domvpavlino.ru

Классификация фораминиферы. Фораминиферы. Простейшие в природе

Размножение фораминифер происходит довольно сложно и у большинства видов связано с чередованием двух разных форм размножения и двух поколений. Одно из них бесполое, второе - половое. В настоящее время процессы эти изучены у многих видов фораминифер.

На рисунке изображен жизненный цикл фораминиферы Elphidium crispa.

Этот вид представляет собой типичную многокамерную фораминиферу со спирально закрученной раковинкой. Начнем рассмотрение цикла с многокамерной корненожки, обладающей маленькой зародышевой камерой в центре спирали (микросферическое поколение).

В цитоплазме корненожки первоначально имеется одно ядро. Бесполое размножение начинается с того, что ядро последовательно несколько раз делится, в результате чего образуется множество небольшого размера ядер (обычно несколько десятков, иногда свыше сотни).

Затем вокруг каждого ядра обособляется участок цитоплазмы и все протоплазматическое тело корненожки распадается на множество (по числу ядер) одноядерных амебообразных зародышей, которые выходят через устье наружу. Сразу же вокруг амебовидного зародыша выделяется тонкая известковая раковинка, которая и явится первой (эмбриональной) камерой будущей многокамерной раковины. Таким образом, при бесполом размножении на первых стадиях своего развития корненожка является однокамерной. Однако очень скоро к этой первой камере начинают добавляться следующие. Происходит это так: из устья сразу выступает наружу некоторое количество цитоплазмы, которая тотчас же выделяет раковинку. Затем наступает пауза, в течение которой простейшее усиленно питается и масса протоплазмы его увеличивается внутри раковины. Затем вновь часть цитоплазмы выступает из устья и вокруг нее образуется очередная известковая камера. Этот процесс повторяется несколько раз: возникают все новые и новые камеры, пока раковина не достигнет характерных для данного вида размеров.

Таким образом, развитие и рост раковины носит ступенчатый характер. Размеры и взаимное положение камер определяется тем, какое количество протоплазмы выступает из устья и как эта протоплазма располагается по отношению к предшествующим камерам.

Рис. 35. Жизненный цикл фораминиферы
Elphidium crispa: слева внизу - выход зародышей, образовавшихся в результате бесполого размножения; сверху-выход гамет и их копуляция.

Мы начали рассмотрение жизненного цикла Elphidium с раковинки, обладавшей очень маленькой эмбриональной камерой. В результате бесполого размножения получается раковинка, эмбриональная камера которой значительно крупнее, чем у той особи, которая приступала к бесполому размножению. В результате бесполого размножения получаются особи макросферического поколения, которые существенно отличаются от дающего им начало микросфериче85 ского поколения. В данном случае потомство оказывается не вполне похожим на родителей.

Каким же путем возникают особи микросферического поколения?

Они развиваются в результате полового размножения макросферического поколения. Происходит это следующим образом. Как и при бесполом размножении, половой процесс начинается с деления ядра. Количество образующихся при этом ядер значительно больше,чем при бесполом размножении. Вокруг каждого ядра обособляется небольшой участок цитоплазмы, и таким путем формируется огромное количество (тысячи) одноядерных клеток х. Каждая из них снабжена двумя жгутиками, благодаря движению которых клетки активно и быстро плавают. Эти клетки являются половыми клетками (гаметами). Они сливаются друг с другом попарно, причем слияние затрагивает не только цитоплазму, но и ядра. Этот процесс слияния гамет и есть половой процесс. Образующаяся в результате слияния гамет (оплодотворения) клетка носит название зиготы. Она дает начало новому микросферическому поколению фораминиферы. Вокруг зиготы сразу же по ее образовании выделяется известковая раковина - первая (эмбриональная) камера. Затем процесс развития и роста раковины, сопровождающийся увеличением числа камер, осуществляется по тому же типу, как и при бесполом размножении. Раковина получается микросферической потому, что размер зиготы, выделяющей эмбриональную камеру, во много раз меньше одноядерных амебовидных зародышей, образующихся при бесполом размножении. В дальнейшем микросферическое поколение приступит к бесполому размножению и вновь даст начало макросферическим формам.

На примере жизненного цикла фораминифер мы встречаемся с интересным биологическим явлением закономерного. У некоторых видов фораминифер не все ядра участвуют в формировании гамет. Часть их остается в виде вегетативных ядер, не участвующих в процессах размножения. Этим вегетативные ядра напоминают макронуклеусы инфузорий. редования двух форм размножения - бесполого и полового, сопровождающегося чередованием двух поколений - микросферического (развивается из зиготы в результате оплодотворения) и макросферического (развивается из одноядерных амебоидных зародышей в результате бесполого размножения).

Отметим еще одну интересную особенность полового процесса фораминифер.

Известно, что у большинства животных организмов половые клетки (гаметы) бывают двух категорий. С одной стороны, это крупные, богатые протоплазмой и запасными питательными веществами неподвижные яйцевые (женские) клетки, а с другой - мелкие подвижные сперматозоиды (мужские половые клетки). Подвижность сперматозоидов обычно связана с наличием у них активно двигающегося нитевидного хвостового отдела.

У фораминифер, как мы видели, морфологических (структурных) различий между половыми клетками нет. По строению своему все они одинаковы и благодаря наличию жгутиков обладают подвижностью. Здесь нет еще структурных различий, которые позволили бы различать мужские и женские гаметы. Такая форма полового процесса является исходной, примитивной.

Огромное большинство современных видов фораминифер являются придонными (бентическими) организмами, встречающимися в морях всех широт от прибрежной зоны вплоть до самых больших глубин мирового океана. Изучение распределения корненожек в океане показало, что оно зависит от ряда факторов внешней среды - от температуры, глубины, солености. Для каждой из зон типичны свои виды фораминифер. Видовой состав фораминифер может служить хорошим показателем условий среды обитания.

