domvpavlino.ru

Опоры лэп и их классификация. Воздушные линии электропередачи ЛЭП: конструкция, разновидности, параметры Современные типы опор лэп

Как можно обозначит значение линий электропередач? Есть ли точное определение проводам, по которым передается электроэнергия? В межотраслевых правилах технической эксплуатации электроустановок потребителей есть точное определение. Итак, ЛЭП – это, во-первых, электрическая линия. Во-вторых, это участки проводов, которые выходят за пределы подстанций и электрических станций. В-третьих, основное назначение линий электропередач – это передача электрического тока на расстоянии.

По тем же правилам МПТЭЭП производится разделение ЛЭП на воздушные и кабельные. Но необходимо отметить, что по линиям электропередач производится также передача высокочастотных сигналов, которые используются для передачи телеметрических данных, для диспетчерского управления различными отраслями, для сигналов противоаварийной автоматики и релейной защиты. Как утверждает статистика, 60000 высокочастотных каналов сегодня проходят по линиям электропередач. Скажем прямо, показатель значительный.

Воздушные ЛЭП

Воздушные линии электропередач, их обычно обозначают буквами «ВЛ» – это устройства, которые располагаются на открытом воздухе. То есть, сами провода прокладываются по воздуху и закрепляются на специальной арматуре (кронштейны, изоляторы). При этом их установка может проводиться и по столбам, и по мостам, и по путепроводам. Не обязательно считать «ВЛ» те линии, которые проложены только по высоковольтным столбам.

Что входит в состав воздушных линий электропередач:

  • Основное – это провода.
  • Траверсы, с помощью которых создаются условия невозможности соприкосновения проводов с другими элементами опор.
  • Изоляторы.
  • Сами опоры.
  • Контур заземления.
  • Молниеотводчики.
  • Разрядники.

То есть, линия электропередач – это не просто провода и опоры, как видите, это достаточно внушительный список различных элементов, каждый из которых несет свои определенные нагрузки. Сюда же можно добавить оптоволоконные кабели, и вспомогательное к ним оборудование. Конечно, если по опорам ЛЭП проводятся высокочастотные каналы связи.

Строительство ЛЭП, а также ее проектирование, плюс конструктивные особенности опор определяются правилами устройства электроустановок, то есть ПУЭ, а также различными строительными правилами и нормами, то есть СНиП. Вообще, строительство линий электропередач – дело непростое и очень ответственное. Поэтому их возведением занимаются специализированные организации и компании, где в штате есть высококвалифицированные специалисты.

Классификация воздушных линий электропередач

Сами воздушные высоковольтные линии электропередач делятся на несколько классов.

По роду тока:

  • Переменного,
  • Постоянного.

В основе своей воздушные ВЛ служат для передачи переменного тока. Редко можно встретить второй вариант. Обычно он используется для питания сети контактной или связной для обеспечения связью несколько энергосистем, есть и другие виды.

По напряжению воздушные ЛЭП делятся по номиналу этого показателя. Для информации перечислим их:

  • для переменного тока: 0,4; 6; 10; 35; 110; 150; 220; 330; 400; 500; 750; 1150 киловольт (кВ);
  • для постоянного используется всего один вид напряжение – 400 кВ.

При этом линии электропередач напряжением до 1,0 кВ считаются низшего класса, от 1,0 до 35 кВ – среднего, от 110 до 220 кВ – высокого, от 330 до 500 кВ – сверхвысокого, выше 750 кВ ультравысокого. Необходимо отметить, что все эти группы отличаются друг от друга лишь требованиями к расчетным условиям и конструктивным особенностям. Во всем остальном – это обычные высоковольтные линии электропередач.


Напряжение ЛЭП соответствует их назначению.

  • Высоковольтная линия напряжением свыше 500 кВ считаются сверхдальними, они предназначаются для соединения отдельных энергосистем.
  • Высоковольтная линия напряжением 220, 330 кВ считаются магистральными. Их основное назначение – соединить между собой мощные электростанции, отдельные энергосистемы, а также электростанции внутри данных систем.
  • Воздушные ЛЭП напряжением 35-150 кВ устанавливаются между потребителями (большими предприятиями или населенными пунктами) и распределительными пунктами.
  • ВЛ до 20 кВ используются в качестве линий электропередач, которые непосредственно подводят электрический ток к потребителю.

Классификация ЛЭП по нейтрале

  • Трехфазные сети, в которых нейтраль не заземлена. Обычно такая схема используется в сетях напряжением 3-35 кВ, где протекают малые токи.
  • Трехфазные сети, в которых нейтраль заземлена через индуктивность. Это так называемый резонансно-заземленный тип. В таких ВЛ используется напряжение 3-35 кВ, в которых протекают токи большой величины.
  • Трехфазные сети, в которых нейтральная шина полностью заземлена (эффективно-заземленная). Этот режим работы нейтрали используется в ВЛ со средним и сверхвысоким напряжением. Обратите внимание, что в таких сетях необходимо использовать трансформаторы, а не автотрансформаторы, в которых нейтраль заземлена наглухо.
  • И, конечно, сети с глухозаземленной нейтралью. В таком режиме работают ВЛ напряжением ниже 1,0 кВ и выше 220 кВ.

К сожалению, существует и такое разделения линий электропередач, где учитывается эксплуатационное состояние всех элементов ЛЭП. Это ЛЭП в нормальном состоянии, где провода, опоры и другие составляющие находятся в приличном состоянии. В основном упор делается на качество проводов и тросов, они не должны быть оборваны. Аварийное состояние, где качество проводов и тросов оставляет желать лучшего. И монтажное состояние, когда производится ремонт или замена проводов, изоляторов, кронштейнов и других компонентов ЛЭП.


Элементы воздушной ЛЭП

Между специалистами всегда происходят разговоры, в которых применяются специальные термины, касающиеся линий электропередач. Непосвященному в тонкости сленга понять этот разговор достаточно сложно. Поэтому предлагаем расшифровку этих терминов.

  • Трасса – это ось прокладки ЛЭП, которая проходит по поверхности земли.
  • ПК – пикеты. По сути, это отрезки трассы ЛЭП. Их длина зависит от рельефа местности и от номинального напряжения трассы. Нулевой пикет – это начало трассы.
  • Строительство опоры обозначается центровым знаком. Это центр установки опоры.
  • Пикетаж – по сути, это простая установка пикетов.
  • Пролет – это расстояние между опорами, а точнее, между их центрами.
  • Стрела провеса – это дельта между самой низшей точкой провеса провода и строго натянутой линией между опорами.
  • Габарит провода – это опять-таки расстояние между самой низшей точкой провеса и самой высшей точкой пролегаемых под проводами инженерных сооружений.
  • Петля или шлейф. Это часть провода, которая соединяет на анкерной опоре провода соседних пролетов.

Кабельные ЛЭП

Итак, переходим к рассмотрению такого понятия, как кабельные линии электропередач. Начнем с того, что это не голые провода, которые используются в воздушных линиях электропередач, это закрытые в изоляцию кабели. Обычно кабельные ЛЭП представляют собой несколько линий, установленные рядом друг с другом в параллельном направлении. Длины кабеля для этого бывает недостаточно, поэтому между участками устанавливаются соединительные муфты. Кстати, нередко можно встретить кабельные линии электропередач с маслонаполнением, поэтому такие сети часто укомплектовываются специальной малонаполнительной аппаратурой и системой сигнализации, которая реагирует на давление масла внутри кабеля.

Если говорить о классификации кабельных линий, то они идентичны классификации линий воздушных. Отличительные особенности есть, но их не так много. В основном эти две категории отличаются между собой способом прокладки, а также конструктивными особенностями. К примеру, по типу прокладки кабельные ЛЭП делятся на подземные, подводные и по сооружениям.


Две первые позиции понятны, а что относится к позиции «по сооружениям»?

  • Кабельные туннели. Это специальные закрытые коридоры, в которых производится прокладка кабеля по установленным опорным конструкциям. В таких туннелях можно свободно ходить, проводя монтаж, ремонт и обслуживание электролинии.
  • Кабельные каналы. Чаще всего они являются заглубленными или частично заглубленными каналами. Их прокладка может производиться в земле, под напольным основанием, под перекрытиями. Это небольшие каналы, в которых ходить невозможно. Чтобы проверить или установить кабель, придется демонтировать перекрытие.
  • Кабельная шахта. Это вертикальный коридор с прямоугольным сечением. Шахта может быть проходной, то есть, с возможностью помещаться в нее человеку, для чего она снабжается лестницей. Или непроходной. В данном случае добраться до кабельной линии можно, только сняв одну из стенок сооружения.
  • Кабельный этаж. Это техническое пространство, обычно высотою 1,8 м, оснащенное снизу и сверху плитами перекрытия.
  • Укладывать кабельные линии электропередач можно и в зазор между плитами перекрытия и полом помещения.
  • Блок для кабеля – это сложное сооружение, состоящее из труб прокладки и нескольких колодцев.
  • Камера – это подземное сооружение, закрытое сверху железобетонной или плитой. В такой камере производится соединение муфтами участков кабельной ЛЭП.
  • Эстакада – это горизонтальное или наклонное сооружение открытого типа. Она может быть надземной или наземной, проходной или непроходной.
  • Галерея – это практически то же самое, что и эстакада, только закрытого типа.

И последняя классификация в кабельных ЛЭП – это тип изоляции. В принципе, основных видов два: твердая изоляция и жидкостная. К первой относятся изоляционные оплетки из полимеров (поливинилхлорид, сшитый полиэтилен, этилен-пропиленовая резина), а также другие виды, к примеру, промасленная бумага, резино-бумажная оплетка. К жидкостным изоляторам относится нефтяное масло. Есть и другие виды изоляции, к примеру, специальными газами или другими видами твердых материалов. Но их используют сегодня очень редко.

Заключение по теме

Разнообразие линий электропередач сводится к классификации двух основных видов: воздушных и кабельных. Оба варианта сегодня используются повсеместно, поэтому не стоит отделять один от другого и давать предпочтение одному перед другим. Конечно, строительство воздушных линий сопряжено с большими капиталовложениями, потому что прокладка трассы – это установка опор в основном металлических, которые имеют достаточно сложную конструкцию. При этом учитывается, какая сеть, под каким напряжением будет прокладываться.

Линии электропередач (ЛЭП) являются одними из важнейших компонентов современной электрической сети. Линия электропередач - это система энергетического оборудования, выходящая за пределы электростанций и предназначенная для дистанционной передачи электроэнергии посредством электрического тока.


