domvpavlino.ru

Измерение длины световой волны лабораторная работа 11. Лабораторная работа: Измерение длины световой волны с помощью дифракционной решетки

Цель работы : Определить длину световой волны, используя дифракционную решетку .

Оборудование:

1. Прибор для определения длины световой волны, состоящий из линейки, пластины с дифракционной решеткой и движка со щелью.

2. Штатив.

3. Электрическая лампочка на напряжение 42 В в патроне.

Краткая теория

Как известно, свет представляет собой электромагнитные волны , которые характеризуются длиной световой волны. Дифракционная решетка служит для выделения из света с разными длинами волн света с определенной длиной волны или, как говорят, разложения света на его спектральные компоненты . Основой работы дифракционной решетки служат явления дифракции и интерференции света, и именно волновая природа света приводит к возникновению указанных выше двух явлений.

Дифракцией называется отклонение распространения света от прямолинейного в область, где при прямолинейном распространении света должна бы была быть тень.

Интерференцией называется сложение световых пучков, ведущее к образованию светлых и темных полос.

Дифракция. Дифракция наблюдается в случаях, когда свет проходит сквозь прозрачный материал, в котором есть непрозрачные небольшие препятствия, либо через небольшие отверстия в непрозрачном материале.

Различают два типа дифракции: дифракция в параллельных пучках света или дифракция Фраунгофера и дифракция в расходящемся пучке света – дифракция Френеля . В первом случае для наблюдения дифракционной картины используют либо солнечные лучи, которые являются параллельными, либо создают параллельный пучок света, используя простейшую оптическую систему – выпуклую линзу. Во втором случае используется точечный источник света, например, лампа с малыми размерами спирали.

Схема наблюдения дифракции Фраунгофера приведена на рис. 1.

Рис.1. Дифракция Фраунгофера.

В случае прямолинейного распространения света параллельный пучок лучей, сформированный линзой 1, пройдя через круглое отверстие в непрозрачном экране 1 и через фокусирующую линзу 2, должен был бы собраться в точку. Однако, из-за дифракции на экране 2 получается сложная дифракционная картина, состоящая из чередования светлых и темных колец.

Интерференция. При интерференции волны света с одинаковыми длинами волн максимально усиливают друг друга, когда приходят в точку наблюдения в одинаковой фазе , и ослабляют друг друга, когда приходят в противофазе . Суть явления интерференции поясняет рис.2.

Рис. 2. Интерференция от 2-х источников.

Точечные источники света В 1 и В 2 расположены друг от друга на расстоянии t. Колебания электромагнитного поля совершаются в этих точках в одной и той же фазе. Интерференция (т.е. сложение или вычитание колебаний) наблюдается в точках А и С на экране, находящемся на большом расстоянии L по сравнению t и l. В оптике установлено, что для максимального усиления волн разность хода (т.е. разность расстояний от источников до точки наблюдения) должно выполняться условие:

,

а для максимального ослабления волн:

, где n – целое число.

Из Рис. 2 можно определить разность хода . Тогда, используя предыдущие равенства, можно получить, что светлые полосы располагаются на расстоянии от точки А, расстояние между светлыми полосами , а темные полосы располагаются между светлыми. Очевидно, что в точке А разность хода равна нулю и в этой точке наблюдается сложение колебаний от источников света В 1 и В 2

Дифракционная решетка . Ряд прозрачных щелей, разделенных непрозрачными полосами, называется дифракционной решеткой . Дифракционная картина, которая имела место на одной щели при использовании дифракционной решетки, усложняется, так как кроме дифракции на каждой щели происходит еще и интерференция световых волн от щелей, которые можно рассматривать как источники света. На экране возникают максимумы и минимумы света, причем главные максимумы возникают при значении угла j , удовлетворяющих соотношению , где - период решетки равный сумме ширины щели и полосы. Положение 1-го максимума при определяется выражением

Из (1) видно, что для данной дифракционной решетки положения 1-го максимума для различных длин волн разное: чем больше длина волны света, тем больше угол отклонения наблюдаемого максимума от направления падающего пучка света.

Программа работы

Схема прибора приведена на рис.3.


Рис.3. Прибор для определения длины волны.

1. Включить электрическую лампочку.