Среди фораминифер имеются немногочисленные виды, ведущие планктонный образ жизни. Они постоянно «парят» в толще водяной массы. Типичный пример планктонных фораминифер - разные виды глобигерин (Globigerina, рис. 36). Строение их раковинок резко отличается от строения раковинок донных корненожек. Ра86 новинки глобигерин более тонкостенные, а главное, несут многочисленные расходящиеся во все стороны придатки - тончайшие длинные иглы. Это одно из приспособлений к жизни в планктоне. Благодаря наличию игл поверхность тела, а именно отношение поверхности к массе - величина, называемая удельной поверхностью, возрастает. Это увеличивает трение при погружении в воду и способствует «парению» в воде.

Рис. 36. Планктонная фораминифера Globigerina bulloides.

Широко распространенные в современных морях и океанах фораминиферы были богато представлены и в прежние геологические периоды начиная с самых древних кембрийских отложений. Известковые раковинки после размножения или смерти корненожки опускаются на дно водоема, где входят в состав отлагающегося на дне ила. Процесс этот совершается десятки и сотни миллионов лет; в результате на дне океана образуются мощные отложения, в состав которых входит несметное количество раковинок корненожек. При горообразовательных процессах, которые совершались и совершаются в земной коре, как известно, некоторые области дна океана поднимаются и становятся сушей, суша опускается и становится дном океана. Большая часть современной суши в различные геологические периоды была дном океана. Это относится в полной мере и к территории Советского Союза (за исключением немногих северных районов нашей страны: Кольский полуостров, большая часть Карелии и некоторые другие). Морские донные отложения на суше превращаются в горные осадочные породы. Во всех морских осадочных породах присутствуют раковинки корненожек. Некоторые же отложения, как например меловые, в основной своей массе состоят из раковин корненожек. Столь широкое распространение фораминифер в морских осадочных породах имеет большое значение для геологических работ, и в частности для геологической разведки. Фораминиферы, как и все организмы, не оставались неизменными. В течение геологической истории нашей планеты происходила эволюция органического мира. Изменялись и фораминиферы. Для разных геологических периодов истории Земли характерны свои виды, роды и семейства фораминифер.

Известно, что по остаткам организмов в горных породах (окаменелостям, отпечаткам и т. п.) можно определить геологический возраст этих пород . Для этой цели могут быть использованы и фораминиферы. Как ископаемые они благодаря своим микроскопическим размерам представляют очень большие преимущества, так как могут быть обнаружены в очень небольших количествах горной породы.

При геологической разведке полезных ископаемых (в особенности при разведке нефти) широко используется метод бурения. При этом получается колонка породы небольшого диаметра, охватывающая все слои, через которые прошел бур. Если эти слои представляют собой морские осадочные породы, то в них при микроскопическом анализе всегда обнаруживаются фораминиферы. Ввиду большой практической важности вопрос о приуроченности определенных видов фораминифер к тем или иным осадочным породам известкового возраста разработан с большой степенью точности.

Класс Foraminifera включает в себя саркодовых, преимущественно морских, имеющих раковину с одним или несколькими отверстиями – устьями, через которые наружу выходят тонкие длинные нитевидные отростки цитоплазмы – псевдоподии. Основными функциями псевдоподий являются передвижение и сбор пищи (диатомовых водорослей, бактерий), также они принимают участие в газообмене и иногда в построении раковины.

Общая характеристика

Агглютинированная раковина фораминиферы Astrorhiza sp.

Размеры раковин фораминифер колеблются в значительных пределах от микроскопических (0,02-0,05 мм) до достаточно крупных (до 100 мм). Существует условное разделение фораминифер на крупные и мелкие: к первой группе относятся представители отрядов Fusulinida и Nummulitida, ко второй – все остальные. Крупные фораминиферы имеют гораздо более сложное строение.

Раковины фораминифер отличаются по способу образования, числу и расположению камер. По способу образования и составу выделяются раковины агглютинированные и секреционные. Секреционные раковины образуются эктоплазмой клетки и имеют у большинства форм известковый, а у меньшинства - органический состав. Агглютинированные раковины состоят из посторонних частиц: зерен кварца, кальцита, спикул губок и др., скрепленных цементом, который образуется эктоплазмой подобно тому, как отмечено для секреционных раковин. Имеются и более сложные варианты, когда секреционные известковые раковины содержат примеси агглютинированных частиц.

Секреционная раковина фораминиферы Quinqueloculina costata

По числу камер фораминиферы подразделяются на одно-, двух- и многокамерные. Однокамерные раковины могут быть округлые, звездчатые, цилиндрические и пр. Двухкамерные формы состоят из шарообразной первой камеры и различно устроенной второй: почти цилиндрической в одном случае и в виде длинной клубкообразной либо спиральной - в другом.

Многокамерные раковины различаются способом расположения камер. Камеры могут следовать одна за другой в один ряд, чаще они окружают первую камеру спирально или клубкообразно. В клубкообразном типе навивания наблюдается закономерное либо незакономерное расположение камер. Спиральнозавитые раковины подразделяются на спирально-плоскостные, спирально-конические и спирально-винтовые.

