domvpavlino.ru

Бестрансформаторный преобразователь постоянного напряжения в переменное. Маломощные бестранформаторные преобразователи напряжения на конденсаторах (18 схем). Преобразователи-инверторы с задающим генератором на кмоп-элементах

в настоящей главе в первую очередь будут рассмотрены бестрансформаторные преобразователи напряжения, как прави­ло, состоящие из генератора прямоугольных импульсов и умно­жителя напряжения. Обычно таким образом удается повысить без заметных потерь напряжение не более чем в несколько раз, а так­же получить на выходе преобразователя напряжение другого зна­ка. Ток нагрузки подобных преобразователей крайне невелик - обычно единицы, реже десятки мА.

Задающий генератор бестрансформаторных преобразовате­лей напряжения может быть выполнен по типовой схеме, базовый элемент 1 которой (рис. 1.1) выполнен на основе симметрично­го мультивибратора. В качестве примера элементы блока мо­гут иметь следующие параметры: R1=R4=1 кОм; R2=R3=10 кОм; С1=С2=0,01 мкФ. Транзисторы - маломощные, например, КТ315. Для повышения мощности выходного сигнала использован типо­вой блок усилителя 2.

Рис. 1.1. Схемы базовых элементов бестрансформаторных пре­образователей: 1 - задающий генератор; 2 - типовой блок усилителя

Бестрансформаторный преобразователь напряжения состо­ит из двух типовых элементов (рис. 1.2): задающего генератора 1 и двухтактного ключа-усилителя 2, а также умножителя напряже­ния (рис. 1.1, 1.2). Преобразователь работает на частоте 400 Гц и обеспечивает при напряжении питания 12,5 В выходное

напряжение 22 В при токе нагрузки до 100 мА (параметры эле­ментов: R1=R4=390 Ом, R2=R3=5,6 кОм, С1=С2=0,47 мкФ). В бло­ке 1 использованы транзисторы КТ603А - Б; в блоке 2 - ГТ402В{Г) и ГТ404В{Г).

Схема бестрансформаторного преобразователя с уд­воением напряжения

Схемы преобразователей напряжения на основе типо­вого блока

Преобразователь напряжения , построенный на основе типового блока, описанного выше (рис. 1.1), можно применить для получения выходных напряжений разной полярности так, как это показано на рис. 1.3.

Для первого варианта на выходе формируются напряжения -1-10 Б и -10 Б; для второго - -1-20 Б и -10 Б при питании устройст­ва от источника напряжением 12 Б.

Для питания тиратронов напряжением примерно 90 Б при­менена схема преобразователя напряжения по рис. 1.4 с задаю­щим генератором 1 и параметрами элементов: R1=R4=1 кОм,

R2=R3=10 кОм, С1 =С2=0,01 мкФ . Здесь могут быть использо­ваны широко распространенные маломощные транзисторы. Умно­житель имеет коэффициент умножения 12 и при имеющемся напряжении питания можно было бы ожидать на выходе примерно 200 В, однако реально из-за потерь это напряжение составляет всего 90 В, и величина его быстро падает с увеличением тока нагрузки.

Рис. 1.4. Схема преобразователя напряжения с многокаскадным умножителем

Рис. 1.5. Схема инвертора напряжения

Для получения инвертированного выходного напряжения также может быть использован преобразователь на основе типо­вого узла (рис. 1.1). На выходе устройства (рис. 1.5) образуется напряжение, противоположное по знаку напряжению питания . По абсолютной величине это напряжение несколько ниже напряжения питания, что обусловлено падением напряжения (по­терями напряжения) на полупроводниковых элементах. Чем ниже напряжение питания схемы и чем выше ток нагрузки, тем больше эта разница.

Преобразователь (удвоитель) напряжения (рис. 1.6) содер­жит задающий генератор 1 (1 на рис. 1.1), два усилителя 2 (2 на рис. 1.1) и выпрямитель по мостовой схеме (VD1 -VD4) .

Блок 1: R1=R4=100 Ом; R2=R3=10 кОм; С1=С2=0,015 мкФ, транзисторы КТ315.

Известно, что мощность, передаваемая из первичной цепи во вторичную, пропорциональна рабочей частоте преобразо­вания, поэтому одновременно с ее ростом уменьшаются емко­сти конденсаторов и, следовательно, габариты и стоимость устройства.

Данный преобразователь обеспечивает выходное напряже­ние 12 Б (на холостом ходу). При сопротивлении нагрузки 100 Ом выходное напряжение снижается до 11 Б; при 50 Ом - до 10 Б; а при 10 Ом -до 7 Б.

Рис. 1.6. Схема удвоителя напряжения повышенной мощности

Схема преобразователя для получения разнополярных выходных напряжений

Преобразователь напряжения (рис. 1.7) позволяет получить на выходе два разнополярных напр’яжения с общей средней точкой . Такие напряжения часто используют для питания операцион­ных усилителей. Выходные напряжения близки по абсолютной величине напряжению питания устройства и при изменении его ве­личины изменяются одновременно.

