domvpavlino.ru

Основы гидравлического расчета системы отопления. Определение ТП пола и потолка. Тепловые расходы вентиляции

Расчет системы водяного отопления частного дома.

Можно ли произвести проектирование, расчет и монтаж систем отопления дома, не прибегая для этого к услугам профессионалов? Если вы настроены серьезно, и готовы активизировать все свои запасы предельного внимания, то без проблем! Я научу вас, как произвести необходимые расчеты объема, используя для этого простейшие формулы, которые не требуют программы и не вызовут у вас затруднений.

Расчет котла отопления в зависимости от его типа

Очень важно предварительно определиться с тем, какой тип отопительного котла будет установлен в вашем доме. Определяться с этим вопросом я рекомендую на основе того, какой источник получения тепла наиболее доступен для вашего региона. Это может быть газ, твердый уголь, жидкое топливо, электричество. В общем, какие виды топлива для отопления жилого дома обойдутся вам в меньшую сумму, такие и предпочитайте.

1. Электрические котлы. В нашей стране такой тип котлов отопления не очень популярен, что объясняется стоимостью электричества. Кроме того, электрический котел требует хорошо налаженной электрической сети, вследствие чего для многих современных российских поселков электрокотел использовать не рекомендуется.

2. Твердотопливные котлы. Все будет зависеть от того, на какую сумму вы готовы расщедриться. Если вы хотите сэкономить, будьте готовы к постоянной подсыпке угля и неравномерному нагреву теплоносителя. Ну а если вы собираетесь приобрести по-настоящему качественный автоматический котел зарубежного производства, то производя расчет радиаторов отопления, можете рассматривать этот вариант в качестве приоритетного.

3. Газовые котлы. Газ обладает самым высоким коэффициентом полезного действия, да и безопасность газовых котлов на высшем уровне. И если ваш загородный дом подключен к газовой трубе, настоятельно рекомендую присмотреться к этому варианту с наибольшим вниманием, поскольку поставить такой котел можно даже на кухне.

4. Жидкотопливные котлы . Для экологии это самый непривлекательный вариант, но если жидкое топливо для вашего региона является наиболее экономичным, этот параметр можно считать несущественным.

Расчет мощности системы отопления

Для произведения необходимых расчетов системы отопления, предлагаю воспользоваться достаточно простой формулой или методикой. Нужно умножить площадь помещения на удельную климатическую мощность и разделить результат на 10.

1. Площадь помещения. Может показаться, что этот параметр самый простой для вычисления. В большинстве случаев, люди берут площадь всех жилых комнат, где желательно установление комфортной температуры. И это большая ошибка. Я напоминаю, что волей-неволей, отапливаться будут все помещения, без исключений, в том числе и коридоры, если вы только их не загерметизируете. Поэтому, производя тепловой расчет мощности котла отопления, берите всю площадь дома целиком.

2. Удельная климатическая мощность. Этот показатель основывается на регионе вашего проживания. Для центральных районов нашей страны коэффициент находится на уровне 1,2-1,5 кВт, для южных районов – 0,7-0,9 кВт, а в северных районах он возрастает до 1,5-2,0 кВт. Здесь дополнительных объяснений, думаю, не требуется.

Привожу пример, который основан на реальной практике. При площади дома в 100 квадратов, расположенного в центральном районе России, мощность используемого котла отопления должна составлять 100х1,2/10 = 12 киловатт или 15 киловатт, если вы считаете, что в вашем центральном районе достаточно холодно.

Расчет количества секций радиаторов отопления

Когда вы разобрались, какой тип котла вам подойдет, и какова будет его мощность, можете приступать к расчету количества секций в используемых батареях. Здесь я также предлагаю использовать довольно простую формулу. Нужно площадь отапливаемого помещения умножить на 100 и разделить на мощность секции батареи.

1. Площадь комнаты. Поскольку радиаторы рассчитаны исключительно на отопление одной комнаты, то площадь всего дома нам не понадобится. Знакомые специалисты дали мне очень ценную рекомендацию. Стандартная формула может использоваться лишь в том случае, если в смежные помещения также будут отапливаться по вышеозвученной формуле. Если по каким-то причинам, вы оставили соседнюю «кладовку» без отопления, то расчет количества радиаторов отопления придется проводить с учетом того, что некоторое количество тепла может покинуть комнату в «холодном» направлении.