Спирально-плоскостные раковины различаются между собой формой поперечного сечения оборотов и степенью их перекрывания (объемлемости). Если обороты только соприкасаются и снаружи видны все обороты, то раковина называется эволютной . Если последний оборот полностью перекрывает предпоследний, то раковина называется инволютной . В этом случае снаружи виден только последний оборот, а их действительное число можно определить лишь на поперечном разрезе. При частичном перекрывании оборотов выделяются переходные варианты: полуинволютные и полуэволютные раковины. Внешне инволютные раковины выглядят как монетовидные, если диаметр раковины значительно больше толщины (Д >> Т), линзовидные (Д > Т), шаровидные (Д = Т) и веретеновидные (Д << Т)

Принципы классификации

При разделении фораминифер на отряды учитываются прежде всего следующие признаки: способ образования (секреционная или агглютинированная) и состав раковины (известковая, псевдохитиновая, возможно кремневая), число камер и характер их расположения, т.е. тип навивания. Помимо этих признаков рассматривается тип устья и строение стенки раковины. В классе выделяют от 13 до 52 отрядов.

Образ жизни

Современная планктонная фораминифера Globigerina falconensis

Современные фораминиферы в подавляющем большинстве обитают в нормально-морских бассейнах на всех глубинах и широтах, достигая максимального разнообразия в сублиторали тропических морей. Меньшая часть фораминифер существует в солоноватоводных бассейнах типа Черного и Азовского морей. Некоторые фораминиферы встречаются в пресных водоемах и еще реже в подземных водах пустынь, как, например, в Каракумах и Сахаре.

Большинство современных фораминифер передвигаются по дну с помощью псевдоподий, т.е. являются подвижным бентосом , меньшинство входит в группу неподвижного бентоса, прикрепленного или свободнолежащего. Часть фораминифер приспособилась к планктонному образу жизни: Globigerinida, видимо некоторые Fusulinida (шарообразная стадия Scwagerina ).

Геологическое значение и породообразующая роль

Нуммулитовый известняк

Среди фораминифер с агглютинированной раковиной породообразующее значение имеют представители отряда Astrorhizida, скопления которых формируют рабдамминовые пески и песчаники. Скопления секреционных известковых раковин фораминифер приводят к образованию различных известняков и мергелей, называемых по преобладающему роду или отряду: известняки фузулиновые, швагериновые, нуммулитовые, глобигериновые и т.п.

Фораминиферы являются одной из основных групп, используемых в биостратиграфии для создания зональных схем. Верхний палеозой подразделяется на фораминиферовые зоны на основании распределения фузулинид, мезокайнозой – на основании распределения секреционных известковых фораминифер других отрядов, среди которых важную роль имеют планктонные Globigerinida. Также по фораминиферам проводят палеобиогеографические реконструкции, восстанавливают палеоэкологические условия морских бассейнов, комплексы фораминифер используют как показатели глубины (батиметрических зон) и солености.

Ссылки и литература

  1. Михайлова И.А., Бондаренко О.Б. Палеонтология. Том 1. М.: Изд-во МГУ, 1997. 446 c. (djvu)
попарно. Так, Ф. Гарп (Harре, 1879) отметил, что у нуммулитов из одного и того же местонахождения встречаются такие «парные» виды, которые сходны между собой во всех морфологических признаках, за исключением лишь того, что у одного из них начальная камера очень мала, неразличима невооруженным глазом, а общие размеры и число оборотов относительно велики; у другого вида - партнера, наоборот, начальная камера крупная, хорошо заметна, общие размеры при этом меньше, и раковина образована сравнительно небольшим числом оборотов. Е. Мюнье-Шальма (MunierChalmas, 1880) указал на то, что мы в данном случае имеем дело не с самостоятельными видами, а с двумя различными формами одного вида с явлением диморфизма. Природу этого последнего Мюнье-Шальма объяснял возрастными отличиями.

В 1886г. Мюнье-Шальма и Шлюмберже (Sсh1umberger) предложили термины «микросфера» для маленькой начальной камеры одной из упомянутых форм и «мегалосфера» для крупной начальной камеры другой формы. В дальнейшем эти формы получили, соответственно, название микросферической, или формы В, и мегасферической (мегалосферической или макросферической) или формы А.

Истинная природа явления была выяснена работами Дж. Листера (Lister, 1894, 1895, 1903) и Ф. Шаудинна (Schaudinn, 1894, 1895, 1903). Эти исследователи установили, что у представителей рода Elphidium и некоторых других имеет место чередование поколений - полового и бесполого. Дальнейшие исследования Ф. Винтера (Winter, 1907), Е. Майерса (Myers, 1933, 1934, 1935, 1936, 1940 и 1943), Ле Кальве (Le Calvez, 1937, 1938, 1950, 1953), Джеппс (Jepps, 1942) и др. подтвердили выводы Листера и Шаудинна и значительно приблизили нас к познанию истинной природы процессов размножения у фораминифер.

Жизненный цикл фораминифер распадается на два основных этапа: шизогонию, или агамогонию - бесполое воспроизведение со стадией образования мерозоитов (эмбрионов) и заканчивающееся образованием гаплоидного поколения - мегасферических гамонтов; и гамогонию - половое воспроизведение, в конечном итоге которого восстанавливается диплоидное состояние - образуются микросферические шизонты; этот второй этап сопровождается образованием многочисленных половых элементов - гамет и попарным слиянием этих последних.

Гаметы фораминифер, образованные как одной материнской особью - гамонтом, так и разными, не отличаются ни по своим размерам, ни по строению, чем определяется наличие изогамии. У большинства фораминифер гаметы жгутиковые - так называемые флагеллоспоры, но у некоторых (Spirillina и Patellina) гаметы амёбоидные. В. А. Догель (1951) указывает, что строение гамет является важным указанием на характер предковых форм фораминифер: по его мнению, гаметы представляют исходную стадию онтогенеза фораминифер, которая отражает, как правило, в своем строении особенности жгутиковых предков фораминифер. Догель считает, что амёбоидные гаметы некоторых фораминифер являются ценогенетическим новообразованием, что утрата жгутиков произошла в процессе приспособительного изменения хода онтогенеза в течение филогенетического развития группы. Если отказаться от интерпретации Догеля и рассматривать особенности строения гамет как унаследованные от предков - палингенетические, то придется допустить полифилетическое происхождение фораминифер от двух корней - жгутикового и амёбного.

