domvpavlino.ru

Как выглядит технология производства солнечных батарей? Солнечная батарея для дома своими руками Технология производства солнечных батарей

Человечество стремится перейти на альтернативные источники электрического снабжения, которые помогут сохранить чистоту окружающей среды и сократить затраты на выработку энергии. Производство является современным индустриальным методом. включает в себя приемники солнечного света, аккумуляторы, контролирующие устройства, инверторы и другие приборы, предназначенные для определенных функций.

Солнечная батарея является главным элементом, с которого начинается накопление и лучей. В современном мире для потребителя при выборе панели существует много подводных камней, так как промышленность предлагает большое число изделий, объединенных под одним названием.

Кремниевые солнечные батареи

Эти изделия популярны у современных потребителей. В основу их изготовления положен кремний. Запасы его в недрах широко распространены, добыча сравнительно недорогая. Кремниевые элементы выгодно отличаются уровнем производительности от других батарей солнечного света.

Виды элементов

Производство из кремния ведется следующих типов:

  • монокристаллический;
  • поликристаллический;
  • аморфный.

Различаются вышеназванные формы устройств тем, как компонуются кремниевые атомы в кристалле. Основным отличием элементов становится различный показатель преобразования световой энергии, который у двух первых видов находится приблизительно на одном уровне и превышает значения у приборов из аморфного кремния.

Промышленность сегодняшнего дня предлагает несколько моделей солнечных уловителей света. Отличие их состоит в том, какое применяется оборудование для производства солнечных батарей. Играет роль технология изготовления и разновидность начального материала.

Монокристаллический тип

Эти элементы состоят из силиконовых ячеек, скрепленных между собой. По способу ученого Чохральского производится абсолютно чистый кремний, из которого изготавливают монокристаллы. Следующим процессом является разрезание застывшего и затвердевшего полуфабриката на пластины толщиной от 250 до 300 мкм. Тонкие слои насыщают металлической сеткой электродов. Несмотря на дороговизну производства, такие элементы применяют достаточно широко из-за высокого показателя преобразования (17-22%).

Изготовление поликристаллических элементов

Солнечных батарей из поликристаллов состоит в том, что расплавленная кремниевая масса постепенно охлаждается. Производство не требует дорогого оборудования, следовательно, затраты на получение кремния снижены. Поликристаллические солнечные накопители имеют меньший коэффициент эффективности (11-18%), в отличие от монокристаллических. Это объясняется тем, что в процессе остывания масса кремния насыщается мельчайшими зернистыми пузырьками, что приводит к дополнительному преломлению лучей.

Элементы из аморфного кремния

Изделия относят к особому типу, так как их принадлежность к кремниевому виду исходит от наименования используемого материала, а производство солнечных батарей выполняется по технологии пленочных приборов. Кристалл в процессе изготовления уступает место кремниевому водороду или силону, тонкий слой которых покрывает подложку. Батареи имеют самое низкое значение эффективности, всего до 6%. Элементы, несмотря на существенный недостаток, имеют ряд неоспоримых преимуществ, дающих им право стоять в ряду с вышеназванными типами:

  • значение поглощения оптики выше в два десятка раз, чем у монокристаллических и поликристаллических накопителей;
  • имеет минимальную толщину слоя, всего 1 мкм;
  • пасмурная погода не влияет на работу по преобразованию света, в отличие от других видов;
  • из-за высокого показателя прочности на изгиб без проблем применяется в трудных местах.

Три вышеописанных вида солнечных преобразователей дополняются гибридными изделиями из материалов с двойственными свойствами. Такие характеристики достигаются, если в аморфный кремний включаются микроэлементы или наночастицы. Полученный материал схож с поликристаллическим кремнием, но выгодно отличается от него новыми техническими показателями.

Сырье для производства солнечных батарей пленочного типа из CdTe

Выбор материала диктуется потребностью в уменьшении стоимости изготовления и повышении технических характеристик в работе. Наиболее часто применяется светопоглощающий теллурид кадмия. В 70-е годы прошлого столетия CdTe считался основным претендентом на космическое использование, в современной промышленности он нашел широкое применение в энергетике солнечного света.

