domvpavlino.ru

Реальная физика. Что такое эфир? Современные теории эфира Новое про мировой эфир

Обращение к читателям

Современное экономическое развитие общества с серьезными экологическими и энергетическими кризисами указывает на слабость основ естествознания, ведущей дисциплиной которого является физика. Теоретическая физика не в силах решить многие проблемы, отнеся их к разряду аномальных. Авторитеты РАН, отказавшись от демократических принципов диалогов с авторами противоположных гипотез, используют принцип запрета и защиты своего положения, прибегнув к объявлению борьбы с «лженаукой». Для всех, кто ищет истины науки, предлагаем работу, представляющую краткий обзор многолетних трудов авторов.

ВТОРАЯ ФОРМА МАТЕРИИ - НОВОЕ ПРО ЭФИР

(новая теория в физике)

Брусин С.Д, Брусин Л.Д.

[email protected]

АННОТАЦИЯ. Отмечается, что творцом общепризнанной первой формы материи (в виде частиц) является Демокрит. На основании работ Аристотеля показывается наличие второй формы материи, находящейся между всеми телами Вселенной и частицами всех тел и названной эфиром. Раскрываются физическая сущность эфира и его основное свойство, первоматерия Вселенной, принципиально новое понимание тепловой энергии и давления в газах, природа ядерных сил, непланетарная модель атома. Решена проблема нейтрино, а также показана сущность процессов в Большом адронном коллайдере и бессмысленность экспериментов на нем. Кроме этого, приводятся принципиально новые основы магнетизма и основы микроскопической теории сверхпроводимости.

Дается критический анализ теории относительности и показывается ее несостоятельность.

I. Базовые положения теории

§1. Вторая форма материи и эфир

§2. Физическая сущность эфира

§3. Связь эфира с телами и частицами. Эфир околоземного вакуума и эфир вещества

§4. Определение плотности эфира околоземного вакуума

§5. Эфир - первоматерия Вселенной

§6. Эфирно - атомная структура материи

II. Дальнейшее развитие теории и ее применение

§7. Эфир и тепловая энергия

§8. Эфир и давление в газах

§9. Бесполезность экспериментов на Большом адронном коллайдере

§10. Природа ядерных сил

§11. Решение других научных проблем

III. Следствие теории эфира – несостоятельность теории относительности

§12. Главная ошибка в теории относительности

§13. О несостоятельности преобразований Лоренца

§14. О математических ошибках в выводах преобразований Лоренца

§15. Теория эфира объясняет явления, рассматриваемые в теории относительности

Заключение

I. БАЗОВЫЕ ПОЛОЖЕНИЯ ТЕОРИИ

§1.Вторая форма материи и эфир

Более двух тысяч лет длится борьба двух философских концепций в понимании мироздания. Творцом первой концепции является известный древнегреческий философ Демокрит. Он полагал, что все в мире состоит из мельчайших частиц (атомов) и пустоты, находящейся между ними. Вторая концепция базируется на трудах другого, не менее известного древнегреческого философа Аристотеля. Он полагал, что вся Вселенная заполнена субстратом (материей) и не существует даже малейшего объема пустоты. Как писал великий Максвелл, две теории строения вещества борются друг с другом с переменным успехом: теория заполнения Вселенной и теория атомов и пустоты.

Таким образом, творцом общепризнанной первой формы материи (в виде частиц) является Демокрит. Вся современная наука базируется на рассмотрении формы материи в виде частиц, из которых состоят тела; при этом продолжается поиск прачастицы, которая является первоматерией Вселенной. Громадные просторы Вселенной воспринимаются в виде полей (электромагнитное поле, гравитационное поле и др.), в которых наблюдаются соответствующие явления. Но остается непонятным из чего состоят эти поля. В своих трудах Аристотель убедительно показал, что во всей Вселенной нет ни малейшего объема пустоты и она заполнена субстратом (материей ) . Следовательно, между всеми телами Вселенной и частицами всех тел находится вторая форма материи , характерная тем, что в ней не должно быть пустоты. С древних времен считалось, что вся Вселенная заполнена эфиром и поэтому за второй формой материи сохраним название эфир , тем более, что это очень удобно в изложении текста. Существуютразные представления эфира. В дальнейшем под эфиром надо понимать вторую форму материи, представляющую материальную среду, находящуюся между телами и их частицами и не содержащую в себе ни малейших объемов пустоты. Теперь проведем раскрытие сущности этого эфира.

§2. Физическая сущность эфира

Ниже приведем теоретическое обоснование сущности эфира и экспериментальные данные.

1. Теоретическое обоснование

Прежде всего, как отмечалось выше, эфир представляет материальную среду и, следовательно, обладает массой. Так как в этой материи нет ни малейшего объема пустоты, то ее можно представить в виде сплошной бесчастичной массы (частиц быть не может, так как между ними должна быть пустота, что недопустимо ). Такое бесчастичное представление эфира является непривычным, но оно четко характеризует основу строения эфира. Для более ясного представления эфира добавим, что плотность его имеет весьма малое значение по сравнению с привычными для нас значениями плотностей веществ. Ниже (см. §8) будет показано, что плотность эфира, находящегося между молекулами газа при давлении в 1 атм. и образованная молекулами газа, имеет порядок 10 -15 г/см 3 .

Не отказываясь от наличия частиц, мы должны признать, что материальный мир Вселенной представляется состоящим из двух форм материи: а) частицы (частичная) и б) эфир, представляющий бесчастичную форму материи.

Мы утверждаем "газообразное" строение эфира, которое было отвергнуто наукой, но не обосновано (см. приложение 1).

Масса эфира, подобно газу, стремится занять наибольший объем, но при этом в этой массе не может появиться пустота. Поэтому эфир, увеличивая объем, уменьшает свою плотность. Это свойство изменять плотность при отсутствии пустоты является главным и удивительным; оно отличается от свойства газа изменять плотность, происходящее за счет изменения расстояния между молекулами газа, представляющее пустоту по современным понятиям.

Известно, что, анализируя многочисленные данные наблюдений движения планет, Ньютон открыл закон всемирного тяготения, согласно которому определяется сила взаимодействия небесных тел. В дальнейшем в соответствии с этим законом было экспериментально подтверждено взаимодействие любых тел на Земле. В своем творчестве Ньютон систематически возвращался к этому вопросу, стремясь дать теоретическое обоснование гравитации. При этом он возлагал большие надежды на эфир и считал, что раскрытие сущности эфира позволило бы получить решение и этого важнейшего вопроса. Однако Ньютону не удалось добиться решения этой задачи. Многочисленные попытки дать теоретическое обоснование гравитации безуспешно продолжаются и до настоящего времени. Мы же поступим по-другому: будем считать явление гравитации как свойство, присущее любым массам материи, в том числе и массе эфира. Этот постулат позволит нам решать важнейшие вопросы науки. Мы надеемся, что в дальнейшем по мере раскрытия свойств эфира удастся дать теоретическое обоснование этому постулату. Силы гравитации, действующие на эфир со стороны тел, приводят к сжатию его сплошной массы, что создает определенную плотность эфира. Если по какой - либо причине плотность эфира окажется больше плотности, соответствующей действующим на эфир силам, то эфир (подобно газу) будет распространяться по всему доступному для него пространству, уменьшая плотность до соответствующего значения. Очевидно, что доступным для распространения пространством будет пространство с меньшей плотностью эфира.

На основании вышеизложенного сформулируем основное свойство эфира: "Эфир, представляющий не содержащую в себе пустоту сплошную массу бесчастичной формы материи, стремится (подобно газу) занять наибольший объем, уменьшая при этом свою плотность, и характеризуется силами гравитационного взаимодействия с частицами и телами ".

Перечислим то новое, что вносит раскрываемое свойство в науку:

а) раскрывает строение эфира, как бесчастичное с плотностью, соответствующей действующим на эфир силам;

b) эфир является "газообразным";

c) эфир обладает массой (такое предположение ранее в науке рассматривалось) и к этой массе применен закон всемирного тяготения как закон гравитационного взаимодействия.

Эфир непрерывен, т.е. любая его часть не может быть "изолиро вана" от остального эфира в отличии от частиц, "изолированных" друг от друга эфиром. Отметим, что рассмотренное основное свойство эфира касается лишь его физико-механического строения. Однако через космический эфир проходит неограниченный объем информации, поэтому очень важные информационные свойства эфира еще предстоит рассмотреть в будущем.

2. Экспериментальные данные

Приведем эксперименты, подтверждающие основное свойство эфира.

1. Опыты Физо и Майкельсона (см. приложение 2).

2. Зависимость массы частицы от скорости ее движения (см. приложение 3).

3. Увеличение массы тела при подаче в него массы эфира (см. §7).

4. Изменение объема и давления газа при подаче в него массы эфира (см. §8).

5. Увеличение времени жизни частицы при увеличении скорости ее движения (§5, п. 1.2.4).

6. Сущность происходящего на Большом адронном коллайдере (§9).

§3. Связь эфира с телами и частицами. Эфир околоземного вакуума и эфир вещества

Связь эфира с телами и частицами осуществляется гравитационным взаимодействием в соответствии с основным свойством эфира. Ниже рассмотрим это взаимодействие.

1. Взаимодействие Земли с эфиром. Эфир околоземного вакуума

Сначала уточним понятие вакуумного пространства, для чего процитируем из энциклопедии современное понятие вакуума: “Вакуум (от латинского vacuum – пустота) – среда, содержащая газ при давлениях, существенно ниже атмосферного…Часто вакуум определяют как состояние, в котором отсутствуют какие-либо реальные частицы” . Выше нами было показано, что материальный мир Вселенной состоит из двух форм материи: эфира и частиц. Следовательно, под вакуумом правильно понимать среду, в которой отсутствуют частицы, но сохраняется эфир, а пустота характеризуется отсутствием любой формы материи.

Рассмотрим взаимодействие эфира с Землей. Выберем на расстоянии R от Земли точку, в которой эфир занимает незначительный объем v 0 , в пределах которого плотность эфира будем считать равномерной и имеющей значение p 0 ; тогда масса m 0 эфира в объеме v 0 составит

m 0 = p 0 · v 0 . (1)

Сила F G гравитационного воздействия Земли на массу m 0 согласно закону Ньютона определится:

F G = m 0 · g G , (2)

где g G - напряженность поля гравитации, создаваемая Землей в выбранной точке.

Так как g G обратнопропорциональна квадрату расстояния R, то сила F G уменьшается по мере удаления от Земли. Эта сила приводит к определеннной плотности эфира, в результате чего вокруг Земли создается эфирная оболочка (аура Земли), плотность эфира в которой плавно уменьшается по мере удаления от Земли. Поэтому эфир околоземного вакуума (т.е. не содержащего частиц) имеет определенную плотность. Этот эфир, прижимаясь силой гравитации к Земле, движется вместе с ней в ее движении вокруг Солнца. Это подтверждается опытом Майкельсона (см. приложение 2).

Аналогично можно говорить об аурах любых микро и макро тел, также как и об ауре живых субъектов. Известна, например, эфирная аура человека, которую называют энергетическим полем (Е) и уже имеется аппаратура, которая по методу Кирлиан позволяет получать фотографию ауры человека. Мы лишь добавим, что это энергетическое поле Е можно характеризовать массой эфира m (известно соотношение E = mс 2 ).

Говоря об эфирных оболочках (аурах) любых как микро, так и макро тел, мы должны ясно понимать, что эти оболочки принадлежат своим телам и движутся вместе с ними в пространстве. Это относится и ко всем макротелам космического пространства. Околоземный эфир движется вместе с Землей в эфирной оболочке Солнца, которая вместе с Солнцем движется в эфирной среде Галактики. Отсюда ясно, что мирового покоящегося эфира не существует .

2. Взаимодействие частицы с эфиром. Эфир вещества

Аналогично приведенному в п.1, гравитационное взаимодействие частицы с эфиром приводит к созданию вокруг частицы эфирной оболочки (ауры частицы), плотность эфира в которой плавно уменьшается по мере удаления от частицы. Совокупность частиц (атомов, молекул) с их эфирными оболочками представляет вещество, в каждой точке которого между частицами находится эфир соответствующей плотности (эфир вещества).

Отметим, что все находящиеся на Земле вещества вместе со своими эфирными оболочками находятся и могут двигаться в эфирной среде околоземного вакуума (ауре Земли). Эфирная среда околоземного вакуума пронизывает все тела и вещества, находящиеся на Земле.

§ 4. Определение плотности эфира околоземного вакуума

Определим ориентировочно значение плотности эфира околоземного вакуума из следующих соображений. Свет распространяется в эфирной среде, представляющей сумму плотностей эфира околоземного вакуума и эфира, находящегося между молекулами вещества. При

движении вещества на Земле его эфир движется относительно эфира околоземного вакуума, увлекая фотон света. Поэтому свету передается часть скорости движущегося вещества. Коэффициент увлечения эфира α определен Лоренцем и имеет значение:

α = 1 – 1 / n 2 , (3)

где n – показатель преломления вещества.

Для более точного расчета в качестве вещества возьмем инертный газ гелий, имеющий наименьшие размеры молекулы, а, следовательно, наибольшую межмолекулярную область, в которой находится эфир вещества. В нормальных условиях, т.е. при давлении 1 атм. плотность эфира, находящегося между молекулами газа, составляет 10 -15 г/см 3 (см. §8). Показатель преломления гелия n = 1, 000327, что дает согласно (3) величину α = 0,000654. Очевидно, если бы плотность эфира вещества равнялась плотности эфира околоземного вакуума d, то коэффициент увлечения составлял бы 0,5. Составив пропорцию, получаем

d = 10 -15 · (0,5 / 0, 000654) ≈ 10 -12 г/см 3 .

§5. Эфир - первоматерия Вселенной

На протяжении всей истории развития науки важнейшим является вопрос о том, из чего состоят все вещества Вселенной, т. е. что является прачастицей мироздания, или первоматерией, лежащей в основе строения материального мира. По мере развития науки такими прачастицами были молекулы, атомы, ядра атомов, протоны, нейтроны. Согласно современной кварковой теории такими прачастицами считаются кварки. Однако, несмотря на значительные усилия в течение почти пяти десятилетий, до настоящего времени существование кварков экспериментально не подтверждено.

Отметим исключительную важность понимания первоматерии для современной науки. Рассматривая кварки как первоматерию, популяризатор науки Чирков справедливо отмечает: «Открытие кварков сталобы подлинным триумфом науки! Оно былобы записано вней золотыми буквами, попалобы во все учебники и, несомненно, осталосьбы вних на ближайшие, скажем, сотни лет» .

Ниже мы рассмотрим решение проблемы первоматерии и связанной с ней проблемы понимания элементарных частиц.

Рассмотрение этих проблем будем вести на базе той истины, что материальный мир представляется состоящим из частиц и находящейся между ними бесчастичной формы материи (эфира), основное свойство которого раскрыто в §2 .

Перейдем к рассмотрению вопроса об элементарных частицах.

1. Изчего состоят элементарные частицы

Для решения этого важнейшего вопроса современной науки проведем анализ хорошо известных экспериментальных данных, а затем дадим их теоретическое обоснование.

1.1. Анализ экспериментальных данных

1.1.1. Экспериментально установлено, что аннигиляция электрона и позитрона приводит к образованию двух гамма-квантов . Обратим внимание, что каждый из этих гамма-квантов уже не может образовать частицы (так как для этого недостаточна энергия такого гамма-кванта), а при встрече с какими - либо частицами или телами эти гамма-кванты отдают им свою энергию и прекращают свое существование. Но куда же делась масса частиц - электрона и позитрона? Ответ ясен, если учесть, что масса материи может существовать в двух формах - частицы и эфир, представляющий бесчастичную форму материи, т. е. масса рассматриваемых частиц перешла в бесчастичную форму материи. Следовательно, гамма-квант представляет не частицу (как принято в современной науке), а (следуя четкому эйнштейновскому определению волны) наблюдаемое движение волны эфира, являющееся перемещением некоторого состояния эфира, а не самого эфира .

1.1.2. Экспериментально установлено, что если гамма-квант соответствующей энергии направить на преграду (например, атомное ядро), то образуются стабильные частицы - электрон и позитрон или протон и антипротон . Отсюда следует, что из бесчастичной формы материи определенной величины (находящейся, как показано в п.1.1.1, в гамма - кванте) могут образовываться стабильные частицы весьма высокой плотности, порядка 10 17  кг / м 3 . Очевиден факт значительного уплотнения массы материи от весьма низкого значения (каким обладает бесчастичная форма материи) до весьма высокого.

1.1.3. Экспериментально установлено образование значительного количества нестабильных элементарных частиц различных масс и с различным временем жизни .

Таким образом, все экспериментальные данные объясняются с рассматриваемых позиций и показывают, что элементарные частицы представляют уплотненную массу эфира и мы можем утверждать о существовании явления образования элементарных частиц из бесчастичной формы материи (эфира).

Теперь перейдем к рассмотрению теоретического обоснования экспериментальных данных.

1.2. Теоретическое обоснование экспериментальных данных

Предлагаемое теоретическое обоснование экспериментальных данных принципиально отличается от современной теории элементарных частиц . Оно базируется на основном свойстве эфира. При этом рассматривается гравитационное взаимодействие в микромире, что в современной науке считается нецелесообразным, так как оно, якобы, значительно слабее господствующих в микромире слабого, электромагнитного и сильного взаимодействий .