Жгутиковая гамета фораминифер - округло-овальное образование размерами 1,5-2 μ, реже до 5 μ, снабженное двумя жгутами, неравными, вопреки мнению Шаудинна, из которых один, более короткий, направлен назад. В протоплазме гаметы можно различить ядро и сильно преломляющее свет жировое включение. У некоторых фораминифер гаметы снабжены тремя жгутами.

Копулируют у фораминифер гаметы, образованные разными гамонтами; автогамии, .т. е. копуляции гамет, происшедших из одного и того же гамонта, не отмечалось. Слияние гамет происходит обычно в свободной воде, вне материнской раковины.

У многокамерных форм в результате слиянии гамет образуется шаровидная зигота, которая несколько разрастается и выделяет на своей поверхности оболочку первой камеры микросферической формы. Развивающаяся из зиготы особь шизонт у фораминифер - сохраняет одноядерное строение только на ранних стадиях своего развития; очень рано, еще задолго до начала характерного для него процесса бесполого размножения - шизогонии, он становится многоядерным путем последовательных делений ядра.

В дальнейшем, с достижением шизонтом более или менее определенных специфических размеров, его протоплазма разбивается на ряд участков соответственно числу ядер; каждый такой участок обособляется и превращается в одноядерного мерозоита. Образование мерозоитов может происходить внутри раковины материнского шизонта (Iridia, Nubecularia, Peneroplis, Planorbulina) или вне ее (Elphidium); в последнем случае протоплазматическое тело заблаговременно покидает раковину.

То обстоятельство, что у фораминифер наблюдается чередование поколений диплоидного и гаплоидного, т. е. то, что они являются диплога-плонгами, представляет большой интерес; подобной особенностью отличаются многие низшие растения, но у животных диплогаплоидия до сих пор не отмечалась.

В результате копуляции гамет, у Discorbis образуется амёбоидная зигота; ее ядро неоднократно делится, благодаря чему молодой шизонт уже при выходе из цисты размножения содержит 8-16 ядер. В этом отличие от образующихся при шизогонии мерозоитов, которые остаются длительное время одноядерными. У Discorbis дифференцировка на микро- и мегасферические раковины сказываются не в величине их начальной камеры, а в общих размерах и направлении навивания спирали.

Гаметы Spirillina vivipara представляют собою амёбоидные образования размером около 10 μ. В результате попарного слияния гамет образуются амёбоидные зиготы; при этом происходит слияние пронуклеусов - ядер гамет.

У Patellina corrugata Wil1iamson и различных видов рода Discorbis образование зародышей также происходит вне раковины, так как от этой последней остается только крышечка, прикрывающая комочек протоплазмы, в котором происходит образование мерозоитов; перегородки между камерами раковины - сеты, а также ее брюшная стенка растворяются незадолго до начала шизогонии. Иногда перед этим процессом фораминифера окружается цистой, внутри которой и происходит размножение.

Вышедший из материнской раковины или обособившийся от материнской протоплазмы зародыш - мерозоит является, по сути дела, молодым организмом, обладающим всеми основными особенностями взрослого; он состоит из протоплазмы, дифференцированной на эндо- и эктоплазму, и снабжен ядрами, имеет раковину, может самостоятельно передвигаться и питаться при помощи псевдоподий. Поскольку процессы созревания ядра (Le Calvez, 1953) протекают в конце шизогонии, мерозоит гаплоидеи. Подобное состояние сохраняется и во времени дальнейшего роста зародыша, когда он постепенно превращается в гамонта.

Le Calvez (1953) различает гамогонию двух типов: моногамную и пластогамную. В первом случае (рис) образование гамет происходит в изолированных гамонтах, во втором (рис) - до образования гамет - два гамонта или более объединяются в общий так называемый сизигий. При моногамной гамогонии не все ядерное вещество используется при образовании гамет, а лишь небольшая его часть - «микронуклеусы», тогда как остальная погибает. Наоборот, у пластогамных форм при образовании гамет используется все ядерное вещество.

К моногамным видам Le Calvez (1953) относит Elphidium crispum (Linne) (рис), Peneroplis pertusus (Forscal,) Myxotheca arenilega (Schaudinn), 1ridia lucida Le Calvez (рис) и Planorbulina mediterranensis Orbigny.

В результате многократных делений «микронуклеусов» гамонт делается многоядерным. Отдельные ядра становятся центрами образования так называемых жгутиковых гаметоцитов, в результате деления которых надвое по типу обычного продольного деления жгутиконосцев получаются половые элементы - гаметы. Образование гамет происходит всегда внутри материнской раковины, которую в известный момент гаметы покидают в виде роя, через устье; этот процесс происходит обычно ночью. Гаметы известны для целого ряда моногамных видов фораминифер.

К числу пластогамных видов относятся Spirillina vivipara Ehrenberg, Patellina corrugata Williamson, а также Discorbis patelliformis Brady, D. pulvinata Brady и др., относимые обычно к Discorbis s. str., но отличающиеся некоторыми особенностями строения раковины и заслуживающие, возможно, выделения в особый род, для которого Гофкер (1951) предложил особое название Conorbella.

Шаудинн (1895), открывший пластогамию, не связывал ее с половым размножением. Эту связь установил Майерс (1933, 1935, 1936 и 1940); в дальнейшем она была подтверждена исследованиями Ле Кальве (1938) и др.