2. Цифра 100, фигурирующая в моей формуле, берется не с потолка. Дело в том, что соответствующий СНиП предписывает на квадрат жилого помещения использовать 100 ватт мощности, чего будет вполне достаточно для установления комфортной температуры.

3. Что касается мощности секции отопительного радиатора, то она индивидуальна и зависит от того материала, из которого изготовлена батарея. Если вы не можете точно определить этот показатель, рекомендую основывать расчеты на 180-200 ваттах, что соответствует среднестатистической мощности секции современных радиаторов.

Итак, производим расчет батарей отопления на примере. При размере комнаты в 20 квадратов и мощности секции в 180 ватт, количество секций вычисляется следующим образом. Умножаем 20 на 100 и делим на 180. Получаем примерно 11 секций батареи отопления. Дополнительно можно умножить эту величину на 1,2, в случае, если помещение расположено на углу или в торце здания.

Радиаторные материалы для отопления

Осталось определиться с тем, из какого материала будут выполнены радиаторы, по которым будет бежать вода в вашей системе отопления в коттедже. Трубчатые стальные батареи я рекомендую сразу отбросить. Возможно, они и дешевые, но во-первых, на них дается гарантия всего 1 год, а во вторых они имеют низкую мощность секций на уровне 85 Вт. Чугунные радиаторы могут похвастаться большей надежностью, но мощность секций у них лишь немного выше, чем у стальных – 110 Вт. Предлагаю не жалеть денег и покупать анодированные радиаторы с хорошей защитой от коррозии, 30-летней гарантией и мощностью на уровне 215 Вт.

Как сделать монтаж отопительной системы своими руками:

Для внедрения обогревательной установки, где в качестве циркуляционного вещества выступает вода, требуется предварительно произвести точные гидравлические вычисления. Осуществить самостоятельно расчет водяного отопления (далее — СВО) без использования профильных программ невозможно, поскольку в вычислениях используются сложные выражения, определить значения которых с помощью обычного калькулятора нельзя.

При разработке, внедрении любой системы обогревательного типа необходимо знать тепловой баланс (далее – ТБ). Зная тепловую мощность для поддержания температуры в помещении, можно правильно подобрать оборудование и грамотно распределить его нагрузку.

Зимой помещение несет определенные тепловые потери (далее – ТП). Основная масса энергии выходит через ограждающие элементы и вентиляционные проемы. Незначительные расходы приходятся на инфильтрацию, нагревание предметов и др.

Наибольшее количество тепла покидает помещение через стены, пол, крышу, наименьшее — через двери, оконные проемы

ТП зависят от слоев, из которых состоят ограждающие конструкции (далее — ОК). Современные строительные материалы, в частности, утеплители, обладают низким коэффициентом теплопроводности (далее – КТ), благодаря чему через них уходит меньше тепла. Для домов одинаковой площади, но с разным строением ОК, тепловые затраты будут отличаться.

Помимо определения ТП, важно вычислить ТБ жилища. Показатель учитывает не только количество энергии, покидающей помещение, но и количество необходимой мощности для поддержания определенных градусных мер в доме.

Наиболее точные результаты дают профильные программы, разработанные для строителей. Благодаря им возможно учесть больше факторов, влияющих на ТП.

С высокой точностью можно вычислить ТП жилища с помощью формул.

Общие тепловые расходы дома рассчитывают по уравнению:

В выражении — количество тепла, покидающее помещение через ОК, — тепловые расходы вентиляции.

Потери через вентиляцию учитываются в том случае, если воздух, попадающий в помещение, имеет более низкую температуру.

В расчетах обычно учитывают ОК, входящие одной стороной на улицу. Это наружные стены, пол, крыша, двери и окна. Общие ТП равны сумме ТП каждой ОК, то есть:

В уравнении:

Если пол или потолок имеет неодинаковое строение по всей площади, то ТП вычисляют для каждого участка отдельно.

Расчет теплопотерь через ОК

Для вычислений потребуются следующие сведения:

  • строение стен, используемые материалы, их толщина, КТ;;
  • наружная температура в предельно холодную пятидневку зимы в городе;
  • площадь ОК;
  • ориентация ОК;
  • рекомендуемая температура в жилище в зимний период.