Этот материал относят к категории кумулятивных ядов, поэтому не стихают прения по вопросу его вредности. Исследования ученых установили тот факт, что уровень вредного вещества, поступающего в атмосферу, является допустимым и не наносит вреда экологии. Уровень КПД составляет всего 11%, но стоимость преобразуемой электроэнергии от таких элементов ниже на 20-30%, чем от приборов кремниевого вида.

Накопители лучей из селена, меди и индия

Полупроводниками в приборе служат медь, селен и индий, иногда допускается замещение последнего на галлий. Это объясняется высокой востребованностью индия для производства мониторов плоского типа. Поэтому выбран этот вариант замещения, так как материалы имеют похожие свойства. Но для показателя КПД замена играет существенную роль, производство солнечной батареи без галлия повышает эффективность работы устройства на 14%.

Солнечные уловители на полимерной основе

Эти элементы относят к молодым технологиям, так как они недавно появились на рынке. Полупроводники из органики поглощают свет для преобразования его в электрическую энергию. Для производства применяют фуллерены углеродной группы, полифенилен, меди фталоцианин и др. В результате получают тонкие (100 нм) и гибкие пленки, которые в работе выдают коэффициент эффективности 5-7%. Величина небольшая, но производство гибких солнечных батарей имеет несколько положительных моментов:

  • для изготовления не затрачиваются большие средства;
  • возможность установки гибких батарей в местах изгибов, где эластичность имеет первоочередное значение;
  • сравнительная легкость и доступность установки;
  • гибкие батареи не оказывают вредного воздействия на окружающую среду.

Химическое травление в процессе производства

Самой дорогой в солнечной батарее является мультикристаллическая или монокристаллическая пластина из кремния. Для максимально рационального режут псевдоквадратные фигуры, эта же форма позволяет плотно уложить пластины в будущем модуле. После процесса резки на поверхности остаются микроскопические слои нарушенной поверхности, которые убираются при помощи травления и текстурирования, чтобы улучшить прием падающих лучей.

Обработанная подобным способом поверхность представляет собой хаотично расположенные микропирамиды, отражаясь от грани которых, свет попадает на боковые поверхности других выступов. Процедура рыхления текстуры понижает отражающую способность материала приблизительно на 25%. В процессе травления применяют серию кислотных и щелочных обработок, но недопустимо сильно уменьшать толщину слоя, так как пластина не выдерживает следующие обработки.

Полупроводники в солнечных батареях

Технология производства солнечных батарей предполагает, что основным понятием твердой электроники является p-n-переход. Если в одной пластине совместить электронную проводимость n-типа и дырочную проводимость p-типа, то в месте соприкосновения их возникает p-n-переход. Основным физическим свойством указанного определения становится возможность служить барьером и пропускать электричество в одном направлении. Именно такой эффект позволяет наладить полноценную работу солнечных элементов.

В результате проведения фосфорной диффузии на торцах пластины складывается слой n-типа, который базируется у поверхности элемента на глубине всего 0,5 мкм. Производство солнечной батареи предусматривает неглубокое проникновение носителей противоположных знаков, которые возникают под действием света. Их путь в зону влияния p-n-перехода должен быть коротким, иначе они могут при встрече погасить один другого, при этом не сгенерировав никакого количества электричества.

Использование плазмохимического травления

В конструкции солнечной батареи предусмотрены лицевая поверхность с установленной решеткой для съемки тока и тыльная сторона, представляющая собой сплошной контакт. Во время явления диффузии возникает электрическое замыкание между двумя плоскостями и передается на торец.

Чтобы удалить замыкание, применяется оборудование для солнечных батарей, позволяющее сделать это с помощью плазмохимического, химического травления или механическим, лазерным путем. Часто используется метод плазмохимического воздействия. Травление выполняется одновременно для стопки сложенных вместе пластин кремния. Исход процесса зависит от длительности обработки, состава средства, размера квадратов материала, направления струй ионного потока и других факторов.