Транзистор VT1 - КТ315, диоды VD1 и У02-Д226.

Блок 1: R1=R4=1,2 кОм; R2=R3=22 кОм; С1=С2=0,022 мкФ, транзисторы КТ315.

Блок 2: транзисторы ГТ402, ГТ404.

Выходное сопротивление удвоителя - 10 Ом. В режиме хо­лостого хода суммарное выходное напряжение на конденсаторах С1 и С2 равно 19,25 В при токе потребления 33 мА. При увеличе­нии тока нагрузки от 100 до 200 мА это напряжение снижается с 18,25 до 17,25 Б.

Задающий генератор преобразователя напряжения (рис. 1.8) выполнен на двух /ШО/7-элементах . К его выходу подключен каскад усиления на транзисторах VT1 и VT2. Инвертированное на­пряжение на выходе устройства с учетом потерь преобразования на несколько процентов (или десятков процентов - при низко­вольтном питании) меньше входного.

Рис. 1.8. Схема преобразователя напряжения-инвертора с за­дающим генератором на КМОП-элементах

Похожая схема преобразователя изображена на следую­щем рисунке (рис. 1.9). Преобразователь содержит задающий ге­нератор на /СМО/7-микросхеме, каскад усиления на транзисторах VT1 и VT2, схемы удвоения выходного импульсного напряжения, конденсаторные фильтры и схему формирования искусственной средней точки на основе пары стабилитронов . На выходе преобразователя формируются следующие напряжения: -i-15 Б при токе нагрузки 13…15 мЛ и -15 Б при токе нагрузки 5 мА.

На рис. 1.10 показана схема выходного узла бестрансформа­торного преобразователя напряжения . Этот узел фактически

Схема преобразователя напряжения для формирова­ния разнополярных напряжений с задающим генерато­ром на КМОП-элементах

Рис. 1.10. Схема выходного каскада бестрансформаторного пре­образователя напряжения

является усилителем мощности. Для управления им можно исполь­зовать генератор импульсов, работающий на частоте ^0 кГц.

Без нагрузки преобразователь с таким усилителем мощно­сти потребляет ток около 5 мА. Выходное напряжение приближа­ется к 18 Б (удвоенному напряжению питания). При токе нагрузки 120 мА выходное напряжение уменьшается до 16 Б при уровне пульсаций 20 мВ. КПД устройства около 85%, выходное сопротив­ление - около 10 Ом.

При работе узла от задающего генератора на КМОП-эпе-ментах установка резисторов R1 и R2 не обязательна, но для ог­раничения выходного тока микросхемы желательно соединить ее выход с транзисторным усилителем мощности через резистор со­противлением в несколько кОм.

Простая схема преобразователя напряжения для управле­ния варикапами многократно воспроизведена в различных жур­налах . Преобразователь вырабатывает 20 В при питании от 9 Б, и такая схема показана на рис. 1.11. На транзисторах VT1 и VT2 собран генератор импульсов, близких к прямоугольным. Дио­ды VD1 - VD4 и конденсаторы С2 - С5 образуют умножитель напряжения, а резистор R5 и стабилитроны VD5, VD6 - парамет­рический стабилизатор напряжения.

Рис. 1.11. Схема преобразователя напряжения для варикапов

Рис. 1.12. Схема преобразователя напряжения на КМОП-микросхеме

Простой преобразователь напряжения на одной лишь К561ЛН2-микросхеме с минимальным числом навесных элементов можно собрать по схеме на рис. 1.12.

Основные параметры преобразователя при разных напря­жениях питания и токах нагрузки приведены в таблице 1.1.

Таблица 1.1. Параметры преобразователя напряжения (рис. 1.12)

Uпит Iвых, мА Uвых, В
10 5 17
10 10 16
10 15 14,5
15 5 27,5
15 10 26,5
15 15 25,5

Схема выходного каскада формирователя двухполяр-ного напряжения

Для преобразования напряжения одного уровня в двухпо-лярное выходное напряжение может быть использован преобра­зователь с выходным каскадом по схеме на рис. 1.13 . При входном напряжении преобразователя 5 Б на выходе полу­чаются напряжения -i-8 Б и -8 Б при токе нагрузки 30 мА. КПД преобразователя составил 75%. Значение КПД и величину вы­ходного напряжения можно увеличить за счет использования в выпрямителе-умножителе напряжения диодов Шотки. При уве­личении напряжения питания до 9 Б выходные напряжения воз­растают до 15 Б.

Приблизительный аналог транзистора 2N5447 - КТ345Б; 2N5449 - КТ340Б. В схеме можно использовать и более рас­пространенные элементы, например, транзисторы типа КТ315, КТ361.