Для явлений пластогамии у Discorbis (рис) характерно слияние плазмы двух особей в единый - общий сизигий; при этом происходит прочное объединение раковин партнеров. Половые процессы начинаются с взаимной химической активизации, затем осуществляется переход всего ядерного вещества в образующиеся гаметы, отличающиеся относительно крупными размерами и наличием трех жгутов. При образовании сизигия эктоплазма партнеров растворяет брюшную стенку раковины, а также септы. В результате ряда последовательных делений ядра и обособления участков протоплазмы, вокруг конечных продуктов этого деления образуются гаметоциты. Эти последние делятся, по крайней мере, еще раз, образуя упомянутые трехжгутиковые гаметы, остаюшиеся внутри полости, образованной двумя слившимися партнерами, и здесь копулируют попарно.

У Spirillina vivipara Ehrenberg (рис) явления, происходящие при гамогонии, отличаются от того, что наблюдается у Discorbis, во-первых, меньшим количеством гамогонических делений ядра, а во-вторых, амёбоидным характером гамет. Гамонт у Spirillina vivipara существует самостоятельно недолго; вскоре две особи сближаются, сливаются псевдоподиями, после чего окружаются общей цистой. Ядро каждого гамонта делится два, реже три раза подряд; четырехядерные плазмодии партнеров вытекают под свои раковины в полость общей цисты, где каждый плазмодий делится на четыре одноядерных образования, представляющих собою гаметоциты. В результате однократного деления гаметоцитов образуются амёбоидные гаметы, числом восемь из каждого гамонта.

Сходно, по данным Майерса (1933, 1934), протекает жизненный цикл Patellina corrugata Williamson.

В некоторых случаях чередование поколений у фораминифер осложняется за счет того, что между двумя поколениями гамонтов вклинивается не одно, а два поколения шизонтов. Цикл развития протекает не по типу: А-В-А-В-А... (где А - гамонты, а В - шизонты), а по типу: A 1 -А 2 -B-A 1 -А 2 -В-A 1 -А 2 ... (где А 2 представляют собою шизонтов же, но второго поколения). Деления созревания падают в данном случае на конец существования поколения А 2 . Такие случаи приводят к триморфизму раковин, описанному Гофкером (Hofker, 1930).

Ле Кальве (1953) предполагает, что образован не поколения А 2 носит скорее случайный характер и происходит благодаря тому, что при шизогонии некоторый процент мерозоитов образуется без предшествующих делений созревания, т. е. остается диплоидным; такие мерозоиты не могут превратиться в гамонтов (последние, по мнению Ле Кальве, должны быть обязательно гаплоидными) и «повторно» становятся шизонтами.

Наличие закономерной смены трех поколений у некоторых, по крайней мере, форм подтверждается наблюдениями Гофкера (1930) над Streblus beccarii (Linne) var. flevensis Hofker.

Гофкеру удалось показать, что различные генерации Streblus beccarii var. flevensis приурочены к различным временам года. Жизненный цикл этой разновидности является годичным, а отдельные его стадии - сезонными. Зимой и весной встречаются исключительно представители поколения В, т. е. шизонты; зимой они молодые - их раковины образованы двумя-тремя оборотами, а весной, в мае, попадаются уже взрослые особи. Начиная с мая появляются мегасферические особи поколения А 1 , с июля - А 2 . В ноябре удается обнаружить впервые молодь поколения В. В связи с размножением путем шизогонии. В мае и июне отмечается инцистирование форм В. В июле, в связи со второй шизогонией, сопровождающейся делениями созревания, инцистируются формы А 1 . Формы А 2 (гамонты) инцистируются в конце августа - начале сентября, когда имеет место гамогония.

У Spiroplectammina sagittula (Defrance) форма В отличается двухрядным спирально-винтовым текстуляроидным строением как раннего отдела раковины, так и последующих; она однотипна по своему строению - мономорфна. Формы А 1 и А 2 биморфны - сочетают в себе два типа строения, отличаются от микросферической наличием начального отдела, имеющего спиральноплоскостное строение.

Чаще наиболее резко гетероморфное (би- или триморфное) строение раковины бывает выражено у микросферических форм, что особенно хорошо можно видеть на примере различных милиолид (рис). У Bigenerina nodosaria Orbigny биморфное строение выражено в обеих генерациях. Форма А отличается более крупной начальной камерой, меньшими размерами, меньшим общим числом камер и значительно меньшим развитием начального двухрядного, текстуляроидного отдела (рис).

Среди огромной армии живых организмов, населяющих нашу планету, есть и фораминиферы. Это название некоторым людям кажется немного необычным. Носящие его существа также во многом отличаются от привычных нам созданий. Кто это такие? Где обитают? Чем питаются? Каков их жизненный цикл? Какую нишу они заняли в системе классификации животных? В нашей статье мы подробно осветим все эти вопросы.

Описание группы

Фораминиферы - это представители группы протистов, одноклеточные организмы с раковиной. Прежде чем приступить к изучению фораминифер, ознакомимся непосредственно с группой, к которой они принадлежат.

Протисты - множество организмов, входящих в парафилетическую группу, в составе которой находятся все эукариоты, не входившие в состав привычных нам растений, грибов и животных. Ввел это название в 1866 г., однако современное понимание оно приобрело лишь при его упоминании в 1969 г. Робертом Уиттекером, в авторской работе о системе устройства пяти царств. Происходит термин "протисты" от греческого "проти", что значит "первые". Это организмы, с которых, можно сказать, началась жизнь на нашей планете. В соответствии с традиционными стандартами, протисты разветвляются на три ветви: водорослей, грибоподобных организмов и простейших. Все они обладают полифилетической природой и не могут принимать на себя роль таксона.

Протистов не обособляют в соответствии с наличием положительных характеристик. Чаще всего, протисты - общее множество одноклеточных организмов, но вместе с тем, многие их разновидности способны строить структуру колонии. Некоторый ряд представителей может быть многоклеточным.