На рис.1 изобразим частицу массой m в виде шара, но она может быть и любой другой формы. Рассмотрим действие сил на незначительную часть частицы (величиной ∆m), находящуюся на поверхности в точке В. Эти силы запишутся соотношениями:

F = ∆m · g    F 1 = ∆m · g 1

где g - напряженность поля гравитации, создаваемая всеми окружающими частицу m телами,

Сила F будет отрывать массу ∆m от частицы, пытаясь разрушить ее, а сила F 1 будет удерживать массу ∆m на поверхности частицы. Отметим, что точка В выбрана в таком месте поверхности частицы, где напряженность g противоположно направлена напряженности g 1 , вследствие чего частица будет наиболее подвергаться разрушению. В зависимости от соотношения g и g 1 (а, следовательно, сил F и F 1)

определим критерии существования частицы m.

1.2.1. Критерий I

Критерий I соответствует соотношению

При этом частица m не разрушается и существует в виде стабильной частицы. Экспериментальным подтверждением являются данные, изложенные в п.1.1.2. Отметим, что время жизни стабильной частицы определяется временем, в течение которого соблюдается критерий I.

1.2.2. Критерий II

Критерий II соответствует соотношению

где g 2 - наименьшее значение напряженности поля гравитации на поверхности Юпитера.

Известно, что максимально возможная величина напряженности поля гравитации на Земле g в несколько раз меньше значения g 2 , т. е.

Подставив на основании этого в (6) значение g вместо g 2 , имеем:

Соотношение (8) показывает, что на Земле всегда соблюдается критерий I. Следовательно, электрон ипротон живут на Земле вечно.

3.2. Взаимодействие различных элементарных частиц на ускорителях или с использованием космических лучей приводит к образованию новых частиц, масса которых больше массы исходных частиц. Парадоксальный факт о том, что большее может состоять из меньшего принят современной наукой за истину. В результате этого считается, что «привычные взгляды о простом исложном, о целом ичасти вмире элементарных частиц оказываются совершенно непригодными» . Однако решение этой проблемы с рассмотренных выше позиций становится очевидным: в образовании элементарных частиц помимо самих ускоренных частиц принимает участие масса бесчастичной материи, которую «гонят» перед собой быстро движущиеся частицы. Ясно, что чем больше мощность ускорителя, тем большую массу новых частиц можно получить.

3.3. В свете современной науки радиус протона и плотность его имеют соответственно величины порядка 10 13  см и 10 17  кг / м 3 .

Произведем расчет этих величин из условия существования протона в соответствии с критерием I (4). Расчет произведем ориентировочно, считая протон в форме шара с равномерно распределенной плотностью. Тогда величина g 1 на поверхности протона определится:

g 1 = γ ˑ mp / r 2 , (9)

где γ - гравитационная постоянная,

m Р - масса протона,

r - радиус протона.

Подставив значение g 1 из (9) в (4) и, сделав вычисления относительно r, получим:

r 10 29  кг / м 3

Некоторым экспериментальным подтверждением полученных значений можно считать результаты исследования на Стэнфордском линейном ускорителе в 1970 г., когда обнаружили, что электроны беспрепятственно проходят на расстоянии 10 16  см от протона .

Сформулируем выводы из§5.

1. Материальный мир Вселенной представляется в виде двух форм материи: бесчастичная (эфир) и элементарные частицы. Все тела и вещества состоят из элементарных частиц, между которыми находится эфир различной плотности.

2. Эфир является «строительным материалом» для элементарных частиц. Элементарные частицы представляют уплотненную массу бесчастичной формы материи и существуют в виде стабильных или нестабильных частиц благодаря силе гравитации, создаваемой массой самой частицы.

3. Бесчастичная форма материи (эфир) является первоматерией, лежащей в основе строения материального мира.

4. Заложена основа для истинного понимания явлений в материальном мире и приводится решение некоторых актуальных научных проблем.

§6. Эфирно-атомная структура материи

Современное атомистическое учение базируется на философской концепции Демокрита и базовой парадигмой современной науки является атомно-вакуумная структура материи; при этом под вакуумом подразумевается пустота (по Демокриту). Выше мы показали, что пустоты нет и вокруг микрочастиц, тел и макротел существуют соответствующие эфирные оболочки. Это приводит нас к необходимости признать в качестве базовой парадигмы науки эфирно – атомную структуру материи.

Новая парадигма даст мощный импульс для новых успехов физики и повысит качество работ во всех научных исследованиях.

II. ДАЛЬНЕЙШЕЕ РАЗВИТИЕ ТЕОРИИ И ЕЕ ПРИМЕНЕНИЕ

§7. Эфир и тепловая энергия

Как отмечалось выше между частицами вещества находится эфиp, представляющий бесчастичную фоpму матеpии, обладающую массой.

Получая при нагревании тепловую энергию Q, тело увеличивает и массу m в соответствии с законом взаимосвязи масы и энергии

Q = mc 2 , (12)

где с - скорость света в вакууме.

Но поскольку при нагревании количество частичек тела не изменилось, то, следовательно, масса m увеличивается за счет поступившей от нагревателя массы бесчастичной формы материи (эфира). Из соотношения (12) можно определить величину полученной массы m эфира. Таким образом, носителем тепловой энергии является бесчастичная форма материи (эфир). На основании этого сформулируем сущность тепловой энергии: "Тепловая энергия Qхарактеризуется массой эфира m; при этом существует зависимость Q = m c 2 (с – скорость света в эфирной среде околоземного вакуума). В этом раскрывается принципиально новое понимание тепловой энергии, что позволяет разрабатывать принципиально новые пути получения тепловой энергии. Как отмечалось выше бесчастичная форма материи (эфир) находится между всеми телами и между частицами всех тел, но при этом эфир связан с телами и частицами. Поэтому для получения тепловой энергии должны быть разработаны пути выделения массы эфира, которая в соответствии с соотношением (12) и будет представлять тепловую энергию; попытки получения такой энергии из космоса проводятся в настоящее время. Соотношение (12) экспериментально наблюдается в атомных реакторах, хотя уже есть эксперименты его подтверждения при нагревании тел . В атомных реакторах при делении ядра наблюдается разность между массой исходного ядра и суммой масс новых полученных ядер. Эта разность масс и представляет выделенную массу эфира, характеризующую в соответствии с (12) полученную тепловую энергию.

Поскольку все частицы вещества есть ни что иное, как эфир высокой плотности, то генеральным направлением решения энергетической проблемы может быть аннигиляционная энергетика, в результате которой масса частиц переходит в массу эфира, характеризующего тепловую энергию. При этом вся масса вещества превращается в экологически чистую тепловую энергию, что в тысячу раз эффективней современной атомной энергетики.

§8. Эфир и давление в газах

Современное понимание природы давления в газах согласно молекулярно-кинетической теории (МКТ) объясняется ударами о стенку хаотически двигающихся молекул. Однако нет ни одного эксперимента, в котором бы наблюдались эти удары молекул. Можно показать, что опыт Штерна и броуновское движение, которые современная физика считает подтверждением МКТ, являются некорректными.

Ниже рассмотрим давление в газах с позиций теории.

На рис.2а изображен сосуд в виде куба объемом V 1 , в котором находится 1 моль кислорода при давлении P и температуре Т 1 . Молекулы кислорода (черные кружочки) равномерно распределяются в сосуде и каждая молекула занимает определенный кубик объема, заполненный количеством эфира, соответствующим имеющейся температуре кислорода. Представим, что стенки сосуда могут при расширении газа раздвигаться, оставляя неизменным давление P.

Подогреем кислород до температуры Т 2 . При этом он расширится по всем трем направлениям и займет уже куб объемом V 2 . Получим увеличение объема на величину

v = V 2 – V 1 (13)

Это происходит за счет увеличения расстояния между молекулами. Это увеличение объема показано на рис. 2b в виде просвета между кубиками такого же размера, как и на рис. 2a.

Объeм v заполняется полученным от горелки количеством теплоты Q, которое, как указывалось в §7, представляет массу эфира m.

Из школьного курса физики известно, что состояние 1 моля газа описывается уравнением Клапейрона – Менделеева:

где R - универсальная газовая постоянная.

Запишем это уравнение для состояний газа при температуре T 1 и T 2 :

PV 1 = RT 1 , (15)

PV 2 = RT 2 (16)

Вычитая уравнение (15) из уравнения (16), получим:

P (V 2 – V 1 ) = R (T 2 – T 1) (17)

Отсюда видно, что для заполнения величины увеличенного объема v при давлении Р израсходована тепловая энергия Q, равная произведению универсальной газовой постоянной на приобретенную газом разность температур. Учитывая это, выражение (17) примет вид

Подставляя значение Q из соотношения (12), получаем

P·v = m c 2 , (19)

Так как отношение массы эфира m к занимаемому им объему v представляет плотность d эфира, то в результате имеем:

P = d c 2 (21)

На основании этого сформулируем свойство эфира производить давление: “Эфир плотностью d производит давление p; при этом существует зависимость p = d c 2 (с – скорость света в эфирной среде околоземного вакуума)."

Таким образом, в соответствии с этим свойством эфира давление газа определяется плотностью эфира, находящегося между его молекулами. Именно плотность этого эфира обуславливает давление в газах.

Подставив в найденное соотношение значение Р=1 атм.= 100 000 Па и с = 300 000 км / с = 3·10 8  м / с, получим: при давлении в 1 атмосферу плотность, принадлежащего газу эфира, находящегося между его молекулами, составляет порядок 10 15 г / см 3 . Отметим, что еще в 1909 году известный английский ученый Дж. Дж. Томсон получил такое же значение .

Приведенное понимание давления в газах вносит коренное изменение в область научного познания явлений, связанных с давлением. Так, например:

а) становится ясным, что при сжигании топлива в ракетных двигателях давление в камере сгорания образуется за счет увеличения плотности эфира, выделяемого при горении топлива. Поэтому задача получения ирегулирования мощности двигателя сводится к получению различной плотности эфира.

б) наличие определенной плотности эфира в вакуумном пространстве (не содержащем частиц) Вселенной не учитывается в современной астрономии, как при расчете массы Вселенной, так ипри других расчетах.

§9. Бесполезность экспериментов на Большом адронном коллайдере

В 2008г. в Швейцарии запущен сверхмощный ускоритель – Большой адронный коллайдер (БАК), который обошелся налогоплательщикам в 10 млрд. евро. Основная цель испытаний на БАК – обнаружить бозон Хиггса, который по мнению ученых является прачастицей, представляющей первоматерию Вселенной. Кроме этого ученые полагают, что эксперимент позволит в миниатюре воспроизвести "Большой взрыв" и получить фундаментальные знания о свойствах материи. Полагается, что для этого надо разбить протоны, для чего работа БАК проводится в 3 основных процесса:

а) создание глубокого вакуума;

б) разгон встречных потоков протонов до очень высокой энергии Е = 7·10 12 эВ;

в) столкновение встречных потоков протонов, в результате протоны должны разбиться и можно наблюдать ожидаемые явления.

Сразу отметим: в§5 показано, что первоматерией Вселенной является эфир и искать прачастицу не имеет смысла. Кроме этого, в §15, п.1 показана ошибочность расширения Вселенной после Большого взрыва, т.к. она базируется на ошибочном понимании красного смещения. Поэтому говорить о Большом взрыве тоже не имеет смысла. Но расмотрим все 3 процесса.

1. Создание глубокого вакуума

Глубокий вакуум создается откачиванием воздуха из рабочей зоны коллайдера. При идеальном вакууме все молекулы воздуха будут откачены вместе с созданными ими эфирными оболочками (аурой), т.е. эфир вещества (см. §3, п.2) будет убран. Однако в рабочей зоне

останется эфир околоземного вакуумного пространства (см. §3, п.1), в котором находятся все вещества (см. §3, п.2). Но в §4 показано, что плотность этого эфира составляет 10 -12 г/см 3 , что в тысячу раз больше плотности откаченного эфира, создаваемой молекулами воздуха при давлении в 1 атм. (см. §8).

2. Разгон протонов

Итак, движение протонов происходит в эфирной среде околоземного вакуума. Поэтому при движении протона с большой скоростью в эфирной среде он вынужден гнать и находящуюся перед ним массу эфира (подобно движущемуся с большой скоростью автомобилю). При этом, затрачиваемая энергия будет уже двигать протон вместе с уплотненной перед ним (прилипшей к нему) массой эфира. Прилипанию массы эфира к протону способствует то обстоятельство, что протон состоит из такой же материи, что эфир (протон – это сверхуплотненный эфир, см. п.4 в §5). Прирост массы протона соответствует приложенной энергии Е ускорителя. Зная массу покоящегося протона m р =1,6726∙10 -27 кги выражение ее через энергетический эквивалент Е р = m р c 2 = 0,94∙ГэВ, можно определить значение общей движущейся массы m (массы протона m р плюс приращенная эфирная масса) в зависимости от энергии ускорителя Е из пропорции:

m / m р = Е / Е р (22)

Откуда имеем m = 7∙10 3 / 0,94 = 7447 m р , (23)

Согласно известному из теории относительности соотношению

m = m 0 (1-v 2 /c 2)–1/2 (24)

можно подсчитать скорость, приобретенную протоном. Она составит 0,99999999 c , т. е. приблизилась к скорости света c . На рис.3 показано как изменяется движущаяся масса при увеличении скорости движения протона. При скорости 30000 км/с (0.1с) масса возрастает на 0,5%, при скорости 100000 км/с (0,333 с) она возрастает на 6%, а при своем максимальном значении она возрастает в 7447 раз.

Мы объяснили физическую сущность соотношения (24), которая не раскрыта в теории относительности. В релятивистской физике это соотношение принято считать справедливым для механики больших скоростей. Однако это соотношение можно получить с позиций классической физики, если рассматривать движение частицы в реальной среде материального эфира (см. приложение 3).

3. Столкновение протонов

Что же происходит при столкновении протонов в любом коллайдере? Как видно из рис.4 происходит столкновение эфирных масс, приобретенных протонами при разгоне. При этом происходит уплотнение различных частей этих масс эфира, в результате чего образуются различные частицы и соответствующие им античастицы, которые аннигилируют, образуя гамма-кванты различной энергии (подобно тому как образуются и аннигилируют протон и антипротон (см. §5, п. 1.1). В результате этого наблюдается довольно красочная картина, которая фотографируется и распространяется СМИ как имитация Большого взрыва. В БАК будет наблюдаться такая же картина, как и в менее

мощном коллайдере. Различие в том, что в БАК картина будет более зрелищной и могут наблюдаться более крупные частицы (см. §5, п. 3.2). Организаторы эксперимента полагают, что можно увидеть картину Вселенной на более ранней стадии от начала Большого взрыва. Но эта картина образуется из масс эфира, приобретенных протонами при их разгоне , а сами протоны не разобьются и после их остановки набранная ими в результате разгона масса эфира окажется в окружающем пространстве, характеризуя тепловую энергию в соответствии с

соотношением (12).

Определим предельное значение выделенной энергии. Зная, что 1эВ = 1,602∙10 -19 Дж, можно подсчитать, что при столкновении и остановке 1 протона выделится энергия

W 1 = 7∙10 12 ∙1,602∙10 -19 = 1,12∙10 -6 Дж (25)

Если в эксперименте, как запланировано, будут участвовать 10 -9 г протонов (число протонов n = 6∙10 14 ), то общая выделенная при эксперименте энергия (в экстремальном случае) составит:

W = 1,12∙ 10 -6 ∙ 6∙10 14 = 6,7∙ 10 8 Дж. (26)

Еще раз поясним, что выделенная эфирная энергия – тепловая, что и подтверждается этим экспериментом.

Пиковое значение мощности, учитывая кратковременность процесса, будет огромное. Это может привести к разрушению аппаратуры, однако 100-метровый слой земли является хорошей защитой на Земле. Да и экспериментаторы экстремальной ситуации не допустят, так как повышение мощности ускорителя и число задействованных в эксперименте протонов будут повышать постепенно.

Таким образом, протоны не разобьются и запланированные цели, связанные со столкновением протонов на световых скоростях, не подтвердятся.

§10. Природа ядерных сил

Рассмотрим, какие силы обеспечивают в ядре атома связь нейтрального нейтрона с протоном. На рис. 5 показан нейтрон n с расположенным на близком расстоянии (рядом с ним) протоном p. Нейтрон представляет соединение протона pn с электроном e . Так как pn и e не находятся в одной точке, то в некоторой области (обозначим ее через ∆) вокруг них образуется электростатическое поле, хотя далее за этой областью нейтрон является нейтральным. В ядре атома протон ядра pпопадает в область ∆ и входит в электростатическое взаимодействие с нейтроном. Однако при принятом в современной науке размере протона равном 10 15  м электростатические силы связи на три порядка меньше ядерных сил . Но в §5, п. 3.3 показано, что размер протона меньше 10 19  м. Это позволяет протону подойти к нейтрону на расстояние, при котором электростатические силы связи по величине будут равны имеющимся ядерным силам. Эти силы обеспечивают существующие энергии связи нейтрона в ядре атома. Так, например, в дейтерии энергия связи нейтрона с протоном составляет 2, 225 МэВ .

Из экспериментов известно, что «при приближении свободного нейтрона к ядру атома на расстояние 10 14 – 10 15  м происходит «щелк» ивключается ядерное поле» . Это как раз свидетельствует о том, что протон ядра атома попадает в область ∆ нейтрона и далее нейтрон приближается к ядру, создавая имеющиеся силы связи.

Таким образом, природа ядерных сил электростатическая. При этом нейтрон на малом расстоянии образует электростатическое поле, обеспечивающее его ядерные силы связи с протоном в ядре атома. Такое сильное взаимодействие возможно за счет малых размеров протона (менее 10 19  м, а не 10 15  м, как принято в современной физике).

