большую концентрацию органических веществ, то есть различные образцы марсианского материала демонстрируют совершенно разные результаты. Если бы органика, найденная на Марсе, была земного происхождения, ее концентрация была бы более-менее стабильна .

SAM является самым сложным и важным инструментом, когда-либо работающем на другой планете. Естественно, нужно время, чтобы понять, как лучше всего с ним работать .

Марсоход 2013

4) На Марсе губительная радиация

Галактические космические лучи и солнечная радиация атакуют Марс, а высокоэнергичные частицы разбивают связи, которые позволяют живым организмам выжить . Когда прибор под названием , который измеряет уровень радиации, сделал первые измерения на поверхности Красной планеты, результаты были просто ошеломляющими .

Radiation Assessment Detector

Радиация, которую засекли на Марсе, просто губительна для микробов , которые могли жить на поверхности и на глубине несколько метров под землей. Более того, такая радиация, скорее всего, наблюдалась тут в течение последних нескольких миллионов лет .

Чтобы проверить, способны ли какие-либо живые существа выжить при таких условиях, ученые взяли в качестве модели земную бактерию Deinococcus radiodurans , которая способна выдержать невероятные дозы радиации . Если бактерии, подобные D. radiodurans, появились в те времена, когда Марс был более влажной и теплой планетой и когда на нем еще существовала атмосфера, тогда теоретически они могли выжить после долгого периода покоя.

Живучая бактерия Deinococcus radiodurans

Марсоход Curiosity 2013

5) Радиация Марса мешает нормальному протеканию химических реакций

Ученые, работающие с марсоходом Curiosity , подчеркивают, что из-за того, что радиация мешает нормальному протеканию химических реакций на Марсе, трудно обнаружить органику на его поверхности.

Используя метод радиоактивного распада , который также применяется на Земле, ученые из Калифорнийского технологического института выяснили, что поверхность в районе местности Гленелг (кратер Гейла) подвергалась влиянию радиации уже около 80 миллионов лет .

Этот новый метод может помочь находить места на поверхности планеты, которые меньше были подвержены радиации , мешающей протеканию химических реакций. Такие места могут быть в районе скал и выступов, которые обтесывались ветрами. Радиация в этих районах могла блокироваться породами, которые нависали сверху. Если исследователи найдут такие места, они начнут бурить именно там.

Марсоход последние новости

Задержки в пути

Марсоходу Curiosity сразу после приземления был задан особый маршрут , согласно которому он должен держать курс к интересной с научной точки зрения горе Шарпа высотой около 5 километров , расположенной в центре кратера Гейла . Миссия длится уже более 480 дней , а марсоходу требуется еще несколько месяцев, чтобы добраться до искомой точки.

Что же задержало марсоход? На пути к горе была обнаружена масса важной и интересной информации . В настоящее время Curiosity направляется к горе Шарпа практически без остановок, пропуская потенциально интересные места.

Найдя и проанализировав потенциально обитаемую среду на Марсе, исследователи Curiosity будут продолжать работу. Когда станет ясно, где находятся защищенные от радиации места, марсоходу будет дана команда бурить. А пока Curiosity приближается к первоначальной цели - горе Шарпа.

Фото с марсохода


Взятие образцов


Фото, сделанное марсоходом во время его работы в местности Rocknest в октябре-ноябре 2012


Автопортрет. Фото представляет собой коллаж из десятков снимков, сделанных с помощью камеры на конце руки-робота марсохода. Вдалеке виднеется гора Шарпа


Первые образцы марсианского грунта, взятые марсоходом

Яркий объект в центре снимка – скорее всего, обломок корабля, который откололся во время приземления

Светящаяся на мониторах панорама составлена из кадров, присланных марсоходом на Землю. Голубое небо не должно обманывать: на Марсе оно тускло-желтое, но человеческому глазу привычнее оттенки, которые создаются светом, рассеянным нашей земной атмосферой. Поэтому снимки проходят обработку и отображаются в ненатуральных цветах, позволяя спокойно рассмотреть каждый камешек. «Геология — наука полевая, — объяснил нам профессор Имперского колледжа Лондона Санджев Гупта. — Мы любим пройтись по земле с молотком. Налить кофе из термоса, рассмотреть находки и отобрать самое интересное для лаборатории». На Марсе нет ни лабораторий, ни термосов, зато туда геологи отправили Curiosity, своего электронного коллегу. Соседняя планета интригует человечество давно, и чем больше мы ее узнаем, чем чаще обсуждаем будущую колонизацию, тем серьезнее основания для этого любопытства.