Линии электропередач разделяют на кабельные и воздушные. Кабельная линия электропередачи - это линия электропередачи, выполненная одним или несколькими кабелями, уложенными непосредственно в землю, кабельные каналы, трубы, на кабельные конструкции. Воздушная линия электропередачи (ВЛ) - это устройство, предназначенное для передачи и распределения электрической энергии по проводам, которые находятся на открытом воздухе.


Для устройства воздушных линий электропередач применяются специальные конструкции - опоры воздушной линии электропередач. Опоры ЛЭП - это специальные сооружения, предназначенные для удержания проводов воздушных линий электропередач на заданном расстоянии от поверхности земли и друг от друга.


Система опор воздушных линий электропередач была разработана в начале ХХ века, когда начали появляться первые мощные электростанции, и стало возможным осуществлять передачу электроэнергии на большие расстояния. До середины ХХ века раскатка проводов под опоры ЛЭП проходила по земле. Но такой способ раскатки имел множество недостатков: протащенный по земле провод получал многочисленные повреждения и требовал ремонта уже в процессе монтажа. Мелкие царапины и сколы становились причиной коронного разряда, приводящего к потерям передаваемой энергии.


В пятидесятых годах ХХ столетия в Европе был разработан специальный метод монтажа электропроводов - так называемый метод тяжения. Метод тяжения подразумевает под собой раскатку провода сразу на установленные опоры лэп с помощью специальных роликов, без опускания провода на землю. С одного конца воздушной линии устанавливается натяжная машина, с другого - тормозная. Благодаря этому методу при строительстве ЛЭП значительно снизилась возможность повреждения электропроводов и сократились расходы на ремонт, что, в свою очередь, привело к сокращению потерь передаваемой электроэнергии. Преимущество данного метода выражается и в том, что присутствие естественных (реки, озера, леса, горы и т.д.) и искусственных (автомобильные и железные дороги, здания и т.п.) преград облегчает и ускоряет монтаж ЛЭП. В России технология монтажа опор ЛЭП «под натяжением» применяется с 1996 года и на данный момент является наиболее целесообразным и популярным способом возведения опор воздушных линий электропередач.


В современном строительстве опоры ЛЭП применяются также в качестве опор для удержания заземленных молниеотводов и оптоволоконных линий связи. Также их используют в качестве освещения пространства на магистралях, улицах, площадях и т.п. в темное время суток. Опоры ВЛ предназначены для сооружений линий электропередач при расчетной температуре наружного воздуха до -65˚С включительно.


Опоры делятся на две основные группы, в зависимости от способа подвески проводов:

  • промежуточные опоры ЛЭП. Провода на этих опорах закрепляются в поддерживающих зажимах;
  • опоры анкерного типа. Провода на опорах анкерного типа закрепляются в натяжных зажимах. Данные опоры служат для тяжения проводов.

Две основные группы делятся на типы, имеющие специальные назначение:

  • промежуточные прямые опоры. Устанавливаются на прямых участках линии и предназначаются для поддержания проводов и тросов и не рассчитаны на нагрузки от тяжения проводов вдоль линии. На промежуточных опорах с подвесными изоляторами провода закрепляются в специальных поддерживающих гирляндах, которые расположены вертикально. На опорах со штыревыми изоляторами закрепление проводов осуществляется проволочной вязкой. Промежуточные прямые опоры воспринимают горизонтальные нагрузки от давления ветра на провода и на опору и вертикальные - от веса проводов и собственного веса опоры ЛЭП;
  • промежуточные угловые опоры. Устанавливаются на углах поворота линии с подвеской проводов в поддерживающих гирляндах. Помимо нагрузок, которые действуют на промежуточные прямые опоры, промежуточные опоры также воспринимают нагрузки от поперечных составляющих тяжения проводов и тросов;
  • анкерно-угловые опоры. Устанавливаются при углах поворота ЛЭП более 20˚, имеют более жесткую конструкцию, чем промежуточные угловые опоры и рассчитаны на значительные нагрузки;
  • анкерные опоры. Специальные анкерные опоры устанавливаются на прямых участках трассы для осуществления перехода через инженерные сооружения или естественные преграды. Воспринимают продольную нагрузку от тяжения проводов и тросов;
  • концевые опоры. Являются разновидностью анкерных опор, устанавливаются в конце или начале ЛЭП и рассчитаны на восприятие нагрузок от одностороннего натяжения проводов и тросов;
  • специальные опоры, которые включают в себя: транспозиционные - служат для изменения порядка расположения проводов на опорах; ответвлительные - для устройства ответвлений от магистральной линии; перекрестные - используются при пересечении ВЛ двух направлений; противоветровые - для усиления механической прочности ВЛ; переходные - при переходах ВЛ через инженерные сооружения или естественные преграды.

По способу закрепления в грунт поры делятся:



По конструкции опоры ЛЭП разделяются:

  • свободностоящие опоры. В свою очередь, делятся на одностоечные и многостоечные ;
  • опоры с оттяжками;
  • вантовые опоры аварийного резерва.

Опоры ЛЭП подразделяются на опоры для линий с напряжением 0.4, 6, 10, 35, 110, 220, 330, 500, 750, 1150 кВ. Эти группы опор отличаются размерами и весом. Чем больше напряжение, проходящее по проводам, тем выше и тяжелее опора. Увеличение размеров опоры вызвано необходимостью получения нужных расстояний от провода до тела опоры и до земли, соответствующих ПУЭ (Правила устройства электроустановок) для различных напряжений линий.


По материалу изготовления опоры ЛЭП делятся на деревянные, металлические и железобетонные. Выбор вида опор ЛЭП обычно основывается на наличии соответствующих материалов в районе постройки линии электропередачи, экономической целесообразностью и техническими характеристиками строящегося объекта. Деревянные опоры применяют для линий с незначительным напряжением, до 220/380 В. Однако при таких преимуществах как низкая стоимость и простота изготовления, деревянные опоры имеют существенные недостатки: опоры из дерева недолговечны (срок службы составляет 10 - 25 лет), не обладают высокой прочностью, материал остро реагирует на изменения климатических условий.


Металлические опоры значительно прочнее деревянных, однако требуют постоянного техобслуживания - поверхность конструкций и соединительные элементы приходится периодически окрашивать или оцинковывать для предотвращения окисления или коррозии.


Высокая прочность и стойкость материала к деформации, коррозии и резкой смене климата, большой срок эксплуатации конструкций (порядка 50-70 лет), пожаростойкость, высокая технологичность и низкая стоимость - одни из немногих причин, которые позволяют сказать: железобетон является наиболее целесообразным решением для производства опор ЛЭП в России. Ведь в стране, имеющей огромную площадь и разнообразный климат, возникает необходимость не только в большом количестве протяженных линий связи, но и в высокой надежности в условиях резкой смены погодных условий и уровня влажности. Наличие качественных железобетонных опор для линий электропередач - важнейшее условие обеспечения стабильности в работе электроэнергетики. Группа компаний «Блок» производит и поставляет на строительный рынок только высококачественную продукцию из , в строгом соответствии с ГОСТ и СНиП.


Железобетонные стойки опор ЛЭП различаются на два типа по способу изготовления.

  • вибрированные стойки опор. Метод изготовления, при котором бетонная смесь во время заливки в форму подвергается вибрации, благодаря которой обеспечивается увеличение плотности и однородности бетона при меньшем расходе цемента. Изготавливаются как из предварительно напряженного, так и ненапряженного железобетона и используются в качестве стоек и подкосов в опорах ЛЭП напряжением до 35 кВ, а также в качестве опор освещения;
  • центрифугированные стойки опор. Метод приготовления бетонной смеси, при которой обеспечивается равномерное распределение смеси, следовательно, каждый участок получается полностью уплотненным. Центрифугированные стойки опор предназначаются для линий электропередач напряжением 35-750 кВ.

Конструктивно железобетонные опоры ЛЭП представляют собой вытянутые стойки с различные сечением в зависимости от предполагаемых условий эксплуатации и нагрузок. Конструкция стоек опор также предполагает наличие закладных деталей для установки зажимов, траверс и креплений для жестокого или шарнирного закрепления проводов, а также и плит для увеличения несущей функции изделий.


По типу конструкции железобетонные опоры делятся на основных вида:

  • цилиндрические стойки опор;
  • конические стойки опор.

Железобетонные опоры ЛЭП представлены широкой номенклатурой.


Для высоковольтных ЛЭП изготавливаются центрифугированные цилиндрические и конические опоры в соответствии с ГОСТ 22687.2-85 «Стойки цилиндрические железобетонные центрифугированные для опор высоковольтных линий электропередачи» и ГОСТ 22687.1-85 «Стойки конические железобетонные центрифугированные для опор высоковольтных линий электропередачи» соответственно.


Вибрированные стойки изготавливаются в соответствии с ГОСТ 23613-79 «Стойки железобетонные вибрированные для опор высоковольтных линий электропередачи. Технические условия», ГОСТ 26071-84 «Стойки железобетонные вибрированные для опор воздушных линий электропередачи напряжением 0,38 кВ. Технические уcловия» и сериями 3.407.1-136 «Железобетонные опоры ВЛ 0,38 кВ» и 3.407.1-143 «Железобетонные опоры ВЛ 10 кВ».


Специальные двустоечные опоры изготавливаются в соответствии с серией 3.407.1-152 «Унифицированные конструкции промежуточных двустоечных железобетонных опор ВЛ 35-500 кВ».
Серия 3.407.1-157 «Унифицированные железобетонные изделия подстанций 35-500 кВ» включает в себя вибрированные конические стойки с прямоугольным сечением центрифугированные цилиндрические стойки.Серия 3.407.1-175 «Унифицированные конструкции промежуточных одностоечных железобетонных опор ВЛ 35-220 кВ» содержит указания по изготовлению конических стоек опор.


Железобетонные центрифугированные опоры контактной сети и освещения изготавливаются по серии 3.507 КЛ-10 «Опоры контактной сети и освещения».


В качестве материала для изготовления железобетонных стоек опор ЛЭП используется устойчивый к электрокоррозии и коррозии от воздействия окружающей среды портландцемент различных классов по прочности на сжатие, от В25. В качестве заполнителей применяется мелкофракционный песок и гравийных щебень. Для каждого проекта подбирается различный вариант приготовления бетонной смеси: вибрирование применяется для стоек опор ЛЭП напряжением до 35 кВ и опор освещения, центрифугирование - для опор линий электропередач напряжением 35-750 кВ. Марки бетона по морозостойкости и водонепроницаемости назначаются в зависимости от условий эксплуатации и климата в зоне строительства, от F150 и от W4 соответственно. Дополнительно в бетон стоек опор добавляют специальные пластифицирующие и газововлекающие добавки.