§11. Решение других научных проблем

1. Свойства эфира характеризовать дефект массы и производить отталкивание частиц

Автореферат. В работе раскрывается свойство эфира характеризовать дефект массы, из которого становится ясной сущность связи дефекта массы с получаемой энергией, а также раскрывается свойство эфира производить отталкивание частиц, являющееся важной основой для разработки непланетарной модели атома. Для этого рассматривается соединение двух частиц с их эфирными оболочками и математически доказывается, что масса эфира, находящаяся в эфирной оболочке связанных частиц меньше суммы масс эфира, находящейся в эфирных оболочках несвязанных частиц. На основании этого формулируется свойство эфира характеризовать дефект массы: «При соединении частиц происходит выделение тепловой энергии Q в виде массы эфира m, характеризующей дефект массы; при этом имеется соотношение Q = m·с 2 (с - скорость света в эфирной среде околоземного вакуума)» Это свойство эфира позволяет дать простое объяснение многим научным проблемам и производить их дальнейшую разработку. Приводится объяснение некоторых из них.

1.1. Получение энергии при распаде исинтезе ядер

При распаде тяжелых ядер (имеющих менее плотную упаковку) образуются ядра с более плотной упаковкой, в результате чего выделяется эфир, характеризующий согласно соотношению (12) тепловую энергию, что и наблюдается экспериментально. При синтезе легких ядер тоже образуются ядра с более плотной упаковкой нуклонов, что тоже приводит к выделению эфира, характеризующего тепловую энергию.

1.2. Объяснение экзо - иэндотермических реакций

При экзотермических реакциях выделение тепла связано с тем, что упаковка атомов в получаемых продуктах реакции более плотная, чем их упаковка в исходных продуктах. В результате этого происходит выделение эфира, характеризующего тепловую энергию. В эндотермических реакциях получаются продукты с менее плотной упаковкой атомов, т. е. атомы более раздвинуты друг от друга и для этого надо дать эфир, что и характеризует потребление тепловой энергии.

1.3. Объяснение процесса горения

Процесс горения представляет экзотермическую реакцию горючего вещества с окислителем (кислородом). Например, горение угля свидетельствует, что упаковка атомов углерода в угле менее плотная, чем упаковка атомов углерода с кислородом в получаемом газе. Однако, для горения угля нужно его сначала поджечь, так как атомы кислорода не могут оторвать атомы углерода в холодном угле. Поэтому нужно ослабить связь атомов в угле, т. е.раздвинуть их. Это производится сообщением эфира поверхностным атомам угля, т. е. подогревом углядо тех пор, когда начнется реакция соединения с кислородом. Часть полученного тепла (эфира) идет на раздвижение следующих атомов угля и таким образом продолжается процесс горения.

Математически доказывается свойство эфира производить отталкивание частиц: «При соединении элементарных частиц между ними образуется эфирная «подушка», давление эфира в которой приводит к отталкиванию частиц».

2. Непланетарная модель атома

Автореферат . Отмечается, что в соответствии с законом Кулона электрон стремится приблизиться к положительно заряженному ядру атома. Но при этом проявляется свойство эфира производить отталкивание частиц, заключающееся в том, что между электроном и ядром атома образуется эфирная «подушка», давление эфира в которой приводит к отталкиванию частиц. Поэтому электрон не упадет на ядро атома, а займет положение, в котором сила отталкивания будет равна силе кулоновского притяжения (гравитационные силы на много порядков меньше кулоновских). Приводится расчет положения злектронов в атоме водорода и в атоме гелия.

3. Основы новой теории магнетизма

Аннотация. Отмечается, что современная теория магнетизма не может раскрыть истинную природу магнетизма, так как она не учитывает наличие материальной эфирной среды, представляющей бесчастичную форму материи. Магнитный поток Ф через площадь поперечного сечения S определяется скоростью V движения массы эфира плотностью d и составит Ф = dVS. Соответственно магнитная индукция B = dV. На базе теории эфира дается вывод формулы закона Ампера, а также раскрывается природа : ферромагнетизма, электромагнитной индукции, переменного электромагнитного поля, силы Лоренца, взаимодействия постоянных магнитов.

4. Решение проблемы нейтрино

Аннотация. Отмечается, что предположение о существовании нейтрино возникло в связи с наблюдаемыми экспериментами бета-распада ядер элементов. Теория нейтрино глубоко разработана. Она базируется на положениях квантовой механики, в основе которой лежит атомистическое учение Демокрита и движение частиц в вакууме. Но в работе рассмотривается физическая сущность проблемы на базе разрабатываемой теории материального эфира. С этих позиций расматривается бета-распад ядра и распад нестабильных частиц, в результате чего получен вывод: «Частица нейтрино не существует. Законы сохранения энергии и импульса при бета-распаде и распаде нестабильных частиц соблюдаются в связи с появлением струи эфира, характеризующего тепловую энергию. Непродолжительное время жизни и очень малое сечение этой струи затрудняет экспериментальное обнаружение ее действия».

5. Основы микроскопической теории сверхпроводимости

Автореферат. Отмечается, что существующая микроскопичес-кая теория сверхпроводимости, предложенная американскими физика-ми Бардиным, Купером и Шриффером (теория БКШ) не может отра-жать истинную картину происходящего процесса, так как она не учи-тывает наличие материальной эфирной среды внутри металла. В настоящей работе рассматриваются основы микроскопической теории сверхпроводимости на базе разрабатываемой теории материального эфира. Рассматриваются все фазовые состояния металла: газообраз-ное, жидкое, твердое. В твердом состоянии имеетсяположительный ион «+1» и, так называемый, «свободный» электрон. При дальнейшем охлаждении металла уменьшается масса эфира внутри иона, что приводит к приближению электронов к ядру атома и друг к другу. При очень низкой температуре положение электронов может стать таким, что произойдет отталкивание от атома еще одного наименее связан-ного электрона: получается ион «+2» идва «свободных» электрона. Это способствует еще большему приближению оставших-ся электронов к ядру атома, в результате чего выделяется масса эфи-ра (тепловая энергия): происходит увеличение теплоемкости металла, что фактически и наблюдается. Металл перешел в сверхпроводящее состояние. У металлов, имеющих на внешней оболочке один электрон (Li, K, Na, Rb, Fr), отрыв второго электрона затруднен, так как он должен уже отрываться с устойчивой оболочки, а для этого требуется значительно больше энергии. И действительно, эти металлы не пере-ходят в сверхпроводящее состояние. Рассматривается критическая температура, критическое магнитное поле, критический ток, глубина проникновения магнитного поля и сделаны выводы:

а)переход в сверхпроводящее состояние осуществляется при образовании иона «+2»;

b) для получения высокотемпературной сверхпроводимости неоходимо создание вещества, в котором образование иона «+2» происходит при высокой температуре.

III. СЛЕДСТВИЕ ТЕОРИИ ЭФИРА - НЕСОСТОЯТЕЛЬНОСТЬ ТЕОРИИ ОТНОСИТЕЛЬНОСТИ

На основе теории эфира с позиций классической физики в приложении 2 дано объяснение опытов Физо и Майкельсона, а в приложении 3 получена зависимость массы частицы от скорости ее движения и раскрыта ее физическая сущность, что отсутствует в теории относительности (ТО). Ниже на основе теории эфира будет раскрыта физическая сущность целого ряда явлений, объясняемых ТО, а в отдельных случаях и получены более точные результаты. В связи с этим возникает неободимость анализа основных положений ТО, что мы и сделаем ниже.

§12. Главная ошибка в теории относительности

Автореферат . Отмечается,что в основе теории относительности лежит обоснованная Эйнштейном относительность одновременности . Приводится анализ этого обоснования и показывается принципиальная ошибка в нем, которая заключается в следующем. В своем обосновании Эйнштейн выбирает в качестве системы отсчета стержень, в точках А и В которого находятся наблюдатели с часами. При неподвижном стержне он рассматривает по световому сигналу синхронизацию часов, находящихся в точках А и В стержня, и получает первые соотношения. Далее стержню сообщается равномерное прямолинейное движение со скоростью v. Так как скорость света в вакууме не зависит от скорости движения источника света, он определяет вторые соотношения для наблюдателей покоящейся системы. Эйнштейн утверждает, что в соответствии с принципом относительности скорость светового сигнала относительно движущихся со стержнем наблюдателей должна быть такой же, как и при неподвижном стержне. Отсюда Эйнштейн делает вывод об относительности одновременности. Однако, анализ принципа относительности, сформулированного Галилеем , показывает, что для соблюдения принципа относительности необходмо, чтобы система отсчета, все наблюдаемые тела исреда , в которой они находятся, получали одно и то же инерциальное движение. В рассмотренном же Эйнштейном примере только стержень(система отсчета) получает инерциальное движение (скорость v), а окружающая стержень среда и движущийся в ней фотон света не получают этого движения. Поэтому, когда стержень движется, принцип относительности применять нельзя и наблюдатели, находящиеся на стержне не могут применять первые соотношения.

Это главная ошибка в теории относительности потому, что если бы она была обнаружена сразу, то не было бы ошибочной теории относительности.

На основании соблюдения общепризнанного принципа относительности дается математическое доказательство абсолютности пространства и времени, четко сформулированных Ньютоном .

§13. О несостоятельности преобразований Лоренца

Автореферат. Отмечается, что необходимость преобразований Лоренца вызвана требованием соблюдения принципа относительности для луча света, заключающегося в том, что луч света, испущенный из начала координат совмещенных систем отсчета (подвижной и непод-вижной) должен иметь одну и ту же скорость с в вакууме как отно-сительно неподвижной системы, так и относительно подвижной. Для этого приводится решение соответствующих уравнений. Однако ошиб-ки в решении этих уравнений приводятся в ниже следующей работе. Кроме этого отметим, что, как указывалось в §12, принцип относи-тельности для луча света в подвижной системе применять нельзя.

Рассматриваются следующие следствия из формул преобразований Лоренца, изложенные в .

1. Изменение размеров тела внаправлении движения . С помощью этого следствия было предложено объяснение опыта Майкельсона при условии движения Земли через неподвижный эфир. Таким образом, это способствовало ложному утверждению о существовании мирового неподвижного эфира, но как показано в §3 неподвижного эфира нет. Объяснение опыта Майкельсона дано в приложении 2 без необходимости изменения размеров тела. В природе нет ни одного эксперимента, подтверждающего изменение размеров тела при его движении. Таким образом, преобразования Лоренца приводят к ошибочному пониманию существования изменения размеров тела при его движении инаправляют науку на ложный путь развития.

2. Невозможность получения скорости относительного движения двух инерциальных систем отсчета, превосходящих скорости света ввакууме. Как мы отмечали выше, свет распространяется не в вакууме, а в материальной эфирной среде. В этой же среде находятся инерциальные системы отсчета. Они должны представлять не абстрактные оси координат, а реальные тела (например, Земля, вагон, элементарная частица и т. д.). Скорость движения этих систем отсчета ограничивается сопротивлением эфирной среды, в которой они движутся и не может превышать скорости света в эфирной среде околоземного вакуума. При этом происходит увеличение массы тел при больших скоростях движения (см. приложение 3). Если в эфирной среде две инерциальные системы отсчета (например, элементарные частицы) движутся в противоположных направлениях со скоростью близкой к с , то относительная скорость между этими инерциальными системами будет близка к 2с . Поэтому приведенное следствие ошибочно.

3.Замедление хода часов при их движении. Считается, что «релятивистский эффект замедления хода времени был блестяще подтвержден в опытах с мюонами - нестабильными, самопроизвольно распадающимися элементарными частицами». При этом время жизни быстро двигающегося мюона больше времени жизни покоящегося мюона в соответствии с формулой преобразований Лоренца. Увеличение времени жизни частицы объяснено в §5, п.1.2.4.

Таким образом, увеличение времени жизни мюона при его движении связано с движением мюона в реальной материальной эфирной среде, а не с замедлением хода часов. Поэтому существующие объяснения неверны ирассмотренное следствие из преобразований Лоренца ведет науку по ложному пути.

4. Релятивистский закон сложения скоростей . В работе показано (на примере систем Земля и Солнце), что сложение скоростей в природе происходит по законам классической механики. Релятивистский закон получен из ошибочного вывода преобразований Лоренца.

5. Объяснение опыта Физо . Этот опыт объяснен в приложении 2 без применения преобразований Лоренца.

6. Объяснение явления годичной аберрации света . Идущий от звезды луч света, попадая в околоземную эфирную среду, дополнительно получает скорость V этой среды. Если скорость луча с перпендикулярна скорости V , то угол аберрации α определится из условия tgα = V /  c . Таким образом, получено точное значение угла аберрации, а не приближенное, как это получается с помощью преобразований Лоренца.

§14. О математических ошибках в выводах

преобразований Лоренца

x 2 + y 2 + z 2 = c 2 t 2 (27) (x") 2 + (y") 2 + (z") 2 = c 2 (t") 2 , (28)

где нештрихованные значения применяются в системе К, а штрихованные - в системе К′. Вывод преобразований Лоренца сводится к решению этих уравнений.

Ошибка в выводах преобразований Эйнштейном состоит в следующем. Он рассуждает, что «для начала координат системы К′ все время х′ = 0 » и на основании этого получает преобазования. Ошибка данного рассуждения заключается в том, что х′ = 0 не все время, а только при t′ = 0 и поэтому выводы преобразований

Ошибка в выводах, приведенных в учебнике проф. Савельева , заключается в том, что происходит деление на t = 0 и t′ = 0, но деление на 0 дает неопределенность. Аналогичная ошибка в выводах, приведенных в .

Ошибка в выводах,изложенных в заключается в том, что в решении найденных уравнений не учитывается зависимость х = c t.

Таким образом, преобразования Лоренца не имеют строгого математического доказательства.

§15. Теория эфира объясняет явления, рассматриваемые в теории относительности

Ниже раскроем с позиций эфира ряд важнейших явлений.

1. Красное смещение

Спектральный анализ показывает смещение спектральных линий отдаленных звезд от соответствующих спектральных линий Солнца в красную сторону спектра. В современной науке это объясняется эффектом Доплера, связанным с движением звезд. Отсюда и родилась идея расширения Вселенной. Однако известно, что спектральные линии Солнца смещены относительно спектральных линий соответствующих элементов на Земле. Но при этом нет удаления Солнца от Земли со скоростью, соответствующей эффекту Доплера. Следовательно, красное смещение вызвано не удалением звезд и вывод о расширяющейся Вселенной в связи с Большим взрывом ошибочный. В общей теории относительности (ОТО) Эйнштейн объяснил это тем, что гравитационный потенциал Солнца больше гравитационного потенциала Земли. При этом физическая сущность явления представляется таким образом, что луч света, попадая в область с меньшим гравитационным потенциалом, изменяет частоту в красную сторону спектра. Но такое объяснение является не корректным, так как заданная источником колебаний частота не может изменяться; она только может восприниматься по-другому лишь приемником колебаний, движущимся относительно источника (эффект Доплера).

Теория эфира позволяет раскрыть сущность этого важного явления следующим образом. Так как на поверхности Солнца гравитационый потенциал больше, чем на поверхности Земли, то будет и больше плотность эфира, в котором находятся атомы элементов, спектр которых рассматривается, т.е. элементы в районе Солнца несколько отличаются от соответствующих элементов на Земле. Это и приводит к некоторому изменению излучаемой частоты колебаний. На сомнительную условность принятого равенства земных элементов и наблюдаемых на других астрономических телах обращал внимание известный ученый президент Академии Наук СССР В.И. Вавилов.

Раскрытая сущность красного смещения показывает ошибочность расширения Вселенной, что подтверждается исследованиями ряда астрономов.

2. Искривление луча Солнцем

Известно, что этот важный вопрос, подтвержденный экспериментально экспедициями в 1919 г., явился утверждением ОТО. Наряду с возможными причинами этого явления, рассмотрим их с позиций теории эфира. Дело в том, что луч в районе Солнца проходит через атмосферу Солнца, плотность которой уменьшается по мере удаления от Солнца, а, следовательно, уменьшается показатель преломления. Поэтому прохождение луча подобно прохождению его через призму, что и приводит к его отклонению.

3. Смещение перигелия Меркурия

Необходимо иметь в виду, что Меркурий (как и другие планеты) движется в эфирной среде околосолнечного вакуума, плотность которой уменьшается по мере удаления от Солнца. Поэтому смещение перигелия других планет уменьшается по мере удаления планет от Солнца.

4. Черные дыры

Согласно теории эфира черная дыра представляет область пространства, в котором эфир настолько разрежен, что в нем уже не распространяется свет подобно тому, как звук не распространяется в очень разреженном воздухе. Такое представление крайне противоположно современному представлению, маловероятному вследствие необходимости получения колоссальной плотности материи для больших масс, что экспериментально не наблюдается (известно. что наибольшей плотностью обладают элеметарные частицы и эта плотность на много порядков меньше расчетной плотности для осуществления современного представления черной дыры).

ЗАКЛЮЧЕНИЕ

В заключении отметим, что в проделанной работе применяется постулат о применении закона всемирного тяготения к эфиру, который был признан всеми древними философиями и физикой вплоть до ХХ века.

Перечислим важнейшие результаты работы и перспективы дальнейшего развития данного научного направления.

1. Раскрыта физическая сущность второй формы материи , что позволяет с позиций классической физики решать важнейшие научные вопросы в трехмерном пространстве Вселенной.

2. Обоснована первоматерия Вселенной, что упраздняет колоссальные затраты на теоретические и экспериментальные работы (подобные Большому адронному коллайдеру) в поиске прачастицы.

3. Раскрыта природа тепловой энергии, что позволяет вести разработку принципиально новых путей ее получения вплоть до превращения всей массы вещества в экологически чистую энергию с эффективностью в тысячу раз превышающую современную атомную энергетику.

4. Обоснована природа давления в газах, что позволяет вести принципиально новые разработки летательных аппаратов.

5.Раскрыта физическая сущность процессов в коллайдере и показана бессмысленность проводимых экспериментов.

6. Раскрыта природа ядерных сил.

7. Указаны результаты работ по строению атома, микроскопической теории сверхпроводимости и магнетизму, учитывающие наличие эфира в веществе и ведущие к новым результатам.