Когда-то Земля и Марс были очень похожи. Обе планеты имели океаны жидкой воды и, видимо, достаточно простой органики. И на Марсе, как на Земле, извергались вулканы, клубилась густая атмосфера, однако в один несчастливый момент что-то пошло не так. «Мы стараемся понять, каким было это место миллиарды лет назад и почему оно настолько изменилось, — сказал профессор геологии из Калифорнийского технологического института Джон Грётцингер в одном из интервью. — Мы полагаем, что там была вода, но не знаем, могла ли она поддерживать жизнь. А если могла, то поддерживала ли. Если и так, то неизвестно, сохранились ли хоть какие-то свидетельства в камнях». Выяснить все это и предстояло геологу-марсоходу.

Curiosity регулярно и тщательно фотографируется, позволяя осмотреть себя и оценить общее состояние. Это «селфи» составлено из снимков, сделанных камерой MAHLI. Она расположена на трехсуставном манипуляторе, который при объединении снимков оказался почти не виден. В кадр не попали находящиеся на нем ударная дрель, ковшик для сбора рыхлых образцов, сито для их просеивания и металлические щеточки для очистки камней от пыли. Не видны также камера для макросъемки MAHLI и рентгеновский спектрометр APXS для анализа химического состава образцов.

1. Мощным системам ровера солнечных батарей не хватит, и питание ему обеспечивает радиоизотопный термоэлектрогенератор (РИТЭГ). 4,8 кг диоксида плутония-238 под кожухом ежедневно поставляют 2,5 КВт·ч. Видны лопасти охлаждающего радиатора. 2. Лазер прибора ChemCam выдает по 50−75 наносекундных импульсов, которые испаряют камень на расстоянии до 7 м и позволяют анализировать спектр получившейся плазмы, чтобы установить состав цели. 3. Пара цветных камер MastCam ведет съемку через различные ИК-светофильтры. 4. Метеостанция REMS следит за давлением и ветром, температурой, влажностью и уровнем ультрафиолетового излучения. 5. Манипулятор с комплексом инструментов и приборов (не виден). 6. SAM — газовый хроматограф, масс-спектрометр и лазерный спектрометр для установления состава летучих веществ в испаряемых образцах и в атмосфере. 7. CheMin выясняет состав и минералогию измельченных образцов по картине дифракции рентгеновских лучей. 8. Детектор радиации RAD заработал еще на околоземной орбите и собирал данные на протяжении всего перелета к Марсу. 9. Детектор нейтронов DAN позволяет обнаруживать водород, связанный в молекулах воды. Это российский вклад в работу марсохода. 10. Кожух антенны для связи со спутниками Mars Reconnaissance Orbiter (около 2 Мбит/с) и Mars Odyssey (около 200 Мбит/с). 11. Антенна для прямой связи с Землей в Х-диапазоне (0,5−32 кбит/с). 12. Во время спуска камера MARDI вела цветную съемку с высоким разрешением, позволив детально рассмотреть место посадки. 13. Правая и левая пары черно-белых камер Navcams для построения 3D-моделей ближайшей местности. 14. Панель с чистыми образцами позволяет проверить работу химических анализаторов марсохода. 15. Запасные биты для дрели. 16. В этот лоток ссыпаются подготовленные образцы из ковшика для изучения макрокамерой MAHLI или спектрометром APXS. 17. 20-дюймовые колеса с независимыми приводами, на титановых пружинящих спицах. По следам, оставленным рифлением, можно оценить свойства грунта и следить за движением. Рисунок включает буквы азбуки Морзе — JPL.