2. Глядя через дифракционную решетку, направить прибор на лампочку так, чтобы через щель в движке была видна нить накала лампы. На черном фоне движка по обе стороны от нуля должны быть видны дифракционные спектры, состоящие из полос разного цвета. Если полосы располагаются не параллельно шкале, то это означает, что нить накала не параллельна штрихам на решетке. В этом случае надо повернуть немного либо дифракционную решетку, либо лампочку. Закрепить прибор.

3. Определить расстояние от щели на движке (нуля) до красной полосы слева на шкале.

4. Определить расстояние от щели на движке (нуля) до красной полосы справа на шкале. Записать это значение в таблицу.

5. Определить среднее значение расстояния до красной полосы по формуле:

Записать это значение в таблицу.

6. Определить расстояние от щели на движке (нуля) до фиолетовой полосы слева на шкале. Записать это значение в таблицу.

7. Определить расстояние от щели на движке (нуля) до фиолетовой полосы справа на шкале. Записать это значение в таблицу.

8. Определить среднее значение расстояния до фиолетовой полосы по формуле:

Записать это значение в таблицу.

9. Определить расстояние от дифракционной решетки до движка. Записать это значение в таблицу.

Цель урока:

  • рассмотреть практическое применение явлений дифракции и интерференции света;
  • познакомить учащихся с одним из способов определения длины световой волны с помощью дифракционной решётки;
  • продолжить формирование умений учащихся пользоваться измерительными приборами, проводить наблюдения, снимать показания приборов, записывать их в таблицу, составлять отчёт и делать выводы.

Оборудование:

  • мультимедийный проектор, компьютер, слайдовые презентации, подготовленные к уроку учителем (Приложение№3 ) и учащимися (Приложение №1 ; Приложение №2 );
  • оптическая скамья, рейтер, источник света, слайд-рамка с комплектом масок, пенал, соединительные провода, выпрямитель ВУ-4М (для лабораторной работы).

Ход урока

1. Актуализация знаний.

Учитель: Уже несколько уроков мы изучаем с вами световые волны. Свет это поперечная электромагнитная волна, поэтому как и механические волны световые волны могут огибать препятствия на своём пути, могут усиливать и ослаблять друг друга. Как называются эти явления? При каких условиях и с помощью каких приборов их можно наблюдать?

(Заслушать ответы учащихся)

2. Проверка домашнего задания творческого характера.

Учитель: Проверим домашнее задание. К сегодняшнему уроку вам нужно было подготовить мини-проект на тему “Практическое применение интерференции и дифракции света” и представить свою работу в виде небольшой презентации.

Учащиеся представляют свои работы (Приложение №2 “Явление дифракции в природе и технике” , приложение №1 “Техническое применение интерференции” )

3. Выполнение лабораторной работы.

Учитель: Теоретический материал о дифракционной решётке мы разобрали на предыдущем уроке, а сейчас с помощью этого замечательного прибора мы будем определять длину световой волны согласно описанию, данному в учебнике Г.Я.Мякишева, Б.Б.Буховцева “Физика-11” на стр. 329-330. Время выполнения работы – 15-17 минут.

Инструктаж учащихся по технике безопасности с росписями в журнале по ТБ!

4. Закрепление материала по теме “Волновые свойства света” (фронтальная работа)

Учитель: Приступаем к выполнению заданий различного уровня сложности из КИМов по подготовке к ЕГЭ (Приложение №3 “Готовимся к ЕГЭ” ).

5. Дополнительный материал к уроку

Учитель: Известно ли вам, что существует наука цветология? В основу этой науки положено изучение психологического восприятия цвета. Сегодня доказано, что каждый цвет испускает свойственную только ему определенную вибрацию. Вибрации чистых цветов оказывают восстанавливающее действие на те или иные функции организма, нормализуя их деятельность. Сегодня цветотерапия переживает второе рождение – специальная аппаратура позволяет во много раз усилить терапевтический эффект метода. Цветотерапия успешно используется в офтальмологии. Например, если 2-3 раза в год проводить лечение воздействием цвета на глаз, то возрастная дальнозоркость отодвинет время своего наступления. Успешно лечится косоглазие. Снимается астенопатия – зрительная утомляемость, которая возникает утех, кто много работает с компьютером.