8. Дано объяснение опытов Физо и Майкельсона (явившихся первопричиной разработки теории относительности) с позиций классической физики. Уже это ставит под сомнение необходимость теории относительности (ТО).

9. Показана несостоятельность ТО (показаны ошибки в обосновании относительности одновременности и в выводах преобразований Лоренца, а также дано математическое доказательство абсолютности времени).

Литература:

1. Аристотель Сочинения в 4-х томах, т.1. М. «Мысль», с. 410.

2. Аристотель Сочинения в 4-х томах, т.3. М. «Мысль», с. 136.

3. Физическая энциклопедия. М. “Советская энциклопедия”, 1988, т.1, с. 235.

4. Детлаф А.А., Яворский Б.М. Курс физики, т.3. М. "Высшая школа", 1979, с.170.

5. Чирков Ю. Г. Охота за кварками. М. «Молодая гвардия»,1985, с.30.

6. Яворский Б. М., Детлаф А. А. Справочник по физике. М. «Наука», 1981, с. 474.

7. Эйнштейн А. Собр. научных трудов, т.4. М. «Наука», 1965, с.421.

8. Яворский Б. М., Детлаф А. А. Справочник по физике. М. «Наука», 1981, с. 473.

9. Там же, с. 441.

10. Там же, с. 469.

11. Яворский Б. М., Детлаф А. А. Справочник по физике. М. «Наука», 1981, с. 465.

12. Гинзбург В. Л. УФН 134 492 (1981).

13. Андреев А. »Знание - сила», 1983, № 10, с.39.

14. Чирков Ю. Г. Охота за кварками. М. «Молодая гвардия»,1985, с.153..

15. Там же, с.199.

16. Яворский Б.М., Детлаф А.А. Справочник по физике. М. «Наука», 1974, с. 527.

17. Кишкинцев В.А. Явление зависимости веса газа от сообщаемой ему тепловой энергии. Жигулевский институт радиоаппаратуры, 1993, с. 46.

18. Томсон Дж. Дж. Материя, энергия и эфир (речь, произнесенная на съезде Британской Ассоциации в Виннипеге (Канада) в 1909 г.). Книгоиздательство “Физика”, С-Петербург, 1911.

19. Абрамов А. И. Бета-распад. М. ОИАТЭ, 2000., с. 72.

20. Кикоин И. К. Таблицы физических величин. Справочник. М. «Атомиздат», 1976, с. 891.

21. Боровой А. А. Как регистрируют частицы. М. «Наука», 1978, с. 64.

22. Эйнштейн А. Собр. научных трудов, т. 1. М. «Наука», 1965, с. 8.

23. Галилей Г. Диалог о двух главнейших системах мира, птоломеевой и коперниковой. М.-Л. Гостехиздат, 1948, с. 146

24. Ньютон И. Математические начала натуральной философии. М.-Л. Изд. Академии Наук СССР, 1927, с. 30.

25. Детлаф А. А., Яворский Б. М. Курс физики, т. 3. М. «Высшая школа», 1979, с. 173.

26. Эйнштейн А. Собр. научных трудов, т. 1. М. «Наука», 1965, с. 588.

27. Савельев И. В. Курс физики, т. 1, 1989, М. «Наука», с. 158.

28. Детлаф А. А., Яворский Б. М. Курс физики, т. 3. М. «Высшая школа», 1979, с. 178.

29. Бергман П. Г. Введение в теорию относительности, М. Гос. издат. иностранной литературы, 1947, с.54.

Приложение 1.

Опровержение невозможности газообразного представления эфира

Мы утверждаем "газообразное" строение эфира, которое было отвергнуто наукой по той причине, что ряд экспериментов, якобы, свидетельствует о поперечности световых волн, а поперечные волны согласно теории упругости не могут существовать в газах . Однако бесчастичное представление эфира позволяет опровергнуть доказательства поперечности световых волн и, в частности, приводимое, например, в . Здесь Эйнштейн приводит эксперимент по прохождению луча света через две пластинки из турмалинового кристалла: при повороте одной пластинки вокруг оси, определяемой проходящим лучом, наблюдается, что свет делается все слабее, пока не исчезнет совершенно, а затем он вновь появляется. Из этого Эйнштейн делает следующие выводы: "...можно ли объяснить эти явления, если световые волны продольны? Если бы волны были продольны, частицы эфира должны были бы двигаться вдоль оси, т.е. в том же направлении, в каком идет луч. Если кристалл вращается, ничего вдоль оси не изменяется... Такого ясно различимого изменения, как исчезновение и появление новой картины, не могло бы возникнуть для продольной волны. Это, а также и многие другие подобные явления, могут быть объяснены лишь в том случае, если предположить, что световые волны не продольны, а поперечны!"

Однако, в этом эксперименте при вращении кристалла изменяется поперечный размер для прохождения луча и утверждение Эйнштейна о том, что продольная волна должна пройти через сколь угодно малый поперечный размер является некорректным и связано с представлением о том, что частицы эфира, двигаясь вдоль оси, должны пройти через сколь угодно малый поперечный размер. Продольная волна представленного нами бесчастичного эфира характеризуется сгустком, имеющим поперечный размер, что и приводит при вращении кристалла к более слабому прохождению волны вплоть до исчезновения. Поэтому этот пример не дает основания сделать вывод о поперечности световых волн.

Литература:

1. Борн М. Эйнштейновская теория относительности. М.» Мир», 1972., с. 104.

2. Эйнштейн А. Собр. научных трудов, т.4. М.» Наука», 1965, с.432.

Приложение 2.

Опыты Физо и Майкельсона

Опыты Физо и Майкельсона во второй половине XIX века явились фундаментальной вехой на пути развития физики и были первопричиной в разработке специальной теории относительности. Опыт Физо показал, что сложение скорости света в воде со скоростью движения воды не соответствует классической физике; при этом свету передается только часть скорости движущейся воды. Опыт Майкельсона показал, что нет движения Земли через окружающий ее эфир.

1. Объяснение опыта Майкельсона

Зная расстояние от Земли до Солнца, а также массы Земли и Солнца, не трудно определить, что напряженности полей гравитации Земли и Солнца будут равны в точке, удаленной от Земли примерно на расстояние 250000 км. Это значит, что в близлежащем окружении Земли напряженность поля гравитации Земли значительно больше, чем Солнца и поэтому окружающий Землю эфир притягивается Землей и движется вместе с Землей, а, следовательно, нет движения Земли через окружающий ее эфир. Это и подтвердил опыт Майкельсона. Можно сказать и так. Опыт Майкельсона проводился в эфирной среде околоземного вакуума, которая (как отмечалось выше) связана с Землей и движется вместе с Землей и поэтому нет движения Земли через окружающий ее эфир.

2. Объяснение опыта Физо

Опыт Физо был объяснен Лоренцем при условии движения в неподвижном эфире любой среды, молекулы которой представляют собой системы электрических зарядов .

Но структура вещества представляет собой молекулы, и при своем движении вещества на Земле эти молекулы движутся в эфирной среде ауры Земли, что соответствует условию Лоренца.

Физическая сущность объяснения опыта Физо заключается в следующем. Свет распространяется в эфирной среде, представляющей сумму плотностей эфира околоземного вакуума и эфира вещества, образованного его частицами. При движении вещества на Земле его эфир движется относительно эфира околоземного вакуума, увлекая фотон света. Поэтому свету передается лишь часть скорости движущегося вещества, соответствующая соотношению плотностей эфира вещества и эфира околоземного вакуума.

Опыты Физо и Майкельсона подтвердили, что эфир обладает массой и гравитационными свойствами, благодаря чему эфир околоземного вакуума движется вместе с Землей, а движение на Земле вещества вместе с его эфиром идет в эфирной среде околоземного вакуума.

Литература:

1. Детлаф А.А., Яворский Б.М. Курс физики, т.3. М. "Высшая школа", 1979, с.170.

Приложение 3.

Классическая физика для больших скоростей

Исходя из движения элементарной частицы в эфирной среде, с позиций классической физики выведем зависимость изменения массы этой частицы от скорости ее движения.

Кинетическая энергия W k массы m определяется скоростью v. Эта энергия соответствует энергии, соответствующей величине массы dm, на которую произошло увеличение массы частицы. Энергия массы эфира dm в соответствии (12) составит dm∙c 2 . Приравняв эту энергию к W k , получим

W k = dm∙c 2 (1)

Определим импульс р материальной точки массой m, движущейся со скоростью v:

а сила, действующая на эту точку, составит

F = dp/dt = m ∙ (dv/dt) + v · (dm/dt) (3)

Кинетическая энергия за время dt записывается как

W k = F·v·dt (4)

Подставив значения F из (3), имеем:

W k = mv·dv +v 2 ·dm (5)

Подставив это значение в (1), получаем дифференциальное уравнение:

(dm/dv) · (c 2 -v 2 ) – mv = 0 (6)

Решим это уравнение, соблюдая начальное условие: при v = 0, m = m 0 :

∫(dm/m) = ∫ v·dv / (c 2 -v 2 ) (7)

m = (c 2 -v 2)-1 /2 · B (8)

Из начального условия определится: В = m 0 ·с

Итак, получаем решение уравнения (6):

m = m 0 ·(1- v 2 /c 2)-1/2 (9)

Мы получили известное в теории относительности соотношение с позиций классической физики, рассматривая движение частицы в реальной среде материального эфира. И это еще раз подтверждает наличие материальной эфирной среды.

Брусин С.Д., Брусин Л.Д. ВТОРАЯ ФОРМА МАТЕРИИ - НОВОЕ ПРО ЭФИР (новая теория в физике) // Научный электронный архив.
URL: (дата обращения: 19.10.2019).

Известно, что понятие эфира существовало с далекой древности и совсем не случайно древние философы называли эфир "заполнителем пустоты". Однако, постепенно о теории эфира начали задумываться и ученые. Так, в 1618 году ученый-физик из Франции - Рене Декарт, выдвинул гипотезу о существовании светоносного эфира. После появления этой гипотезы для ее практического обоснования многие ученые занялись поисками этого загадочного "эфира".

Одним из таких ченых был и наш известный соотечественник Дмитрий Менделеев, который включил эфир (назвав его "ньютонием") в свою замечательную таблицу элементов. Однако, до нас эта таблица дошла уже в "урезанном" фальсифицированном виде, поскольку мировой "элитке" было совсем даже не выгодно, чтобы простые люди получили доступ к свободной эфирной энергии и бестопливным технологиям, которые могли лишить топливно-энергетические и металлургические концерны, принадлежащие богатейшим кланам Земли, их баснословных прибылей, получаемых за счет реализации традиционого углеводородного топлива и проводной энергетики.

Также, малоизвестным является тот факт, что еще в 1904 году Д.Менделеев опубликовал концепцию мирового эфира, которая в то время бурно обсуждалась в научном мире. В своей научной работе, посвященной теме эфира, российский ученый выдвинул предположение, что "эфир", наполняющий межпланетное пространство, является средой, которая передает свет, тепло и даже гравитацию. По мнению Д.Менделеева, все пространство заполнено этим невидимым эфиром - газом с очень малым весом и неизученными свойствами.

Вот что об этом говорит кандидат физио-математических наук С.Салль: "Вопреки экспериментам Майкельсона, Морли и Миллера, физическое сообщество становится на путь отрицания эфирного ветра и эфира. Совершается подлог, когда вместо высокоточных экспериментов Миллера, достоверность которых подтверждена практикой работы с волоконно-оптическими и СВЧ системами цифровой связи, на веру были приняты результаты экспериментов с интерферометрами, находящимися в металлической оболочке, где эфирного ветра быть не может.

Но главное другое. Дорога к освоению человечеством экологически чистой бестопливной энергетики была закрыта, а монополия иллюминатов на топливные ресурсы сохранилась. К настоящему времени в бестопливной энергетике достигнут большой прогресс (чтобы познакомиться с этими технологиями, можно скачать в интернете журналы «Новая энергетика»).

Однако попытки внедрить бестопливные технологии в широкую практику обычно кончаются для авторов этих проектов плохо. Наука, техника, а главное, печать, находятся под контролем иллюминатов. Кроме того, нарастающие экологические проблемы используются иллюминатами для пропаганды человеконенавистнических идей радикального сокращения населения".

Вот видите, планы хозяев мировой "элитки" по сокращению численности населения Земли до 500 млн. человек, основываются на тезисах об исчерпаемости ресурсов нашей планеты. Но именно те же самые силы и утаивают от человечества имеющиеся в их распоряжении бестопливные технологии свободной энергии, которые уже десятилетиями втайне от простых людей активно используются в подземных городах-убежищах "элитки", разбросанных по всему миру.

Однако, сейчас все больше независимых исследователей и ученых, не подкупленных слугами мировой "элитки", начинают снова возвращаться к теории эфира и эфирным технологиям. Так, например, доктор технических наук В.Ацюковский, наблюдая 25 февраля 2011 года за колоссальной выбросом солнечной плазмы, который в 50 раз превысил размеры Земли, задался вполне резонным вопросом: откуда наше светило берет энергию для таких колоссальных выбросов?

На основе своих предположений В.Ацюковский выдвинул уникальную гипотезу, что Солнце черпает свою энергию из эфира. Он полностью уверен в существовании этого газа, а также в том, что именно под его влиянием наше Солнце выбрасывает со своей поверхности во все стороны космического пространства невообразимого размера кометы. Согласно этой гипотезы, энергии у нашей звезды столько, что она ежесекундно может выбрасывать несколько десятков комет. А сама солнечная корона - это не что иное, как выбросы эфира.

Вот, что он об этом говорит: "Эфир оказался обыкновенным газом с очень большим давлением и очень разряженным. Его массовая плотность на 11 порядков меньше, чем плотность воздуха. Тем не менее он обладает огромной энергией, огромным давлением благодаря очень высокой скорости своих молекул".

Разработка и массовой внедрение эфирных технологий позволит человечеству решить множество своих проблем, которые уже становятся общепланетарной бедой всего живого. Это касается варварской добычи традиционных углеводородов и экологического загрязнения среды обитания, которое принимает все более катастрофичные масштабы. Также внедрение этих технологий позволит предотвратить планы хозяев мировой "элитки" по полному уничтожению человечества его же самыми руками.

И это следует помнить всем тем, кто продавшись этим античеловеческим силам, пытается противодействовать массовому внедрению этих технологий. Не думайте, что вас самих ваши негуманоидные хозяева оставят в живых после того, как вы выполните свою миссию по сокращению населения Земли на первом этапе до 500 млн. человек.

Человечество было готово к внедрению и освоению бестопливных технологий еще во времена изобретений и открытий, сделанных Н.Теслой. Но вмешавшалась враждебная человечеству сила и остановила этот процесс. И до самого последнего времени слуги этих сил продолжают свою вредоносную для человечества деятельность. Вот, что о последователях идей Н.Теслы по внедрению эфирных технологий сказал несколько лет назад кандидат физико-математических наук С.Салль:

"По-видимому, первыми после Теслы научились это делать русские ученые Филиппов в Петербурге и Пильчиков в Одессе. Оба скоро были убиты, а их бумаги и установки исчезли. В дальнейшем все работы в этом направлении засекречивались или запрещались. За этим следили ФБР, ЦРУ, МИ-6 и другие спецслужбы. В СССР контролем за нераспространением бестопливных технологий занималась АН СССР.

Теперь при РАН есть специальная структура - Комиссия по борьбе с лженаукой, которая пытается запретить бестопливные технологии даже в оборонной промышленности и космосе. Тем не менее, такие технологии без широкого афиширования уже используются в промышленности и на транспорте. Недавно простой и эффективный бестопливный генератор электрической энергии продемонстрировал общественности один грузинский изобретатель. Однако президент Саакашвили, как марионетка Запада, внедрение таких генераторов, естественно, пресек".