Бетон стоек опор ЛЭП армируется предварительно напряженной арматурой для придания большей прочности изделиям. Все детали армирования и закладные изделия в обязательном порядке покрываются специальным веществом против внутренней коррозии.


В качестве рабочей арматуры применяется сталь следующих классов:

  • стержневая термически упрочненная периодического профиля класса Ат-VI по ГОСТ 10884-71 при эксплуатации стоек в районе строительства с расчетной температурой наружного воздуха не ниже -55°С;
  • стержневая горячекатаная периодического профиля классов А-IV и А-V. При расчетной температуре наружного воздуха ниже -55°С сталь этих классов следует применять в виде целых стержней мерной длины.В качестве поперечной арматуры применяется арматурная проволока класса В-I. Для изготовления хомутов, заземляющих проводников и монтажных петель применяется горячекатаная гладкая арматурная сталь класса А-I.

Маркировка стоек по ГОСТ 23613-79.


В обозначении марки стойки буквы и цифры означают: СВ - стойка вибрированная;дополнительные буквы «а» и «б» - варианты исполнения стоек, где:

  • «а» - наличие в стойках закладных изделий (штырей) и отверстий для крепления проводов;
  • «б» - наличие в стойках отверстий для крепления анкерных плит;
  • цифра после букв - длину стойки в дециметрах;
  • цифра после первого тире - расчетный изгибающий момент в тонна-сила-метрах;
  • цифра после второго тире - проектную марку бетона по морозостойкости.

Для стоек, выполненных из сульфатостойкого цемента, после проектной марки бетона по морозостойкости ставится буква «с».


Для стоек, предназначенных к применению в районах с расчетной температурой наружного воздуха ниже -40°С или при наличии агрессивных грунтов и грунтовых вод, в третью группу марки включают также соответствующие обозначения характеристик, обеспечивающих долговечность стоек в условиях эксплуатации:М - для стоек, применяемых в районах с расчетной температурой наружного воздуха -40°С;


Для стоек, применяемых в условиях воздействия агрессивных грунтов и грунтовых вод - характеристики степени плотности бетона: П - повышенная плотность, О - особо плотный.


По ГОСТ 22687.1-85 и ГОСТ 22687.2-85 марка стойки состоит из буквенно-цифровых групп, разделенных дефисом.


Первая группа содержит обозначение типоразмера стойки, включающего:


буквенное обозначение типа стойки, где:

  • СК - конические;
  • СЦ - цилиндрические;
  • далее указывается длина стойки в метрах в целых числах.

Вторая группа включает обозначения: несущей способности стойки и области ее применения в опоре и характеристики напрягаемой продольной арматуры:

  • 1 - для арматурной стали класса A-V или Ат-VCK;
  • 2 - то же, класса A-VI;
  • 3 - для арматурных канатов класса К-7 при смешанном армировании;
  • 4 - то же, класса К-19;
  • 5 - для арматурных канатов класса К-7;
  • 0 - для арматурной стали класса A-IV или Ат-IVK.

В третьей группе при необходимости отражают дополнительные характеристики (стойкость к воздействию агрессивной среды, наличие дополнительных закладных изделий и т.д.).


Маркировка по серии 3.407.1-136 для конструкций элементов опор ВЛ 0,38 кВ состоит из буквенно-цифрового обозначения.


В первой части указывается обозначение типа опоры ЛЭП:

  • П - промежуточная;
  • К - концевая;
  • УА - угловая анкерная;
  • ПП - переходная промежуточная;
  • ПОА - переходная ответвительная анкерная;
  • Пк - перекрестная.

Во второй части - типоразмер опоры: нечетные номера для одноцепных опор, четные - для восьми- и девятипроводных ВЛ.


Маркировка по серии 3.407.1-143 для опор ВЛ 10 кВ имеет в первой части буквенное обозначение типа опоры:

  • П - промежуточная;
  • ОА - ответвительная анкерная;
  • И т.д.

Во второй части - цифровой индекс 10, указывающий на напряжение ВЛ.


В третьей части, через тире, пишется номер типоразмера опоры.


Элементы опор, в которую входят плиты и анкеры, маркируются буквенно-числовым обозначением.П - плита, АЦ - анкер цилиндрический.


Через дефис указывается номер типоразмера изделий.


Маркировка железобетонных промежуточных одностоечных опор по серии 3.407.1-175 и двустоечных опор по серии 3.407.1-152 состоит из буквенно-числового обозначения.


Первая цифра означает порядковый номер региона, в котором применяется опора;


Последующее сочетание букв - тип опоры:

  • ПБ - промежуточная бетонная;
  • ПСБ - промежуточная специальная бетонная;
  • Последующая группа цифр - напряжение ВЛ в кВ, в габаритах которого выполнена опора;
  • Следующее после тире число - порядковый номер опоры ЛЭП, в унификации, при этом нечетные номера принадлежат одноцепным опорам, а четные - двуцепным.

Маркировка изделий опор по серии 3.407.1-157:


Первая группа буквенно-цифрового обозначения включает литеры условного наименования изделий и основные габаритные размеры в дециметрах, где:

  • ВС - вибрированная стойка.

Вторая группа, через дефис, обозначает несущую способность в кН.м;


Третья группа, через дефис, обозначает конструктивные особенности (вариант армирования, наличие дополнительных закладных деталей).


Маркировка опор серии 3.407-102 включает в себя следующие наименования:

  • СЦП - стойка цилиндрическая полая;
  • ВС - вибрированная стойка;
  • ВСЛ - вибрированная стойка для осветительных линий и железнодорожных сетей;
  • Далее следует цифра, означающая типоразмер изделия.

Маркировка опор контактной сети и освещения по серии 3.507 КЛ-10 состоит из буквенно-цифровых обозначений.


Центрифугированные опоры ЛЭП (выпуск 1-1):

  • ОКЦ - опоры наружного освещения с кабельной подводкой питания;
  • ОАЦ - анкерные опоры наружного освещения с воздушной подводкой питания;
  • ОПЦ - промежуточные опоры наружного освещения с воздушной подводкой питания;
  • ОСЦ - совмещенные опоры контактной сети и наружного освещения с кабельной подводкой питания.

Первая цифра после букв, через дефис, обозначает горизонтальную нормативную нагрузку на опору в центнерах, вторая - длину опоры в метрах.


Вибрированные опоры (выпуски 1-2, 1-4, 1-5):

  • СВ - стойка вибрированная наружного освещения с кабельной или воздушной подводкой питания;
  • Следующая после букв цифра указывает нормативный изгибающий момент в заделке, в тм;
  • Вторая цифра, через дефис, указывает длину стойки в метрах.

Ненапряженные вибрированные стойки (выпуск 1-6):

  • Первая группа содержит буквенное обозначение типа конструкции, СВ - стойка вибрированная, и числовое – длина стойки в дециметрах;
  • Вторая группа - условное обозначение несущей способности.

В зависимости от способа подвески проводов опоры воздушных линий (ВЛ) делятся на две основные группы:

а) опоры промежуточные , на которых провода закрепляются в поддерживающих зажимах,

б) опоры анкерного типа , служащие для натяжения проводов. На этих опорах провода закрепляются в натяжных зажимах.

Расстояние между опорами (ЛЭП) называется пролетом , а расстояние между опорами анкерного типа - анкерованным участком (рис. 1).

В соответствии с пересечения некоторых инженерных сооружений, например железных дорог общего пользования, необходимо выполнять на опорах анкерного типа. На углах поворота линии устанавливаются угловые опоры, на которых провода могут быть подвешены в поддерживающих или натяжных зажимах. Таким образом, две основные группы опор - промежуточные и анкерные - разбиваются на типы, имеющие специальное назначение.

Рис. 1. Схема анкерованного участка воздушной линии

Промежуточные прямые опоры устанавливаются на прямых участках линии. На промежуточных опорах с подвесными изоляторами провода закрепляются в поддерживающих гирляндах, висящих вертикально, на промежуточных опорах со штыревыми изоляторами закрепление проводов производится проволочной вязкой. В обоих случаях промежуточные опоры воспринимают горизонтальные нагрузки от давления ветра на провода и на опору и вертикальные - от веса проводов, изоляторов и собственного веса опоры.

При необорванных проводах и тросах промежуточные опоры, как правило, не воспринимают горизонтальной нагрузки от тяжения проводов и тросов в направлении линии и поэтому могут быть выполнены более легкой конструкции, чем опоры других типов, например концевые, воспринимающие тяжение проводов и тросов. Однако для обеспечения надежной работы линии промежуточные опоры должны выдерживать некоторые нагрузки в направлении линии.

Промежуточные угловые опоры устанавливаются на углах поворота линии с подвеской проводов в поддерживающих гирляндах. Помимо нагрузок, действующих на промежуточные прямые опоры, промежуточные и анкерные угловые опоры воспринимают также нагрузки от поперечных составляющих тяжения проводов и тросов.

При углах поворота линии электропередачи более 20° вес промежуточных угловых опор значительно возрастает. Поэтому промежуточные угловые опоры применяются для углов до 10 - 20°. При больших углах поворота устанавливаются анкерные угловые опоры .

Рис. 2. Промежуточные опоры ВЛ

Анкерные опоры . На линиях с подвесными изоляторами провода закрепляются в зажимах натяжных гирлянд. Эти гирлянды являются как бы продолжением провода и передают его тяжение на опору. На линиях со штыревыми изоляторами провода закрепляются на анкерных опорах усиленной вязкой или специальными зажимами, обеспечивающими передачу полного тяжения провода на опору через штыревые изоляторы.

При установке анкерных опор на прямых участках трассы и подвеске проводов с обеих сторон от опоры с одинаковыми тяжениями горизонтальные продольные нагрузки от проводов уравновешиваются и анкерная опора работает так же, как и промежуточная, т. е. воспринимает только горизонтальные поперечные и вертикальные нагрузки.

Рис. 3. Опоры ВЛ анкерного типа

В случае необходимости провода с одной и с другой стороны от анкерной опоры можно натягивать с различным тяжением, тогда анкерная опора будет воспринимать разность тяжения проводов. В этом случае, кроме горизонтальных поперечных и вертикальных нагрузок, на опору будет также воздействовать горизонтальная продольная нагрузка. При установке анкерных опор на углах (в точках поворота линии) анкерные угловые опоры воспринимают нагрузку также от поперечных составляющих тяжения проводов и тросов.