Общие фенотипические данные

Простейшие фораминиферы обладают наружным скелетом в виде раковины. Преобладающее их количество составляют известняковые и хитиноидные структуры. Лишь иногда попадаются существа с раковиной из посторонних частиц, склеенных посредством деятельности клетки.

Полость, расположенная внутри раковины, посредством многочисленных пор сообщается со средой, присутствующей вокруг организма. Еще имеется устье - отверстие, ведущее в полость раковины. Сквозь поры происходит прорастание тончайших, наружных и ветвящихся ложноножек, которые образуют между собой связь при помощи ретикулоподий. Они необходимы для продвижения клетки по поверхности или в толще воды, а также для добычи пищи. Такие ложноножки образуют особую сеточку, диаметр которой выходит далеко за пределы самой раковины. К такой сети начинают прилипать частички, которые в будущем послужат пищей фораминиферам.

Образ жизни

Фораминиферы относятся к протистам, в основном, морского типа. Существуют формы, населяющие солоноватые и пресные воды. Также можно встретиться представителей видов, обитающих на больших глубинах или в рыхлом илистом дне.

Фораминифер разделяют на планктонных и бентосных. У планктонного раковина считается самым широко распространенным "органом" их биогенной деятельности, которая принимает форму отложений на дне океанов. Однако после отметки в 4 тысячи м. они не наблюдаются, что обуславливается быстрым процессом их растворения в водной толще. Ил из данных организмов покрывает около четверти общей территории планеты.

Данные, полученные благодаря изучению ископаемых фораминифер, позволяют определять возраст отложений, образованных в далеком прошлом. Современные виды имеют очень мелкие размеры, от 0.1 до 1 мм, а вымершие представители могли достигать до 20 см. Большинство раковин представляются песчаными фракциями, вплоть до 61 мкм. Максимальная концентрация наличия фораминифер в морской воде. Их очень много в акватории близ экватора и водах высоких широт. Найдены они и в Марианской впадине. Важно знать, что разнообразие видов и сложность устройства их раковины характерно лишь для экваториальной области. В некоторых местах показатель концентрации может достичь ста тысяч экземпляров в толще одного кубического метра воды.

Понятие о бентосных протистах

Бентосом называют совокупность видов животных, которые населяют толщи грунтов обычных и тех, что на дне водоемов. Океанология рассматривает бентосов - как организмов, обитающих на морском и океаническом дне. Исследователи гидробиологии пресных водоемов, описывают их, как обитателей континентального типа водоемов. Бентосы делятся на животных - зообентосов и растения - фитобентосов. Среди данной разновидности организмов наблюдается большое количество фораминифер.

В зообентосе животных различают по месту обитания, подвижности, внедрению в грунт или способу прикрепления к нему. В соответствии со способом питания, они делятся на хищников, растительноядных и организмы, питающиеся частичками органической природы.

Понятие о планктонных протистах

Виды фораминифер планктонного типа, являются мельчайшими организмами, дрейфующими в толще воды и не умеющими противоборствовать течению (плыть туда, куда им хочется). К таким экземплярам относят некоторые виды бактерий, диатомовые водоросли, простейших, моллюсков, ракообразных, рыбные личинки, яйца и др. Планктон служит едой для большого количества животных, населяющих воды рек, морей, озер и океанов.

Слово «планктон» было введено в оборот речи немецким океанологом В. Гензеном, в последние годы 1880-х.

Особенности устройства раковин

Фораминиферы - это животные, раковины которых классифицируются, в соответствие со способом их образования. Выделяют две формы - секреционную и агглютинированную.

Первый тип характерен тем, что формирование раковины происходит посредством соединения минеральных и органических веществ, которые выделяет само животное.

Второй (агглютинированный) тип раковин формируется путем захвата ряда обломков от скелетов других организмов и частичек песка. Склеивание осуществляется веществом, выделяемым одноклеточным организмом.

Школьный мел в себе содержит большой процент фораминиферовых раковин, которые являются его основным элементом.

Опираясь на состав, выделяют такие типы протистов:

  • Органические фораминиферы - самая древняя форма, встречающаяся в начале палеозоя.
  • Агглютинированные - состоящие из разнообразного рода частиц, вплоть до карбонатного цемента.
  • Секреционные известковые - сложены при помощи кальцита.

Раковины фораминифер в строении различаются по количеству камер. «Дом» организма может состоять из одной камеры или множества. Многокамерные раковины делятся по линейному или спиральному способу устройства. Навивание закруглений в них может происходить клубковидным и планоспиральным, а также трохоидным способом. Существовали фораминиферы, обладающие оритоидным типом раковины. Практически у всех организмов первая камера имеет наименьшие размеры, а самой большой оказывает - последняя. Раковины секреционного типа часто обладают «ребрами жесткости» повышающими механический показатель прочности.

Циклы жизни

Класс фораминиферов характеризуется гапло-диплофазным циклом жизни. В обобщенной схеме это выглядит так: представители гаплоидных поколений претерпевают вследствие чего появляется однотипный ряд гамет с двумя жгутиками. Эти клетки попарно сливаются и формируют целостную структуру зиготы. Из нее в дальнейшем будет развиваться взрослая особь, принадлежащая к поколению агамонт.

Факт того, что при слиянии происходит удвоение хромосомного набора, обуславливает образования диплоидного поколения. Внутри агамонта протекает процесс деления ядра, который протекает уже благодаря мейозу. Пространство вокруг гаплоидного ядра, ставшего таким благодаря редукционному делению, обособляется цитоплазмой и формирует раковину. Это приводит к образованию агамонтов, которые по своему предназначению аналогичны спорам.

Простейшие в природе

Рассмотрим роль и значение фораминифер в природе и жизнедеятельности человека.

Питающиеся бактериальными организмами и остатками органической природы, простейшие проделывают огромную работу по от загрязнения.