Нанесение антиотражающего покрытия

При помощи нанесения текстуры на поверхности элемента снижается отражение до 11%. Это обозначает, что десятая часть лучей попросту отражается от поверхности и не принимает участия в образовании электричества. С целью уменьшения таких потерь на лицевую сторону элемента наносят покрытие с глубоким проникновением световых импульсов, не отражающее их обратно. Ученые, принимая во внимание законы оптики, определяют состав и толщину слоя, поэтому производство и установка солнечных батарей с таким покрытием уменьшают отражение до 2%.

Контактная металлизация с лицевой стороны

Поверхность элемента предназначена для поглощения наибольшего количества излучения, именно этим требованием определяются размерные и технические характеристики наносимой металлической сетки. Выбирая дизайн лицевой стороны, инженеры решают две противоположные проблемы. Снижение оптических потерь происходит при более тонких линиях и расположении их на большом расстоянии одна от другой. Производство солнечной батареи с увеличенными размерами сетки приводит к тому, что часть зарядов не успевает достичь контакта и теряется.

Поэтому учеными стандартизировано значение расстояния и толщины линии для каждого металла. Слишком тонкие полоски открывают пространство на поверхности элемента для поглощения лучей, но не проводят сильный ток. Современные методы нанесения металлизации состоят в трафаретном печатании. В качестве материала наиболее оправдывает себя серебросодержащая паста. За счет ее применения КПД элемента поднимается на 15-17%.

Металлизация на тыльной стороне прибора

Нанесение металла на тыльную сторону устройства происходит по двум схемам, каждая из которых выполняет собственную работу. Сплошным тонким слоем по всей поверхности, кроме отдельных отверстий, напыляют алюминий, а отверстия заполняют серебросодержащей пастой, играющей контактную роль. Сплошной алюминиевый слой служит своеобразным зеркальным устройством с тыльной стороны для свободных зарядов, которые могут потеряться в оборванных кристаллических связях решетки. С таким покрытием на 2% больше по мощности работают солнечные батареи. Отзывы потребителей говорят, что такие элементы более долговечны и не так сильно зависят от пасмурной погоды.

Изготовление солнечных батарей своими руками

Источники питания от солнца не каждый может заказать и установить у себя дома, так как их стоимость на сегодняшний день достаточно велика. Поэтому многие мастера и умельцы осваивают производство солнечных батарей дома.

Приобрести комплекты фотоэлементов для самостоятельной сборки можно в интернете на различных сайтах. Стоимость их зависит от количества применяемых пластин и мощности. Например, небольшой мощности комплекты, от 63 до 76 Вт с 36 пластинами, стоят 2350-2560 руб. соответственно. Здесь же приобретают рабочие элементы, отбракованные с производственных линий по каким-либо причинам.

При выборе типа фотоэлектрического преобразователя принимают во внимание тот факт, что поликристаллические элементы более устойчивы к пасмурной погоде и работают при ней эффективнее монокристаллических, но имеют меньший срок службы. Монокристаллические обладают более высоким КПД в солнечную погоду, и прослужат они гораздо дольше.

Чтобы организовать производство солнечных батарей в домашних условиях, нужно подсчитать общую нагрузку всех приборов, которые будут питаться от будущего преобразователя, и определиться с мощностью устройства. Отсюда вытекает количество фотоэлементов, при этом учитывают угол наклона панели. Некоторые мастера предусматривают возможность изменения положения накопительной плоскости в зависимости от высоты солнцестояния, а зимой - от толщины выпавшего снега.

Для изготовления корпуса применяют различные материалы. Чаще всего ставят алюминиевые или нержавеющие уголки, используют фанеру, ДСП и др. Прозрачная часть выполняется из органического или обыкновенного стекла. В продаже есть фотоэлементы с уже припаянными проводниками, такие покупать предпочтительнее, так как упрощается задача сборки. Пластины не складывают одну на другую - нижние могут дать микротрещины. Припой и флюс наносятся предварительно. Паять элементы удобнее, расположив их сразу на рабочей стороне. В конце крайние пластины приваривают к шинам (более широким проводникам), после этого выводят "минус" и "плюс".

После проделанной работы тестируют панель и герметизируют. Зарубежные мастера для этого используют компаунды, но для наших умельцев они стоят довольно дорого. Самодельные преобразователи герметизируют силиконом, а тыльную сторону покрывают лаком на основе акрила.