Концевые опоры устанавливаются на концах линии. От этих опор отходят провода, подвешиваемые на порталах подстанций. При подвеске проводов на линии до окончания сооружения подстанции концевые опоры воспринимают полное одностороннее тяжение .

Помимо перечисленных типов опор, на линиях применяются также специальные опоры: транспозиционные , служащие для изменения порядка расположения проводов на опорах, ответвительные - для выполнения ответвлений от основной линии, опоры больших переходов через реки и водные пространства и др.

Основным типом опор на воздушных линиях являются промежуточные, число которых обычно составляет 85 -90% общего числа опор.

По конструктивному выполнению опоры можно разделить на свободностоящие и опоры на оттяжках . Оттяжки обычно выполняются из стальных тросов. На воздушных линиях применяются деревянные, стальные и железобетонные опоры. Разработаны также конструкции опор из алюминиевых сплавов.
Конструкции опор ВЛ

  1. Деревянная опора ЛОП 6 кВ (рис. 4) - одностоечная, промежуточная. Выполняется из сосны, иногда лиственницы. Пасынок выполняется из пропитанной сосны. Для линий 35-110 кВ применяются деревянные П-образные двухстоечные опоры. Дополнительные элементы конструкции опоры: подвесная гирлянда с подвесным зажимом, траверса, раскосы.
  2. Железобетонные опоры выполняются одностоечными свободностоящими, без оттяжек или с оттяжками на землю. Опора состоит из стойки (ствола), выполненной из центрифугированного железобетона, траверсы, грозозащитного троса с заземллителем на каждой опоре (для молниезащиты линии). С помощью заземляющего штыря трос связан с заземлителем (проводник в виде трубы, забитой в землю рядом с опорой). Трос служит для защиты линий от прямых ударов молнии. Другие элементы: стойка (ствол), тяга, траверса, тросостойка.
  3. Металлические (стальные) опоры (рис. 5) применяются при напряжении 220 кВ и более.

Предназначенные для удержания проводов в подвешенном состоянии. К ним относятся решетчатые и многогранные стойки, траверсы, фундаменты. Они могут иметь разные размеры и форму. Производство опор лэп предполагает применение различных материалов. Эти конструкции бывают железобетонными и металлическими. По назначению выделяют следующие типы опор:

  • Анкерные;
  • Промежуточные;
  • Концевые;
  • Угловые.

Анкерные устанавливают для ограничения анкерных пролетов и в местах изменения количества или вида проводов. Установка промежуточных опор выполняется на прямых участках электропроводной трассы. Угловые конструкции используют там, где она меняет свое направление. Концевые - применяют в начале и конце линии. Завод по изготовлению и монтажу столбов ЛЭП АО ПК «СтальКонструкция» производит Москве промежуточные опоры жесткой и гибкой конструкции.

Антенные опоры

Их используют для закрепления на требуемой высоте антенного оборудования. Они представляют собой стержневую металлоконструкцию, имеющую форму правильной четырехгранной пирамиды. В зависимости от силы сигнала уровень поднятия линий связи может быть разным. Поэтому, высота этих сооружений колеблется от 30 до 80 м. В их состав входят:

  • Кронштейн;
  • Площадка для обслуживания;
  • Лестница с ограждением;
  • Площадка для перехода;
  • Решетчатая опора.

Основной областью применения являются радиорелейные линии связи. Закрепление сооружений выполняется с помощью болтовых соединений. Вертикальную лестницу для передвижения людей закрепляют во внутреннем стволе сооружения. Изготовление опор ЛЭП этого вида производится в шести типоразмерах. При этом используются секции длиной 10 м.

Опоры связи

Они представляют собой специальные вышки, которые обладают повышенной несущей способностью и увеличенной высотой. Их предназначение состоит в размещении комплектов антенного оборудования, обеспечивающего связь. Производство металлических конструкций такого вида осуществляется в 2-х разновидностях – мачты и башни.

Наиболее востребованными из них являются мачты. Их изготавливают из трубного проката и окрашивают в белый или красный цвета. Среди них опоры для сотовой и радиолинейной связи, уличного освещения, мачты для телевидения и радиовещания. Наиболее часто используют трехсекционные конструкции. Монтаж радиомачт выполняется в несколько этапов с помощью специальной техники.



Опоры электропередач

Их назначение состоит в поддерживании электрических проводов на необходимом удалении от поверхности крыш, земли и проводов других линий. Таким сооружениям приходится функционировать в различных метеорологических условиях, поэтому они требуют прочности. Производство опор линий электропередач осуществляется на основе различных материалов. В сельской местности для электролиний с напряжением 35 КВ по-прежнему широко используют древесину хвойных пород.

Наиболее современным вариантом являются многогранные стальные конструкции оцинкованные способом горячего цинкования. Проектный период их эксплуатации составляет 70 лет.




Производство и монтаж

Чтобы подобные сооружения долго и надежно служили, необходимо их тщательное проектирование и качественное изготовление. Наш завод металлоконструкций занимается производством и поставками опор ЛЭП во многие энергетические и производственные компании. Технологический процесс заключается в сборе каркаса, проведении входного контроля исходного сырья, тепло-влажной обработке заформованых изделий, выходном контроле готовой продукции.

Изготовление металлических опор лэп в Москве происходит с применением трубного и листового проката. Его производят из высококачественной углеродистой стали. Сырье, поступающее в производство, должно подвергаться лабораторному контролю в виде химического и спектрального анализа.

После изготовления продукцию транспортируют на платформах в виде отдельных секций. Перед монтажом конструкций выполняют разметку трассы. Далее бурят скважины для их последующей установки. Глубина и диаметр ямы зависят от вида изделия и типа грунта. Монтаж опор выполняется при помощи кранов или манипуляторов.

Мировой опыт и первые шаги

Первые линии электропередачи появились в конце XIX века и конструктивно имели много общего с телеграфными и телефонными. В большинстве случаев допустимо было применять те же изоляторы, крепёжную арматуру и столбы, что и на линиях связи. Поскольку расстояния между опорами были невелики, 50-70 метров, наиболее часто использовались деревянные столбы с железными крючьями или горизонтальными консолями — траверсами. Выбор между крючьями и траверсами делался в зависимости от числа и сечения подвешиваемых проводов, а также места расположения линии. Крюки ввинчивались в столб с двух сторон в шахматном порядке, и на каждом из них располагалось по одному изолятору. На траверсах, как правило, размещалось от двух до восьми изоляторов в ряд. В тех случаях, когда требовалась повышенная механическая прочность, в качестве опор использовали клёпанные металлические мачты, так же снабжённые крючьями или траверсами. С внедрением трёхфазных сетей переменного тока 2 и 6,6 кВ стали появляться новые типы опор, рассчитанные на подвеску трёх (рис.1 ) или шести (для двухцепных линий) проводов, однако условия сооружения линий всё ещё позволяли обходиться простейшими конструкциями и подходами. Нередко размеры опор и условия монтажа проводов задавались на глаз опытным монтёром, а не получались в результате расчёта. Первые отечественные опоры для линий 6,6 кВ почти всегда были деревянными, для крепления проводов применялись крюки или металлические, реже - деревянные траверсы, на каждой из которых размещался один провод.

Использование трёхфазного переменного тока, стремительное развитие электротехнической отрасли и увеличение потребности в электроэнергии способствовали росту напряжений, применяемых в линиях передачи, тем самым делая возможным передачу больших мощностей на большие расстояния. Стали широко использоваться линии напряжением 30-60 кВ. Кроме того, начало входить в обиход понятие экономического пролёта - наиболее выгодного расстояния между опорами с точки зрения затрат на строительство линии. В связи с этим впервые возник значительный интерес к вопросам механического расчёта опор ЛЭП и создания новых специализированных конструкций - их использование позволяло увеличить длину пролёта и добиться значительной экономии в условиях высокой стоимости изоляции и арматуры.

С ростом напряжения всё большее предпочтение среди материалов для опор отдавалось стали: использовать деревянные конструкции было уже далеко не всегда возможно и выгодно (проблема заключалась в их низкой надёжности и малом сроке службы: опыт применения антисептиков для пропитки опор ЛЭП в начале XX века был ещё невелик). Стоит так же отметить, что фарфоровые штыревые изоляторы, применявшиеся в начале 20 века на линиях напряжением 30-60 кВ, представляли собой громоздкие, дорогие, сложные в производстве, транспортировке и монтаже составные конструкции (рис.3 ), поэтому проектировщики старались сократить количество изоляторов на линии. Металлические опоры давали возможность сооружать линии с более длинными пролётами, что, в частности, позволяло использовать меньше изоляторов. На рис. 4 в качестве примера представлен фарфоровый штыревой изолятор фирмы Locke , применённый на линии 60 кВ Замора-Гуанахуато. Высота изолятора составляла около 30 см, диаметр верхней юбки - 35 см, а масса - около 7 кг. На линию изоляторы поставлялись в виде двух половинок, окончательная сборка происходила в полевых условиях с помощью портланд-цемента.

В 1904 году для электроснабжения шахт в мексиканском штате Гуанахуато была построена одна из первых в мире линий, на которой использовались только металлические опоры (рис.5 ). Протяжённость трёхфазной одноцепной линии составляла 100 миль, а напряжение - 60 кВ. В постройке линии принимали участие американские инженеры. Опоры для линии были закуплены у американской компании Aeromotor Windmill , производившей ветряные мельницы. Мачты ветряных мельниц хорошо подходили для использования в качестве опор с точки зрения механической прочности и экономии, так как требовали лишь минимальных изменений в конструкции, связанных с установкой арматуры для крепления проводов. Мачта линии Замора-Гуанахуато имела высоту 40 футов (12 м) и состояла из четырёх уголков размером 3 х 3 х 3/16 дюйма, соединённых раскосами и диафрагмами из уголков меньшего размера. Наверху мачты располагалась металлическая траверса на два штыревых изолятора и 3 ½-дюймовая труба для крепления верхнего штыревого изолятора. Для подтверждения надёжности конструкции на заводе Aeromotor Windmill были проведены испытания экспериментальной опоры. Опору закрепили горизонтально к стене здания и подвесили за верхушку платформу со свинцовыми грузами. Труба верхнего изолятора начала отклоняться от горизонтального положения при нагрузке 900 фунтов (405 кг), при этом прогиба самой мачты не происходило. При нагрузке 1234 фунта (555 кг) прогиб трубы достиг 6 дюймов, после снятия нагрузки остаточный прогиб составил 1 дюйм. При нагрузке 1560 фунтов (702 кг) труба продолжила изгибаться, пока груз не оказался на земле. На всём протяжении линии, кроме короткого участка у Гуанахуато, где из-за особенностей местности пришлось применить 60-футовые опоры и удлинённые 400-метровые пролёты, длина пролёта составляла 132 метра.