Энциклопедичный YouTube

    1 / 5

    ✪ Эйнштейн ошибался, а Тесла был прав. ЭФИР СУЩЕСТВУЕТ! ПОЗНАНИЕ #5

    ✪ Эфир (часть 1) Эфирный ветер нельзя обнаружить

    ✪ Теория Эфира или Теория Струн? Кьюбит-шоу

    ✪ Эфир в физике

    ✪ Эфир (Часть 4) Учения Декарта и Ньютона

    Субтитры

    ПОЗНАНИЕ. Изучение эфира В конце XIX - начале XX века ведущие ученые активно изучали тему эфира и свободной энергии. Результатами многих открытий мы пользуемся до сих пор. Среди этих ученых такие светила науки, как немецкий физик-теоретик, основоположник квантовой физики - Макс Планк, английский физик, химик Майкл Фарадей, немецкий физик Генрих Герц, голландский физик Хендрик Лоренц, знаменитый французский математик, физик, астроном, философ - Жюль Анри Пуанкаре, английский физик, математик - Джеймс Максвелл, ну и, конечно же, сербский физик - Никола Тесла. Все современные технологии опираются на фундаментальные научные исследования и открытия того времени. Но за последние 50 лет в мире не было эпохальных открытий в области естественных наук. И это тревожный факт для ученых. Ученые прошлого века вплотную приблизились к разгадке некоторых вопросов квантовой физики. И это позволило бы человечеству перейти на более высокий уровень жизни, решить ряд наиболее актуальных проблем и открыть новые горизонты возможностей и познания. Например, объяснение феномена “сверхъестественной” мгновенной связи между запутанными частицами” (скорость которой больше скорости света), дало бы возможность перемещения в пространстве и мгновенной передачи информации на любые расстояния. Ответы на вопросы дискретности материи приблизили бы понимание, что 3-х мерный мир - это не единственная реальность, и что за гранью этого мира есть что-то большее, чем видимая материя. Кроме того, наука очень близко подошла к открытию эфира и возможности его использования как источника свободной энергии, что в свою очередь решило бы вопросы экологии Земли, позволило бы сохранить природные ресурсы, прогнозировать и корректировать климат на планете, избавиться от такого понятия, как голод, навсегда. Прекращение изучение Эфира и резкое табу на эту тему Но неожиданно в начале XX века все исследования по эфиру свернули. Многим учёным, отстаивавшим теорию эфира, прекратили финансирование работ, начали создавать различные искусственные препятствия, например, закрывать лаборатории, сокращать научные вакансии, создавать сложности в последующем трудоустройстве и т.п. Одновременно в мировых СМИ началась масштабная дискредитация эфира, как одного из основных понятий теоретической физики. Почему об эфире, на основании которого знаменитые ученые XIX века выстраивали свои фундаментальные теории и получали действительно интересные экспериментальные данные, вдруг так резко замолчали все? А в последующем на тех физиков, кто даже просто упоминал об эфире в разговоре с коллегами, безоговорочно вешали ярлык ‒ «лжеученый», несмотря на его заслуги, даже если он тысячу раз был прав в своих выводах? И почему сегодня слово “нематериальный” является синонимом слова “антинаучный”, несмотря на целый ряд фактов, экспериментальных доказательств, научных статей и очерков по этому поводу. Почему современная наука, а вместе с ней и всё общество не решается заглянуть за ту грань, за которую смело заглядывали ученые еще 100 лет назад, и что действительно находится за ней? 2 августа 2017 года произошло эпохальное событие для всего человечества - на канале Аллатра-ТВ вышла уникальная передача с участием профессора, академика Игоря Михайловича Данилова под названием “Сознание и Личность. От заведомо мертвого к вечно живому”. Ответы на фундаментальные вопросы физики и квантовой механики были впервые озвучены в этой передаче. И именно эта информация, которая не может оставить безразличным ни одного, стремящегося к Истине человека, побудила нас сделать этот ролик. Впрочем, обо всем по порядку… История квантовой механики Начнем с квантовой механики. В начале XX века было введено понятие “Квантовая механика”. Слово «квант» происходит от латинского quantum («сколько, как много») и английского quantum («количество, порция, квант»). «Механикой» издавна принято называть науку о движении материи. Соответственно, термин «квантовая механика» означает науку о движении материи порциями, квантами. Термин «квант» вперые ввел в обиход немецкий физик Макс Планк. Квантовая механика часто противоречит нашим понятиям о здравом смысле. А всё потому, что здравый смысл подсказывает нам вещи, которые берутся из повседневного опыта, а в своем повседневном опыте нам приходится иметь дело только с крупными объектами и явлениями макромира, которые мы к тому же воспринимаем через весьма ограниченные органы чувств. А на атомарном и субатомном уровне материальные частицы ведут себя совсем иначе, они не подчиняются законам той физики, которая на сегодня является, скажем так, классической. "Если Вы думаете, что понимаете квантовую механику, значит, Вы её не понимаете." Ричард Филлипс Фейнман, американский учёный, физик-теоретик, один из создателей квантовой электродинамики. Следует отметить, что законам квантовой механики подчиняется вся материя, которая состоит из элементарных частиц. На сегодня уже не секрет, что если мы заглянем за атомарный и субатомный предел, то мы обнаружим там частички, которые формируют каждый атом. И законы, управляющие этими частицами, на квантовом уровне кардинально отличаются от тех законов, к которым люди привыкли в повседневной жизни. Квантовая запутанность Немного позже появилась так называемая теория квантовой запутанности. Она предполагает, что 2 частицы могут “запутаться” между собой, если находятся близко друг к другу. И их свойства становятся взаимосвязанными. Если их разделить и отправить на разные стороны Вселенной, они будут продолжать взаимодействовать между собой, но между ними не будет никаких связей, энергий, которые можно было бы зафиксировать на сегодняшний день известными науке способами. Спины этих частиц будут оставаться отличными друг от друга. И изменение спина одной частички будет приводить к моментальному изменению спина другой частички, и это происходит мгновенно (нарушая все законы физики, к которым мы привыкли). Теория Нильса Бора и противоречия с Эйнштейном Подобную связь Эйнштейн назвал сверхъестестественной и сразу начал ее отрицать, но датский физик Нильс Бор со своими единомышленниками наоборот утверждали, что эта чудесная взаимосвязь существует. Хотя на тот момент экспериментально доказать ее существование Бор не мог, поскольку это была теоретическая наработка. Но даже теоретически он пояснил эту связь (на примере двух вращающихся колес - красного и синего). “Бог не играет в кости со Вселенной». Этими словами Альберт Эйнштейн бросил вызов коллегам, разработавшим новую теорию - квантовую механику. Возможно, Эйнштейну все-таки следовало прислушаться к совету своего старого друга и коллеги Нильса Бора, который, в очередной раз услышав старый припев про «игру в кости», воскликнул: «Альберт, перестань же ты, наконец, указывать Богу, что ему делать!» И Эйнштейн в противовес теории Бора выдвинул свою теорию, которая исключала всякое волшебство, объяснив теорию запутанности “перчаточным примером”. Он говорил о том, что если 2 перчатки по отдельности положить в разные чемоданы, один из которых отправить в другую страну, то открыв оставшийся у нас чемодан, мы увидим правую перчатку. Это будет автоматически означать, что в другом чемодане находится левая. Но он не рассказал о том, что квантовая физика предполагает еще и наличие спина (а значит перчатка, находящаяся вдалеке от нас, должна быть не только левая, но и вывернута, и если мы начнем выворачивать правую перчатку, левая (на каком бы расстоянии она не находилась) начнет выворачиваться автоматически назад. Но это пояснение разрушило бы теорию Эйнштейна. “Если квантовая механика вас не потрясла до глубины души, значит, вы её еще не поняли”. Нильс Хе́нрик Дави́д Бор - датский физик-теоретик и общественный деятель, один из создателей современной физики. На тот момент это объяснение Эйнштейна удовлетворило общество, но не удовлетворило истинных ученых-физиков, которые понимали, что эта трактовка ничего не поясняет, а лишь указывает на то, что запутанные частички изначально разные. И об этом Эйнштейн и компания как раз-таки и умолчали, так как не могли обоснованно опровергнуть существующий факт. И если бы Эйнштейн об этом рассказал, это бы подвергло сомнениям теорию относительности, которую он выдвинул в противовес теории эфира. И выходит, что раз существует такая взаимосвязь, то существует и эфир, а раз существует эфир, то существуют и свободные энергии, а значит Тесла был прав. А если Тесла был прав, то у людей возникнет вопрос: “А почему мы сейчас покупаем углеводороды, а не получаем электричество бесплатно?” Поэтому эта тема была закрыта на долгие годы, но это не успокоило умы ученых, которые продолжали работать в попытках парировать того же Эйнштейна, который говорил, что пока не существует экспериментальных доказательств такой взаимосвязи - ее не существует. Но, видимо, Эйнштейн таки понимал неполноценность своей теории, поэтому однажды признался: «Я, должно быть, похож на страуса, который все время прячет голову в песок относитесльности, чтобы не смотреть в лицо гадким квантам.» Альбе́рт Эйнште́йн - физик-теоретик, один из основателей современной теоретической физики Дальнейшее изучение квантовой запутанности И вот в 1964 году ирландский физик-теоретик Джонн Белл путем глубокого математического анализа смог экспериментально доказать (благодаря созданию машины, которая создавала бы много пар запутанных частиц) существование такого понятия, как квантовая запутанность. И это уже была не философия, а реальный эксперимент, который можно было провести, и раз и навсегда прекратить этот философский спор. Джонн Белл был малоизвестен, но его книга по этому поводу была выпущена. И так произошло, что один аспирант по имени Джон Клаузер наткнулся на его работы, пытаясь разобраться в квантовой механике. И он решил построить такую машину, чтобы самому разобраться в том: есть взаимосвязь, или нету? И что такое вообще квантовая механика - реальная наука или фантазия лжеучёных? Он построил такую машину и экспериментально доказал, что Бор был полностью прав, а Эйнштейн ошибался - сверхъественная связь между двумя запутанными частицами реально существует. “Тот, кто не шокирован квантовой теорией, не понял ее." Нильс Хе́нрик Дави́д Бор - датский физик-теоретик и общественный деятель, один из создателей современной физики. На сегодняшний день в мире проведено огромное количество научных экспериментов, подтверждающих то, что квантовая запутанность действительно существует. Летом 2017 года китайские ученые впервые отправили с Земли на спутник “мо-цзы” в космосе объект с помощью квантовой телепортации. Правильно настроенные запутанные фотоны могут осуществить революцию в вычислительной технике, коммуникационных технологиях и кибербезопасности. Ученые из университета Хоккайдо и университета Осаки (Япония) разработали первый квантовый микроскоп, который использует запутанные фотоны для придания большей контрастности изображению. Математики из университета Case Western выяснили, что запутанность между частицами крупной системы - естественна. А это подтверждает, что материальные объекты могут передвигаться выше скорости света и доказывает существование некой среды, которую ранее называли эфиром! И если научное сообщество всерьез отнесется к этому вопросу, то в ближайшем будущем нас ожидают действительно эпохальные открытия. Выводы «Настанет день, когда будут смеяться над глупостью нашей современной философии. Чем больше я занимаюсь изучением природы, тем более останавливаюсь в благоговейном изумлении перед делами Творца”. Луи Пастер. Французский микробиолог и химик, член Французской академии наук. Истинные Ученые, которые глубоко изучают естественные науки, рано или поздно приходят к пониманию того, что этот Мир не мог быть создан “случайно”, в результате “Большого взрыва”. Что за созданием этой Вселенной стоит Бог, Создатель, Творец (неважно, как мы называем эту Творящую Силу). И сегодня есть знания, которые помогают каждому человеку приблизиться к этому пониманию. Основа этих знаний и фундамент для дальнейшего развития науки были заложены и впервые озвученной в передаче “Сознание и Личность. От заведомо мёртвого к вечно живому”. В этой передаче раскрываются вопросы, которые волнуют каждого человека. Участники беседы обсуждают и важнейшие научные темы, и дают ответы на вопросы, которые стояли перед учеными уже не один десяток лет. Нейрофизиология, приматология, психология, анатомия головного мозга, физика, астрофизика, а также квантовая физика и квантовая механика. Эти Знания помогают выйти за рамки искусственно придуманных шаблонов и стереотипов, которые сегодня навязываются ученым. Эти Знания дают возможность зрителю сменить потребительский формат мышления на созидательный, устремившись к познанию Истины. Мы искренне надеемся, что эта передача никого не оставит равнодушным, что настоящие ученые современности не только проникнутся этой информацией, но и начнут внимательно изучать и искать экспериментальные подтверждения в этом направлении. Благодаря этим Знаниям можно вывести науку на невиданные рубежи и значительно облегчить жизнь человеческой цивилизации, направив её в русло духовно-нравственного развития. Познать то, что скрывалось в веках, понять, в чем на самом деле заключается смысл Жизни человека и стать по-настоящему свободным. Если деятельный человек, погружённый в гущу этого суетного мира, живёт внутри себя достоянием духовного мира, то и в мирских достижениях его мудрость не будет знать границ и дела будут тесно связаны с исконным смыслом его жизни. Человек в своих познаниях способен пойти настолько далеко, насколько он сам верит, что пройдёт.

История

Античные представления

Из немногочисленных дошедших до нас трудов древнегреческих учёных можно понять, что эфир тогда понимался как особое небесное вещество, «заполнитель пустоты» в Космосе . Платон в диалоге «Тимей» сообщает, что Бог создал мир из эфира. Лукреций Кар в поэме «О природе вещей» упоминает, что «эфир питает созвездия», то есть светила состоят из сгущённого эфира. Иначе представлял эфир Анаксагор - по его мнению, эфир похож на земной воздух, только более горячий, сухой и разрежённый .

Несколько более подробная картина изложена в трудах Аристотеля . Он также считал, что планеты и другие небесные тела состоят из эфира (или квинтэссенции ), который есть «пятый элемент» природы, причём, в отличие от остальных (огня, воды, воздуха и земли), вечный и неизменный. Аристотель писал: «Солнце не состоит из огня; оно есть огромное скопление эфира; теплота Солнца причиняется действием его на эфир во время обращения вокруг Земли». Эфир также заполняет весь внеземной Космос, начиная со сферы Луны; из приведенной цитаты можно сделать вывод, что эфир Аристотеля передаёт свет от Солнца и звёзд, а также тепло от Солнца. Аристотелевское понимание термина переняли средневековые схоласты ; оно продержалось в науке до XVII века.

Эфир Декарта (XVII век)

Подробно разработанная гипотеза о существовании физического эфира была выдвинута в 1618 году Рене Декартом и впервые изложена в труде «Мир, или трактат о свете» (1634), а позже развита и опубликована в «Первоначалах философии » (1644) .

Декарт впервые чётко утверждал наличие у мирового эфира обычных механических свойств вещества и возродил в новой физике, таким образом, понятие эфира в духе Анаксагора (вместо дискредитированного к этому времени аристотелева эфира как «небесного» элемента). Понятие мирового эфира в интерпретации Декарта удерживалось вплоть до начала XX века.

Декарт отрицал пустоту и считал, что всё пространство заполнено первоматерией или её производными. Первоматерию он представлял как абсолютно плотное тело, каждая из частей которого занимает часть пространства, пропорциональное её величине и не способна к растяжению или сжатию, а также не может занимать одно и то же место с другой частью материи. Эта материя способна к делению на части любой формы под действием приложенной силы, и каждая из её частей может обладать любым допустимым движением . Частицы материи сохраняют свою форму, покуда у них имеется приобретённое движение. При потере движения частицы способны к объединению . Он предполагал, что под действием приложенной силы частицы первоматерии стачивали свои углы в различных кругообразных движениях. Образовавшиеся сферы формировали вихри, а осколки заполняли промежутки между ними.

Невидимый эфир Декарта заполнял всё свободное от материи пространство Вселенной, однако не оказывал сопротивления при движении в нём вещественных тел. Декарт разделил «эфирные материи» по их свойствам на три категории .

  1. Элемент огня - самая тонкая и самая проникающая жидкость, сформированная в процессе стачивания частиц материи. Частицы огня самые маленькие и обладают самой большой скоростью. Они разнообразно делятся при столкновении с другими телами и заполняют все промежутки между ними. Из них состоят звёзды и Солнце.
  2. Элемент воздуха - сферы, которые формируют тончайшую жидкость по сравнению с видимой материей, но в отличие от элемента огня обладают известной величиной и фигурой благодаря наличию осевого вращения. Это вращение позволяет сохранять форму частицы даже в состоянии покоя относительно окружающих тел. Из этих частиц состоит космос, не занятый звёздами или планетами, и они образуют собственно светоносный эфир.
  3. Элемент земли - крупные частицы первоматерии, движения в которых очень мало или оно полностью отсутствует. Из этих частиц состоят планеты.

Механические свойства эфира, а именно абсолютная твёрдость частиц второго элемента и их плотное прилегание друг к другу, способствуют мгновенному распространению изменений в них. Когда импульсы изменений достигают Земли, они воспринимаются нами в качестве тепла и света .

Изложенную систему мира Декарт применил для объяснения не только световых, но и других явлений. Причину тяжести (которую он считал присущей только земным предметам) Декарт видел в давлении окружающих Землю эфирных частиц, которые движутся быстрее самой Земли . Магнетизм вызван циркуляцией вокруг магнита двух встречных потоков мельчайших винтообразных частиц с противоположной резьбой, поэтому два магнита могут не только притягиваться, но и отталкиваться. За электростатические явления аналогично ответственны частицы лентообразной формы . Декарт построил также оригинальную теорию цвета, по которой разные цвета получаются из-за разных скоростей вращения частиц второго элемента .

Теории света после Декарта

Учение Декарта о свете было существенно развито Гюйгенсом в его «Трактате о свете» (Traité de la lumière , 1690). Гюйгенс рассматривал свет как волны в эфире и разработал математические основы волновой оптики.

В конце XVII века были открыты несколько необычных оптических явлений, которые следовало согласовать с моделью светоносного эфира: дифракция (1665, Гримальди), интерференция (1665, Гук), двойное лучепреломление (1670, Эразм Бартолин , изучено Гюйгенсом), оценка скорости света ( , Рёмер) . Наметились два варианта физической модели света:

Интересно отметить, что концепция светоносного эфира Декарта-Гюйгенса стала вскоре общепринятой в науке и не пострадала от развернувшихся в XVII-XVIII веках споров картезианцев и атомистов , а также сторонников эмиссионной и волновой теории. Даже Исаак Ньютон , склонявшийся скорее к эмиссионной теории, допускал, что в указанных эффектах принимает участие и эфир . В трудах Ньютона эфир упоминается очень редко (в основном в ранних работах), хотя в личных письмах он иногда позволял себе «измышлять гипотезы» о возможной роли эфира в оптических, электрических и гравитационных явлениях. В последнем абзаце своего основного труда «Математические начала натуральной философии » Ньютон пишет: «Теперь следовало бы кое-что добавить о некоем тончайшем эфире, проникающем все сплошные тела и в них содержащемся». Далее он перечисляет предполагавшиеся в тот период примеры физической роли эфира:

Частицы тел при весьма малых расстояниях взаимно притягиваются, а при соприкосновении сцепляются, наэлектризованные тела действуют на большие расстояния, как отталкивая, так и притягивая близкие малые тела, свет испускается, отражается, преломляется, уклоняется и нагревает тела, возбуждается всякое чувствование, заставляющее члены животных двигаться по желанию, передаваясь именно колебаниями этого эфира от внешних органов чувств мозгу и от мозга мускулам.

Ньютон, однако, никак не комментирует все эти гипотезы, ограничившись замечанием: «Но это не может быть изложено вкратце, к тому же нет и достаточного запаса опытов, коими законы действия этого эфира были бы точно определены и показаны» .