В заключение следует сказать, что отзывы мастеров, которые сделали всегда положительные. Однажды затратив средства на изготовление и установку преобразователя, семья очень быстро их окупает и начинает экономить, используя бесплатную энергию.

- производить солнечные батареи , такие батареи всегда будут пользоваться спросом, поскольку солнечная энергия неисчерпаема, и кремний, из которого в основном изготавливаются солнечные батареи, является очень распространенным веществом.

Единственный минус этой бизнес идеи – это неразвитость технологического процесса изготовления солнечных батарей , которая пока не позволяет снизить стоимость батареи.
Производство солнечных батарей требует наличия основного сырья - кварцевого песка, содержащего значительную концентрацию двуокиси кремния и хорошо поддающегося обработке.

Далее в зависимости от вида кремния: аморфного, монокристаллического и поликристаллического применяется своя технология производства. Для получения монокристаллического кремния с однородной структурой кристалла, его выращивают с помощью затравочного монокристалла. В специальной печи, определенным образом вращая.

Менее затратные по деньгам технологии применяются при производстве поликристаллического кремния, у которого структура неоднородна. Для получения поликристаллического кремния производят осаждения пара, что заставляет молекулы застывать свободно и неупорядоченно.

Изготовленные батареи на поликристаллическом кремнии имеют сравнительно небольшую цену.
Затем происходит обрезка получившихся в результате процесса производства дисков монокристаллического кремния до квадратной формы. Дальше алмазными дисками режут квадратной формы монокристаллический кремний тонкими пластинками толщиной 0,2 до 0,4 мм.

Затем их подвергают тщательной очистке, обтачиванию, шлифованию и очищению. Потом проводится тестирование пластинок монокристаллического кремния. Далее пластинки кремния соединяют, образуя элементы солнечных батарей. Затем на поверхности кремниевых частей батарей накладываются защитные покрытия из крепкого стекла для предупреждения
негативного воздействия окружающей среды. Далее поверхности металлизируют, потом накладывают антирефлексионное покрытие специальным ламинатом.

Для достижения необходимых электрических параметров, в частности уровня напряжения и силы тока, элементы солнечных батарей последовательно объединяют. Этот процесс происходит в соответствие с стекло-пленочной технологией, вписанной бизнес-план производства солнечных батарей. Пленка крепится к обратной стороне получающейся конструкции из фотоэлектрических пластин, затем герметизируются края пленки, что гарантирует качество солнечных батарей.

Под действием энергии солнца происходит генерирование тока фотоэлектрическими элементами солнечных батарей. Затем происходит аккумуляция тока, и его уже можно использовать для электропитания других электрических приборов.

Как сделать солнечную батарею – видео:

Кстати сами солнечные элементы можно заказать с известных интернет аукционов.


Идеи для Бизнеса из раздела:

Как выглядит технология производства солнечных батарей?

В мире наблюдается постоянный рост потребления электроэнергии, а запасы традиционных источников энергии уменьшаются. Поэтому постепенно растёт спрос на оборудование, которые вырабатывает электричество, используя нетрадиционные источники сырья. Одним из наиболее распространённых способов получения электричества являются солнечные батареи, работающие от энергии солнца. В их составе работают фотоэлектрические элементы, свойства которых позволяют преобразовывать солнечное излучение в электрический ток. Для их изготовления используется один из самых распространённых на Земле химических элементов – кремний. В этом материале мы поговорим о том, как кремний превращается в фотоэлектрические элементы. Проще говоря, мы рассмотрим, что представляет собой производство солнечных батарей, и какое оборудование для этого требуется.

В сфере производства солнечных батарей уже сформировался довольно большой рынок, на котором присутствуют крупные компании. Здесь уже вращаются миллионы долларов и есть бренды, заработавшие репутацию производителей качественной продукции. Имеется в виду как мировой рынок, так и российский. Технологии, положенные в основу производства солнечных батарей, совершенствуются по мере развития научных исследований в этом направлении. Сейчас выпускаются солнечные батареи самых разных размеров и назначения. Есть совсем маленькие, используемые в калькуляторах и . А есть крупные панели, применяемые в гелиосистемах и . Один фотоэлемент имеет небольшую мощность и вырабатывает совсем небольшой ток. Поэтому их объединяют в . Теперь рассмотрим, как производятся фотоэлементы.