Применение металлических опор на линии Замора-Гуанахуато вызвало существенный интерес в среде инженеров-электриков. В 1904-06 годах в США было сооружено ещё несколько линий с опорами аналогичной конструкции, в том числе закупленными у компании Aeromotor Windmill. Благоприятный опыт использования таких конструкций оказал значительное влияние на подход к проектированию опор более мощных линий.

Немаловажным фактором, поспособствовавшим распространению металлических опор, стало изобретение подвесных изоляторов. К 1907-08 годам в электроиндустрии остро стояла проблема линейной изоляции. При напряжении выше 50 кВ штыревые изоляторы становились слишком громоздкими, хрупкими и неудобными в монтаже, кроме того, они не отличались высокой эксплуатационной надёжностью. При напряжении свыше 80 кВ применение штыревых изоляторов становилось и вовсе невозможным. Подвесные изоляторы были в этом плане гораздо более выгодными, однако, для них требовались более высокие опоры. В 1907 году Эдвард Хьюлетт (Edward Hewlett) и Гэрольд Бак (Harold Buck) изобрели первый пригодный для промышленной эксплуатации подвесной изолятор (рис.6 ). В том же году появился первый подвесной изолятор «с шапкой и стержнем» конструкции Джона Данкана (John Duncan, рис.9 ). Впервые подвесные изоляторы Хьюлетта были применены в 1907 году на линии 100 кВ американской компании Muskegon & Grand Rapids Power Co. Линия была построена с использованием металлических опор, её протяжённость составила 35 миль. Изоляторы Данкана, имевшие более прогрессивную конструкцию, устанавливались на нескольких линиях в 1908 году, в частности, на линии 104 кВ, принадлежавшей компании Stanislaus Electric Power (рис.8), однако, показали низкую надёжность из-за плохого качества цемента, соединявшего крепёжную арматуру с фарфоровой изолирующей деталью. Аналогичные проблемы, связанные с качеством цементной связки, преследовали первые изоляторы «с шапкой и стержнем» фирмы Ohio-Brass . Тем не менее, преимущества подвесных изоляторов были очевидны. К 1910-11 годам подвесные изоляторы продолжали совершенствоваться, они уже производились рядом заводов США и Германии и получали всё более широкое применение (рис.7 ) как в США, так и в Европе: первая европейская линия электропередачи 100 кВ Lauchammer (1910 г.) была построена с применением только подвесных изоляторов и только металлических опор (рис.10 ).

В условиях бурного развития электрических сетей в 1910-20-х годах выделились два основных подхода к конструированию металлических опор: американский и немецкий.

В начале XX века США было создано множество различных видов опор, но, в основном, американский подход заключался в применении пространственных конструкций с широким основанием, составленных из стержней (уголков) сравнительно малых (по сравнению с европейскими конструкциями) сечений. Этот подход происходил из опыта строительства линий на металлических опорах в 1904-06 годах, о котором говорилось ранее. Стойки опор в плане - квадратные или прямоугольные, в некоторых случаях - треугольные. Каждая нога помещалась на отдельный фундамент. Расположение проводов могло быть как треугольным (рис.8,11 ) или вертикальным (рис.12 ), так и горизонтальным (рис.13-14 ). В 1920-30-х годах опоры американского типа применялись при длине пролёта до 250 м. В отечественной практике опоры американского типа также известны как «широкобазные».

Немецкий подход предполагал использование узких квадратных в плане стоек с основанием, помещённым на один массивный, компактный фундамент. Пояса (вертикальные уголки) соединялись перекрёстной или треугольной решёткой («змейкой»). В 1920-30-х годах опоры немецкого типа, также называемые «узкобазными», применялись при длине пролёта до 200 метров и получили значительное распространение в Европе, так как позволяли сократить расходы на отчуждаемую землю (рис.15, рис.4 ).

Во Франции существовала своя разновидность одноцепных узкобазных опор с горизонтальным и треугольным расположением проводов (рис.16 ).

Типы опор в зависимости от назначения

Условия работы опор на высоковольтных линиях существенно различаются в зависимости от места установки опоры и места прохождения линии По назначению опоры разделяются на несколько типов.

Промежуточная (рис.17-18 ) - опора, которая в режиме нормальной эксплуатации линии воспринимает только поперечные ветровые нагрузки и вес проводов, но не их тяжение (усилие, с которым натянут провод). Крепления проводов на промежуточных опорах делаются с таким расчётом, чтобы минимизировать повреждения опоры в случае аварии (обрыва проводов).

Анкерная (рис.19-20 ) - опора, на которой провода всегда закрепляются жёстко - «анкеруются», анкерная опора воспринимает продольное тяжение проводов (рис.21 ). Анкерные опоры стараются устраивать таким образом, чтобы в нормальном режиме эксплуатации тяжение проводов с двух сторон от опоры было одинаковым. Анкерные опоры устанавливают при переходах через инженерные сооружения, естественные препятствия и каждые 1-1,5 км (по нормам 1920-30-х годов для линий 30-115 кВ) для разбиения линии на анкерные участки. Концевая опора - разновидность анкерной, которая в нормальном режиме воспринимает одностороннее или существенно неравномерное тяжение и устанавливается в начале и конце линии, а также перед большими переходами через естественные препятствия. (крупные реки, водохранилища, ущелья и т.п.).

Угловая (рис.22 ) - опора, которая устанавливается в местах, где линия изменяет направление. В нормальном режиме работы угловая опора воспринимает несимметричные нагрузки от проводов, результирующая которых направлена по биссектрисе угла поворота; поэтому такие опоры всегда укрепляются соответствующим образом и имеют массивные фундаменты. По способу крепления проводов угловые опоры делятся на анкерно-угловые и промежуточные угловые.

Существуют также специальные типы опор: переходные, транспозиционные, ответвительные.

Опоры «Электропередачи»

В Российской Империи первые линии электропередачи 30 кВ стали строиться Обществом «Электропередача», в планы которого входило развёртывание в Богородском уезде Московской губернии местной высоковольтной распределительной сети для снабжения близлежащих частных фабрик. С самого начала было решено использовать для всех линий металлические опоры, но первую линию 30 кВ Электропередача - Зуево по ряду причин пришлось строить на деревянных опорах. Примерно, через год, в 1914 году, была построена вторая линия - на деревню Большие Дворы, на которой, как и на всех последующих, были применены уже только металлические опоры. Значительная часть линий Общества проходила по частным владениям, и за аренду земли под опоры взималась плата, из-за чего при рассмотрении конструкций было решено остановиться на опорах немецкого типа, занимавших меньшую площадь, чем американские. Опоры производились заводом Гюжона в Москве (ныне «Серп и Молот»), доставлялись в Богородский уезд в разобранном виде на платформах по Нижегородской железной дороге, а затем развозились по трассе на лошадях. Для линий 30 кВ применялись двухцепные опоры марки C-15 и D-15 высотой 15 метров (рис.23-24 ). Опора C-15 использовалась в качестве анкерной и угловой, D-15 была её облегчённой версией, выполненной из профилей меньшего сечения, и использовалась в качестве промежуточной и, иногда - анкерной. Ствол опор состоял из двух секций с треугольной решёткой. Пояса выполнялись из уголков с полкой 70 - 100 мм, раскосы и диафрагмы- из уголков с полкой 30 - 60 мм. В нижней части опоры раскосы крепились к поясам с применением косынок, а в верхней - внахлёст. Все соединения, кроме креплений траверс и секций (которые предусмотрены разъемными), выполнены заклёпочными, что обусловлено дешевизной заклёпок по сравнению с болтами и малым опытом использования сварки. Для укрепления проводов на опорах смонтированы три траверсы плоской конструкции, изготовленные из двух стальных полос каждая, и снабжённые проушинами для подвески гирлянд тарельчатых подвесных изоляторов или штырями для крепления штыревых изоляторов. Изначально на всех промежуточных и некоторых анкерных опорах линий 30 кВ применялись штыревые изоляторы, однако, в конце 1920-х годов они были заменены на гирлянды тарельчатых изоляторов для большей надёжности, при этом средние траверсы были удлинены проставками из уголков (рис.24 ).

В 1915 году Общество «Электропередача» завершило строительство линии электропередачи напряжением 70 кВ на Москву, которая связала станцию «Электропередача» с заводом Гюжона и МОГЭС. Для этой ЛЭП были применены 18-метровые опоры марок А-18 (анкерная, рис.25 ) и B-18 (промежуточная). Эти же опоры применялись и на линиях 30 кВ в качестве переходных и анкерных там, где требовалась повышенная надёжность. Ствол каждой из опор состоял из двух разъёмных секций. У В-18 решётки обеих секций были треугольными, выполненными аналогично опорам C и D.

У опоры A-18 нижняя секция имела перекрёстную решётку, между собой секции соединялись усиленными накладками. Все неразъёмные соединения на опорах А-18 и B-18, как и на 15-метровых, выполнены с применением заклёпок. Траверсы пространственной конструкции изготавливались из угловых профилей. На концах траверс были укреплены проушины для подвески тарельчатых изоляторов, предусмотрены съемные детали для подвески двухцепных гирлянд. Большинство опор имели вертикальное расположение проводов, но некоторые выполнялись с расположением проводов «бочкой». И 15-метровые, и 18-метровые опоры не имели специальных тросостоек, но были оснащены зажимами для крепления грозозащитного троса на верхушке ствола. Такое расположение обусловлено существовавшей в те годы теорией о действии защитного троса, согласно которой трос следовало крепить как можно ближе к фазным проводам, что увеличивало общую ёмкость линии и способствовало понижению величины перенапряжения при индуцированных волнах.

Конструкции опор A,B,C,D оказались удачными и продолжили использоваться и после Октябрьской революции почти без изменений. В 1940-50-е годы во время ремонтов на уже эксплуатирующиеся опоры этой серии иногда надстраивали сварные тросостойки высотой два метра (рис.26 ). Некоторые линии с опорами A,B,C,D сохранились и действуют по сей день.