Для вычисления ТП нужно найти общее тепловое сопротивление R ок. Для этого нужно узнать тепловое сопротивление R1, R2, R3, …, Rn каждого слоя ОК.

Коэффициент Rn рассчитывается по формуле:

В формуле B — толщина слоя ОК в мм, k — КТ каждого слоя.

Общее R возможно определить по выражению:

Производители дверей и окон обычно указывают коэффициент R в паспорте к изделию, поэтому рассчитывать его отдельно нет необходимости.


Тепловое сопротивление окон можно не рассчитывать, поскольку в техническом паспорте уже присутствуют необходимые сведения, что упрощает вычисление ТП

Общая формула расчета ТП через ОК выглядит следующим образом.

В выражении:

  • S — площадь ОК, м 2 ;
  • t vnt — желаемая температура в помещении;
  • t nar — наружная температура воздуха;
  • R — коэффициент сопротивления, рассчитывается отдельно или берется из паспорта изделия;
  • l — уточняющий коэффициент, учитывающий ориентацию стен относительно сторон света.

Расчет ТБ позволяет подобрать оборудование необходимой мощности, что исключит вероятность образования дефицита тепла или его переизбытка. Дефицит тепловой энергии компенсируют путем увеличение потока воздуха через вентиляцию, переизбыток – установкой дополнительного отопительного оборудования.

Тепловые расходы вентиляции

Общая формула расчета ТП вентиляции имеет следующий вид:

В выражении переменные имеют следующий смысл:

Если в здании установлена вентиляция, то параметр берется из технических характеристик к прибору. Если же вентиляция отсутствует, то берется стандартный показатель удельного воздухообмена, равный 3 м 3 в час. Исходя из этого, вычисляется по формуле:

В выражении — площадь пола.


2% от всех тепловых потерь приходится на инфильтрацию, 18% — на вентиляцию. Если помещение оборудовано системой вентиляции, то в расчетах учитывают ТП через вентиляцию, а инфильтрацию во внимание не берут

Удельная теплоемкость .

Если вентиляция или инфильтрация неорганизованная, в стенах присутствуют щели или дыры, то вычисление ТП через отверстия следует доверить специальным программам.

Пример расчета теплового баланса

Рассмотрим дом высотой 2.5 м, шириной 6 м и длиной 8 м, располагающийся в городе Оха в Сахалинской области, где в предельно холодную 5-дневку градусник термометра опускается на -29 градусов.

В результате измерения было установлена температура грунта — +5. Рекомендуемая температура внутри конструкции составляет +21 градус.


Изобразить схему дома удобнее всего на бумаге, указав не только длину, ширину и высоту постройки, но и ориентированность относительно сторон света, а также расположение, габариты окон и дверей (+)

Стены рассматриваемого дома состоят из:

  • кирпичной кладки толщиной В=0.51 м, КТ k=0.64;
  • минеральной ваты В=0.05 м, k=0.05;
  • облицовки В=0.09 м, k=0.26.

При определении k лучше воспользоваться таблицами, представленными на сайте производителя, или найти информацию в техническом паспорте изделия.


Зная теплопроводность, можно подобрать максимально эффективные с точки зрения тепловой изоляции материалы. Исходя из вышеприведенной таблицы, наиболее целесообразно использовать в строительстве минераловатные плиты и пенополистирол

Напольное покрытие состоит из следующих слоев:

  • OSB-плит В=0.1 м, k=0.13;
  • минваты В=0.05 м, k=0.047;
  • стяжки цементной В=0.05 м, k=0.58;
  • пенополистирола В=0.06 м, k=0.043.

В доме подвальное помещение отсутствует, а пол имеет одинаковое строение по всей площади.

Потолок состоит из слоев:

  • листов гипсокартона B=0.025 м, k= 0.21;
  • утеплителя В=0.05 м, k=0.14;
  • кровельного перекрытия В=0.05 м, k=0.043.

Выходы на чердак отсутствуют.

В доме всего 6 двухкамерных окон с И-стеклом и аргоном. Из технического паспорта на изделия известно, что R=0.7. Окна имеют габариты 1.1х1.4 м.

Двери имеют габариты 1х2.2 м, показатель R=0.36.