Производство солнечных батарей можно разделить на следующие основные этапы:

  • Тестирование. На этом этапе проводится замер электрических характеристик. Для этого используются вспышки мощных ксеноновых ламп. На основании результатов испытаний фотоэлементы сортируют и направляют на следующую стадию производства;
  • На второй стадии производства выполняется пайка элементов в секции. Из них формируются секции на стеклянной подложке. Собранные секции переносятся на стекло с помощью вакуумных захватов. Это обязательное требование для исключения механического или иного воздействия на поверхность пластин. Блоки обычно включают в себя 4─6 секций. Секции, в свою очередь, состоят из 9─10 фотоэлектрических панелей;
  • Следующий этап производства – ламинирование. Соединённые с помощью пайки блоки фотоэлементов ламинируют при помощи этиленвинилацетатной плёнки. А также наносится специальное защитное покрытие. Все это делается на оборудовании с ЧПУ. Компьютер следит за такими характеристиками, как давление, температура и др. В зависимости от используемого материала, параметры ламинирования можно изменять;
  • И завершающий этап заключается в изготовлении рамки из алюминиевого профиля и специальной соединительной коробки. Чтобы обеспечить надёжность соединения применяют клей-герметик. На этом же этапе производства проводится тестирование солнечных батарей. При этом измеряются токи короткого замыкания, выдаваемые напряжение (рабочее и холостого хода), сила тока.

Неизменный рост потребления энергии солнечного света способствует увеличению спроса на оборудование, с помощью которого эту энергию можно накапливать и использовать для дальнейших нужд. Наиболее популярным способом получения электроэнергии является солнечная фотовольтаика. В первую очередь объясняется это тем, что производство солнечных батарей основано на использовании кремния – химического элемента, занимающего второе место по содержанию в земной коре.

Рынок солнечных батарей на сегодняшний день представляют крупнейшие мировые компании с многомиллионными оборотами и многолетним опытом. В основе производства солнечных панелей лежат различные технологии, которые постоянно совершенствуются. В зависимости от ваших нужд вы можете найти солнечные батареи, размеры которых позволяют встроить их в микрокалькулятор, или панели, которые без проблем разместятся на крыше здания или автомобиля. Как правило, одиночные фотоэлементы вырабатывают очень небольшое количество мощности, поэтому используются технологии, позволяющие соединять их в так называемые солнечные модули. О том, кто и как это делает и пойдет речь дальше.

Технологический процесс изготовления солнечных панелей

1 этап

Первое с чего начинается любое производство, в том числе и производство солнечных батарей – это подготовка сырья. Как мы уже упоминали выше, основным сырьем в данном случае служит кремний, а точнее кварцевый песок определенных пород. Технология подготовки сырья состоит из 2 процессов:

  1. Этап высокотемпературного плавления.
  2. Этап синтеза, сопровождающийся добавлением различных химических веществ.

Путем этих процессов достигают максимальной степени очистки кремния до 99,99%. Для изготовления солнечных батарей чаще всего используют монокристаллический и поликристаллический кремний. Технологии их производства различны, но процесс получения поликристаллического кремния менее затратный. Поэтому солнечные батареи, изготовленные из этого вида кремния, обходятся потребителям дешевле.

После того, как кремний прошел очистку, его разрезают на тонкие пластины, которые, в свою очередь, тщательно тестируют, производя замер электрических параметров посредством световых вспышек ксеноновых ламп высокой мощности. После проведенных испытаний пластины сортируют и отправляют на следующий этап производства.

2 этап

Второй этап технологии представляет собой процесс пайки пластин в секции, с последующим формированием из этих секций блоков на стекле. Для переноса готовых секций на поверхность стекла используют вакуумные держатели. Это необходимо для того, чтобы исключить возможность механического воздействия на готовые солнечные элементы. Секции, как правило, формируют из 9 или 10 солнечных элементов, а блоки – из 4 или 6 секций.