Опоры ГОЭЛРО

Поскольку план ГОЭЛРО предполагал строительство мощных районных электростанций, предназначенных, в частности, для питания важных объектов промышленности, одним из ключевых его элементов было строительство сети магистральных и распределительных линий электропередачи. На первых порах в распределительных сетях главным образом использовались уже знакомые линии 30-35 кВ, для магистральных передач предполагалось освоить новый класс напряжений - 115 кВ. К 1918-20 годам в международной практике уже имелся достаточно большой опыт строительства и эксплуатации таких линий электропередачи. Лидирующие позиции в вопросах строительства электропередач 100 кВ и выше, а также производства арматуры для них занимали США и Германия. Именно на германский и американский опыт ориентировались отечественные инженеры при создании металлических опор ЛЭП для линий ГОЭЛРО.

На линиях напряжением 115 кВ и выше предпочтение отдавалось опорам американского типа. Из-за большого веса металлические опоры для линий такого напряжения, как правило, выполняются разъёмными, то есть опора закрепляется на подпятники заранее подготовленного фундамента. Промежуточные и анкерные опоры американского типа возможно было устанавливать без устройства бетонных фундаментов, что было весьма существенно, так как бетонирование фундаментов в полевых условиях в 1920-е годы считалось одним из наиболее сложных аспектов строительства линии. Кроме того, в отличие от Европы, не стоял вопрос о затратах на отчуждение земель под опоры.

Металлические опоры для линий электропередачи ГОЭЛРО изготавливались разными механическими заводами, наиболее крупные из них: ленинградский завод «Стальмост», «Серп и Молот» и «Парострой» в Москве, Краматорский завод в Донбассе.

Существенное влияние на выбор опор, особенно на первых порах, оказывала нехватка металла: металлические опоры старались применять для строительства лишь наиболее ответственных линий, или только в качестве анкерных или угловых. Важно отметить, что и в дальнейшем, несмотря на увеличение производства стали, на линиях всех классов напряжений значительное внимание уделялось расширению применения деревянных опор, как более экономичных в условиях низких цен на мачтовый лес. Увеличение срока службы деревянных опор достигалось за счёт использования антисептиков, рельсовых или бетонных пасынков. В 1929-30-х годах уже существовал и применялся типовой проект, включавший в себя не только промежуточные, но и анкерные, и угловые деревянные опоры для ВЛ 110 кВ. В 1930-х годах деревянные опоры стали применяться и на линиях 220 кВ.

На первой в СССР линии 115 кВ Каширская ГРЭС - Москва из-за дефицита металла пришлось применить только деревянные опоры. Каширская линия 1922 года была одноцепной, промежуточная и анкерная опоры показаны на рисунках 17 и 19 соответственно. Опоры этой линии не были обработаны антисептиками. Качество постройки оказалось низким, и линия постоянно выходила в ремонт из-за повреждений опор. В 1931 году параллельно старой была построена новая двухцепная линия Кашира - Москва на металлических опорах.

Другая линия электропередачи 115 кВ должна была связать Волховскую ГЭС с понизительной подстанцией в Ленинграде. Руководил проектированием линии профессор Н. П. Виноградов. В основном, установка опор этой линии была выполнена в 1924 году, а в 1926 году началась её эксплуатация. Промежуточные опоры для экономии металла делались деревянными (рис.28 ), с учётом опыта Каширской линии. В качестве анкерных, угловых, транспозиционных и переходных были применены опоры американского типа с горизонтальным расположением проводов (рис.27 ), конструкция которых была схожа с опорами линий компаний Вестингауз и Монтана Пауэр . Все неразъёмные соединения выполнялись с применением заклёпок. Линия Волхов-Ленинград была двухцепной, но каждая цепь располагалась на отдельных опорах. Такое решение, как и выбор горизонтального расположения проводов, объясняется соображениями надёжности и простоты монтажа и безопасности обслуживания. Опоры американского типа Волховской линии получили большое распространение в электрических сетях Ленинградской области и существовали в нескольких модификациях.

Подход, использованный при строительстве линии Волхов-Ленинград, применялся и в сетях Мосэнерго. В конце 1920-х - начале 1930-х годов многие второстепенные одноцепные линии 115 кВ Мосэнерго строились с использованием металлических опор только в качестве анкерных и угловых. В качестве примера можно привести линии Голутвин-Озёры и Кашира-Рязань. Проектно-конструкторское бюро Мосэнерго разработало собственные опоры американского типа, несколько отличавшиеся от Волховских (рис.29-30 ). В основе конструкции так же лежали решения, применённые на линиях компании Вестингауз . Существовало три марки металлических опор американского типа ПКБ Мосэнерго для линий с деревянными промежуточными опорами: анкерная АМ-101, угловая УМ-101 и транспозиционная ТАМ-101, а также две модификации: АМ-101+4 и УМ-101+4 с подставками четырехметровой высоты для использования в качестве переходных. В качестве промежуточных использовались П-образные деревянные опоры конструкции ПКБ Мосэнерго, аналогичные опорам Каширской и Волховской линий.

Шатурские опоры

Важным моментом в истории отечественных линий электропередачи стало строительство в 1924-25 годах линии ШГЭС - Москва. Это была первая в СССР ЛЭП 115 кВ, на которой использовались двухцепные металлические опоры. В проектировании опор принял участие Александр Васильевич Винтер, а также инженеры А. Горев, Г. Красин, А.Чернышёв . Маршрут линии Шатура-Москва проходил не только по Московской области и пригородам, но и по самому центру Москвы: линия пересекала Окружную железную дорогу у станции Угрешская и выходила к Москве-реке по Арбатецкой улице, откуда шла по Крутицкой, Краснохолмской, Котельнической и Москворецкой набережным к Зарядью, где располагалась концевая опора (рис.31 ), с которой линия пересекала Москву-реку и заходила на подстанцию Раушской ГЭС.

Для городского участка ЛЭП были спроектированы специальные узкобазные опоры с фундаментами особой конструкции (рис.32 ), на остальном протяжении линии использовались опоры американского типа (рис.18,20,33 ).

Для повышения механической надёжности опор была выбрана конструктивная схема «обратная ёлка», при которой траверсы сужались от верхней к нижней. Такая схема не являлась оптимальной с электрической точки зрения, но позволяла избежать повреждения опор и их траверс в случае обрывов и падения проводов. Для защиты от ударов молний над каждой цепью располагался грозотрос. На анкерных опорах были предусмотрены крепления для одноцепных и двухцепных гирлянд изоляторов, на угловых опорах на концах траверс закреплялись трапециевидные площадки для более удобной подвески двухцепных гирлянд при повороте линии на большие углы. Высота до нижней траверсы на анкерных и угловых опорах американского типа составляла 11 м, на промежуточных - 12 м, вертикальное расстояние между траверс на всех опорах - 3,1 м. Все опоры имели заклёпочную конструкцию, отдельные секции опор собирались на стапелях в заводских условиях и соединялись вместе уже на трассе, также посредством клёпки.

На основе опыта Шатурской линии 1925 года ПКБ Мосэнерго разработало типовой проект двухцепных опор американского типа для I-II климатических районов. Опоры этого проекта несколько отличались от установленных на Шатурской ЛЭП, но сохранили общие технические решения и характерный внешний вид, за который они получили название «шатурских», или «опор шатурского типа». В 1920-х годах опоры шатурского типа устанавливались, в основном, на линиях Мосэнерго: Электропередача - Москва, Кашира - Москва (рис.34 ), вторая линия Шатура - Москва, линии Московского электрокольца 110 кВ. А с конца 1920-х годов шатурские опоры стали широко применяться и в других регионах СССР.

В типовой проект входили следующие основные марки опор (рис.35 ): АМ-103 - анкерная, также допускавшая поворот линии на угол до 5º, ПМ-103 - промежуточная, УМ-102 - угловая для поворота на угол до 60º, УМ-103 - угловая для поворота на угол до 90º, ТАМ-103 - транспозиционная. По сравнению с опорами Шатурской линии 1925 года была уменьшена база, ширина ствола, для поясов были применены угловые профили меньшего размера. Кроме опор обычной высоты, имелись также повышенные модификации: АМ-103+4, АМ-103+6,8, УМ-102+6,8.

Все опоры представляли из себя клёпанные конструкции. На трассу опоры поступали в виде отдельных собранных в заводских условиях секций, которые соединялись на месте при помощи клёпки, иногда - на болтах.

Фундаменты промежуточных и анкерных опор выполнялись в виде четырёх подпятников из металлических профилей, закрепляемых в грунте без использования бетона при прохождении линии по нормальному грунту, с лёгким бетонным основанием при установке опоры на мелком торфяном болоте или на сваях при установке на глубоком болоте. Подпятники анкерных опор отличались большим размером, а также тем, что в их конструкции имелся лист из котельного железа, улучшавший работу на вырывание вдоль линии. Фундаменты угловых и концевых опор выполнялись всегда бетонными.

В 1929-31 годах появились «грозостойкие» опоры шатурского типа марок АМ-103г, ПМ-103г, УМ-102г, УМ-103г, АМ-103г+4, отличавшиеся тросостойками увеличенной высоты (рис.36 ). Кроме того, в проект были включены опоры немецкого типа следующих марок: анкерная АМ-102 и промежуточная ПМ-102 (рис.37 ).

В связи с тем, что в 1930-х годах в СССР шло освоение заводской сборки опор с применением сварки, к 1933 году появились сварные модификации опор шатурского типа.

Шатурские опоры новой серии состояли из сварных секций, изготавливаемых на заводе и соединяемых на трассе заклёпками или болтами. Сварные опоры имели аналогичное с заклёпочными технологическое членение, что позволяло применять при строительстве линий одинаковую оснастку и шаблоны и было удобно с точки зрения транспортировки. Использование сварки удешевило шатурскую конструкцию за счёт экономии металла и несколько упростило заводскую сборку, так как отпала необходимость в сверлении множества отверстий под заклёпки. Также отпадала надобность в клёпке в полевых условиях, так как готовые секции соединялись только на болтах. Тем не менее, как и в случае с заклёпочными опорами, где требуется строгий контроль за качеством клёпки, при производстве сварных опор требуется тщательная проверка отсутствия перекосов конструкции и сварных швов на предмет непроваров и трещин.