Расчет теплопотерь стены

Стены по всей площади состоят из трех слоев. Вначале рассчитаем их суммарное тепловое сопротивление, используя формулу:

и выражение

Учитывая исходные сведения, получим:

Узнав R, можно приступить к расчетам ТП северной, южной, восточной и западной стены.


Добавочные коэффициенты учитывают особенности расположения стен относительно сторон света. Обычно в северной части во время холодов образуется «роза ветров»,в результате чего ТП с этой стороны будут выше, чем с других

Вычислим площадь северной стены

Тогда, подставляя в формулу

и учитывая, что l=1.1, получим:

Площадь южной стены . В стене отсутствуют встроенные окна или двери, поэтому, учитывая коэффициент l=1, получим следующие ТП:

Для западной и восточной стены коэффициент l=1.05. Поэтому можно найти общую площадь этих стен, то есть:

В стены встроено 6 окон и одна дверь. Рассчитаем общую площадь окон и S дверей:

Определим S стен без учета S окон и дверей:

Подсчитаем общие ТП восточной и западной стены:

Получив результаты, подсчитаем количество тепла, уходящего через стены:

Итого общие ТП стен составляют 6 кВт.

Вычисление ТП окон и дверей

Окна располагаются на восточной и западной стенах, поэтому при расчетах коєффициент l=1.05. Известно, что строение всех конструкций одинаково и R=0.7. Используя значения площади, приведенные выше, получим:

Зная, что для дверей R=0.36, а S=2.2, определим их ТП:

В итоге через окна выходит 340 Вт тепла, а через двери — 42 Вт.

Определение ТП пола и потолка

Очевидно, что площадь потолка и пола будет одинакова, и вычисляется следующим образом:

Рассчитаем общее тепловое сопротивление пола с учетом его строения.

Зная, что температура грунта t nar =+5 и учитывая коэффициент l=1, вычислим Q пола:

Округлив, получим, что теплопотери пола составляют около 3 кВт.


В расчетах ТП нужно учитывать слои, влияющие на тепловую изоляцию, например, бетон, доски, кирпичная кладка, утеплители и др. (+)

Определим R ptl .

Определив тепловое сопротивление потолка, найдем его Q:

Отсюда следует, что через потолок и пол уходит почти 6 кВт.

Вычисление ТП вентиляции

В помещении вентиляция организована, вычисляется по формуле:

Исходя из технических характеристик, удельный теплообмен составляет 3 кубических метра в час, то есть:

Для вычисления плотности используем формулу:

Расчетная температура в помещении составляет +21 градус.


ТП вентиляции не рассчитывают, если система снабжена устройством подогрева воздуха

Подставляя известные значения, получим:

Подставим в вышеприведенную формулу полученные цифры:

Учитывая ТП на вентиляцию, общее Q здания составит:

Переведя в кВт, получим общие тепловые потери 16 кВт.

Особенности расчета СВО

После нахождения показателя ТП переходят к гидравлическому расчету (далее — ГР), на основе которого получают информацию о:

  • оптимальном диаметре труб, который при перепадах давления будет способен пропускать заданное количество теплоносителя;
  • расходе теплоносителя на определенном участке;
  • скорости движения воды;
  • значении удельного сопротивления.

Перед началом расчетов для упрощения вычислений изображают пространственную схему системы, на которой все ее элементы располагают параллельно друг другу.


На схеме изображена система отопления с верхней разводкой, движение теплоносителя — тупиковое (+)

Рассмотрим основные этапы расчетов водяного отопления.

ГР главного циркуляционного кольца

Методика расчета ГР основывается на предположении, что во всех стояках и ветвях перепады температуры одинаковые.

Алгоритм расчета следующий:

  1. На изображенной схеме, учитывая теплопотери, наносят тепловые нагрузки, действующие на отопительные приборы, стояки.
  2. Исходя из схемы, выбирают главное циркуляционное кольцо (далее — ГЦК). Особенность этого кольца в том, что в нем циркуляционное давление на единицу длины кольца принимает наименьшее значение.
  3. ГЦК разбивают на участки, имеющие постоянные расход тепла. Для каждого участка указывают номер, тепловую нагрузку, диаметр и длину.

В вертикальной системе однотрубного типа в качестве ГЦК берется то кольцо, через которое проходит наиболее нагруженный стояк при тупиковом или попутном движении воды по магистралям.