Простейшие, среди которых имеется множество фораминифер, обладают высоким показателем плодовитости при наличии определенных условий окружающей среды. Они выполняют роль пищи для мальков.

Эвглены, помимо того, что могут служить пищей другим обитателем водоемов и занимаются их же очисткой, осуществляют процессы фотосинтеза, уменьшая концентрацию CO2 и увеличивая содержание O2 в водах.

Степень загрязнения можно определять при помощи анализа количества эвглен и инфузорий в толще воды. Если в водоеме содержится огромное количество органических соединений, то там будет наблюдаться повышенный показатель числа эвглен. Амебы, чаще всего, сосредоточены там, где содержание веществ органического типа низкое.

«Дома» простейших участвовали в образовании известняковых и меловых ископаемых. Потому они играют важную роль в промышленности, так как образовали вещества, широко используемые человеком.

Данные систематики

В наше время известно около десяти тысяч видов фораминифер, а число известных ископаемых превышает отметку в сорок тысяч. Самыми известными примерами могут служить амебы фораминиферы, милиолидов, глобигерины и т.д. В иерархической таблице таксономических элементов живой природы им было присвоено звание класса, который также называют типом простейших организмов эукариот. Раньше этот домен состоял из пяти подотрядов и включался в единственный отряд Foraminiferida Eichwald. Немного позднее исследователи приняли решение о повышении статуса фораминифер до целого класса. Классификация выделяет в них наличие 15 подклассов и 39 отрядов.

Итоги

Исходя из материала статьи, можно понять, что фораминиферы - это представители протистов, одноклеточные организмы, входящие в надцарство эукариот. Они имеют раковины, которые образуются из двух основных материалов, а именно, из песчинок и из минералов, а также из секретирующих ими же веществ. Фораминиферы занимают важное место в цепи питания. Они оказали огромное влияние на формирование современной картины грунтов планеты.

Фораминиферы - это саркодовые с тонкими, сложно разветвленными ложноножками или псевдоподиями . Тело фораминифер состоит из протоплазмы с одним или несколькими ядрами и заключено в раковину, сообщающуюся с внешней средой через особое отверстие - устье (рис. 2). Помимо устья в стенках раковины имеются отверстия - форамены , которые выполняют ту же функцию, что и устье. Протоплазма фораминифер состоит из наружного слоя - эктоплазмы и внутреннего слоя - эндоплазмы . Эндоплазма выполняет (выстилает) внутреннюю полость раковины.

Она отличается неоднородностью состава, содержит разные включения. Эктоплазма более однородна.

Ложноножки или псевдоподии представляют собой подвижные тонкие выросты эктоплазмы . Они являются органоидами захвата пищи, частично переваривания, извержения. Ложноножки выполняют также дыхательные функции. Длина псевдоподии может в 100 раз превышать толщину и в несколько раз диаметр клетки.

Передвижение фораминифер происходит путем растягивания и сокращения ложноножек. Питаются фораминиферы микроскопическими (водоросли, личинки, простейшие) организмами и детритом.

Строение скелета . Большинство фораминифер имеют раковину. Она может быть секреционной (органического и минерального состава) или агглютинированной (от лат. agglutinare - приклеивать).

Органическая раковина состоит из тектина. Она не сохраняется в ископаемом состоянии.

Агглютинированная, или «песчаная», раковина состоит из зерен кварца, спикул губок,раковин других фораминифер и иных материалов, сцементированных железистым, известковым и, реже, кремневым цементом.

Большинство фораминифер образуют секреционно-известковую раковину. Раковина выделяется протоплазмой.

Стенки раковины имеют различную структуру: зернистую, волокнистую, тонкослоистую. Часто на поверхности видны отверстия (форамены). Это отверстия поровых каналов. Стенка без поровых каналов выглядит фарфоровидной и называется непрободенной . Пористая (прободенная) стенка выглядит стекловидной.

У фузулинид стенка раковины достигает большой сложности и дифференцирована на несколько слоев.

Раковина у фораминифер однокамерная, двухкамерная или многокамерная и имеет разнообразную форму.

При непрерывном росте образуется однокамерная раковина в форме колбочки, шара или трубки.

Двухкамерная раковина состоит из овальной начальной камеры и второй длинной, трубчатой, отделенной от начальной перегородкой. Вторая камера прямая, спирально свернутая или разветвленная.

Многокамерная раковина развивается в результате прерывистого роста. При замедлении роста на раковине образуются перетяжки, отделяющие одну камеру от другой. Вновь образующиеся камеры внутри раковины отделяются перегородками или септами .

Септам на наружной поверхности раковины соответствуют септальные швы.

Наибольшего разнообразия формы достигают многокамерные раковины.

Различают несколько типов строения раковин фораминифер (рис. 3).

Типы строения раковин . Под типом строения раковины понимается закономерность в относительном пространственном расположении ее частей, с чем связана форма раковины.

Различают следующие типы: неправильный, одноосный, спиральный (спирально-плоскостной и спирально-конический), милиолиновый (рис.3).

Неправильный тип строения наиболее примитивный. Раковина лучистая, ветвистая, неправильно-клубковидная. У лучистых и ветвистых раковина обычно однокамерная, у неправильно-клубковидных -двухкамерная.

Вторая камера имеет вид завернутой трубки.

При одноосном типе строения камеры следуют друг за другом по прямой оси. Раковина однокамерная или многокамерная. Конец раковины, с которого начинается рост, называется проксимальным , противоположный конец раковины, на котором расположено устье, называется дистальным .

Одноосные раковины типичны для донных фораминифер. Они свободно лежат или ползают по дну. Иногда такие формы переходят к прикрепленному образу жизни и тогда раковина становится неправильной, стелющейся по субстрату.