Сообщение ученицы. Недавно читая газету-целительницу "Ай, Болит", я обратила внимание на статью Надежды Николаевны Ивановой из города Армавир Краснодарского края. Название статьи "Цвет – хорош он или нет – ищи ответ". В ней говорится, что с помощью "цветной" воды можно облегчить боль, поддержать себя и близкого человека в трудную минуту. Чтобы приготовить такую цветную воду нужно взять подставку (это может быть салфетка, бумага или картон) и поставит на нее стакан с чистой прозрачной водой нe менее, чем на 5 -10 минут. Вода воспримет и передаст вам энергию цвета. А пить ее следует не спеша, маленькими глотками.

  • Если вы с кем-то крупно поссорились, возбуждены, раздражены, выпейте несколько глотков воды из стакана, стоявшего на зеленой подставке.
  • После того как немного yспокоитесь, можете прибегнуть к помощи розового цвета: вы избавитесь от остатков напряженности. Так же работает и голубой цвет.
  • Бывает, после неприятного события или досадной неудачи никак не получается успокоиться: мучаете себя, вновь и вновь проигрывая в памяти, как все было. В таких случаях поможет лимонный цвет. Так же этот цвет поможет вам укрепить память.
  • При ежедневной работе на компьютере хорошо иметь рядом с собой стакан воды на бирюзовой подставке и почаще делать небольшие глотки, бирюзовый цвет защищает от радиоактивности и от теплового излучения компьютера. Эта вода способна сотворить чудо, она поможет вам подобрать без труда нужное слово на экзамене.
  • Если вы отправились в школу на контрольную, выпейте немного воды, приправленной энергией желтого цвета. Этот цвет способствует генерации блестящих идей, стимулирует духовную деятельность.
  • Если вы переутомились – то выпейте глоток воды из красного стакана. Вы сразу ощутите прилив энергии.
  • Воздействие оранжевого цвета зачастую становится первым толчком к позитивным переменам, а так же повышает аппетит.

6. Итоги урока.

7. Рефлексия.

Учащиеся продолжают фразу:

Сегодня на уроке я…

Больше всего мне сегодня запомнилось…

Самым интересным было…

8. Задание на дом:

п.66-72. Разобрать примеры решения задач на стр.207-208. Упр.10(1.4).

Урок- исследование

Таблица самоконтроля

Мульти-медиа

Странич-ки истории

Доверяй, но проверяй

Термины. Фор-мулы.

Дополнительно

учащегося

Тестирование

Урок- исследование

по теме «Определение длины световой волны»

Таблица самоконтроля

Ф. И. уч – ся ___________________________

Тестиро-вание (уровень А,В,C )

Мульти-медиа

Странич-ки истории

Доверяй, но проверяй

Термины. Фор-мулы.

Дополнительно

учащегося

Тестирование


«Разработка урока»

Урок - исследование

(11 класс)



Определение длины

световой волны



Учитель: Радченко М.И.

Тема : Определение длины световой волны. Лабораторная работа «Измерение длины световой волны».

Урок - исследование. (Приложение.)

Цели :

Обобщить, систематизировать знания о природе света, экспериментально исследовать зависимость длины световой волны от других физических величин, научить видеть проявления изученных закономерностей в окружающей жизни, формировать навыки коллективной работы в сочетании с самостоятельностью учащихся, воспитание мотивов учения.

Без сомнения, все наше знание начинается с опыта.

Кант Иммануил

(Немецкий философ, 1724-1804гг.)

Оформление – портреты ученых, биографическая справка, достижения в науке. Основные звенья научного творчества: исходные факты, гипотеза, следования, эксперимент, исходные факты.

Ход урока

    Орг. момент.

Вступительное слово учителя. Тема урока и цели выполнены в Power Point , проектируются по сети на экраны мониторов и интерактивную доску.

Учитель зачитывает и поясняет слова эпиграфа и основные звенья научного творчества

    Актуализация знаний. Повторение, обобщение изученного материала о природе света. Решение задач. Учащиеся знакомят с результатами своих теоретических исследований, подготовленными в виде презентаций в Power Point (дисперсия, интерференция, дифракция света, дифракционная решетка. Приложения ).

    Выполнение лабораторной работы «Измерение длины световой волны». (Приложение, материал учебника.) Анализ полученных результатов, выводы.