Благодаря авторитету Ньютона, эмиссионная теория света в XVIII веке стала общепринятой. Эфир рассматривался не как носитель, но как переносчик световых частиц, а преломление и дифракцию света объясняли изменением плотности эфира - вблизи тел (дифракция) или при переходе света из одной среды в другую (преломление) . В целом эфир как часть системы мира отошёл в XVIII веке на задний план, однако теория эфирных вихрей сохранилась, и были безуспешные попытки применить её для объяснения магнетизма и гравитации .

Развитие моделей эфира в XIX веке

Волновая теория света

В начале XIX века волновая теория света, рассматривавшая свет как волны в эфире, одержала решительную победу над эмиссионной теорией. Первый удар по эмиссионной теории нанёс английский учёный-универсал Томас Юнг , в 1800 году разработавший волновую теорию интерференции (и ввёл сам этот термин) на основе сформулированного им принципа суперпозиции волн. По результатам своих опытов он довольно точно оценил длину волны света в различных цветовых диапазонах.

Вначале теория Юнга была встречена враждебно. Как раз в это время было глубоко изучено явление двойного лучепреломления и поляризации света , воспринятое как решающее доказательство в пользу эмиссионной теории. Но тут в поддержку волновой модели (ничего не зная о Юнге) выступил Огюстен Жан Френель . Рядом остроумных опытов он продемонстрировал чисто волновые эффекты, совершенно необъяснимые с позиций корпускулярной теории, а его мемуар, содержащий всестороннее исследование с волновых позиций и математическую модель всех известных тогда свойств света (кроме поляризации), победил на конкурсе Парижской Академии наук (). Курьёзный случай описывает Араго : на заседании комиссии академиков Пуассон выступил против теории Френеля, так как из неё следовало, что при определённых условиях в центре тени от непрозрачного кружка мог появиться ярко освещённый участок. На следующем заседании Френель продемонстрировал членам комиссии этот эффект.

Юнг и Френель изначально рассматривали свет как упругие (продольные) колебания разрежённого, но чрезвычайно упругого эфира, подобные звуку в воздухе. Любой источник света запускает упругие колебания эфира, которые происходят с гигантской, нигде больше не отмеченной в природе частотой, благодаря чему достигается распространение их с колоссальной скоростью . Любое вещественное тело притягивает эфир, который проникает внутрь тела и сгущается там. От плотности эфира в прозрачном теле зависел коэффициент преломления света .

Оставалось понять механизм поляризации. Ещё в 1816 году Френель обсуждал возможность того, что световые колебания эфира не продольны, а поперечны. Это легко объяснило бы явление поляризации. Юнг в это время тоже пришёл к такой идее. Однако поперечные колебания ранее встречались только в несжимаемых твёрдых телах, в то время как эфир считали близким по свойствам к газу или жидкости. В 1822-1826 годах Френель представил мемуары с описанием новых опытов и полную теорию поляризации, сохраняющую значение и в наши дни.

Модель Коши-Стокса

Интерес и доверие к концепции эфира в XIX веке резко возросли. Следующие (после 1820-х) почти сто лет обозначены триумфальным успехом волновой оптики во всех областях. Классическая волновая оптика была завершена, поставив в то же время труднейший вопрос: что же представляет собой эфир?

Когда выяснилось, что световые колебания строго поперечны, встал вопрос о том, какими свойствами должен обладать эфир, чтобы допускать поперечные колебания и исключить продольные. А. Навье в 1821 году получил общие уравнения распространения возмущений в упругой среде. Теория Навье была развита О. Л. Коши (1828), который показал, что, вообще говоря, продольные волны также должны существовать .

Френель выдвинул гипотезу, согласно которой эфир несжимаем, но допускает поперечные сдвиги. Такое предположение трудно согласовать с полной проницаемостью эфира по отношению к веществу. Д. Г. Стокс объяснил затруднение тем, что эфир подобен смоле: при быстрых деформациях (излучение света) он ведёт себя как твёрдое тело, а при медленных (скажем, при движении планет) пластичен. В 1839 году Коши усовершенствовал свою модель, создав теорию сжимающегося (лабильного) эфира, позднее доработанную У. Томсоном .

Чтобы все эти модели не рассматривались как чисто спекулятивные, из них следовало формально вывести основные эффекты волновой оптики. Однако подобные попытки имели мало успеха. Френель предположил, что эфир состоит из частиц, величина которых сравнима с длиной световой волны. При этом дополнительном предположении Коши удалось обосновать явление дисперсии света . Однако попытки связать, например, френелевскую теорию преломления света с какой-либо моделью эфира оказались неудачны .

Эфир и электромагнетизм

Как уже отмечено, предполагалось, что «эфир», заполняющий межпланетное пространство, является средой, передающей свет, тепло и гравитацию. В контексте таких представлений исследования сильно разреженных газов представлялось возможным путём к детерминации названной субстанции, когда свойства «обычного» вещества уже не способны бы были скрывать свойства «эфира» .

В одной из своих гипотез Д. И. Менделеев руководствовался тем, что специфическим состоянием сильно разреженных газов воздуха мог оказаться «эфир» или некий неизвестный инертный газ с очень малым весом, то есть наилегчайший химический элемент. Учёный пишет на оттиске из «Основ химии», на эскизе периодической системы 1871 года: «Легче всех эфир, в миллионы раз»; в рабочей тетради 1874 года он более ясно высказывает свои соображения: «При нулевом давлении у воздуха есть некоторая плотность, это и есть эфир!». Но в его публикациях той поры эти мысли не нашли отражения. Открытие в конце XIX века инертных газов актуализировало вопрос о химической сущности мирового эфира. По предложению Уильяма Рамзая Менделеев включает в периодическую таблицу нулевую группу, оставляя место для более лёгких, чем водород , элементов. По мнению Менделеева, группа инертных газов могла быть дополнена коронием и легчайшим, пока неизвестным элементом, названным им ньютонием , который и составляет мировой эфир

Свои взгляды в апреле 1902 года он развёрнуто излагает в эссе «Попытка химического понимания мирового эфира» (опубликовано на английском языке в 1904 году, на русском - в 1905 году). В заключительной части этого труда Д. И. Менделеев пишет :

Представляя эфир газом, обладающим указанными признаками и относящимся к нулевой группе, я стремлюсь прежде всего извлечь из периодического закона то, что он может дать, реально объяснить вещественность и всеобщее распространение эфирного вещества повсюду в природе и его способность проникать все вещества не только газо- или парообразные, но и твёрдые и жидкие, так как атомы наиболее легких элементов, из которых состоят наши обычные вещества, всё же в миллионы раз тяжелее эфирных и, как надо думать, не изменят сильно своих отношений от присутствия столь лёгких атомов, каковы атомы или эфирные. Понятно само собой, что вопросов является затем и у меня самого целое множество, что на большую часть из них мне кажется невозможным отвечать, и что в изложении своей попытки я не думал ни поднимать их, ни пытаться отвечать на те из них, которые мне кажутся разрешимыми. Писал не для этого свою «попытку», а только для того, чтобы высказаться в таком вопросе, о котором многие, знаю, думают, и о котором надо же начать говорить.

Ещё в ранних своих работах Д. И. Менделеев пришёл к методологическим принципам и положениям, получившим развитие в его последующих исследованиях. Он стремится подходить к решению того или иного вопроса, следуя этим общим принципам, создавая философскую концепцию, в пределах которой будет проводиться анализ конкретных данных. Это характерно и для исследований, касающихся данной темы, которые выразились результатами, к ней прямого отношения не имеющими. Движимый идеей обнаружения эфира, Д. И. Менделеев экспериментально начал изучать разреженные газы, и, занимаясь этой темой, сформулировал или подтвердил положения кинетической теории и термодинамики , теоретически обосновал условия поведения сжатых газов : получил уравнение идеального газа , содержащее выведенную им универсальную газовую постоянную , и получил вириальные разложения , которые находятся в полном соответствии с первыми приближениями в известных сейчас уравнениях для реальных газов . Очень ценным, но несколько преждевременным, было предложение Д. И. Менделеева о введении термодинамической шкалы температур .

Эфир и гравитация

В течение XVII-XIX веков были сделаны многочисленные попытки связать эфир с гравитацией и подвести физическую основу под ньютоновский закон всемирного тяготения . Исторические обзоры упоминают более 20 таких моделей разной степени разработанности. Чаще других высказывались следующие идеи .

  • Гидростатическая модель: поскольку эфир, как считалось, скапливается внутри материальных тел, его давление в пространстве между телами ниже, чем в удалении от этих тел. Избыточное давление сбоку «подталкивает» тела друг к другу.
  • Тяготение есть результат распространения через эфир колебаний («пульсаций») атомов вещества.
  • В эфире имеются «источники» и «стоки», и их взаимовлияние проявляется как тяготение.
  • Эфир содержит множество беспорядочно движущихся микрочастиц (корпускул), и тяготение двух тел возникает из-за того, что каждое тело «экранирует» другое от этих частиц, тем самым создавая дисбаланс сил (подталкивающих корпускул получается больше, чем расталкивающих).

Все эти модели подверглись аргументированной критике и не смогли добиться широкого научного признания .

Гидростатическая модель

Впервые эта модель была опубликована в списке проблем и вопросов, которые Ньютон поместил в конце своего труда «Оптика» (1704). Сам Ньютон ни разу не выступил в поддержку такого подхода, ограничившись известным высказыванием: «Причину этих свойств силы тяготения я до сих пор не мог вывести из явлений, гипотез же я не измышляю». Данная идея никогда не получала сколько-нибудь серьёзного развития .

Другой вариант этой модели предложил Роберт Гук : притяжение вызывают колебания атомов, передающиеся от тела к телу через эфир. Эта мысль получила развитие в XIX веке в виде «пульсационных» теорий .

«Пульсационные» теории

Среди «пульсационных» теорий наиболее видное место занимает модель норвежского физика Карла Бьеркнеса, который одним из первых попытался создать единую теорию всех полей . Публикации Бьеркнеса (1870-е годы) развивали следующую идею: тела в эфире ведут себя подобно синхронно пульсирующим телам в несжимаемой жидкости, между которыми, как известно, возникает притяжение, обратно пропорциональное квадрату расстояния. Концепцию Бьеркнеса поддержали английские физики Фредерик Гатри (Frederick Guthrie ) и Уильям Хикс (William Mitchinson Hicks ), последний теоретически описал «отрицательную материю», чьи атомы колеблются в противофазе, и антигравитацию. В 1909 году теория Бьеркнеса была развита Чарльзом Бертоном (Charles V. Burton ), который приписал пульсации электронам внутри тел .

«Пульсационные» модели подверглись резкой критике, против них были выдвинуты следующие возражения .

  1. Общепринятая в конце XIX века теория эфира рассматривала его как упругую среду, поэтому свойство несжимаемости следовало либо как-то обосновать, либо допустить существование двух в корне различных видов эфира.
  2. Непонятны причины синхронности колебаний атомов.
  3. Для поддержания незатухающих пульсаций необходимы какие-то внешние силы.

Источники/стоки в эфире

Основными авторами этой группы моделей были английские учёные Карл Пирсон (K. Pearson ) и Джордж Адольф Шотт (George Adolphus Schott ). Пирсон, специалист по гидродинамике, сначала поддерживал пульсационные теории, но в 1891 году предложил модель атома как системы эфирных струй, с помощью которой надеялся объяснить как электромагнитные, так и гравитационные эффекты :

Первичной субстанцией является жидкая невращающаяся среда, а атомы или элементы материи суть струи этой субстанции. Откуда взялись в трёхмерном пространстве эти струи, сказать нельзя; в возможности познания физической Вселенной теория ограничивается их существованием. Может быть, их возникновение связано с пространством более высокой размерности, чем наше собственное, но мы о нём ничего знать не можем, мы имеем дело лишь с потоками в нашу среду, со струями эфира, которые мы предложили именовать «материей».

Масса, по Пирсону, определяется средней скоростью струй эфира. Из этих общих соображений Пирсон сумел вывести ньютоновский закон тяготения. Пирсон не объяснил, откуда и куда текут эфирные струи. Этот аспект попытался прояснить Шотт, предположив, что радиус электрона со временем увеличивается, и это «раздувание» являются источником движения эфира. В варианте Шотта постоянная тяготения меняется со временем .

Теория Лесажа

Идея этой остроумной механической модели тяготения появилась ещё во времена Ньютона (Никола Фатио де Дюилье , 1690), автором развитой теории стал швейцарский физик Жорж Луи Лесаж , первая публикация которого появилась в 1782 году . Суть идеи показана на рисунке: пространство заполнено некими быстро и хаотично движущимися эфирными корпускулами, их давление на одиночное тело уравновешено, в то время как давление на два близких тела несбалансировано (в силу частичного экранирования со стороны тел), что создаёт эффект взаимного притяжения. Увеличение массы тела означает увеличение числа составляющих это тело атомов, из-за чего пропорционально увеличивается число столкновений с корпускулами и величина давления с их стороны, поэтому сила притяжения пропорциональна массе тела. Отсюда Лесаж вывел закон тяготения Ньютона .

Критики теории Лесажа отмечали множество её слабых мест, особенно с точки зрения термодинамики . Джеймс Максвелл показал, что в модели Лесажа энергия непременно перейдёт в теплоту и быстро расплавит любое тело. В итоге Максвелл сделал вывод :

Мы посвятили этой теории больше места, нежели, по-видимому, она заслуживает, потому что она остроумна и потому что это - единственная теория о причине тяготения, которая была настолько подробно развита, что было возможно обсуждать аргументы за и против неё. Видимо, она не может объяснить нам, почему температура тел остается умеренной, между тем как их атомы выдерживают подобную бомбардировку.

  • Если тяготение вызвано экранированием, то Луна в те моменты, когда она находится между Землёй и Солнцем, должна существенно влиять на силу притяжения этих тел и, соответственно, на траекторию Земли, однако ничего подобного в реальности не наблюдается.
  • Быстро движущееся тело должно испытывать спереди избыточное давление со стороны корпускул.

Трудности в теории эфира (конец XIX - начало XX века)

Причины отказа от концепции эфира

Главной причиной, по которой физическое понятие эфира было отвергнуто, стал тот факт, что это понятие после разработки СТО оказалось излишним. Из других причин можно назвать противоречивые атрибуты, приписываемые эфиру - неощутимость для вещества, поперечная упругость, немыслимая по сравнению с газами или жидкостями скорость распространения колебаний и др. Дополнительным аргументом стало доказательство дискретной (квантовой) природы электромагнитного поля, несовместимое с гипотезой непрерывного эфира.

В своей статье «Принцип относительности и его следствия в современной физике» (1910) А. Эйнштейн детально объяснил, почему концепция светоносного эфира несовместима с принципом относительности . Рассмотрим, например, магнит, движущийся поперёк замкнутого проводника. Наблюдаемая картина зависит только от относительного движения магнита и проводника и включает появление в последнем электрического тока. Однако с точки зрения теории эфира в разных системах отсчёта картина существенно разная. В системе отсчёта, связанной с проводником, при перемещении магнита меняется напряжённость магнитного поля в эфире, вследствие чего создаётся электрическое поле с замкнутыми силовыми линиями, в свою очередь создающее ток в проводнике. В системе отсчёта, связанной с магнитом, электрическое поле не возникает, а ток создаётся прямым действием изменения магнитного поля на электроны движущегося проводника. Таким образом, реальность процессов в эфире зависит от точки наблюдения, что в физике недопустимо.

Существенной поддержки эти предложения не получили . Одной из причин этого является то, что эфир ассоциируется с механическими моделями, которые характеризуются скоростью среды в каждой точке (трёх- или четырёхмерным вектором), а известные физические поля не имеют подобных свойств, например, метрическое поле - тензорное , а не векторное , а калибровочные векторные поля Стандартной модели имеют дополнительные индексы.

Термин эфир изредка используется в научных работах при создании новой терминологии. Так, например, в работе A. de Gouvêa, Can a CPT violating ether solve all electron (anti)neutrino puzzles? , Phys. Rev. D 66, 076005 (2002) (hep-ph/0204077) под «CPT-нарушающим эфиром» подразумевается лишь определённого вида члены в потенциале нейтринного лагранжиана .

Более радикальные построения, в которых эфир выступает как субстанция (среда), вступают в конфликт с принципом относительности . Такой эфир за счёт очень слабого взаимодействия с обычным миром может приводить к некоторым явлениям, главным из которых является слабое нарушение лоренц-инвариантности теории. Ссылки на некоторые из этих моделей можно найти в SLAC Spires Database .

Однако до настоящего времени не обнаружены какие-либо наблюдаемые физические явления, которые оправдали бы реанимацию концепции субстанционального эфира в какой-либо форме.

Использование термина «эфир» в культуре

Радио появилось задолго до того, как термин эфир вышел из научного употребления, и в профессиональной терминологии медиа-индустрии укоренилось немало связанных с эфиром словосочетаний: программа вышла в эфир , прямой эфир и т. п. Термин «передача в эфир» использован в ряде статей ГК РФ, касающихся авторского права и смежных прав. Английская версия термина (Ether ) присутствует во многих терминах электроники (например, «Ethernet »), хотя применительно к радиосвязи и радиовещанию используется слово air .