Начало экспедиции

Свирепый Марс — несчастливая цель для космонавтики. Начиная с 1960-х к нему отправилось почти полсотни аппаратов, большинство из которых разбилось, отключилось, не сумело выйти на орбиту и навсегда сгинуло в космосе. Однако усилия не были напрасны, и планету изучали не только с орбиты, но даже с помощью нескольких планетоходов. В 1997 году по Марсу проехался 10-килограммовый Sojourner. Легендой стали близнецы Spirit и Opportunity: второй из них героически продолжает работу уже больше 12 лет подряд. Но Curiosity — самый внушительный из них, целая роботизированная лаборатория размером с автомобиль.

6 августа 2012 года спускаемый модуль Curiosity выбросил систему парашютов, которые позволили ему замедлиться в разреженной атмосфере. Сработали восемь реактивных двигателей торможения, и система тросов осторожно опустила марсоход на дно кратера Гейла. Место посадки было выбрано после долгих споров: по словам Санджева Гупты, именно здесь нашлись все условия для того, чтобы лучше узнать геологическое — видимо, весьма бурное — прошлое Марса. Орбитальные съемки указали на наличие глин, появление которых требует присутствия воды и в которых на Земле неплохо сохраняется органика. Высокие склоны горы Шарпа (Эолиды) обещали возможность увидеть слои древних пород. Довольно ровная поверхность выглядела безопасной. Curiosity успешно вышел на связь и обновил программное обеспечение. Часть кода, использовавшегося при перелете и посадке, заменилась новой — из космонавта марсоход окончательно стал геологом.


Год первый: cледы воды

Вскоре геолог «размял ноги» — шесть алюминиевых колес, проверил многочисленные камеры и протестировал оборудование. Его коллеги на Земле рассмотрели точку посадки со всех сторон и выбрали направление. Путь до горы Шарпа должен был занять около года, и за это время предстояло немало работы. Прямой канал связи с Землей не отличается хорошей пропускной способностью, но каждый марсианский день (сол) над марсоходом пролетают орбитальные аппараты. Обмен с ними происходит в тысячи раз быстрее, позволяя ежедневно передавать сотни мегабит данных. Ученые анализируют их в Обсерватории данных, рассматривают снимки на экранах компьютеров, выбирают задачи на следующий сол или сразу на несколько и отправляют код обратно на Марс.

Работая практически на другой планете, многие из них вынуждены сами жить по марсианскому календарю и подстраиваться под чуть более длинные сутки. Сегодня для них — «солдня» (tosol), завтра — «солвтра» (solmorrow), а сутки — просто сол. Так, спустя 40 солов Санджев Гупта выступил с презентацией, на которой объявил: Curiosity движется по руслу древней реки. Мелкая, обточенная водой каменная галька указывала на течение со скоростью около 1 м/с и глубину «по щиколотку или по колено». Позднее были обработаны и данные с прибора DAN, который для Curiosity изготовила команда Игоря Митрофанова из Института космических исследований РАН. Просвечивая грунт нейтронами, детектор показал, что до сих пор на глубине в нем сохраняется до 4% воды. Это, конечно, суше, чем даже в самой сухой из земных пустынь, но в прошлом Марс все-таки был полон влаги, и марсоход мог вычеркнуть этот вопрос из своего списка.


64 экрана высокого разрешения создают панораму охватом 313 градусов: Обсерватория данных KPMG в Имперском колледже Лондона позволяет геологам перенестись прямо в кратер Гейла и работать на Марсе почти так же, как на Земле. «Посмотрите поближе, вот здесь тоже следы воды: озеро было довольно глубоким. Конечно, не таким, как Байкал, но достаточно глубоким», — иллюзия была настолько реальной, что казалось, будто профессор Санджев Гупта перепрыгивал с камня на камень. Мы посетили Обсерваторию данных и пообщались с ученым в рамках мероприятий Года науки и образования Великобритании и России — 2017, организованного Британским советом и посольством Великобритании.