    Компьютерное тестирование. Задания подготовлены в четырех уровнях сложности. Результат заносят в «Таблицу самоконтроля». (Приложение).

    Подведение итогов.

Учащиеся заполняют таблицы самоконтроля с проставлением оценки по различным видам деятельности.

Учитель анализирует вместе с учащимися результаты работы.

Просмотр содержимого документа
«Световые явления уровень А»

СВЕТОВЫЕ ЯВЛЕНИЯ

Уровень А

А. Телевизор.

Б. Зеркало.

Г. Солнце.

2. Для того, чтобы узнать скорость света в неизвестном прозрачном веществе, достаточно определить …

А. Плотность.

Б. Температуру.

В. Упругость.

Г. Давление.

Д. Показатель преломления.

3. Световая волна характеризуется длиной волны, частотой и скоростью распространения. При переходе из одной среды в другую не изменяется …

А. Скорость.

Б. Температура.

В. Длина волны.

Г. Только частота.

Д. Показатель преломления.

4. Оптическая система глаза строит изображение далеких предметов за сетчаткой. Какой это дефект зрения и какие линзы нужны для очков?

Б. Близорукость, собирающие.

В. Нет дефекта зрения.

5. Если показатель преломления алмаза равен 2,4, то скорость света (с=3*10 8 м/с)

в алмазе равна …

А. 200000 км/с.

Б. 720000 км/с.

В. 125000 км/с.

Г. 725000 км/с.

Д. 300000 км/с.

В. Длина волны изменяется.

Г. Только частота одинаковая.

7. Человек приближается к плоскому зеркалу со скоростью 2 м/с. Скорость, с которой он приближается к своему изображению, равна …

А. Молния.

Б. Блеск драгоценных камней.

В. Радуга.

Г. Тень от дерева.

9. Во время работы свет должен падать…

А. Справа.

В. Сверху.

Г. Спереди.

10.

А. Плоское зеркало.

Б. Стеклянная пластинка.

В. Собирающая линза.

Г. Рассеивающая линза.

11. На сетчатке глаза изображение…

Просмотр содержимого документа
«Световые явления уровень В»

СВЕТОВЫЕ ЯВЛЕНИЯ

Уровень В

1. Для того, чтобы узнать скорость света в неизвестном прозрачном веществе, достаточно определить …

А. Плотность.

Б. Температуру.

В. Упругость.

Г. Давление.

Д. Показатель преломления.

2. Световая волна характеризуется длиной волны, частотой и скоростью распространения. При переходе из одной среды в другую не изменяется …

А. Скорость.

Б. Температура.

В. Длина волны.

Г. Только частота.

Д. Показатель преломления.

3. Оптическая система глаза строит изображение далеких предметов за сетчаткой. Какой это дефект зрения и какие линзы нужны для очков?

А. Дальнозоркость, собирающие.

Б. Близорукость, собирающие.

В. Нет дефекта зрения.

Г. Близорукость, рассеивающие.

Д. Дальнозоркость, рассеивающие.

4. Если показатель преломления алмаза равен 2,4, то скорость света (с=3*10 8 м/с)

в алмазе равна …

А. 200000 км/с.

Б. 720000 км/с.

В. 125000 км/с.

Г. 725000 км/с.

Д. 300000 км/с.

5. Определить длину волны, если ее скорость равна 1500 м/с, а частота колебаний 500 Гц.

Б. 7,5*10 5 м.

Д. 0,75*10 5 м.

6. Отраженная волна возникает, если …

А. Волна падает на границу раздела сред с разной плотностью.

Б. Волна падает на границу раздела сред с одинаковой плотностью.

В. Длина волны изменяется.

Г. Только частота одинаковая.

Д. Показатель преломления одинаковый.

7. Человек приближается к плоскому зеркалу со скоростью 2 м/с. Скорость, с которой он приближается к своему изображению, равна …

8. Какое из названных ниже явлений объясняется прямолинейным распространением света?

А. Молния.

Б. Блеск драгоценных камней.

В. Радуга.

Г. Тень от дерева.

9. Какой оптический прибор может давать увеличенное и действительное изображение предмета?

А. Плоское зеркало.

Б. Стеклянная пластинка.