В вертикальных системах двухтрубного типа ГЦК проходит через нижнее отопительное устройство, имеющее максимальную нагрузку при тупиковом или попутном движении воды

В горизонтальной системе однотрубного типа ГЦК должно иметь наименьшее циркуляционное давление да единицу длины кольца. Для систем с естественной циркуляцией ситуация аналогична.

При ГР стояков вертикальной системы однотрубного типа проточные, проточно-регулируемые стояки, имеющие в своем составе унифицированные узлы, рассматривают в качестве единого контура. Для стояков с замыкающими участками производят разделение, учитывая распределение воды в трубопроводе каждого приборного узла.

Расход воды на заданном участке вычисляется по формуле:

В выражении буквенные символы принимаю следующие значения:

— добавочные табличные коэффициенты, учитывающие теплоотдачу в помещении;

c — теплоемкость воды, равна 4,187;

— температура воды в подающем магистрали;

— температура воды в обратной магистрали.

Определив диаметр и количество воды, необходимо узнать скорость ее движения и значение удельного сопротивления R. Все расчеты удобнее всего осуществить с помощью специальных программ.

ГР второстепенного циркуляционного кольца

После ГР главного кольца определяют давление в малом циркуляционном кольце, образующееся через ближайшие его стояки, учитывая, что потери давления могут отличаться на не более чем 15 % при тупиковой схеме и не более, чем на 5%, при попутной.

Если невозможно увязать потери давления, устанавливают дроссельную шайбу, диаметр которой вычисляют с использованием программных методов.

Расчет радиаторных батарей

Вернемся к плану дома, размещенного выше. Путем вычислений было выявлено, что для поддержания теплового баланса потребуется 16 кВт энергии. В рассматриваемом доме 6 помещений разного назначения – гостиная, санузел, кухня, спальня, коридор, прихожая.

Исходя из габаритов конструкции, можно вычислить объем V:

  • санузел – 4.19*2.5=10.47;
  • гостиная – 13.83*2.5=34.58;
  • кухня – 9.43*2.5=23.58;
  • спальня – 10.33*2.5=25.83;
  • коридор – 4.10*2.5=10.25;
  • прихожая – 5.8*2.5=14.5.

В расчетах также нужно учитывать помещения, в которых отопительных батарей нет, например, коридор.


Коридор отапливается пассивным способом, в него тепло будет поступать за счет циркуляции теплового воздуха при передвижении людей, через дверные проемы и др

Определим необходимое количество тепла для каждой комнаты, умножив объем комнаты на показатель Р. Получим требуемую мощность:

  • для санузла: 10.47*133=1392 Вт;
  • для гостиной: 34.58*133=4599 Вт;
  • для кухни: 23.58*133=3136 Вт;
  • для спальни: 25.83*133=3435 Вт;
  • для коридора: 10.25*133=1363 Вт;
  • для прихожей: 14.5*133=1889 Вт.

Приступим к расчету радиаторных батарей. Будем использовать алюминиевые радиаторы, высота которых составляем 60 см, мощность при температуре 70 равна 150 Вт. Подсчитаем необходимое количество радиаторных батарей.

  • санузел: 1392:150=10
  • гостиная: 4599:150=31
  • кухня: 3136:150=21
  • спальня: 3435:150=23
  • прихожая: 1889:150=13

Итого потребуется 98 радиаторных батарей

Видео-пример расчета СВО

В видео можно ознакомиться с примером расчета водяного отопления, который осуществляется средствами программы Valtec:

Гидравлические расчеты лучше всего осуществлять с помощью специальных программ, которые гарантируют высокую точность вычислений, учитывают все нюансы конструкции.

Трубопроводы в системе отопления выполняют важную функцию распределения теплоносителя по отдельным нагревательным приборам.

В водяных системах количество принесенного теплоносителем тепла зависит от его расхода и перепада температуры при охлаждении воды в приборе. Обычно при расчете задают общий для системы перепад температуры теплоносителя и стремятся к тому, чтобы в двухтрубных системах этот перепад был выдержан для всех приборов и для системы в целом, в однотрубных системах - для всех стояков. При известном перепаде температуры теплоносителя по трубопроводам системы к каждому нагревательному прибору должен быть подведен определенный расчетом расход воды.

В инженерной практике эта задача решается методом подбора.