Год второй: cтановится опаснее

Свой первый юбилей на Марсе Curiosity встретил празднично и сыграл мелодию «С днем рожденья тебя», меняя частоту вибраций ковшика на своем тяжелом 2,1-метровом манипуляторе. Ковшиком «роборука» набирает рыхлый грунт, ровняет, просеивает и ссыпает немного в приемники своих химических анализаторов. Бур с полыми сменными битами позволяет работать с твердыми породами, а податливый песок марсоход может разворошить прямо колесами, открыв для своих инструментов внутренние слои. Именно такие эксперименты вскоре принесли довольно неприятный сюрприз: в местном грунте обнаружилось до 5% перхлоратов кальция и магния.

Вещества это не только ядовитые, но и взрывчатые, а перхлорат аммония и вовсе используется как основа твердого ракетного топлива. Перхлораты уже обнаруживались в месте посадки зонда Phoenix, однако теперь выходило, что эти соли на Марсе — явление глобальное. В ледяной бескислородной атмосфере перхлораты стабильны и неопасны, да и концентрации не слишком высоки. Для будущих колонистов перхлораты могут стать полезным источником топлива и серьезной угрозой здоровью. Но для геологов, работающих с Curiosity, они способны поставить крест на шансах обнаружить органику. Анализируя образцы, марсоход нагревает их, а в таких условиях перхлораты быстро разлагают органические соединения. Реакция идет бурно, с горением и дымом, не оставляя различимых следов исходных веществ.

Год третий: у подножия

Однако и органику Curiosity обнаружил — об этом было объявлено позже, после того как на 746-й сол, покрыв в общей сложности 6,9 км, марсоход-геолог добрался до подножия горы Шарпа. «Получив эти данные, я сразу подумал, что нужно все обязательно перепроверить», — сказал Джон Грётцингер. В самом деле, уже когда Curiosity работал на Марсе, выяснилось, что некоторые земные бактерии — такие как Tersicoccus phoenicis — устойчивы к методам уборки чистых комнат. Подсчитали даже, что к моменту запуска на марсоходе должно было остаться от 20 до 40 тыс. устойчивых спор. Никто не может поручиться, что какие-то из них не добрались с ним до горы Шарпа.

Для проверки датчиков имеется на борту и небольшой запас чистых образцов органических веществ в запаянных металлических контейнерах — можно ли стопроцентно уверенно сказать, что они остались герметичными? Однако графики, которые предъявили на пресс-конференции в NASA, сомнений не вызывали: за время работы марсианский геолог зафиксировал несколько резких — сразу в десять раз — скачков содержания метана в атмосфере. Этот газ вполне может иметь и небиологическое происхождение, но главное — когда-то он мог стать источником более сложных органических веществ. Следы их, прежде всего хлорбензол, обнаружились и в грунте Марса.


Годы четвертый и пятый: живые реки

К этому времени Curiosity пробурил уже полтора десятка отверстий, оставив вдоль своего пути идеально круглые 1,6-сантиметровые следы, которые когда-нибудь обозначат туристический маршрут, посвященный его экспедиции. Электромагнитный механизм, заставлявший дрель совершать до 1800 ударов в минуту для работы с самой твердой породой, вышел из строя. Однако изученные выходы глин и кристаллы гематита, слои силикатных шпатов и прорезанные водой русла открывали уже однозначную картину: некогда кратер был озером, в которое спускалась ветвящаяся речная дельта.

Камерам Curiosity теперь открывались склоны горы Шарпа, сам вид которых оставлял мало сомнений в их осадочном происхождении. Слой за слоем, сотнями миллионов лет вода то прибывала, то отступала, нанося породы и оставляя выветриваться в центре кратера, пока не ушла окончательно, собрав целую вершину. «Там, где сейчас возвышается гора, когда-то был бассейн, время от времени заполнявшийся водой», — пояснил Джон Грётцингер. Озеро стратифицировалось по высоте: условия на мелководье и на глубине различались и температурой, и составом. Теоретически это могло обеспечить условия для развития разнообразных реакций и даже микробных форм.


Цвета на трехмерной модели кратера Гейла соответствуют высоте. В центре расположена гора Эолида (Aeolis Mons, 01), которая на 5,5 км возвышается над одноименной равниной (Aeolis Palus, 02) на дне кратера. Отмечено место посадки Curiosity (03), а также долина Фарах (Farah Vallis, 04) — одно из предполагаемых русел древних рек, впадавших в ныне исчезнувшее озеро.