В. Собирающая линза.

Г. Рассеивающая линза.

10. На сетчатке глаза изображение…

А. Увеличенное, прямое, действительное.

Б. Уменьшенное, перевернутое (обратное), действительное.

В. Уменьшенное, прямое, мнимое.

Г. Увеличенное, перевернутое (обратное), мнимое.

11. Найти период решетки, если дифракционное изображение первого порядка получено на расстоянии 2,43 см от центрального, а расстояние от решетки до экрана 1 м. Решетка была освещена светом с длиной волны 486 нм.

Просмотр содержимого документа
«Световые явления уровень Д»

СВЕТОВЫЕ ЯВЛЕНИЯ

Уровень Д

1.Из перечисленных ниже тел выберите тело, являющееся естественным источником света.

А. Телевизор.

Б. Зеркало.

Г. Солнце.

2. Угол падения светового луча равен30º. Угол отражения светового луча равен:

3. При солнечном затмении на Земле образуется тень и полутень от Луны (см. рис.). Что видит человек, находящийся в тени в точке А?

4. При помощи дифракционной решетки с периодом 0,02 мм получено первое дифракционное изображение на расстоянии 3,6 см от центрального максимума и на расстоянии 1,8 м от решетки. Найти длину световой волны.

5. Фокусное расстояние двояковыпуклой линзы 40 см. Чтобы изображение предмета получилось в натуральную величину, его надо поместить от линзы на расстоянии, равном …

6. Первый дифракционный максимум для света с длиной волны 0,5 мкм наблюдается под углом 30 градусов к нормали. На 1 мм в дифракционной решетке содержится штрихов …

7. При фотографировании с расстояния 200 м высота дерева на негативе оказалась равной 5 мм. Если фокусное расстояние объектива 50 мм, то действительная высота дерева …

8. Для того, чтобы узнать скорость света в неизвестном прозрачном веществе, достаточно определить …

А. Плотность.

Б. Температуру.

В. Упругость.

Г. Давление.

Д. Показатель преломления.

9. Световая волна характеризуется длиной волны, частотой и скоростью распространения. При переходе из одной среды в другую не изменяется …

А. Скорость.

Б. Температуру.

В. Длина волны.

Г. Только частота.

Д. Показатель преломления.

10. Оптическая система глаза строит изображение далеких предметов за сетчаткой. Какой это дефект зрения и какие линзы нужны для очков?

А. Дальнозоркость, собирающие.

Б. Близорукость, собирающие.

В. Нет дефекта зрения.

Г. Близорукость, рассеивающие.

Д. Дальнозоркость, рассеивающие.

11. Определить длину волны, если ее скорость равна 1500 м/с, а частота колебаний 500 Гц.

Б. 7,5*10 5 м.

Д. 0,75*10 5 м.

12. Если показатель преломления алмаза равен 2,4, то скорость света (с=3*10 8 м/с)

в алмазе равна …

А. 200000 км/с.

Б. 720000 км/с.

В. 125000 км/с.

Г. 725000 км/с.

Д. 300000 км/с.

13. Отраженная волна возникает, если …

А. Волна падает на границу раздела сред с разной плотностью.

Б. Волна падает на границу раздела сред с одинаковой плотностью.

В. Длина волны изменяется.

Г. Только частота одинаковая.

Д. Показатель преломления одинаковый.

14. Человек приближается к плоскому зеркалу со скоростью 2 м/с. Скорость, с которой он приближается к своему изображению, равна …

15. Найти период решетки, если дифракционное изображение первого порядка получено на расстоянии 2,43 см от центрального, а расстояние от решетки до экрана 1 м. Решетка была освещена светом с длиной волны 486 нм.

16. Оптическая система глаза приспосабливается к восприятию предметов, находящихся на разном расстоянии за счет…

А. Изменения кривизны хрусталика.

Б. Дополнительного освещения.

В. Приближения и удаления предметов.

Г. Световых раздражений.

1 7. Какое из названных ниже явлений объясняется прямолинейным распространением света?

А. Молния.

Б. Блеск драгоценных камней.

В. Радуга.

Г. Тень от дерева.

18. Какой оптический прибор может давать увеличенное и действительное изображение предмета?

А. Плоское зеркало.

Б. Стеклянная пластинка.