Для схем преобразователей напряжения, построенных по принципу умножителей импульсного напряжения, могут быть ис­пользованы самые разнообразные генераторы сигналов прямо­угольной формы. Такие генераторы часто строят на микросхеме КР1006ВИ1 (рис. 1.14) . Выходной ток этой микросхемы достаточно большой (100 мА) и часто можно обойтись без кас­кадов дополнительного усиления. Генератор на микросхеме DA1 {КР1006ВИ1) вырабатывает прямоугольные импульсы, частота следования которых определяется элементами R1, R2, С2. Эти импульсы с вывода 3 микросхемы подаются на умножитель на­пряжения. К выходу умножителя напряжения подключен рези-стивный делитель R3, R4, напряжение с которого поступает на вход «сброс» (вывод 4) микросхемы DA1. Параметры этого де­лителя подобраны таким образом, что, если выходное напряже­ние по абсолютной величине превьюит входное (напряжение питания), генерация прекращается. Точное значение выходного напряжения можно регулировать подбором сопротивлений рези­сторов R3 и R4.

Схема преобразователя-инвертора напряжения с за­дающим генератором на микросхеме КР1006ВИ1

Характеристики преобразователя - инвертора напряжения (рис. 1^14) приведены в табл. 1.2.

На следующем рисунке показана еще одна схема преобра­зователя напряжения на мтросхеме КР1006ВИ1 (рис. 1.15). Рабочая частота задающего генератора 8 кГц. На его выходе включен транзисторный усилитель и выпрямитель, собранный по схеме удвоения напряжения. При напряжении источника питания 12 Б на выходе преобразователя получается 20 Б. Потери преоб­разователя обусловлены падением напряжения на диодах выпря­мителя-удвоителя напряжения.

Таблица 1.2. Характеристики преобразователя-инвертора напряжения (рис. 1.14)

Uпит, В Iвых, мА Iпотреб, мА КПД, %
6 3,5 13 27
7 6 22 28
8 11 31 35
10 18 50 36
12 28 70 40

Схема преобразователя напряжения с микросхемой КР1006ВИ1 и усилителем мощности

На основе этой же микросхемы (рис. 1.16) может быть соз­дан инвертор напряжения . Рабочая частота преобразова­ния - 18 кГц, скважность импульсов - 1,2.

Как и для других подобных устройств, выходное напряже-ние преобразователя существенно зависит от тока нагрузки.

ТТЛ и /СМОГ/-микросхемы могут быть использованы для выпрямления тока. Развивая тему, автор этой идеи Д. Катберт предложил бестрансформаторный преобразователь напряжения-инвертор на основе ГГ//-микросхем (рис. 1.17).

Устройство содержит две микросхемы: DDI и DD2. Первая из них работает в качестве генератора прямоугольных импульсов с частотой 7 кГц (элементы DDI .1 и DDI .2), к выходу которого под­ключен инвертор DD1.3 - DDI.6. Вторая микросхема (DD2) вклю­чена необычным образом (см. схему): она выполняет функцию

Схема формирователя напряжения отрицательной полярности

Рис. 1.17. Схема инвертора напряжения на основе двух микросхем

диодов. Все ее элементы-инверторы для увеличения нагрузочной способности преобразователя включены параллельно.

В результате такого включения на выходе устройства полу­чается инвертированное напряжение-U, примерно равное (по аб­солютной величине) напряжению питания. Напряжение питания устройства с 74НС04 может быть от 2 до 7 В. Примерный отечественный аналог - ГГ//-микросхема типа К555ЛН1 (работает в более узком диапазоне питающих напряже­ний) или /СМОC/-микросхем а КР1564ЛН1.

Максимальный выходной ток преобразователя достигает 10 мА. При отключенной нагрузке устройство практически не по­требляет ток.

В развитие рассмотрен>ной выше идеи использования защит­ных диодов /C/WO/7-микросхем, имеющихся на входах и выходах /СЛ//0/7-элементов, рассмотрим работу преобразователя напряже­ния , выполненного на двух микросхемах DDI и DD2 типа К561ЛА7 {р\лс. 1.18). На первой из них собран генератор, работаю­щий на частоте 60 кГц. Вторая микросхема выполняет функцию мостового вьюокочастотного выпрямителя.

Рис. 1.18. Схема точного преобразователя полярности на двух микросхемах К561ЛА7

В процессе работы преобразователя на выходе формирует­ся напряжение отрицательной полярности, с большой точностью при вьюокоомной нагрузке повторяющее напряжение питания во всем диапазоне паспортных значений питающих напряжений (от 3 до 15 8).

С помощю бестрансформаторных преобразователей можно получить разнополярные напряжения и повысить в несколько раз напряжение источника питания. В связи с тем что в бестрансформаторных преобразователях напряжение повышается за счет суммирования напряжений на конденсаторах, их целесообразно изготовлять для небольших токов нагрузки, которые не превышают 0,5 А.

На рис. 64,а показана принципиальная схема слаботочного однополупериодного бестрансформаторного преобразователя напряжения. На ток нагрузки до 10 мА, который позволяет получать удвоенное или утроенное напряжение источника питания, а также напряжение обратной полярности. Преобразователь работает от источника постоянного тока напряжением 3...12 В и имеет КПД около 50%.