Путешествие продолжается

Экспедиция Curiosity далеко не закончена, да и энергии бортового генератора должно хватить на 14 земных лет работы. Геолог остается в пути уже почти 1750 солов, преодолев больше 16 км и поднявшись по склону на 165 м. Насколько могут заглянуть его инструменты, выше по‑прежнему видны следы осадочных пород древнего озера, но как знать, где они кончаются и на что еще укажут? Робот-геолог продолжает восхождение, а Санджев Гупта и его коллеги уже выбирают место для посадки следующего. Несмотря на гибель спускаемого зонда Schiaparelli, орбитальный модуль TGO в прошлом году благополучно вышел на орбиту, запустив первый этап европейско-российской программы «Экзомарс». Марсоход, который должен стартовать в 2020 году, станет следующим.

Российских приборов в нем будет уже два. Сам робот примерно вдвое легче Curiosity, зато его бур сможет забирать пробы с глубины уже до 2 м, а комплекс приборов Pasteur включит инструменты для прямого поиска следов прошлой — или даже сохранившейся до сих пор — жизни. «У вас есть заветное желание, находка, о которой вы особенно мечтаете?» — спросили мы профессора Гупту. «Безусловно, есть: окаменелость, — ученый ответил не раздумывая. — Но это, конечно, вряд ли произойдет. Если жизнь там и была, то только какие-нибудь микробы… Но ведь, согласитесь, это стало бы чем-то невероятным».


Перед нами пустыня, голая и безжизненная. Горизонт обозначен кромкой кратера, в центре поднимается пятикилометровая вершина.

Перед нами пустыня, голая и безжизненная. Горизонт обозначен кромкой кратера, в центре поднимается пятикилометровая вершина. Прямо у наших ног блестят колеса и панели марсохода. Не пугайтесь: мы в Лондоне, где уникальная Обсерватория данных позволяет геологам перенестись в марсианскую пустыню и работать бок о бок с Curiosity, самым сложным роботом, который когда-либо отправлялся в космос.
Светящаяся на мониторах панорама составлена из кадров, присланных марсоходом на Землю. Голубое небо не должно обманывать: на Марсе оно тускло-желтое, но человеческому глазу привычнее оттенки, которые создаются светом, рассеянным нашей земной атмосферой. Поэтому снимки проходят обработку и отображаются в ненатуральных цветах, позволяя спокойно рассмотреть каждый камешек. «Геология - наука полевая, - объяснил нам профессор Имперского колледжа Лондона Санджев Гупта. - Мы любим пройтись по земле с молотком. Налить кофе из термоса, рассмотреть находки и отобрать самое интересное для лаборатории». На Марсе нет ни лабораторий, ни термосов, зато туда геологи отправили Curiosity, своего электронного коллегу. Соседняя планета интригует человечество давно, и чем больше мы ее узнаем, чем чаще обсуждаем будущую колонизацию, тем серьезнее основания для этого любопытства.

Когда-то Земля и Марс были очень похожи. Обе планеты имели океаны жидкой воды и, видимо, достаточно простой органики. И на Марсе, как на Земле, извергались вулканы, клубилась густая атмосфера, однако в один несчастливый момент что-то пошло не так. «Мы стараемся понять, каким было это место миллиарды лет назад и почему оно настолько изменилось, - сказал профессор геологии из Калифорнийского технологического института Джон Грётцингер в одном из интервью. - Мы полагаем, что там была вода, но не знаем, могла ли она поддерживать жизнь. А если могла, то поддерживала ли. Если и так, то неизвестно, сохранились ли хоть какие-то свидетельства в камнях». Выяснить все это и предстояло геологу-марсоходу.