3 этап

3 этап – это этап ламинирования. Спаянные блоки фотоэлектрических пластин ламинируют этиленвинилацетатной пленкой и специальным защитным покрытием. Использование компьютерного управления позволяет следить за уровнем температуры, вакуума и давления. А также программировать требуемые условия ламинирования в случае использования разных материалов.

4 этап

На последнем этапе изготовления блоков солнечных батарей монтируется алюминиевая рама и соединительная коробка. Для надежного соединения коробки и модуля используется специальный герметик-клей. После чего солнечные батареи проходят тестирование, где измеряют показатели тока короткого замыкания, тока и напряжения точки максимальной мощности и напряжения холостого хода. Для получения необходимых значений силы тока и напряжения возможно объединение не только солнечных элементов, но и готовых солнечных блоков между собой.

Какое оборудование необходимо?

При производстве солнечных панелей необходимо использовать только качественное оборудование. Это обеспечивает минимальные погрешности при измерении различных показателей в процессе тестирования солнечных элементов и состоящих из них блоков. Надежность оборудования предполагает более долгий срок эксплуатации, следовательно, минимизируются расходы на замену вышедшего из строя оборудования. При низком качестве возможны нарушения технологии изготовления.

Основное оборудование, используемое в процессе производства солнечных панелей:

Кто поставляет нам солнечные батареи?

Солнечные панели – дело очень перспективное, а главное прибыльное. Количество покупаемых солнечных батарей увеличивается с каждым годом. Что обеспечивает постоянный рост объемов продаж, в котором заинтересован любой завод по производству солнечных батарей, а их по всему миру немало.

На первом месте стоят, конечно, китайские компании. Низкая стоимость солнечных батарей, которые китайцы экспортируют по всему миру, привела к появлению множества проблем у других крупнейших компаний. За последние 2-3 года о закрытии производства солнечных панелей объявили, по меньшей мере, 4 немецких бренда. Началось все с банкротства компании Solon, после которой закрылись Solarhybrid, Q-Cells и Solar Millennium. Американская компания First Solar также заявила о закрытии своего завода во Франкфурте-на-Одере. Свое производство панелей свернули и такие гиганты как Siemens и Bosch. Хотя, учитывая, что китайские солнечные батареи стоят, к примеру, почти в 2 раза дешевле немецких аналогов, удивляться здесь нечему.

Первые места в топе компаний, производящих солнечные панели, занимают:

  • Yingli Green Energy (YGE) является ведущим производителем солнечных батарей. За 2012 год ее прибыль составила более 120 млн. $. Всего она установила солнечных модулей более чем на 2 ГВт. Среди ее продукции панели из монокристаллического кремния мощностью 245-265 Вт и поликристаллические кремниевые батареи мощностью 175-290 Вт.
  • First Solar. Хоть эта компания и закрыла свой завод в Германии, в числе крупнейших она все-таки осталась. Ее профиль – это тонкопленочные панели, мощность которых за 2012 год составила около 3,8 ГВт.
  • Suntech Power Ко. Производственные мощности этого китайского гиганта составляют примерно 1800 МВт в год. Около 13 млн солнечных батарей в 80 странах мира – это результат труда этой компании.

Среди российских заводов следует выделить:

  • «Солнечный ветер»
  • ООО «Хевел» в Новочебоксарске
  • «Телеком-СТВ» в Зеленограде
  • ОАО «Рязанский завод металлокерамических приборов»
  • ЗАО «Термотрон-завод» и другие.

Более полный перечень фирм, изготавливающих и поставляющих оборудование и изделия для солнечной энергетики, вы найдете в нашем .

Не отстают и страны СНГ. Так, например, завод по производству солнечных батарей еще в прошлом году был запущен в Астане. Это первое предприятия подобного рода в Казахстане. В качестве сырья планируется использовать 100% казахского кремния, а оборудование, установленное на заводе, отвечает всем последним требованиям и полностью автоматизировано. Запуск аналогичного завода есть и в планах у Узбекистана. Инициатором строительства выступила крупнейшая китайская компания Suntech Power Holdings Co, такое же предложение поступило и от российского нефтяного гиганта «ЛУКОЙЛ».