Устройство состоит из задающего генератора, собранного на транзистора VT1 и VT2 по схеме мультивибратора, и двух удвоителей напряжения на диодах VD1-VD4 и конденсаторах С2 и С5.

При открытом транзисторе VT1 через диод VD1 заряжается конденсатор С2 до напряжения источника питания. После закрывания этого транзистора отрицательная обкладка конденсатора С2 через резистор R1 соединяется с плюсовым проводом источника питания. При этом на плюсовой обкладке конденсатора С2 образуется положительное напряжение по отношению плюсового электрода источника питания, которое через диод VD2 заряжает конденсатор С1, Таким образом, на выходе + Uвых получается удвоенное напряжение источника питания по отношению к общему проводу.

При закрытом транзисторе VT2 через резистор R4 и диод VD3 заряжается конденсатор С5 до напряжения источника питания. При открывании транзистора VT2 положительная обкладка этого конденсатора подключается к общему проводу устройства. На отрицательной обкладке конденсатора С5 образуется отрицательное напряжение ото отношению к общему проводу преобразователя. От этого напряжения через диод VD4 заряжается конденсатор С6.

При этом на выходе -Uвых2 будет отрицательное напряжение по отношению к общему проводу, значение которого соответствует напряжению источника питания. Между выходами + Uвых1 -Uвых2 будет приложено утроенное напряжение источника питания.

Для получения двухполупериодного преобразования, при котором удваивается нагрузочная способность по току, необходимо к транзистору VT1 дополнительно подключить узел удвоения, аналогичный подключенному к транзистору VT2 (С5, С6, VD3, VD4), а к транзистору VT2 - узел удвоения, подключенный к транзистору VT1 (С2, С2, VD1, VD2), и выходы этих умов соответственно соединить. Конденсаторы С1 и С6 фильтра в этом случает будут общими на два полупериода преобразования. На рис. 64,б изображена схема двухполупериодного бестрансформаторного преобразования напряжения с транзисторными ключами, рассчитанного на ток нагрузки до 0,5 А. С выходов преобразователя можно снимать удвоенное или утроенное напряжение источника питания, аналогично первому варианту устройства.

Задающий генератор Г собран по схеме мультивибратора на транзисторах VT3 и VT4. Транзисторы VT1, VT2 и VT5, VT6 использованы для усиления тока транзисторов мультивибратора и работают в ключевом режиме. В один полупериод мультивибратора открыты транзисторы VT1, VT3 VT6 В это время конденсаторы С2 в С5 заряжаются, а С1 и С6 разряжаются. В другой полупериод эти транзисторы закрываются, а транзисторы VT2, VT4, VT5 открываются, конденсаторы C1 и С6 заряжаются, а С2 и С5 разряжаются. Зарядка конденсаторов происходит через диоды VD2, VD4, VD5, VD7, разрядка - через VD1, VD3, VD6, VD8.

Преобразователь можно собрать с конденсаторным умножителем напряжения по схеме, показанной на рис. 64,в. С выхода + Uвых1 поступает почти утроенное напряжение источника питания при токе нагрузки около 200 мА. При увеличении ступеней умножения напряжения допустимый ток нагрузки преобразователя уменьшается.

Бестрансформаторный преобразователь можно собрать с задающим генератором на микросхеме, как показано на рис. 65. Диодом VD1 устанавливается скважность мультивибратора на элементах DD1.1 и DD1.2, равная 2. При напряжении высокого уровня на выходах элементов DD1.3 и DD1.4 открыты транзисторы VT2, VT4 и заряжается через диод VD2 конденсатор С2. После переключения мультивибратора в другое состояние, при котором па выходных элементах устанавливается напряжение низкого уровня, открываются транзисторы VT1, VT3, и через диод VD3 заряжается конденсатор С3 до напряжения источника питания. Суммарное напряжение на конденсаторах С2, С3 соответствует удвоенному напряжению источника питания.

Коэффициент полезного действия преобразователей с транзисторными ключами - около 50%. Непроизводительные потери в преобразователе происходят в основном во время переключения транзисторов. Для повышения КПД преобразователей следует использовать в них высокочастотные транзисторы и диоды. Транзисторы должны работать в режиме неглубокого насыщения и иметь статический коэффициент передачи тока не менее 50. Диоды при небольшом напряжении питания желательно применять германиевые, поскольку онн имеют меньшее прямое падение напряжения по сравнению с кремниевыми.

При налаживании преобразователей необходимо временно отключить обратную положительную связь в мультивибраторе, отсоединив один из конденсаторов: на рис. 64,б - С3 или С4; на рис. 65 - С1. Затем подбором резисторов в базовых цепях транзисторов установить их в режим, при котором напряжение коллектор - эмиттер не превышает 0,5 В.