Провести гидравлический расчет сети трубопроводов системы отопления (с учетом располагаемых циркуляционных давлений) - это значит так подобрать диаметры отдельных участков, чтобы по ним проходили расчетные расходы теплоносителя. Расчет ведется подбором с выбором диаметров по имеющемуся сортаменту труб, поэтому он всегда связан с некоторой погрешностью. Для различных систем и отдельных их элементов допускаются определенные невязки, которые должны быть выдержаны в расчете.

Потери давления на участках трубопроводов . Движение воды в трубопроводах происходит от сечений с большим давлением к сечениям с меньшим давлением. Давление теряется на преодоление сопротивления трения по длине труб и местных сопротивлений. В системах водяного отопления доля потерь на трение и в местных сопротивлениях примерно одного порядка, поэтому их необходимо одинаково полно учитывать в гидравлическом расчете. В системе отопления вода циркулирует по замкнутому контуру. Согласно уравнению Бернулли, разность давлений Δр на протяжении произвольного контура трубопровода системы должна быть равна сумме гидравлических потерь на трение Δр тр и в местных сопротивлениях Δр м.с. :

Δр = Δр тр + Δр м.с (5.18)

Учитывая сложность расчета потерь давления на трение по формулам, обычно пользуются таблицами или номограммами. Потери давления на трение Δр тр определяют по выражению

Δр тр = Rl, (5.27)

где R - удельные потери давления на трение (отнесенные к 1 м длины трубы).

Значение R очевидно из формулы (5.19). Таблица для определе­ния значения удельных потерь давления на трение R, Па/м, в зависимости от скорости υ, м/с, или расхода G , кг/ч, воды, протекающей по трубам различного диаметра d, мм, приведена в прил. 7.

Потери давления в местных сопротивлениях Δр м.с обычно обозначают буквой Z . Величину Z можно определить по формуле

Z = Σξ (5.28)

где ξ -коэффициент потерь давления в местном сопротивлении, или сокращенно коэффициент местного сопротивления.

Коэффициент ξ характеризует гидравлические особенности различных местных сопротивлений

В приложении 8 даны значения коэффициентов местных сопротивлений для различных элементов систем отопления. Численные значения коэффициентов ξ особенно для тройников и крестовин, зависят от абсолютных и относительных значений расходов проходящих потоков и диаметров труб, поэтому приведенные в приложении данные являются приближенными. Их достаточно надежно можно использовать для расчета двухтрубных систем и магистральных участков однотрубных систем.

Часть трубопровода системы, в пределах которой расход теплоносителя, а также диаметр трубы остаются неизменными, называют участком . На участке может быть несколько местных сопротивлений. Общие гидравлические потери давления Δр i , в пределах расчетного участка i равны:

Δр i = (Rl+Z) i . (5.29)

Циркулирующие в системе отопления потоки последовательно проходят ряд участков. Потери давления на последовательно соединенных участках Δр равны сумме потерь давления на отдельных участках:

Δр = (5.30)

Трубопроводы системы отопления образуют ряд связанных между собой параллельных колец; в отдельных точках системы потоки расходятся, а в других сходятся, образуя как бы полукольца одного замкнутого контура. Перепады давлений, под влиянием которых происходит движение воды по каждому из полуколец между общими точками деления и слияния, будут одинаковыми. Так будет в изотермических условиях.

Можно сформулировать общее правило: потери давления на полукольцах между общими точками с учетом дополнительных гравитационных давлений равны между собой.

На рис. 5.6 приведены две схемы системы отопления: тупиковая и с попутным движением воды в подающей и обратной магистралях. Схемы начерчены упрощенно, на них изображены только магистрали и стояки без нагревательных приборов, арматуры и пр. На примере этих схем и на основе сформулированного общего правила удобно записать уравнения увязки отдельных полуколец трубопроводов в системе.