Существовали следующие марки сварных опор шатурского типа (рис.38-40 ): АМ-109г - анкерная, УМ-113г - угловая для поворота на угол до 90º, ПМ-109г - промежуточная, УМ-111г - угловая для поворота на угол до 35º, УМ-112г - угловая для поворота на угол до 60º. Опоры УМ-111г и УМ-112г по конструкции ствола аналогичны АМ-109г, но отличаются асимметричными траверсами. Все сварные опоры шатурского типа выполнялись «грозостойкими». Сварные соединения на опорах этой серии в верхней части ствола выполнялись с применением фасонок, раскосы и диафрагмы нижней части ствола и траверс приваривались внахлёст. Траверсы и тросостойки крепились к стволу на болтах. Верхняя и средняя секции представляют собой неразъёмные конструкции, а нижняя секция состоит из четырех частей, соединяемых болтами. На угловых опорах на концах траверс укреплены трапециевидные площадки для более удобного крепления гирлянд изоляторов. Как и в случае с заклёпочными опорами, существовали повышенные модификации с подставками высотой 6,8 метров аналогичной конструкции (рис.40 ). Узкобазные варианты сварных опор шатурского типа не выпускались. Сварные шатурские опоры продолжали устанавливать на строящихся линиях электропередачи вплоть до конца 1950-х годов.

Активно строились в период ГОЭЛРО и линии распределительных сетей меньшего напряжения, 30-35 кВ. На этих линиях существовало ещё большее разнообразие конструкций опор, чем на ВЛ напряжением выше 100 кВ. Так как опоры линий 35 кВ существенно меньше и легче опор линий 115 кВ, наибольшее распространение получили удобные при транспортировке и монтаже неразъёмные конструкции немецкого типа. Неразъёмные опоры устанавливались либо прямо в грунт, либо на бетонную подушку. Котлован фундамента мог засыпаться землёй или заливаться бетоном. Существовали, однако, и другие конструкции. Например, опоры линии 35 кВ Ивановской ТЭЦ-1 имели узкий ствол и широкое основание, такая компоновка в дальнейшем получила широкое применение и стала называться «смешанной», так как совмещала достоинства широкобазных и узкобазных опор. Также стоит отменить опоры плоской («гибкой») конструкции Земо-Авчальской линии 35 кВ 1929 года (рис.41 ).

В сетях Мосэнерго в 1920-х годах продолжали применяться спроектированные до октябрьской революции опоры А-18, B-18, C-15 и D-15. С другой стороны, в эти же годы ПКБ Мосэнерго спроектировало для линий 35 кВ новые двухцепные опоры немецкого типа следующих марок (рис.42 ): Н - промежуточная, НА - анкерная, НУ - угловая. Кроме того, существовала специальная одноцепная опора НБ. Литера Н буквально означала «немецкий тип». В отличие от опор A,B,C,D, на которых провода располагались вертикально или «бочкой», опоры немецкого типа были выполнены по схеме «обратная ёлка». Отсутствовала возможность установки штыревых изоляторов. Конструкция опор немецкого типа была клёпанной, ствол опоры состоял из двух секций, траверсы крепились к стволу на болтах. У первых опор немецкого типа было низкое расположение грозозащитного троса, как на опорах общества «Электропередача», но в дальнейшем все вновь устанавливаемые и уже эксплуатирующиеся опоры снабжались повышенной тросостойкой.

В связи с дефицитом металла при строительстве линий 35 кВ предпочтение отдавалось деревянными опорам. Целиком на металлических опорах строились только наиболее важные линии, в остальном, металлические опоры использовались в качестве угловых и анкерных в особо ответственных местах. Существовало большое количество конструкций деревянных опор для линий 35 кВ: одноцепная «свечка», «ласточкин хвост» (рис.43 ), А-образная опора «азик», одноцепные П-образные опоры. Опоры «свечка» и «азик» могли использоваться со штыревыми изоляторами. Двухцепные опоры «азик» со штыревыми изоляторами ВЭО-38 были применены на линии электропередачи 33 кВ АМО - Рублёвская насосная станция 1923 года постройки. Наибольшее же распространение получили П-образные опоры, которые по конструкции были аналогичны деревянным опорам ЛЭП 110 кВ.

Свирь и ДГЭС

Новые мощные гидроэлектростанции, сооружаемые по плану ГОЭЛРО, предназначались для снабжения электроэнергией крупных промышленных районов: заводов Ленинграда и строящихся промышленных гигантов Запорожья. Для выдачи мощностей станций потребителям необходимо было сооружать крупные магистральные линии и разветвлённые местные электросети, при этом уже освоенные классы напряжений 35 и 110-115 кВ уже не обеспечивали требуемую пропускную способность и не могли стать основой запланированных энергосистем. Во второй половине 1920-х годов в распоряжении советских инженеров имелся некоторый заграничный опыт как проектирования, так и эксплуатации линий напряжением выше 150 кВ. В США и странах Европы на тот момент существовали линии, работавшие на напряжении 220 кВ. Технические решения, выработанные для первых линий 154, 161 и 220 кВ, базируются как на иностранном опыте, так и на собственных, полностью оригинальных решениях.

В 1927 году началось строительство Нижнесвирской ГЭС в Ленинградской области. Для передачи энергии реки Свирь в Ленинград предстояло соорудить самую длинную и самую мощную в СССР ЛЭП. Руководил созданием линии профессор Н. П. Виноградов, разработавший ранее проект электропередачи Волхов - Ленинград. При составлении сметы в 1927 году рассматривалось два варианта строительства электропередачи Свирь-Ленинград: первый вариант представлял собой четырёхцепную линию напряжением 130 кВ, а второй - двухцепную линию 220 кВ. Стоимость сооружения линии по первому варианту была меньше, однако второй вариант позволял обеспечить большую мощность. В итоге для исполнения был выбран второй вариант. Линия электропередачи проходила по крайне заболоченным местам, однако, в результате тщательнейшего изучения всех возможных вариантов трассы был выбран наиболее проходимый и короткий. Длина трассы в своём конечном варианте составила 272 км, линия была способна передавать мощность до 240 мВт, что соответствовало пиковой планируемой мощности двух станций Свирского каскада. Две цепи передачи выполнялись в виде отдельных линий, что было сделано для повышения надёжности передачи и обеспечения безопасности персонала во время ремонта при отключении одной из цепей. По результатам экономического расчёта была выбрана длина пролёта в 300 м, длина анкерного участка - 3 км. Из соображений экономии и удобства обслуживания было выбрано горизонтальное расположение проводов. В первоначальном варианте каждая цепь защищалась одним сталеалюминиевым грозозащитным тросом.

Линия Свирь-Ленинград была первой из проектируемых в СССР ЛЭП напряжением выше 115 кВ, работа над проектом началась в 1926 году. Исходя из выбранного расстояния между проводами и высоты их подвески, в качестве основного рассматривался вариант опоры американского типа (рис.43 ). Но такой вариант не удовлетворял современным требованиям к проектированию ферменных конструкций. Требовалось, чтобы отношение длины стержней, из которых состоит конструкция, к минимальному радиусу инерции не должно было превосходить: 120-140 для основных стоек, 160 -180 - для второстепенных элементов и 200 - для вспомогательных, не несущих усилий деталей. При расчёте опоры на основании этого условия в конструкции получалось большое количество неработающих и слабоработающих элементов значительной длины, что при строительстве привело бы к перерасходу металла. Проектировщики опоры столкнулись с тем случаем, когда не рационально приспосабливать старые конструкции к новым условиям.

В ходе рассмотрения различных вариантов была выбрана Н-образная конструкция с наименьшей свободной длиной элементов фасадной решётки (рис.44 ), что позволило существенно сократить вес опоры по сравнению с первоначальным вариантом. Вес промежуточной опоры составлял 3,3 т, анкерной - 4,3 т. Было достигнуто сокращение веса, по сравнению с первоначальным вариантом, на 17% для промежуточной и на 12% для анкерной опор. Общая экономия металла для двух цепей линии составила 1120 т. Для подтверждения расчётов, проверки условий изготовления и получения фактических коэффициентов запаса прочности были изготовлены и испытаны две экспериментальные опоры (рис.45 ), промежуточная и анкерная. Проведённые натурные испытания подтвердили соответствие нормам и требованиям расчёта.

Хотя во время строительства линии Свирь-Ленинград уже существовала возможность изготовить опоры с применением сварки, из-за особой важности линии и из соображений надёжности все опоры были выполнены с использованием заклёпок. Как сказано выше, изначально каждая цепь защищалась одним грозотросом, расположенным на небольшой треугольной стойке над одной из ног опоры, но в последующие годы вся линия была оборудована двумя грозозащитными тросами. Для сохранности опор в случае обрывов проводов на всём протяжении линии, кроме переходов через инженерные сооружения, были применены выпускающие зажимы, хотя конструкция опор была рассчитана на полную одностороннюю нагрузку в случае несрабатывания зажима.

Линия электропередачи Свирь-Ленинград пережила Великую Отечественную войну, большинство её изначальных опор сохранились и продолжают эксплуатироваться по сей день.

Другим крупным объектом электосетевого строительства была стройка ДнепроГЭС. Энергосистема ДГЭС должна была питать регион Донбасса и крупные промышленные предприятия Запорожья, среди которых комплекс Днепрокомбината: Завод Ферросплавов, Металлургический завод и Алюминиевый Комбинат. Главные линии энергосистемы работали на напряжении 161 и 150 кВ, в распределительных сетях также использовалось напряжение 35 кВ. Кроме того, в Днепропетровске существовало кольцо линий 150 кВ, обеспечивающее более надёжную работу энергосистемы. Наиболее протяжённой линией была ЛЭП 161 кВ ДГЭС - Рыково (Донбасс), длина которой составляла 210 км, а общее протяжение линий, считая по одной цепи, составляло примерно 900 км.

Проектированием линий электропередачи для энергосистемы ДГЭС руководил профессор Н. П. Виноградов.

Условия механического расчёта опор были весьма сложными ввиду того, что линии электропередачи Днепростроя проходили по гололёдным районам. Из-за значительных ветровых нагрузок, вызывающих сильное отклонение изоляторов и проводов, расчётное расстояние между проводами достигало 6,4 м, что даже с учётом меньшего рабочего напряжения соответствовало параметрам линии Свирь-Ленинград. В связи с этим, а также для большей грозоустойчивости, было решено использовать для линий модифицированный вариант «свирских» опор с горизонтальным расположением проводов. Более низкое напряжение позволяло уменьшить габарит линии по высоте, в связи с чем верхняя часть опор была несколько упрощена, в то время как нижняя часть осталась без изменений.