в настоящей главе в первую очередь будут рассмотрены бестрансформаторные преобразователи напряжения, как прави­ло, состоящие из генератора прямоугольных импульсов и умно­жителя напряжения. Обычно таким образом удается повысить без заметных потерь напряжение не более чем в несколько раз, а так­же получить на выходе преобразователя напряжение другого зна­ка. Ток нагрузки подобных преобразователей крайне невелик - обычно единицы, реже десятки мА.

Задающий генератор бестрансформаторных преобразовате­лей напряжения может быть выполнен по типовой схеме, базовый элемент 1 которой (рис. 1.1) выполнен на основе симметрично­го мультивибратора. В качестве примера элементы блока мо­гут иметь следующие параметры: R1=R4=1 кОм; R2=R3=10 кОм; С1=С2=0,01 мкФ. Транзисторы - маломощные, например, КТ315. Для повышения мощности выходного сигнала использован типо­вой блок усилителя 2.

Рис. 1.1. Схемы базовых элементов бестрансформаторных пре­образователей: 1 - задающий генератор; 2 - типовой блок усилителя

Бестрансформаторный преобразователь напряжения состо­ит из двух типовых элементов (рис. 1.2): задающего генератора 1 и двухтактного ключа-усилителя 2, а также умножителя напряже­ния (рис. 1.1, 1.2). Преобразователь работает на частоте 400 Гц и обеспечивает при напряжении питания 12,5 В выходное

напряжение 22 В при токе нагрузки до 100 мА (параметры эле­ментов: R1=R4=390 Ом, R2=R3=5,6 кОм, С1=С2=0,47 мкФ). В бло­ке 1 использованы транзисторы КТ603А - Б; в блоке 2 - ГТ402В{Г) и ГТ404В{Г).

Схема бестрансформаторного преобразователя с уд­воением напряжения

Схемы преобразователей напряжения на основе типо­вого блока

Преобразователь напряжения , построенный на основе типового блока, описанного выше (рис. 1.1), можно применить для получения выходных напряжений разной полярности так, как это показано на рис. 1.3.

Для первого варианта на выходе формируются напряжения -1-10 Б и -10 Б; для второго - -1-20 Б и -10 Б при питании устройст­ва от источника напряжением 12 Б.

Для питания тиратронов напряжением примерно 90 Б при­менена схема преобразователя напряжения по рис. 1.4 с задаю­щим генератором 1 и параметрами элементов: R1=R4=1 кОм,

R2=R3=10 кОм, С1 =С2=0,01 мкФ . Здесь могут быть использо­ваны широко распространенные маломощные транзисторы. Умно­житель имеет коэффициент умножения 12 и при имеющемся напряжении питания можно было бы ожидать на выходе примерно 200 В, однако реально из-за потерь это напряжение составляет всего 90 В, и величина его быстро падает с увеличением тока нагрузки.

Рис. 1.4. Схема преобразователя напряжения с многокаскадным умножителем

Рис. 1.5. Схема инвертора напряжения

Для получения инвертированного выходного напряжения также может быть использован преобразователь на основе типо­вого узла (рис. 1.1). На выходе устройства (рис. 1.5) образуется напряжение, противоположное по знаку напряжению питания . По абсолютной величине это напряжение несколько ниже напряжения питания, что обусловлено падением напряжения (по­терями напряжения) на полупроводниковых элементах. Чем ниже напряжение питания схемы и чем выше ток нагрузки, тем больше эта разница.

Преобразователь (удвоитель) напряжения (рис. 1.6) содер­жит задающий генератор 1 (1 на рис. 1.1), два усилителя 2 (2 на рис. 1.1) и выпрямитель по мостовой схеме (VD1 -VD4) .

Блок 1: R1=R4=100 Ом; R2=R3=10 кОм; С1=С2=0,015 мкФ, транзисторы КТ315.

Известно, что мощность, передаваемая из первичной цепи во вторичную, пропорциональна рабочей частоте преобразо­вания, поэтому одновременно с ее ростом уменьшаются емко­сти конденсаторов и, следовательно, габариты и стоимость устройства.

Данный преобразователь обеспечивает выходное напряже­ние 12 Б (на холостом ходу). При сопротивлении нагрузки 100 Ом выходное напряжение снижается до 11 Б; при 50 Ом - до 10 Б; а при 10 Ом -до 7 Б.

Рис. 1.6. Схема удвоителя напряжения повышенной мощности

Схема преобразователя для получения разнополярных выходных напряжений

Преобразователь напряжения (рис. 1.7) позволяет получить на выходе два разнополярных напр’яжения с общей средней точкой . Такие напряжения часто используют для питания операцион­ных усилителей. Выходные напряжения близки по абсолютной величине напряжению питания устройства и при изменении его ве­личины изменяются одновременно.

Транзистор VT1 - КТ315, диоды VD1 и У02-Д226.

Блок 1: R1=R4=1,2 кОм; R2=R3=22 кОм; С1=С2=0,022 мкФ, транзисторы КТ315.

Блок 2: транзисторы ГТ402, ГТ404.