В тупиковой схеме в циркуляционном кольце стояков I и V потери на трение и в местных сопротивлениях на участке аг должны равняться сумме потерь на участках аб, бв и вг . В схеме с попутным движением в циркуляционном кольце стояков I и V сумма потерь на трение и в местных сопротивлениях на участках аг и гв должна равняться сумме потерь на участках аб и бв. Однако, поскольку в обеих схемах вода по пути от котла к стояку V охлаждается больше, чем по пути от котла к стояку I , и, следовательно, соответствующие гравитационные давления Δр е для стояков I и V различны, расходуемое давление на рассматриваемых полукольцах трубопровода нужно записать в следующем виде:

для тупиковой схемы

Σ(Rl+Z) аг = Σ(Rl+Z) абвг –(Δр е абвг - Δр е аг) (5.31)

для схемы с попутным движением

Σ(Rl+Z) авг = Σ(Rl+Z) абв –(Δр е абв - Δр е агв) (5.32)

Гравитационное давление на каждом из параллельных ответвлений будет определяться по общей формуле (5.5). В данном случае необходимо, чтобы для каждого рассмотренного контура трубопроводов плоскость отсчета высот положения отдельных точек нагрева или охлаждения на полукольцах была общей. Обычно удобно производить отсчет от плоскости, проходящей через точки деления или слияния потоков циркуляционных контуров.

Методика гидравлического расчета трубопроводов систем водяного отопления.

Методика гидравлического расчета систем отопления основана на закономерностях циркуляции теплоносителя в системе трубопроводов и определяет последовательность проведения этого расчета. Обычно задача состоит в определении диаметров на отдельных участках при заданных расходах и давлениях. Расчет начинают с определения располагаемого циркуляционного давления. Величину Δр р.ц определяют по формуле (5.15) для систем с естественной циркуляцией или по формуле (5.16) для насосных систем и систем, присоединенных к тепловой сети.

При расчете за главное (наиболее невыгодно рассоложенное в гидравлическом отношении) циркуляционное кольцо принимают то, для которого располагаемое циркуляционное давление на 1 м длины трубопровода оказывается наименьшим.

В тупиковых схемах двухтрубных систем (см.рис. 5.6, а ) главным обычно оказывается циркуляционное кольцо, проходящее через нижний прибор дальнего стояка.

В тупиковых схемах однотрубных систем за главное принимается кольцо, проходящее через дальний стояк.

В схемах с попутным движением (см.рис. 5.6, б ) протяженность колец через приборы нижнего этажа для всех стояков приблизительно одинаковая. В этом случае перепад давлений в системе заранее не ограничивают, а подбирают диаметры трубопроводов из условия предельно-допустимых скоростей движения теплоносителя и возможной увязки гидравлических потерь давления по отдельным параллельным полукольцам систем

В этом случае удобно в качестве главного принимать кольцо, проходящее через нижний прибор (в двухтрубной системе) одного из средних наиболее нагруженных стояков. Именно этот стояк в схемах с попутным движением (в том числе и однотрубных систем) оказывается наиболее невыгодным в гидравлическом отношении.

Задача гидравлического расчета главного циркуляционного кольца состоит в подборе диаметров его отдельных участков таким образом, чтобы суммарные потери давления по кольцу Σ(Rl+Z) г.ц.в были на 5-10% меньше величины расчетного давления Δр р.ц, т.е.

Σ(Rl+Z) г.ц.в = (0,9 ... 0,95) Δр р.ц (5.33)

Некоторый запас давления необходим на случай неучтенных в расчете гидравлических сопротивлений.

Рассчитанное таким образом главное циркуляционное кольцо принимается в дальнейшем расчете в качестве опорного для гидравлической увязки всех остальных колец системы. Все циркуляционные кольца системы как бы привязывают в гидравлическом отношении к главному кольцу. Для каждого циркуляционного кольца есть точки, общие с главным кольцом, где происходит деление или слияние потоков. Одно из полуколец между этими общими точками всегда составлено уже рассчитанными участками главного кольца. Задача состоит в подборе диаметров участков второго полукольца таким образом, чтобы гидравлические потери в них были (с учетом дополнительных гравитационных давлений) равны уже подсчитанным потерям давления между общими точками на участках главного циркуляционного кольца [см. формулу (5.31) или (5.32)].

При этом чем ближе значения тех и других потерь, тем лучше. Точно увязать потери давления в полукольцах не всегда удается, однако необходимо выдержать определенную величину невязки между ними. В системах водяного отопления СНиП допускают невязку до ± 15%.

Невязка между потерями давления в полукольцах, проходящих через приборы разных этажей стояков двухтрубных систем, нормами не ограничивается, так как она должна быть устранена при монтаж­ной регулировке системы с помощью кранов двойной регулировки.

Загрузка...