Опоры были рассчитаны для использования при нормальной длине пролёта 220 м и сталеалюминиевом проводе марки АС сечением 120 мм 2 . В некоторых случаях такие же опоры использовались с проводом АС-150, но при уменьшенных пролётах. Вес промежуточной (рис.47 ) опоры составлял 3,28 т, анкерной (рис.46 ) - 4,6 т. Каждая линия защищалась двумя грозотросами. Для проверки правильности выбора конструкции был сделан проект опоры по американскому типу, расчёт показал, что применение опор свирского типа даёт экономию 20% экономию металла. Опоры свирского типа применялись на большинстве линий Днепростроя.

Иная конструкция опор была применена на весьма протяжённых, но менее ответственных линиях 161 кВ ДГЭС - Донбасс и ДГЭС - Днепропетровск-Каменское. При изучении различных вариантов двухцепных опор с горизонтальным расположением проводов для этих линий в числе прочих рассматривалась трёхстоечная опора с общей траверсой, но все варианты опор оказывались слишком тяжёлыми. Однако, неожиданные и благоприятные результаты были получены при разделении трёхстоечной двухцепной опоры с единой траверсой на три отдельные опоры, каждая из которых несла два провода (рис.48,50 ). Такой вариант обеспечивал существенную экономию металла по сравнению с использованием двух одностоечных опор. Размещение механически не связанных стоек на отдельных бетонных блоках позволяло избежать свойственных широкобазным опорам проблем с появлением напряжений, вызванных осадкой фундамента. Трёхстоечные опоры были более транспортабельны, обеспечивали более благоприятные условия монтажа проводов и изоляторов. Недостатками конструкции были объём фундаментов, больший, чем при использовании двух широкобазных опор, и возможность выхода из строя сразу обеих цепей при повреждении средней опоры. С учётом всех факторов применение трёхстоечной конструкции удешевляло строительство линии на 10% по сравнению с вариантом строительства двухцепной линии на одностоечных широкобазных опорах.

После того, как трёхстоечная конструкция была утверждена для использования на линиях ДГЭС - Донбасс и ДГЭС - Каменское, были построены две опытные опоры: сварная и клёпанная (рис.49 ). В июне 1930 года обе опоры успешно прошли испытания, причём сварная опора показала большие фактические коэффициенты запаса, чем клёпанная. На основании испытаний было принято решение об использовании электросварки для изготовления промежуточных опор. Это был первый значительный отечественный опыт в использовании сварных опор на высоковольтных линиях. Анкерные, угловые и специальные опоры выполнялись клёпанными.

Принятые типы опор использовались с выпускающими зажимами при пролётах до 235 м на всём протяжении лини, кроме особо гололёдных участков. На линии ДГЭС - Донбасс был применён провод СА-150, в связи с чем конструкции анкерных опор были усилены.

Для сокращения начальной стоимости линии ДГЭС - Донбасс и ДГЭС - Каменское строились в две очереди. По мере выхода ГЭС на полную мощность строилась сначала одна цепь каждой линии, затем достраивалась вторая. При этом в первую очередь строились две двухпроводные линии, у которых три провода были рабочими, а четвёртый оставался резервным до момента постройки третьей линии и введения в строй второй цепи.

Кроме обычных опор, для энергосистемы ДнепроГЭС были созданы уникальные переходные опоры различных конструкций, заслуживающие отдельного упоминания.

После ГОЭЛРО

Первые годы ГОЭЛРО, отмеченные интенсивным строительством ЛЭП разных классов напряжений с использованием самых разнообразных технических решений, были очень важны для накопления опыта проектирования и сооружения высоковольтных линий. В очень короткое время были освоены новые классы напряжений: 110-115 и 220 кВ. Уже в 1931-32 году обсуждалось создание электропередач напряжением 400 и 500 кВ, рассматривались различные конструкции опор, делались попытки экстраполировать на новые условия опыт проектирования линий Днепростроя и Свири. Что касается существующих классов напряжений, то совершенствование конструкций опор для них продолжалось. С одной стороны, большое внимание уделялось применению дерева: в конце 1930-х годов деревянные опоры стали использовать не только на линиях 35 и 110 кВ, но и на ЛЭП 220 кВ. С другой стороны, вступали в строй промышленные гиганты первых пятилеток, и дефицит конструкционного металла проходил, что позволяло шире использовать металлические опоры. Определённое внимание уделялось опорам из железобетона, но на тот момент связанные с их производством и установкой технические трудности всё ещё не позволяли широко их использовать.

Общей тенденцией был переход во второй половине 1930-х - начале 1940-х годов на заводскую сборку опор с применением электросварки: появились сварные модификации опор шатурского типа, о которых говорилось выше, сварные опоры для линий 35 и 220 кВ.

К концу 1930-х годов для линий 35 кВ были спроектированы унифицированные опоры сварной конструкции следующих марок (рис.51 ): А-37г - анкерная, П-37г - промежуточная и У-37г - угловая. Опоры были выполнены по схема «елка». Траверсы - швеллерные, плоской треугольной конструкции. По сравнению с предыдущими металлическими опорами для ЛЭП 35 кВ, была увеличена длина траверс и вертикальное расстояние между ними. Ствол состоял из двух сварных секций, соединяемых болтами. Опоры данного типа отличались простой конструкцией и сравнительно малой массой и применялись повсеместно до конца 1950-х годов.

Для активно строящихся линий 220 кВ к середине 1930-х годов был создан типовой проект одноцепных портальных опор, существенно отличавшихся от применённых на линиях ДГЭС и Свирь-Ленинград. Опоры портального типа состояли из двух узких стоек прямоугольного сечения, на которых размещалась горизонтальная траверса (рис.52 ). Каждая стойка укреплялась на отдельный компактный фундамент. Выбранная конструкция позволяла сделать опоры более технологичными, транспортабельными и сократить по сравнению с широкобазными опорами свирского типа механические напряжения, возникающие из-за осадки фундаментов стоек. Секции портальных опор изготовлялись в заводских условиях при помощи электросварки. На трассе готовые секции соединялись заклёпками, а в более поздние годы - болтами. Существовали промежуточный, анкерный и угловой вариант опоры. Портальные опоры этой серии применялись на линиях 220 кВ повсеместно и весьма продолжительное время - до конца 1950х годов. Среди них: ВЛ Сталиногорск - Москва, Рыбинск - Москва и другие. Появились также типовые переходные опоры для линий 220 кВ высотой 35 и 70 метров.

Отход от использования конструкций периода ГОЭЛРО начался в первые послевоенные годы. С одной стороны, до конца 1950-х продолжали строиться линии на опорах шатурского типа сварной конструкции и линии 220 кВ на свободностоящих порталах. С другой стороны, всё большее применение находили узкобазные опоры и конструкции так называемого «смешанного» типа. Опоры смешанного типа применялись на ЛЭП 35-220 кВ и имели такой же ствол, как узкобазные (немецкий тип), и сильно расширяющуюся к фундаменту нижнюю секцию. Таким образом, опоры смешанного типа объединяли в себе преимущества узкобазных и широкобазных. Появилось значительное разнообразие конструкций опор, созданных разными проектными институтами, лидером среди которых являлся ленинградский институт «Теплоэлектропроект» (ТЭП). Кроме того, появилось большее количество вариантов опор, учитывающих особенности разных климатических зон. В 1948 году появилась новая серия опор для линий 110 кВ, заменившая шатурские: опоры «крымского» типа (рис.53 ). По конструкции ствола эти опоры принадлежали к смешанному типу. Один из вариантов промежуточной опоры был узкобазным. При изготовлении секций на заводе использовалась электросварка, для соединения секций - болты. Траверсы были плоской конструкции, несущими элементами в них являлись швеллеры. Имелись варианты опор для подвески двух и одного грозозащитного троса. Опоры крымского типа вытеснили шатурские и получили очень широкое распространение на территории СССР, значительное число таких опор продолжает эксплуатироваться. Сварные опоры смешанного типа (крымского, ленинградского и другие) продолжали использоваться до середины 1960-х годов, в итоге они были вытеснены более технологичными унифицированными опорами болтовой конструкциями.

Кроме того, в послевоенные годы в СССР были сооружены первые линии электропередачи 400 и 500 кВ (рис.55 ). В них также отразился опыт, накопленный в период становления электросетевой отрасли. Некоторые общие технические решения, применённые при проектировании этих линий, обсуждались ещё в начале 1930-х годов (Рис.54 ).

Подытоживая статью, стоит ещё раз отметить, что годы работы общества «Электропередача», и первые годы ГОЭЛРО, когда шло активное строительство ЛЭП, и проходили проверку разные подходы и технические решения, были очень важны для накопления бесценного опыта проектирования и сооружения высоковольтных линий, а также для подготовки квалифицированных инженерных и технических кадров. Полученный опыт стал фундаментом для всего последующего развития отечественных электрических сетей и для создания объединённой энергетической системы.

Литература:

1. Инженер И.В. Линде, «Справочная книга для электротехниковъ» 11-е издание, вторая

государственная типография, 1920 г.

2. Кох, «Электропередача высокого напряжения», издательство Бюро Иностранной Науки и

Техники, Берлин, 1921 г.

3. А.А. Смуров, «Электротехника высокого напряжения и передача электрической энергии»,

типография им. Бухарина, Ленинград, 1925 г.

4. В.Э.К. бюро по высоким напряжениям, труды I всесоюзной конференции по электропередаче больших мощностей на большие расстояния токами сверхвысоких напряжений, ГЭИ М-Л, 1932 г.

5. Техническая Энциклопедия, глав. ред. Мартенс, том 20, ОГИЗ РСФСР, Москва, 1933 г.

6. Инж. В. В. Гульденбальк, Сооружение линий электропередач высокого напряжения, ОНТИ НКТП СССР, ГЭИ М-Л, 1934 г.

7. Электротехнический Справочник (подстанции и сети высокого напряжения) под общ. ред.

инженера М.В. Хомякова, ГЭИ Москва-Ленинград, 1942 г.

8. Электротехнический Справочник (электрические установки высокого напряжения, подстанции, сети и линии электропередач) под общ. ред. инж. М.В. Хомякова, ГЭИ Москва-Ленинград, 1950 г.

9. Линии электропередач и подстанции 400 кВ, ОРГЭНЕРГОСТРОЙ, Куйбышев, 1958 г.

Е.В.Старостин, «Мечты и мачты шатурских романтиков»

Рис.43 - фотография Дмитрия Новоклимова

Загрузка...