Выходное сопротивление удвоителя - 10 Ом. В режиме хо­лостого хода суммарное выходное напряжение на конденсаторах С1 и С2 равно 19,25 В при токе потребления 33 мА. При увеличе­нии тока нагрузки от 100 до 200 мА это напряжение снижается с 18,25 до 17,25 Б.

Задающий генератор преобразователя напряжения (рис. 1.8) выполнен на двух /ШО/7-элементах . К его выходу подключен каскад усиления на транзисторах VT1 и VT2. Инвертированное на­пряжение на выходе устройства с учетом потерь преобразования на несколько процентов (или десятков процентов - при низко­вольтном питании) меньше входного.

Рис. 1.8. Схема преобразователя напряжения-инвертора с за­дающим генератором на КМОП-элементах

Похожая схема преобразователя изображена на следую­щем рисунке (рис. 1.9). Преобразователь содержит задающий ге­нератор на /СМО/7-микросхеме, каскад усиления на транзисторах VT1 и VT2, схемы удвоения выходного импульсного напряжения, конденсаторные фильтры и схему формирования искусственной средней точки на основе пары стабилитронов . На выходе преобразователя формируются следующие напряжения: -i-15 Б при токе нагрузки 13…15 мЛ и -15 Б при токе нагрузки 5 мА.

На рис. 1.10 показана схема выходного узла бестрансформа­торного преобразователя напряжения . Этот узел фактически

Схема преобразователя напряжения для формирова­ния разнополярных напряжений с задающим генерато­ром на КМОП-элементах

Рис. 1.10. Схема выходного каскада бестрансформаторного пре­образователя напряжения

является усилителем мощности. Для управления им можно исполь­зовать генератор импульсов, работающий на частоте ^0 кГц.

Без нагрузки преобразователь с таким усилителем мощно­сти потребляет ток около 5 мА. Выходное напряжение приближа­ется к 18 Б (удвоенному напряжению питания). При токе нагрузки 120 мА выходное напряжение уменьшается до 16 Б при уровне пульсаций 20 мВ. КПД устройства около 85%, выходное сопротив­ление - около 10 Ом.

При работе узла от задающего генератора на КМОП-эпе-ментах установка резисторов R1 и R2 не обязательна, но для ог­раничения выходного тока микросхемы желательно соединить ее выход с транзисторным усилителем мощности через резистор со­противлением в несколько кОм.

Простая схема преобразователя напряжения для управле­ния варикапами многократно воспроизведена в различных жур­налах . Преобразователь вырабатывает 20 В при питании от 9 Б, и такая схема показана на рис. 1.11. На транзисторах VT1 и VT2 собран генератор импульсов, близких к прямоугольным. Дио­ды VD1 - VD4 и конденсаторы С2 - С5 образуют умножитель напряжения, а резистор R5 и стабилитроны VD5, VD6 - парамет­рический стабилизатор напряжения.

Рис. 1.11. Схема преобразователя напряжения для варикапов

Рис. 1.12. Схема преобразователя напряжения на КМОП-микросхеме

Простой преобразователь напряжения на одной лишь К561ЛН2-микросхеме с минимальным числом навесных элементов можно собрать по схеме на рис. 1.12.

Основные параметры преобразователя при разных напря­жениях питания и токах нагрузки приведены в таблице 1.1.

Таблица 1.1. Параметры преобразователя напряжения (рис. 1.12)

Uпит Uвых, В

Схема выходного каскада формирователя двухполяр-ного напряжения

Для преобразования напряжения одного уровня в двухпо-лярное выходное напряжение может быть использован преобра­зователь с выходным каскадом по схеме на рис. 1.13 . При входном напряжении преобразователя 5 Б на выходе полу­чаются напряжения -i-8 Б и -8 Б при токе нагрузки 30 мА. КПД преобразователя составил 75%. Значение КПД и величину вы­ходного напряжения можно увеличить за счет использования в выпрямителе-умножителе напряжения диодов Шотки. При уве­личении напряжения питания до 9 Б выходные напряжения воз­растают до 15 Б.

Приблизительный аналог транзистора 2N5447 - КТ345Б; 2N5449 - КТ340Б. В схеме можно использовать и более рас­пространенные элементы, например, транзисторы типа КТ315, КТ361.

Для схем преобразователей напряжения, построенных по принципу умножителей импульсного напряжения, могут быть ис­пользованы самые разнообразные генераторы сигналов прямо­угольной формы. Такие генераторы часто строят на микросхеме КР1006ВИ1 (рис. 1.14) . Выходной ток этой микросхемы достаточно большой (100 мА) и часто можно обойтись без кас­кадов дополнительного усиления. Генератор на микросхеме DA1 {КР1006ВИ1) вырабатывает прямоугольные импульсы, частота следования которых определяется элементами R1, R2, С2. Эти импульсы с вывода 3 микросхемы подаются на умножитель на­пряжения. К выходу умножителя напряжения подключен рези-стивный делитель R3, R4, напряжение с которого поступает на вход «сброс» (вывод 4) микросхемы DA1. Параметры этого де­лителя подобраны таким образом, что, если выходное напряже­ние по абсолютной величине превьюит входное (напряжение питания), генерация прекращается. Точное значение выходного напряжения можно регулировать подбором сопротивлений рези­сторов R3 и R4.