При таких темпах строительства, следует ожидать повсеместного использования солнечных модулей. Но это и неплохо. Экологичный энергетический источник, дающий бесплатную энергию, сможет решить множество проблем, связанных с загрязнением окружающей среды и истощением запасов природного топлива.

Статью подготовила Абдуллина Регина

Видео о процессе изготовления солнечных панелей:

Если обратить внимание на крыши многих частных домов или небольших компаний, то там можно увидеть солнечные батареи. Подорожание энергоносителей приводит к тому, что люди начинают искать альтернативные источники. В этих условиях спрос на солнечные батареи растет день ото дня.

Потенциальные возможности

В условиях растущей популярности альтернативных источников энергии целесообразно вовремя занять нишу в рынке. Для этого необходимо для начала приобрести оборудование для производства солнечных батарей. Его можно купить как в странах Европы, США и СНГ, так и в Китае.

В зависимости от спроса на эти изделия в вашем регионе или в местах, куда вы сможете поставлять произведенный товар, необходимо определиться с тем, на что будет ориентировано ваше производство. В настоящее время на рынке можно найти панели, предназначенные для различных сфер использования.

Это могут быть как легкие переносные варианты, которые берут с собой в туристические походы, стационарные модули, подходящие для установки на крышах помещений и жилых домов, или мощные панели, которые используют в качестве небольших электростанций.

Рабочие линии

Если у вас есть помещение для изготовления, тогда можно задуматься и о том, чтобы купить оборудование для производства солнечных батарей. Также не стоит забывать, что при их изготовлении у вас должны всегда быть в достаточном количестве необходимые расходные комплектующие.

Так, в список необходимого оборудования попадают станки, которые нарезают лазером материал для панелей на квадраты, сортируют их, ламинируют, вставляют в рамы и соединяют их вместе. Помимо этого, для производства необходимы машины, которые занимаются замешиванием специального клея, обрезают пленку под панелью и их края. Не обойтись при изготовлении и без столов, на которых необходимо будет корректировать углы, вставлять в панели провода и формировать их, и тележек, предназначенных для их перемещения и прессования.

Каждый станок для производства солнечных батарей является незаменимым компонентом линии по их изготовлению. Поэтому, прежде чем начинать заказывать материалы для производства, подсчитайте общую стоимость оборудования и проанализируйте, можете ли вы позволить себе такие траты. Правда, при этом стоит учесть, что при наличии каналов сбыта, они достаточно быстро окупаются.

Процесс изготовления

Если вы видели солнечные батареи раньше только на картинках и плохо себе представляете, как идет их создание, тогда лучше найти человека, которому известна технология производства солнечных батарей. Если говорить о ней в общих чертах, то надо знать, что она состоит из ряда этапов.

Начинается изготовление с проверки и подготовки к работе поступивших в цех материалов. После нарезки и сортировки фотоэлектрических преобразователей (ФЭП) они поступают на оборудование, на котором проходит процесс припайки к контактам панелей специальных луженных шинок из меди. Лишь после этого начинается процесс соединения всех ФЭП в цепочки необходимой длины.

Следующим этапом является создание сэндвича, который состоит из собранных в матрицу преобразователей, стекла, двух слоев герметизирующей пленки и тыльной стороны панели. Именно на этой стадии оборудование для производства солнечных батарей формирует схему модуля, тут же определяется его рабочее напряжение.

Собранную конструкцию проверяют и отправляют на ламинирование – герметизацию, которая проходит под давлением при высокой температуре. Лишь после этого на подготовленный полуфабрикат крепят раму и монтируют специальную коммутационную коробку.

Тестирование продукции

Встретить на рынке брак среди подобных товаров практически невозможно, ведь каждая панель после сборки попадает в специальный цех тестирования.

Именно там их проверяют на возможность пробоя напряжением. После этого они сортируются, пакуются и отправляются в продажу, в магазинах можно встреть как небольшие переносные варианты, так и солнечные батареи для дома.

Производство этих видов практически ничем не отличается.

Конечно, безукоснительно соблюдать все этапы может позволить себе только крупный производитель с большими объемами производства и достаточным количеством сотрудников. Новым мелким изготовителям тяжело конкурировать с гигантами, ведь единовременное создание больших партий позволяет уменьшить себестоимость продукции.

Загрузка...