Спирально-плоскостной тип характеризуется спиральной осью, лежащей в одной плоскости - плоскости симметрии. Поэтому раковины имеют двустороннюю симметрию. Воображаемая прямая линия, вокруг которой происходит навивание оборотов раковины, называется осью навивания или осью раковины . Она перпендикулярна спиральной оси и по ней измеряется толщина раковины.

Раковины могут быть двухкамерными и многокамерными. Первая камера - начальная, шарообразная, вторая - трубчатая, спирально завернутая (рис. 3).

Многокамерные раковины имеют разнообразную форму, которая зависит от соотношения диаметра и толщины.

Диаметр лежит в плоскости симметрии, он перпендикулярен оси навивания.

Если d > толщины и значительно, раковина имеет дисковидную или чечевицеобразную форму, если d » толщине раковина приобретает шаровидную форму, если толщина > d (значительно!), появляетсяверетеновидная форма.

В раковине различают обороты . Каждый оборот описывает полную окружность. Линии соприкосновения смежных оборотов называются спиральными швами . Если все обороты видны с боковой стороны, раковину называют эволютной (необъемлющей) - рис. 3, 4. У многих форм снаружи виден только последний оборот, который закрывает все предыдущие. Такая раковина называется инволютной (объемлющей). На многих раковинах наблюдается пупок - коническое углубление на каждом боку. У эволютных форм пупок широкий и более или менее глубокий, у инволютных - узкий. Иногда пупок заполнен веществом дополнительного скелета.

Спирально-конический тип строения отличается от спирально-плоскостного расположением спиральной оси не в одной плоскости, а по воображаемой спиральной поверхности. В этих раковинах (рис. 3, 4) различают высоту и диаметр. В зависимости от отношения высоты к диаметру спирально-конические раковины делятся на трохоидные и спирально-винтовые.

Трохоидные - соотношение высоты и диаметра различно, но высота не превышает диаметр.

У спирально-винтовых высота превышает диаметр. Раковины в основном многокамерные. В отдельных оборотах число камер бывает 2, 3, 4, 5, в зависимости от чего различают двухрядные, трехрядные, четырехрядные и пятирядные раковины. Отдельные камеры располагаются друг к другу под определенным углом. Спирально-конические раковины могут быть гетероморфными , т.е. трехрядная может перейти к двухрядному или другому типу строения.

У спирально-конических раковин сторону, на которой видны все обороты спирали называют дорзальной или спинной. Сторона, на которой видно меньше оборотов или один последний, называется вентральной или брюшной .

Правильно-клубковидный или милиолиновый тип строения - это обособленная группа спирально-плоскостных раковин. Камеры располагаются в нескольких взаимнопересекающихся плоскостях или в одной плоскости, образуя клубок.

Циклические раковины представляют собой разновидность спирально-плоскостных, встречаются сравнительно редко (нумулитиды). Камеры на ранних стадиях располагаются по спирали, а в дальнейшем - по концентрическим окружностям.

Дополнительный скелет представляет собой вторичные отложения скелетного вещества на наружной поверхности раковины или внутри нее. Наружный дополнительный скелет представлен ребрами, шипами, бугорками. Иногда это пупочные диски, выполняющие область пупка. Внутренние скелетные образования встречаются в отрядах фузулинид, эндотирид и нуммулитид.

Размножение. В процессе размножения фораминифер наблюдается чередование поколений - бесполого и полового. В основе того и другого процесса лежит деление клетки. У многокамерных фораминифер один и тот же вид производит 2 типа раковин: мегасферическую с большой начальной камерой и небольшим числом последующих камер и микросферическую с маленькой начальной камерой и многочисленными последующими камерами. Микросферическая раковина больше мегасферической. Она содержит много ядер, которые в беспорядке рассеяны в протоплазме. Мегасферическая особь имеет одно ядро. Она образуется в процессе полового, а микросферическая - в процессе бесполого размножения. Наличие двух типов раковин у одного вида называется диморфизмом .

Экология и тафономия фораминифер .

Современные фораминиферы составляют значительную часть планктона тропической и субтропической зон, за пределы которых они выносятся течениями. Заселяют они и дно сублиторали. Континентальные сублиторали фораминиферы обитают между песчинками грунта в заполненных водой капиллярных пространствах. Воды либо слабо соленые, либо пресные.

На развитие морских фораминифер влияет освещенность и пища (одноклеточные водоросли и некоторые бактерии).

Попадая в осадок после гибели животного раковины фораминифер привносят в него углекислый кальций, магний, оксиды железа и др. продукты жизнедеятельности.

В современных осадках тепловодных бассейнов бентосные фораминиферы немногочисленны и являются как бы примесью к основной части осадка.

В рифогенных отложениях современных морей фораминиферы относятся к породообразующим (наряду с кораллами, известковыми водорослями и др. организмами).

Меньшее значение имеют бентосные фораминиферы батиальной области. В абиссальной области на дне накапливаются агглютинировнные раковинки фораминифер (до 20 % осадка).

В геологическом прошлом фораминиферы неоднократно были породообразующими. Карбонатные породы среднего карбона на Русской платформе и на западном склоне Урала (Пермская область, Башкирия и Оренбургская область) почти нацело сложены раковинами фузулинид.

В позднем карбоне и ранней перми вдоль западного склона Урала в мелком теплом море формировались куполообразные рифы, в значительной части состоящие из фузулиновых и других органогенных известняков.

Породоообразующими были и бентосные фораминиферы поздней перми (Урал, Тянь-Шань, Памир) и всего мелового периода. Толщи мела состоят из раковинок бентосных и планктонных фораминифер. Велика породообразующая роль бентосных фораминифер (нуммулитид) в палеогеновых отложениях Европейской части России, Средней и Центральной Азии, Западной Европы.

Загрузка...