См. также

  • Механические теории гравитации

Примечания

  1. Эфир // Физическая энциклопедия (в 5 томах) / Под редакцией акад. А. М. Прохорова . - М. : Советская Энциклопедия , 1988. - Т. 5. - С. 688. - ISBN 5-85270-034-7 .
  2. Еремеева А. И., Цицин Ф. А. История астрономии. - М. : Изд-во МГУ, 1989. - С. 175.
  3. , с. 23.
  4. Рожанский И. Д. Анаксагор. - М. : Мысль, 1983. - С. 43. - 142 с. - (Мыслители прошлого).
Относится к «Теории мироздания»

Современные теории эфира


Слово "эфир" сегодня каждый понимает в меру своей искушенности:) Существующие теор ии, которые активно и, подчас, с непримиримой агрессией, поддерживают авторы, различаются от самых пошлых и наивных до заумно парящих в недосягаемых абстракциях.
Практически ни одна современная теор ия о фундаментальных законах вселенной не обходится без понятия эфира как переносчика взаимодействия, даже если не использует этого слова. В последнем случае это - тот "эфир", о котором говорил Эйнштейн: "...мы не можем в теоpетической физике обойтись без эфиpа, т.е. континуума, наделенного физическими свойствами, ибо общая теоpия относительности... исключает непосpедственное дальнодействие; каждая же теоpия близкодействия пpедполагает наличие непpеpывных полей, а следовательно, существование "эфиpа". " (Эйнштейн А. Об эфиpе: 1924 г. / Сочинения: В 4 т.-М.: Hаука, 1965.-Т. " 2.-С. 160) Конечно, без "переносчика взаимодействия" ничего происходить не может, роль "эфира" в подобных теор иях отводится полям. Вот информация об одном таком направлении исследований: .
Все теор ии можно подразделить на две группы: те, которые считают, что все пространство заполнено средой (чаще всего газоподобной с большой жесткостью, определяющей скорость передачи волн в нем) - основой всего, которая тем самым делает понятие пространства и времени абсолютными и на те, которые оперируют понятием поле, представленное отдельными квантами, свойство которых совершенно не вещественно и таково, что в местах, где эти кванты не представлены веществом (в гипотетических местах вне вещества и излучения свободных квантов), они вырождены в "пустоту", где понятия пространства и времени теряют смысл .
Различие в теор иях - между эфиром как постоянно и стабильно существующей средой, состоящей из частиц (а из чего состоят эти частицы?) и эфиром как квантомеханическим полем. Принципиальное следствие: классический эфир - детерминирован (возможно предсказание сколь угодно микроскопических событий и формальная обратимость во времени), а квантовомеханический эфир предполагает недетерминированность, а лишь статистическую оценку вероятности.
Первая группа теор ий представлена от самых примитивных, где эфир рассматривается как скопище материальных точек (?) и других фантастических новообразований, до более изощренных, но по-прежнему игнорирующих реалии существования квантов и релятиви стские эффекты.
В качестве доказательств своей правоты обычно выбирается путь компрометации релятиви стских теор ий и даже их отдельных последователей, особенно, Эйнштейна.
Эта статья - про эфирные теор ии и поэтому, оставив рассмотрение второй группы теор ий (для которых классическое понятие эфира является, фактически, лишней сущностью) остановимся на доводах, которые приводятся эфирными теор етиками.

Довод: релятиви стские теор ии зашли в тупик со своими сложнейшими математическими построениями.

Далее будет возможность убедиться, что допущения эфира как некоей субстанции, заполняющей пространство, приводит к гораздо большему, неисчислимому множеству взаимно противоречивых проблем (которые пытались разрешить теор етически еще во время постановки опыта Майкельсона). В качестве достаточно яркой иллюстрации - совершенно умопомрачительные рассуждения в статье Эфирная теор ия фотона .
Релятивистские же теор ии продолжают развиватся как теор етически ( Новый взгляд на природу элементарных частиц) так и в части их практической проверки (Подтверждения релятиви сткой теор ии).

Довод: опыт Майкельсона, не показавший влияние эфира, неправильно поставлен или неправильно интерпретирован.

Достоверную (основанную на первичных источниках) историю происходящих событий осветил Имре Лакатос в Фальсификация и методолог ия научно-исследовательских программ . Актуальность рассматриваемых им вопросов и по сей день так же остра. Вот выдержки, касающиеся эфирных дел.

Майкельсон впервые придумал свой эксперимент для проверки противоречивших друг другу теор ий Френеля и Стокса о влиянии движения земли на эфир, во время своего посещения института Гельмгольца в Берлине в 1881 г. Согласно теор ии Френеля, Земля движется сквозь эфир, остающийся неподвижным, однако частично увлекаемый движением Земли; из теор ии Френеля следовало, что скорость эфира по отношению к Земле имеет положительное значение (другими словами, существует "эфирный ветер") По теор ии Стокса, Земля полностью переносит вместе с собой содержащийся внутри нее эфир и непосредственно на поверхности Земли скорость эфира не отличается от скорости Земли (иначе говоря, относительная скорость эфира равна нулю, и значит, нет "эфирного ветра"). Вначале Стокс считал, что две эти теор ии эквивалентны по отношению к имевшимся тогда наблюдениям: например, при помощи соответствующих вспомогательных гипотез обе теор ии объясняли аберрацию света Но Майкельсон утверждал, что его эксперимент 1881 г. был решающим в споре между этими теор иями и разрешил этот спор в пользу Стокса. Скорость Земли по отношению к эфиру могла определяться величинами намного меньшими, чем это следовало из теор ии Френеля. Из этого Майкельсон заключил, что "результат, предсказываемый гипотез ой неподвижного эфира, не наблюдается, откуда с необходимостью следует вывод о том, что данная гипотез а [о неподвижном эфире] ошибочна". Как это часто бывает, Майкельсон был экспериментатором, которому пришлось выслушивать урок теор етика. Ведущий физик-теор етик того времени Г. Лоренц показал, что Майкельсон ошибочно истолковал свои наблюдения, которые "на самом деле" не противоречили гипотез е неподвижного эфира; позднее Майкельсон назвал анализ Лоренса "весьма поучительным". Кроме того, Лоренц показал, что вычисления Майкельсона должны быть неточными; теор ия Френеля предсказывала только половину тех результатов, которые были получены в опыте американского физика. Из этого Лоренц заключил, что эксперимент Майкельсона не опроверг теор ию Френеля и, тем более, не доказал справедливость теор ии Стокса. Лоренц настаивал на том, что теор ия Стокса противоречива: она исходит из двух исключающих друг друга требований - неподвижности эфира на поверхности Земли по отношению к последней и, вместе с тем, потенциал а относительной скорости; ясно, что эти требования несовместимы.
Однако, если бы даже Майкельсон действительно опроверг теор ию неподвижного эфира, сама программа, включающая эту теор ию, оставалась бы неприкосновенной; не так уж трудно было бы изобрести какие-то иные варианты эфирной программы, которые предсказывали бы очень малые значения величины скорости эфирного ветра. Лоренц немедленно предложил такую гипотез у. Она была проверяемой, и Лоренц благородно представил ее на суд эксперимента. Майкельсон вместе с Морли приняли вызов.
Эксперимент опять показал, что относительная скорость Земли по отношению к эфиру, по-видимому, равна нулю, что противоречило теор ии Лоренца. Но к этому времени Майкельсон стал более осторожным в интерпретации своих данных; он даже допускал вероятность того, что солнечная система в целом могла бы двигаться в направлении, противоположном движению Земли; поэтому он решил повторить эксперимент несколько раз с интервалом в три месяца, чтобы "избежать всякой неопределенности". В другой статье Майкельсон уже ничего не говорит о "выводах, следующих с необходимостью" и "ошибочности гипотез ы". Его высказывания теперь более осмотрительны: "Из предшествующих рассуждений, как можно с некоторой определенностью судить, следует, что если бы какое-либо относительное движение между землей и светоносным эфиром имело место, его численное значение было бы настолько малым, чтобы отвергнуть френелевское объяснение аберрации".
Это означает, что Майкельсон все же полагал теор ию Френеля опровергнутой (вместе с новой теор ией Лоренца); но здесь уже нет прежнего утверждения, которое он делал в 1881 г., что опровергнута сама "теор ия неподвижного эфира". (Существование "эфирного ветра" должно было, по его мнению, проверяться на "высоко поднятых над земной поверхностью установках", например, на вершине горы.)
Если теор етики, сторонники эфира, вроде лорда Кельвина, выражали сомнения в "экспериментальной сноровке" Майкельсона, то Лоренц подчеркивал, что, вопреки простодушным притязаниям этого эксперимента, и его новый эксперимент "также не вносит ясность в вопрос, ради которого был предпринят". Теория Френеля вполне может рассматриваться как интерпретативная, то есть как теор ия, с помощью которой интерпретируются факты, а не как теор ия, проверяемая этими фактами; поэтому, рассуждает Лоренц, "значение эксперимента Майкельсона-Морли скорее состоит в том, что он говорит о определенном изменении в процедуре измерения", размеры тел зависят от их движения сквозь эфир Лоренц разработал этот "креативный сдвиг" в рамках программы Френеля с большой изобретательностью и утверждал, что ему удалось устранить "противоречие между теор ией Френеля и результатом Майкельсона". Но он соглашался с тем, что "поскольку природа молекулярных сил нам еще не вполне известна, проверить эту гипотез у невозможно", по крайней мере за время своего существования эта гипотез а не смогла предсказать никаких новых фактов
Тем временем (в 1897г.) Майкельсон осуществил свой давно задуманный эксперимент по измерению скорости эфирного ветра на вершине горы. Он ничего не обнаружил. Поскольку ранее он полагал, что ему удалось доказать справедливость теор ии Стокса, согласно которой эфирный ветер мог быть обнаружен на значительной высоте, теперь он был обескуражен. Если бы теор ия Стокса была верна, градиент скорости эфира должен быть очень малым. Майкельсон был вынужден заключить, что "влияние Земли на эфир распространяется на расстояние порядка земного диаметра". Такой результат он посчитал "невероятным" и решил, что в 1887 г. он вывел ошибочный вывод из своего эксперимента: нужно было отвергнуть теор ию Стокса и принять теор ию Френеля; теперь он готов согласиться с любой разумной вспомогательной гипотез ой, чтобы "спасти" последнюю, не исключая и гипотез ы Лоренца 1892 г. Теперь, по-видимому, он предпочитает гипотез у Лоренца-Фицджеральда о сокращении продольных размеров движущегося тела; в 1904 г. его коллеги Миллер и Морли начинают серию экспериментов с целью обнаружения зависимости этого сокращения от того, из какого материала состоит движущееся тело.
В то время как большинство физиков пыталось интерпретировать эксперименты Майкельсона в рамках эфирной программы, Эйнштейн независимо от Майкельсона, Фицджеральда и Лоренца, но под влиянием критики Э.Маха в адрес ньютоновской механики, предложил новую прогрессивную исследовательскую программу. Эта новая программа не только "предсказала" и объяснила результат эксперимента Майкельсона-Морли, но и предсказала целый набор фактов, о которых ранее нельзя было и помыслить, причем эти предсказания получили впечатляющие подтверждения. И только потом, спустя двадцать пять лет, эксперимент Майкельсона-Морли стал рассматриваться как "величайший негативный эксперимент истории науки". Но сразу это произойти не могло. Эксперимент был негативным, но по отношению к чему? Это было не ясно. Больше того, Майкельсон в 1881 г. еще считал свой эксперимент положительным. Тогда он полагал, что опроверг теор ию Френеля, но подтвердил теор ию Стокса. И сам Майкельсон, и впоследствии Фицджеральд и Лоренц истолковывали результат этого эксперимента положительным образом в рамках программы эфира. Как это бывает со всяким экспериментальным результатом, его негативность по отношению к старой программе была установлена только позднее, после многочисленных попыток ad hoc, направленных на то, чтобы освоить этот результат в регрессирующей старой программе, и после постепенного упрочения новой прогрессивной победоносной программы, в рамках которой он превращается в положительный пример. При этом никогда не исключается возможность того, что какая-то часть регрессирующей программы будет реабилитирована.
Лишь исключительно трудный и неопределенно длительный процесс может привести исследовательскую программу к победе над ее соперницами; поэтому нужно очень осмотрительно пользоваться термином "решающий эксперимент". Даже тогда, когда очевидно, что исследовательская программа уже вытеснила свою предшественницу, это происходит не в результате какого-либо "решающего эксперимента"; если наступает момент, когда решающий эксперимент ставится под сомнение, развитие новой исследовательской программы не приостанавливается, если это не сопровождается мощным прогрессивным импульсом старой программы. Негативность - и значим ость - эксперимента Майкельсона - Морли определяются прежде всего прогрессивным сдвигом, обеспеченным новой исследовательской программой, в которой он нашел мощную поддержку, и его "величие" есть только отражение величия двух программ, вовлеченных в этот спор.
Было бы интересно провести подробный анализ того, как судьба эфирной теор ии решалась в соперничестве различных проблемных сдвигов. Но под влиянием наивного фальсификационизма наиболее интересная регрессивная фаза эфирной теор ии после "решающего эксперимента" Майкельсона попросту игнорировалась большинством эйнштейнианцев. С их точки зрения, эксперимент Майкельсона-Морли сам по себе, без посторонней помощи оказался сокрушителем теор ии эфира, после чего приверженность ей должна была рассматриваться лишь как свидетельство консерватизма взглядов, граничащего с обскурантизмом. С другой стороны, этот пост-майкельсоновский период теор ии эфира не был критически осмысл ен и антиэйнштейнианцами, по мнению которых теор ия эфира, несмотря ни на что, не проиграла свой матч: все положительное, что можно найти в теор ии Эйнштейна, по существу содержится в эфирной теор ии Лоренца, а победа Эйнштейна была лишь данью позитивистской моде В действительности же длительная серия экспериментов Маикельсона с 1881 по 1935 гг., проведенных, чтобы подвергнуть последовательной проверке различные варианты теор ии эфира, является поучительным примером регрессивного сдвига проблем (И все же исследовательские программы способны выбираться из регрессивных провалов Хорошо известно, что теор ия эфира Лоренца легко может быть усилена таким образом, что в некотором нетривиальном смысл е она будет эквивалентной не-эфирной теор ии Эйнштейна. В контекст е большого "креативного сдвига" эфир может еще вернуться)
Внимательно всматриваясь в прошлое и следя за изменениями оценок знаменитого эксперимента, мы можем понять, почему в период между 1881 и 1886 гг о нем не было даже упоминаний в литературе Когда французский физик Потье указал Майкельсону на его ошибку в эксперименте 1881 г., Майкельсон решил не сообщать в печать об этом Причину он объяснил в письме Рэлею в марте 1887 г. "Я не раз пытался заинтересовать моих ученых друзей этим экспериментом, но без успеха, я никогда не сообщал о замеченной ошибке (мне совестно признаться в этом), потому что я был обескуражен тем, насколько мало внимания привлекла эта работа, и мне казалось, что она не заслуживала этого равнодушия" Между прочим, это письмо было написано в ответ на письмо от Рэлея, обратившего внимание Майкельсона на статью Лоренца. Это письмо стало побудительным импульсом к эксперименту 1887 г. Но и после 1887 г, и даже после 1905 г эксперимент Майкельсона-Морли все же не считался опровержением существования эфира, и к тому были достаточно веские основания Этим объясняется, почему Нобелевская премия была вручена Майкельсону (1907 г) не за "опровержение теор ии эфира", а за "создание прецизионных оптических приборов, а также за спектроскопические и метрологические измерения, выполненные с их помощью", а также почему эксперимент Майкельсона-Морли даже не был упомянут в речи лауреата во время вручения премии Он также хранил молчание о том, что, хотя вначале он изобрел свой прибор, чтобы измерить скорость света с большой точностью, затем он был вынужден улучшить свои оптические инструменты, чтобы иметь возможность проверки некоторых специальных теор ий эфира, а также о том, что "прецизионность" его эксперимента 1887 г была в основном ответом на теор етическую критику со стороны Лоренца; современная литература, как правило, даже не упоминает об этих обстоятельствах.
Забывают и о том, что даже, если бы эксперимент Маикельсона-Морли показал существование "эфирного ветра", все равно программа Эйнштейна одержала бы победу. Когда Миллер, страстный поборник классической программы эфира, сделал сенсационное заявление о том, что эксперимент Маикельсона-Морли был проведен с небрежностью, и на самом деле эфирный ветер все же имел место, корреспондент журнала "Science" не удержался от восторженного восклицания по поводу того, что "результаты проф. Миллера радикальным образом нокаутировали теор ию относительности". Однако, с точки зрения Эйнштейна, даже если бы выводы Миллера соответствовали действительности, "следовало бы отбросить [только] нынешнюю форму теор ии относительности". Действительно, Синге отметил, что результаты Миллера, даже если принимать их за чистую монету, не противоречат теор ии Эйнштейна, противоречит ей только объяснение этих результатов Миллера. Нетрудно заменить вспомогательную теор ию твердого тела, использовавшуюся в этих результатах, на новую теор ию Гарднера-Синге, и тогда эти результаты полностью согласуются с программой Эйнштейна.

Черные дыры стали неотъемлемой реальностью современной астрономии, астрофизики и космологии. Поведение этих объектов наблюдаются непосредственно и оно соответствует описываемой теор ией сути.

Довод: Эйнштейн "опомнился" и вернул эфир в свою теор ию.