Curiosity регулярно и тщательно фотографируется, позволяя осмотреть себя и оценить общее состояние. Это «селфи» составлено из снимков, сделанных камерой MAHLI. Она расположена на трехсуставном манипуляторе, который при объединении снимков оказался почти не виден. В кадр не попали находящиеся на нем ударная дрель, ковшик для сбора рыхлых образцов, сито для их просеивания и металлические щеточки для очистки камней от пыли. Не видны также камера для макросъемки MAHLI и рентгеновский спектрометр APXS для анализа химического состава образцов.
1. Мощным системам ровера солнечных батарей не хватит, и питание ему обеспечивает радиоизотопный термоэлектрогенератор (РИТЭГ). 4,8 кг диоксида плутония-238 под кожухом ежедневно поставляют 2,5 КВт·ч. Видны лопасти охлаждающего радиатора.
2. Лазер прибора ChemCam выдает по 50−75 наносекундных импульсов, которые испаряют камень на расстоянии до 7 м и позволяют анализировать спектр получившейся плазмы, чтобы установить состав цели.
3. Пара цветных камер MastCam ведет съемку через различные ИК-светофильтры.
4. Метеостанция REMS следит за давлением и ветром, температурой, влажностью и уровнем ультрафиолетового излучения.
5. Манипулятор с комплексом инструментов и приборов (не виден).
6. SAM - газовый хроматограф, масс-спектрометр и лазерный спектрометр
для установления состава летучих веществ в испаряемых образцах и в атмосфере.
7. CheMin выясняет состав и минералогию измельченных образцов по картине дифракции рентгеновских лучей.
8. Детектор радиации RAD заработал еще на околоземной орбите и собирал данные на протяжении всего перелета к Марсу.
9. Детектор нейтронов DAN позволяет обнаруживать водород, связанный в молекулах воды. Это российский вклад в работу марсохода.
10. Кожух антенны для связи со спутниками Mars Reconnaissance Orbiter (около 2 Мбит/с) и Mars Odyssey (около 200 Мбит/с).
11. Антенна для прямой связи с Землей в Х-диапазоне (0,5−32 кбит/с).
12. Во время спуска камера MARDI вела цветную съемку с высоким разрешением, позволив детально рассмотреть место посадки.
13. Правая и левая пары черно-белых камер Navcams для построения 3D-моделей ближайшей местности.
14. Панель с чистыми образцами позволяет проверить работу химических анализаторов марсохода.
15. Запасные биты для дрели.
16. В этот лоток ссыпаются подготовленные образцы из ковшика для изучения макрокамерой MAHLI или спектрометром APXS.
17. 20-дюймовые колеса с независимыми приводами, на титановых пружинящих спицах. По следам, оставленным рифлением, можно оценить свойства грунта и следить за движением. Рисунок включает буквы азбуки Морзе - JPL.

Начало экспедиции

Свирепый Марс - несчастливая цель для космонавтики. Начиная с 1960-х к нему отправилось почти полсотни аппаратов, большинство из которых разбилось, отключилось, не сумело выйти на орбиту и навсегда сгинуло в космосе. Однако усилия не были напрасны, и планету изучали не только с орбиты, но даже с помощью нескольких планетоходов. В 1997 году по Марсу проехался 10-килограммовый Sojourner. Легендой стали близнецы Spirit и Opportunity: второй из них героически продолжает работу уже больше 12 лет подряд. Но Curiosity - самый внушительный из них, целая роботизированная лаборатория размером с автомобиль.

6 августа 2012 года спускаемый модуль Curiosity выбросил систему парашютов, которые позволили ему замедлиться в разреженной атмосфере. Сработали восемь реактивных двигателей торможения, и система тросов осторожно опустила марсоход на дно кратера Гейла. Место посадки было выбрано после долгих споров: по словам Санджева Гупты, именно здесь нашлись все условия для того, чтобы лучше узнать геологическое - видимо, весьма бурное - прошлое Марса. Орбитальные съемки указали на наличие глин, появление которых требует присутствия воды и в которых на Земле неплохо сохраняется органика. Высокие склоны горы Шарпа (Эолиды) обещали возможность увидеть слои древних пород. Довольно ровная поверхность выглядела безопасной. Curiosity успешно вышел на связь и обновил программное обеспечение. Часть кода, использовавшегося при перелете и посадке, заменилась новой - из космонавта марсоход окончательно стал геологом.
Год первый: cледы воды