Схема преобразователя-инвертора напряжения с за­дающим генератором на микросхеме КР1006ВИ1

Характеристики преобразователя - инвертора напряжения (рис. 1^14) приведены в табл. 1.2.

На следующем рисунке показана еще одна схема преобра­зователя напряжения на мтросхеме КР1006ВИ1 (рис. 1.15). Рабочая частота задающего генератора 8 кГц. На его выходе включен транзисторный усилитель и выпрямитель, собранный по схеме удвоения напряжения. При напряжении источника питания 12 Б на выходе преобразователя получается 20 Б. Потери преоб­разователя обусловлены падением напряжения на диодах выпря­мителя-удвоителя напряжения.

Таблица 1.2. Характеристики преобразователя-инвертора напряжения (рис. 1.14)

Uпит, В

Iпотреб, мА

Схема преобразователя напряжения с микросхемой КР1006ВИ1 и усилителем мощности

На основе этой же микросхемы (рис. 1.16) может быть соз­дан инвертор напряжения . Рабочая частота преобразова­ния - 18 кГц, скважность импульсов - 1,2.

Как и для других подобных устройств, выходное напряже-ние преобразователя существенно зависит от тока нагрузки.

ТТЛ и /СМОГ/-микросхемы могут быть использованы для выпрямления тока. Развивая тему, автор этой идеи Д. Катберт предложил бестрансформаторный преобразователь напряжения-инвертор на основе ГГ//-микросхем (рис. 1.17).

Устройство содержит две микросхемы: DDI и DD2. Первая из них работает в качестве генератора прямоугольных импульсов с частотой 7 кГц (элементы DDI .1 и DDI .2), к выходу которого под­ключен инвертор DD1.3 - DDI.6. Вторая микросхема (DD2) вклю­чена необычным образом (см. схему): она выполняет функцию

Схема формирователя напряжения отрицательной полярности

Рис. 1.17. Схема инвертора напряжения на основе двух микросхем

диодов. Все ее элементы-инверторы для увеличения нагрузочной способности преобразователя включены параллельно.

В результате такого включения на выходе устройства полу­чается инвертированное напряжение-U, примерно равное (по аб­солютной величине) напряжению питания. Напряжение питания устройства с 74НС04 может быть от 2 до 7 В. Примерный отечественный аналог - ГГ//-микросхема типа К555ЛН1 (работает в более узком диапазоне питающих напряже­ний) или /СМОC/-микросхем а КР1564ЛН1.

Максимальный выходной ток преобразователя достигает 10 мА. При отключенной нагрузке устройство практически не по­требляет ток.

В развитие рассмотрен>ной выше идеи использования защит­ных диодов /C/WO/7-микросхем, имеющихся на входах и выходах /СЛ//0/7-элементов, рассмотрим работу преобразователя напряже­ния , выполненного на двух микросхемах DDI и DD2 типа К561ЛА7 {рлс. 1.18). На первой из них собран генератор, работаю­щий на частоте 60 кГц. Вторая микросхема выполняет функцию мостового вьюокочастотного выпрямителя.

Рис. 1.18. Схема точного преобразователя полярности на двух микросхемах К561ЛА7

Малогабаритный прерыватель тока на КМОП микросхеме

Коммутатор выполнен с задающим генератором на КМОП инверторах. Частота автогенератора зависит от номиналов C2-R1. Так как полевой транзистор с изолированным затвором управляется статическим зарядом и не требует большого тока в…….

Стабилизатор напряжения на компаратореОсновные технические характеристики:Выходное напряжение, В ……………………………………………………. 5Ток нагрузки, А …………………………………………………………………… 2Напряжение пульсаций, мВ ………………………………………………..50Коэффициент стабилизации…………………………………………….100Частота переключения, кГц ………………………………………………..25Стабилизатор напряжения работает следующим образом. Пилообразное образцовое напряжение компаратор сравнивает…….

Использование конденсаторов для понижения напряжения, подаваемого на нагрузку от осветительной сети, имеет давнюю историю. В 50-е годы радиолюбители широко применяли в бестрансформаторных источниках питания радиоприемников конденсаторы, которые включали последовательно в…….

Использование в преобразователе частоты трехуровневого инвертора позволяет повысить напряжение системы. Если не требуется рекуперация электроэнергии в питающую сеть, то целе­сообразно применение 12-пульсного диодного выпрямителя с последовательным соединением трехфазных мостов. Если…….

Повышение напряжения без трансформатора. Умножители. Рассчитать онлайн. Преобразование переменного и постоянного тока (10+)

Бестрансформаторные источники питания - Повышающие

Этот процесс иллюстрирует рисунок:

Синим помечена область, где конденсаторы C заряжаются, а красным, где они отдают накопленный заряд в конденсатор C1 и в нагрузку.