Вот ответы самого Эйнштейна на вопpосы, поставленные в "Дуэли"
...Тот же эфиp, к пpимеpу, был "пpозоpливо" отвеpгнут Эйнштейном в его СТО, " хотя ядpо теоpии составили заключения Лоpенца и Пуанкаpе, выведенные в " пpедположении, а, стало быть, веpные только в pамках концепции " неподвижного эфиpа. Hо, как оказывается, "гениальное" умозаключение об " отсутствии эфиpа скомпилиpовано из изданной еще в 1888 г. "Тайной " доктpины" Е.П.Блаватской - одной из настольных книг Эйнштейна...
"Резюмиpуя, можно сказать, что общая теоpия относительности наделяет пpостpанство физическими свойствами; таким обpазом, в этом смысл е эфиp существует..." " Эйнштейн А. Эфиp и теоpия относительности: Речь, пpоизнесенная 5 мая " 1920 г. в Лейденском унивеpситете по поводу избpания Эйнштейна почетным " пpофессоpом этого унивеpситета / Сочинения: В 4 т.-М.: Hаука, 1965.- " Т. 4.-С. 689.
"...мы не можем в теоpетической физике обойтись без эфиpа, т.е. континуума, наделенного физическими свойствами, ибо общая теоpия относительности... исключает непосpедственное дальнодействие; каждая же теоpия близкодействия пpедполагает наличие непpеpывных полей, а следовательно, существование эфиpа". " Эйнштейн А. Об эфиpе: 1924 г. / Сочинения: В 4 т.-М.: Hаука, 1965.-Т. " 2.-С. 160.
"...физическое пpостpанство и эфиp - это лишь pазличные выpажения для одной и той же вещи..." " Эйнштейн А. Пpоблема пpостpанства, эфиpа и поля в физике: 1930 г. / " Сочинения: В 4 т.-М.: Hаука, 1965.-Т. 2.-С. 279.
"Слово эфиp изменяло свой смысл много pаз в пpоцессе pазвития науки. В данный момент оно уже не употpебляется для обозначения сpеды, постpоенной из частиц. Его истоpия, никоим обpазом не законченная, пpодолжается теоpией относительности." " Эйнштейн А., Инфельд Л. Эволюция физики: 1938 г. / Сочинения: В 4 " т.-М.: Hаука, 1965.-Т. 4.-С. 452.
"Это жесткое четыpехмеpное пpостpанство специальной теоpии относительности есть до некотоpой степени аналог неподвижного тpехмеpного эфиpа Г.А.Лоpенца... ...Таким обpазом, Декаpт был не так далек от истины, когда полагал, что существование пустого пpостpанства должно быть исключено." " Эйнштейн А. Относительность и пpоблема пpостpанства: 1952 г. / " Сочинения: В 4 т.-М.: Hаука, 1965.-Т. 2.-С. 754 - 758.
Мои комментаpии: В свете сказанного меня огоpчают с одной стоpоны, утвеpждения о глупости А.Эйнштейна, "отменившего" эфиp, pавно как и позитивные оценки возникших невесть откуда pассуждений об "отмене" А.Эйнштейном эфиpа. Это по-видимому касается тех автоpов, кто пpеодолел лишь введение к теоpии относительности (Должен заметить, что это ни в коей меpе не касается упомянутого в "Дуэли" пpофессоpа В.А.Ацюковского, начальника лабоpатоpии системотехники летно-исследовательского института, лидеpа коммунистов г.Жуковский, с котоpым мне посчастливилось pазpабатывать кое-какие научные пpоблемы), где содеpжится некотоpая неоднозначность в воспpиятии двух следующих фpаз:
"Hеудавшиеся попытки обнаpужить движение Земли относительно "светоносной сpеды", ведут к пpедположению, что не только в механике, но и в электpодинамике никакие свойства явлений не соответствуют понятию абсолютного покоя..." " Эйнштейн А. К электpодинамике движущихся тел: 1905 г. / Сочинения: В " 4 т.-М.: Hаука, 1965.-Т. 1.-С. 7.
А.Эйнштейн, закавычив слова "светоносная сpеда", подвеpг сомнению ее существование. "Светоносной сpедой" физика того вpемени полагала эфиp, котоpый, собственно, и был введен в физику как светоносная сpеда. Вследствие этого А.Эйнштейн pазвивает далее свою мысль в такой фоpме:
"Введение "светоносного эфиpа" окажется пpи этом излишним, поскольку в пpедлагаемой теоpии не вводится "абсолютно покоящееся пpостpанство", наделенное особыми свойствами." " Эйнштейн А. Там же.-С. 8.
Две эти фpазы могут тpактоваться двояко. В пеpвой тpактовке получаем, что, с одной стоpоны, нет необходимости во введении особой светоносной сpеды, а следовательно, объективно существующий эфиp пpекpащает наделяться свойством светоносности. С дpугой стоpоны, А.Эйнштейн исключил из pассмотpения "абсолютно покоящееся пpостpанство", пpиписав пpостpанству-вpемени, тем самым, свойство физической сpеды, субстанции, хаpактеpизуемой длительностью и пpотяженностью. Пpи этом свойства физического пpостpанства-вpемени и эфиpа оказываются тождественными, вследствие чего А.Эйнштейн пpедлагает отказаться от введения всего лишь _теpмина_ "эфиp", как излишнего. Во втоpой тpактовке втоpая пpоцитиpованная мною фpаза воспpинимается буквально. А.Эйнштейн якобы отказал в существовании не теpмину "эфиp", а самой называемой им матеpиальной сpеде, обладающей физическими свойствами. Пpи таком подходе пpостpанство-вpемя pассматpивается не как матеpиальная сpеда, котоpую следует описывать сpедствами математики, но исследовать сpедствами физики, а как абсолютная, ничем не заполненная пустота, для выявления свойств котоpой (естественно, чисто геометpических) следует лишь подобpать удачную математическую констpукцию. Внедpением втоpой, ошибочной, тpактовки мы, по-видимому, обязаны блестящему интеpпpетатоpу теоpии относительности Геpману Вейлю, котоpый, опиpаясь на теоpию относительности, хотел обосновать свои (с моей точки зpения никуда не годные) философские воззpения (став пpи этом, как мне полагается, замечательным методистом в данной области):
"Мы пpивыкли pассматpивать вpемя и пpостpанство как фоpмы существования pеального миpа, а матеpию как его субстанцию... Hаконец, в вопpосе о матеpии, считалось известным, что в основе всякого изменения должна лежать некотоpая субстанция, именно матеpия, и каждая часть матеpии может быть количественно измеpена... Эти дошедшие до нас пpедставления о пpостpанстве и вpемени, pассматpиваемые философией зачастую как апpиоpное знание неогpаниченной общности и необходимости, ныне заметно поколеблены... Это пpеобpазование было осуществлено фактически мыслью одного человека, Альбеpта Эйнштейна." " Вейль Г. Введение // Пpостpанство. Вpемя.
Матеpия: Лекции по общей " теоpии относительности, изд. 5-е, пеpеpаб., 1923 г // Пеp. с нем. " В.П.Визгина.-М.: Янус, 1996.-С. 11 - 12.
Веpоятно, многие из читающих эти стpоки скажут, что Геpман Вейль был пpав, а пpедложенная мною пеpвая тpактовка является надуманной. Однако, в Пpиложении V к немецкому изданию 1954 г. книги "О специальной и общей теоpии относительности" А.Эйнштейн (за год до смеpти!) совеpшенно недвусмысл енно охаpактеpизовал свое твоpение такими словами:
"Hа этом пути концепция "пустого пpостpанства" теpяет свой смысл " " Эйнштейн А. Относительность и пpоблема пpостpанства: 1952 г. / " Сочинения: В 4 т.-М.: Hаука, 1965.-Т. 2.-С. 744.
Кстати, подобной же точки зpения пpидеpживался академик Сеpгей Иванович Вавилов, Пpезиден АH СССР: "Демокpитово пустое пpостpанство и непостижимый эфиp заменились сложным, но физически доступным пpостpанством-вpеменем Эйнштейна." " Вавилов С.И. Экспеpиментальные основания теоpии относительности.- " М.-Л.: Госудаpственное изд-во, 1928.-[Сеp.: Hовейшие течения научной " мысли, Вып. 3-4].-С. 13.

Довод: Эйнштейн верил в бога, а его настольной книгой является Е.Блаваncкой

В Отношение Эйнштейна к религии собраны выдержки из статей самого Эйнштейна и комментарии. Из всего следует полная несостоятельность обвинений (по-другому не скажешь!) Эйнштейна в религиозности и мист ицизме. Характерны методы подтасовки его высказываний теми, кто пытался его очернить. В частности, оттуда:

Вот что пишет В. Л. Гинзбург в http://atheismru.narod.ru/Ginzburg/Articles/07.htm:
Вот, например, что ответил Эйнштейн в 1929 г. на вопрос о его верованиях: "Я верю в Бога Спинозы, который проявляет себя в гармонии всего сущего, но не в Бога, который заботится о судьбе и действиях людей". Эйнштейн пользовался также термином "космическая религия", но когда друзья упрекнули его в использовании религиозной терминологии, ответил им так: "Я просто не мог найти более подходящего слова. Какого черта мне до того, что попы наживают на этом капитал". Коротко говоря, Эйнштейн совершенно определенно не был теистом и, по моему разумению, его правильнее всего, как и Спинозу, считать пантеистом. Разницы же по существу между пантеизмом и атеизмом я не усматриваю.
Б. Спиноза был отлучен от церковной общины за религиозное свободомыслие, за отождествление Бога с "Природой творящей".

Фраза, что книги Блаватской были настольными у Энштейна, кочующие из одной статьи в другую, имеют единственное происхождение: в тексте рериховских Ссылок http://www.kuraev.ru/rerihss.html написано: "Напомню, что по свидетельству современников, "Тайная доктрина" Е. П. Блаватской была настольной книгой Эйнштейна" (Вергун В. В. Имеет ли Россия право на светскую духовность // Мяло К. Звезда волхвов… М., 1999, с. 11)."
На самом деле не было такого свидетельства, а в данном месте http://www.vav.ru/mkg/zv/p-editorial.html написано: " И опять-таки это было предназначено сделать Рерихам, продолжая традицию, начатую Е.П.Блаватской. Параллельно с ними к освоению глубинной мудрости восточной философии устремились ученые с синтетическим складом сознания: Эйнштейн, Гейзенберг, Бор, Крукс и др". Значит, если у меня лежат на столе мист ические книги, можно сказать, что для меня они - настольные, несмотря на то, насколько скептически я к ним отношусь. Все это - обычная дешевая подтасовка, к которым так любят прибегать все те, кому хочется опорочить другого человека. Просто почитав работы Эйнштейна, понятно, что ни словом ни контекст ом они не имеют никакого отношения к умозрительным фантазиям Блаватской или любым другим религиозным или мист ическим концепциям.

Из Космическая религия Альберта Эйнштейна :
...Самое прекрасное и глубокое переживание, выпадающее на долю человека - это ощущение таинственности. Оно лежит в основе религии и всех наиболее глубоких тенденций в искусстве и науке. Тот, кто не испытал этого ощущения, кажется мне, если не мертвецом, то во всяком случае слепым. Способность воспринимать то непостижимое для нашего разума, что скрыто под непосредственными переживаниями, чья красота и совершенство доходят до нас лишь в виде косвенного слабого отзвука, - это и есть религиозность. В этом смысл е я религиозен. Я довольствуюсь тем, что с изумлением строю догадки об этих тайнах и смиренно пытаюсь мысленно создать далеко не полную картину совершенной структуры всего сущего.
Отрывок из статьи "Мое кредо". Эта речь Эйнштейна была издана "Лигой человеческих прав" весною 1932 г. в Германии в виде патефонной пластинки.

Теории эфира

Теории эфира - теории в физике предпологающие существование эфира как вещества или поля, запоняющего пространство, а также среды для передачи и распространения электромагнитных и гравитационных сил. Различные теории эфира воплощают различные концепции этой среды или вещества. В современных теориях эфир имеет мало общего с классическим понятием эфир , из которого и было заимствовано его имя. С момента разработки специальной теории относительности теории эфира больше не используются в современной физике и заменяются на более абстрактные модели.

Исторические модели

Светоносный эфир

В XIX веке светоносный эфир считали средой для распространения света (электромагнитного излучения). Однако ряд экспериментов, проведенных в конце XIX века, таких как эксперимент Майкельсона-Морли в попытке обнаружить движение земли через эфир не смогли сделать это. Впрочем, вывод был сделан скорее о несовершенстве предложенного метода: «Из всего сказанного, - заключают свою статью Майкельсон и Морли , - явствует, что безнадёжно пытаться решить вопрос о движении Солнечной системы по наблюдениям оптических явлений на поверхности Земли». Согласно примечанию С. И. Вавилова «способ обработки таков, что всякие непериодические смещения исключаются. Между тем эти непериодические смещения были значительны. Максимальное смещение в этом случае составляет 1/10 теоретического».

Механический гравитационный эфир

С 16-го по 19-й века различные теории использовали эфир для описания гравитационных явлений. Наиболее известна теория гравитации Лесажа , хотя другие модели были предложены Исааком Ньютоном, Бернхардом Риманом и Лордом Кельвином. Ни одна из этих концепций не считается сегодня научным сообществом жизнеспособной.

Нестандартные толкования в современной физике

Общая теория относительности

Эйнштейн иногда использовал слово эфир для обозначения гравитационного поля в рамках общей теории относительности, но эта терминология никогда не получала широкую поддержку.

We may say that according to the general theory of relativity space is endowed with physical qualities; in this sense, therefore, there exists an aether. According to the general theory of relativity space without aether is unthinkable; for in such space there not only would be no propagation of light, but also no possibility of existence for standards of space and time (measuring-rods and clocks), nor therefore any space-time intervals in the physical sense. But this aether may not be thought of as endowed with the quality characteristic of ponderable media, as consisting of parts which may be tracked through time. The idea of motion may not be applied to it.

Квантовый вакуум

Тёмная материя и тёмная энергия как эфир

В настоящее время некоторые ученые начинают видеть в тёмной материи и тёмной энергии новую ссылку на концепцию эфира. New Scientist сообщил о ряде исследований в Оксфордском университете, которые стремятся связать тёмную энергию и эфир для решения проблемы гравитации и массы:

Starkman and colleagues Tom Zlosnik and Pedro Ferreira of the University of Oxford are now reincarnating the ether in a new form to solve the puzzle of dark matter, the mysterious substance that was proposed to explain why galaxies seem to contain much more mass than can be accounted for by visible matter. They posit an ether that is a field, rather than a substance, and which pervades space-time. This is not the first time that physicists have suggested modifying gravity to do away with this unseen dark matter. The idea was originally proposed by Mordehai Milgrom while at Princeton University in the 1980s. He suggested that the inverse-square law of gravity only applies where the acceleration caused by the field is above a certain threshold, say a0. Below that value, the field dissipates more slowly, explaining the observed extra gravity. "It wasn"t really a theory, it was a guess," says cosmologist Sean Carroll at the University of Chicago in Illinois.
Now Starkman"s team has reproduced Bekenstein"s results using just one field - the new ether (www.arxiv.org/astro-ph/ 0607411). Even more tantalisingly, the calculations reveal a close relationship between the threshold acceleration a0 - which depends on the ether - and the rate at which the universe"s expansion is accelerating. Astronomers have attributed this acceleration to something called dark energy, so in a sense the ether is related to this entity. That they have found this connection is a truly profound thing, says Bekenstein. The team is now investigating how the ether might cause the universe"s expansion to speed up. Andreas Albrecht, a cosmologist at the University of California, Davis, believes that this ether model is worth investigating further. "We"ve hit some really profound problems with cosmology Ð with dark matter and dark energy," he says. "That tells us we have to rethink fundamental physics and try something new."

См. также

Примечания

Литература

  • Декарт Рене. Первоначала философии // Сочинения в двух томах . - М .: Мыcль, 1989. - Т. I.
  • Кудрявцев П. С. Курс истории физики . - М .: Просвещение, 1974.
  • Спасский Б. И. История физики . - М .: Высшая школа, 1977.
    • Том 1: Часть 1-я; Часть 2-я
    • Том 2: Часть 1-я; Часть 2-я
  • Терентьев И. В. История эфира. - М .: ФАЗИС, 1999. - 176 с. - ISBN 5-7036-0054-5
  • Уиттекер Э. История теории эфира и электричества. - М .: Регулярная и хаотическая динамика, 2001. - 512 с. - ISBN 5-93972-070-6
  • Сайт Modern Cosmology , содержащий в том числе подборку материалов по тёмной материи.
  • Г.В.Клапдор-Клайнгротхаус, А.Штаудт Неускорительная физика элементарных частиц. М.: Наука, Физматлит, 1997.
  • Whittaker, Edmund Taylor (1910), «A History of the theories of aether and electricity» (1 ed.), Dublin: Longman, Green and Co.,
  • Schaffner, Kenneth F. (1972), «Nineteenth-century aether theories» , Oxford: Pergamon Press, ISBN 0-08-015674-6
  • Darrigol, Olivier (2000), «Electrodynamics from Ampére to Einstein» , Oxford: Clarendon Press, ISBN 0-19-850594-9
  • Maxwell, James Clerk (1878), " ", Encyclopædia Britannica Ninth Edition Т. 8: 568–572, < >
  • Harman, P.H. (1982), «Energy, Force and Matter: The Conceptual Development of Nineteenth Century Physics» , Cambridge: Cambridge University Press, ISBN 0-521-28812-6
  • Decaen, Christopher A. (2004), "«Aristotle"s Aether and Contemporary Science» ", The Thomist Т. 68: 375–429, . Проверено 5 марта 2011.
  • Joseph Larmor, " ", Encyclopædia Britannica , Eleventh Edition (1911).
  • Oliver Lodge, "Ether", Encyclopædia Britannica , Thirteenth Edition (1926).
  • "A Ridiculously Brief History of Electricity and Magnetism ; Mostly from E. T. Whittaker’s A History of the Theories of Aether and Electricity ". (PDF format)
  • Epple, M. Topology, Matter, and Space, I: Topological Notions in 19th-Century Natural Philosophy . Arch. Hist. Exact Sci. 52 (1998) 297–392.

Ссылки


Wikimedia Foundation . 2010 .

Смотреть что такое "Теории эфира" в других словарях:

    Предпосылкой к созданию теории относительности явилось развитие в XIX веке электродинамики . Результатом обобщения и теоретического осмысления экспериментальных фактов и закономерностей в областях электричества и магнетизма стали уравнения… … Википедия

Загрузка...