Вскоре геолог «размял ноги» - шесть алюминиевых колес, проверил многочисленные камеры и протестировал оборудование. Его коллеги на Земле рассмотрели точку посадки со всех сторон и выбрали направление. Путь до горы Шарпа должен был занять около года, и за это время предстояло немало работы. Прямой канал связи с Землей не отличается хорошей пропускной способностью, но каждый марсианский день (сол) над марсоходом пролетают орбитальные аппараты. Обмен с ними происходит в тысячи раз быстрее, позволяя ежедневно передавать сотни мегабит данных. Ученые анализируют их в Обсерватории данных, рассматривают снимки на экранах компьютеров, выбирают задачи на следующий сол или сразу на несколько и отправляют код обратно на Марс.
Работая практически на другой планете, многие из них вынуждены сами жить по марсианскому календарю и подстраиваться под чуть более длинные сутки. Сегодня для них - «солдня» (tosol), завтра - «солвтра» (solmorrow), а сутки - просто сол. Так, спустя 40 солов Санджев Гупта выступил с презентацией, на которой объявил: Curiosity движется по руслу древней реки. Мелкая, обточенная водой каменная галька указывала на течение со скоростью около 1 м/с и глубину «по щиколотку или по колено». Позднее были обработаны и данные с прибора DAN, который для Curiosity изготовила команда Игоря Митрофанова из Института космических исследований РАН. Просвечивая грунт нейтронами, детектор показал, что до сих пор на глубине в нем сохраняется до 4% воды. Это, конечно, суше, чем даже в самой сухой из земных пустынь, но в прошлом Марс все-таки был полон влаги, и марсоход мог вычеркнуть этот вопрос из своего списка.

В центре кратера
64 экрана высокого разрешения создают панораму охватом 313 градусов: Обсерватория данных KPMG в Имперском колледже Лондона позволяет геологам перенестись прямо в кратер Гейла и работать на Марсе почти так же, как на Земле. «Посмотрите поближе, вот здесь тоже следы воды: озеро было довольно глубоким. Конечно, не таким, как Байкал, но достаточно глубоким», - иллюзия была настолько реальной, что казалось, будто профессор Санджев Гупта перепрыгивал с камня на камень. Мы посетили Обсерваторию данных и пообщались с ученым в рамках мероприятий Года науки и образования Великобритании и России - 2017, организованного Британским советом и посольством Великобритании.
Год второй: cтановится опаснее

Свой первый юбилей на Марсе Curiosity встретил празднично и сыграл мелодию «С днем рожденья тебя», меняя частоту вибраций ковшика на своем тяжелом 2,1-метровом манипуляторе. Ковшиком «роборука» набирает рыхлый грунт, ровняет, просеивает и ссыпает немного в приемники своих химических анализаторов. Бур с полыми сменными битами позволяет работать с твердыми породами, а податливый песок марсоход может разворошить прямо колесами, открыв для своих инструментов внутренние слои. Именно такие эксперименты вскоре принесли довольно неприятный сюрприз: в местном грунте обнаружилось до 5% перхлоратов кальция и магния.

Вещества это не только ядовитые, но и взрывчатые, а перхлорат аммония и вовсе используется как основа твердого ракетного топлива. Перхлораты уже обнаруживались в месте посадки зонда Phoenix, однако теперь выходило, что эти соли на Марсе - явление глобальное. В ледяной бескислородной атмосфере перхлораты стабильны и неопасны, да и концентрации не слишком высоки. Для будущих колонистов перхлораты могут стать полезным источником топлива и серьезной угрозой здоровью. Но для геологов, работающих с Curiosity, они способны поставить крест на шансах обнаружить органику. Анализируя образцы, марсоход нагревает их, а в таких условиях перхлораты быстро разлагают органические соединения. Реакция идет бурно, с горением и дымом, не оставляя различимых следов исходных веществ.