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости , чтобы быть в курсе.

Если что-то непонятно, обязательно спросите!
Задать вопрос. Обсуждение статьи. сообщений.

Добрый вечер. Как ни старался, не смог по приведенным формулам для рис 1.2 пол учить значения ёмкостей конденсаторов С1 и С2 при приведенных значениях данных в вашей таблице (Uвх~220V, Uвых 15V, Iвых 100мА, f 50Hz). У меня проблема, включить катушку малогабаритного реле постоянного тока на рабочее напряжение -25V в сеть ~220V, рабочий ток катушки I= 35мА. Возможно я что то не

Резонансный инвертор, преобразователь напряжения повышающий. Принцип р...
Сборка и наладка повышающего преобразователя напряжения. Описание принципа работ...

Измерение действующего (эффективного) значения напряжения, силы тока. ...
Схема прибора для измерения действующего значения напряжения / силы тока...

Обратноходовый импульсный преобразователь напряжения. Силовой ключ - б...
Как сконструировать обратноходовый импульсный источник питания. Как выбрать мощн...


Выбирая доступные микросхемы для основы бестрансформаторного (и бездроссельного) , остановимся на двух наиболее популярных - это NE555 таймер и аудиоусилитель ОУ LM386 . В этой статье мы проведём эксперименты с целью определить возможности каждой из них в этих функциях. Биполярные таймеры NE555 широко используются в генераторах различных преобразователей постоянного напряжения, и наиболее часто в инверторных схемах. Впрочем, еще одна очень популярная микросхема - LM386, может быть хорошим решением в данном устройстве. Следует сразу отметить, что результаты также зависят от конкретного производителя этих чипов и от качества сопутствующих компонентов. Мы будем использовать только диоды Шоттки, чтобы свести потери напряжения до минимума.

Базовое сравнение NE555 и LM386

  1. Диапазон напряжений питания NE555 простирается от 4.5 до 16 В, но при ее использовании вблизи максимальных значений на высокой частоте могут быть проблемы. Полный диапазон напряжений питания LM386N1 составляет от 4 до 15 В, и полный диапазон напряжений питания LM386N4 - от 4 до 22 В. Таким образом, LM386N4 имеет преимущество над NE555 уже в том, что она может работать с более высоким входным напряжением питания. Потребляемый ток NE555 обычно 3-6 мА, а LM386 обычно 4 - 8 мА - здесь у NE555 имеется небольшое преимущество.
  2. Максимальный выходной ток NE555 указан по паспорту 200 мА, а напряжение падает через выходные транзисторы около 2 В при ±100 мА, что делает использование её при более высоких токах малоэффективным. Для сравнения, максимальный выходной ток LM386 гораздо выше выше чем у NE555, поскольку LM386N1 имеет 0.7W выход при питании от 9 В и нагрузке 8 Ом, а LM386N4 - 1 Вт при 16 В. Эти результаты основаны на классической формуле для усилителей класса AB с использованием максимального размаха выходного напряжения и пикового выходного тока.
  3. Максимальная мощность рассеяния NE555 в корпусе dip8 составляет всего 600 МВт, в то время как для LM386 1,25 Вт. Здесь операционный усилитель имеет значительное преимущество по сравнению с таймером.

Практические эксперименты

Для наших тестов входное напряжение питания возьмём 10 вольт. Частота DC-DC преобразователей будет установлена на уровне около 25 кГц (Т = 40 МКС), которая значительно ниже, чем их максимально возможные рабочие частоты. Точки A и B на схемах с LM386 могут быть использованы, чтобы управлять генерацией. В схеме все резисторы 0,25 Вт, ±5%, и все не электролитические конденсаторы 30 В, ±10%, керамика.

Сравнение преобразователей в различных схемах

Удвоение напряжения по плюсу питания

На схемах удвоения используется преобразователь на NE555 как простой генератор с триггером Шмитта. Частота Задается R1 и С1, с легкой зависимостью от тока нагрузки. Преобразователь на рисунке ниже основан на LM386.

Таблица 1 сравнивает выходные напряжения преобразователей на нескольких различных нагрузочных сопротивлениях. Видно, что LM386 обеспечивает более высокие напряжения при больших токах нагрузки. Это ожидаемо, поскольку выходной каскад LM386 обеспечивает больший максимальный выходной ток и имеет более низкое падение напряжения.

Инвертирование к плюсу питания

Таблица 2 сравнивает выходное напряжение на нескольких различных нагрузочных сопротивлениях для инвертирующего с положительным полюсом источника питания NE555 и LM386. Снова аудиоусилитель LM386 смог обеспечить больше мощности в нагрузке.

Удвоение и инвертирование к плюсу питания

Мы можем объединить предыдущие схемы преобразователей и разработать конструкцию, которая производит два выходных напряжения. Схема на NE555 обеспечивает меньший суммарный выходной ток и мощность по сравнению со схемой с использованием ОУ LM386. Вывод - LM386 имеет заметные преимущества по сравнению с NE555.

Загрузка...