Год третий: у подножия

Однако и органику Curiosity обнаружил - об этом было объявлено позже, после того как на 746-й сол, покрыв в общей сложности 6,9 км, марсоход-геолог добрался до подножия горы Шарпа. «Получив эти данные, я сразу подумал, что нужно все обязательно перепроверить», - сказал Джон Грётцингер. В самом деле, уже когда Curiosity работал на Марсе, выяснилось, что некоторые земные бактерии - такие как Tersicoccus phoenicis - устойчивы к методам уборки чистых комнат. Подсчитали даже, что к моменту запуска на марсоходе должно было остаться от 20 до 40 тыс. устойчивых спор. Никто не может поручиться, что какие-то из них не добрались с ним до горы Шарпа.

Для проверки датчиков имеется на борту и небольшой запас чистых образцов органических веществ в запаянных металлических контейнерах - можно ли стопроцентно уверенно сказать, что они остались герметичными? Однако графики, которые предъявили на пресс-конференции в NASA, сомнений не вызывали: за время работы марсианский геолог зафиксировал несколько резких - сразу в десять раз - скачков содержания метана в атмосфере. Этот газ вполне может иметь и небиологическое происхождение, но главное - когда-то он мог стать источником более сложных органических веществ. Следы их, прежде всего хлорбензол, обнаружились и в грунте Марса.
Годы четвертый и пятый: живые реки

К этому времени Curiosity пробурил уже полтора десятка отверстий, оставив вдоль своего пути идеально круглые 1,6-сантиметровые следы, которые когда-нибудь обозначат туристический маршрут, посвященный его экспедиции. Электромагнитный механизм, заставлявший дрель совершать до 1800 ударов в минуту для работы с самой твердой породой, вышел из строя. Однако изученные выходы глин и кристаллы гематита, слои силикатных шпатов и прорезанные водой русла открывали уже однозначную картину: некогда кратер был озером, в которое спускалась ветвящаяся речная дельта.

Камерам Curiosity теперь открывались склоны горы Шарпа, сам вид которых оставлял мало сомнений в их осадочном происхождении. Слой за слоем, сотнями миллионов лет вода то прибывала, то отступала, нанося породы и оставляя выветриваться в центре кратера, пока не ушла окончательно, собрав целую вершину. «Там, где сейчас возвышается гора, когда-то был бассейн, время от времени заполнявшийся водой», - пояснил Джон Грётцингер. Озеро стратифицировалось по высоте: условия на мелководье и на глубине различались и температурой, и составом. Теоретически это могло обеспечить условия для развития разнообразных реакций и даже микробных форм.

Цвета на трехмерной модели кратера Гейла соответствуют высоте. В центре расположена гора Эолида (Aeolis Mons, 01), которая на 5,5 км возвышается над одноименной равниной (Aeolis Palus, 02) на дне кратера. Отмечено место посадки Curiosity (03), а также долина Фарах (Farah Vallis, 04) - одно из предполагаемых русел древних рек, впадавших в ныне исчезнувшее озеро.
Путешествие продолжается

Экспедиция Curiosity далеко не закончена, да и энергии бортового генератора должно хватить на 14 земных лет работы. Геолог остается в пути уже почти 1750 солов, преодолев больше 16 км и поднявшись по склону на 165 м. Насколько могут заглянуть его инструменты, выше по‑прежнему видны следы осадочных пород древнего озера, но как знать, где они кончаются и на что еще укажут? Робот-геолог продолжает восхождение, а Санджев Гупта и его коллеги уже выбирают место для посадки следующего. Несмотря на гибель спускаемого зонда Schiaparelli, орбитальный модуль TGO в прошлом году благополучно вышел на орбиту, запустив первый этап европейско-российской программы «Экзомарс». Марсоход, который должен стартовать в 2020 году, станет следующим.

Российских приборов в нем будет уже два. Сам робот примерно вдвое легче Curiosity, зато его бур сможет забирать пробы с глубины уже до 2 м, а комплекс приборов Pasteur включит инструменты для прямого поиска следов прошлой - или даже сохранившейся до сих пор - жизни. «У вас есть заветное желание, находка, о которой вы особенно мечтаете?» - спросили мы профессора Гупту. «Безусловно, есть: окаменелость, - ученый ответил не раздумывая. - Но это, конечно, вряд ли произойдет. Если жизнь там и была, то только какие-нибудь микробы… Но ведь, согласитесь, это стало бы чем-то невероятным».

Загрузка...