В. Собирающая линза.

Г. Рассеивающая линза.

19. Во время работы свет должен падать…

А. Справа.

В. Сверху.

Г. Спереди.

20. На сетчатке глаза изображение…

А. Увеличенное, прямое, действительное.

Б. Уменьшенное, перевернутое (обратное), действительное.

В. Уменьшенное, прямое, мнимое.

Г. Увеличенное, перевернутое (обратное), мнимое.


«Дифракционная решетка.»


Дифракционная решетка

На явлении дифракции основано устройство замечательного оптического прибора-дифракционной решетки.


Определение длины световой волны

AC=AB*sin φ=D*sin φ

Где k=0,1,2 …



Просмотр содержимого презентации
«Дифракция»


Дифракция

отклонение от прямолинейного

распространения волн, огибание волнами препятствий

Дифракция

механических волн

Дифракция



Опыт Юнга


Теория Френеля


Юнг Томас (1773-1829) английский ученый

Френель Огюстен (1788 - 1821) французский физик

Просмотр содержимого презентации
«Интерференция»


Интерференция

Сложение в пространстве волн, при котором образуется постоянное во времени распределение амплитуд результирующих колебаний


Открытие интерференции

Явление интерференции наблюдал Ньютон

Открытие и термин интерференция принадлежат Юнгу


Условие максимумов

  • Амплитуда колебаний среды в данной точке максимальна, если разность хода двух волн, возбуждающих колебания в этой точке, равна целому числу длин волн

d=k λ


Условие минимумов

  • Амплитуда колебаний среды в данной точке минимальна, если разность хода двух волн, возбуждающих колебания в этой точке, равна нечетному числу полуволн.

d=(2k+1) λ /2


«Мыльный пузырь, витая в воздухе… зажигается всеми оттенками цветов, присущими окружающим предметам. Мыльный пузырь, пожалуй, самое изысканное чудо природы»

Марк Твен


Интерференция в тонких пленках

  • Различие в цвете связано с различием в длине волны. Световым пучкам различного цвета соответствуют волны различной длины. Для взаимного усиления волн требуется различная толщина пленки. Следовательно, если пленка имеет неодинаковую толщину, то при освещении ее белым светом должны появиться различные цвета.

  • Простая интерференционная картина возникает в тонкой прослойке воздуха между стеклянной пластиной и положенной на ней плоско-выпуклой линзой, сферическая поверхность которой имеет большой радиус кривизны.

  • Волны 1 и 2 когерентны. Если вторая волна отстает от первой на целое число длин волн, то, складываясь, волны усиливают друг друга. Вызываемые ими колебания происходят в одной фазе.
  • Если вторая волна отстает от первой на нечетное число полуволн, то колебания, вызванные ими, будут происходить в противоположных фазах и волны гасят друг друга

  • Проверка качества обработки поверхностей.
  • Нужно создать тонкую клиновидную прослойку воздуха между поверхностью образца и очень гладкой эталонной пластиной. Тогда неровности вызовут заметные искривления интерференционных полос.

  • Просветление оптики. Часть пучка после многократного отражения от внутренних поверхностей все же проходит через оптический прибор, но рассеивается и уже не участвует в создании четкого изображения. Для устранения этих последствий используют просветление оптики. На поверхность оптического стекла наносят тонкую пленку. Если амплитуды отраженных волн одинаковы или очень близки друг к другу, то гашение света будет полным. Гашение отраженных волн у объективов означает, что весь свет проходит сквозь объектив.

Просмотр содержимого презентации
«Определение длины световой волны л р»


Формула:

λ =( d sin φ ) /k ,

где d - период решетки, k порядок спектра, φ – угол, под которым наблюдается максимум света


Расстояние а отсчитывается по линейке от решетки до экрана, расстояние b – отсчитывается по шкале экрана от щели до выбранной линии спектра

Максимум света


Конечная формула

λ = db/ka


Световая волна

Интерференционные опыты позволяют измерить длину световой волны: она очень мала – от 4*10 -7 до 8*10 -7 м

Тема: « Измерение длины световой волны с помощью дифракционной решетки».

Цели урока: экспериментально получить дифракционный спектр и определить длину световой волны с помощью дифракционной решетки;

воспитывать внимательность, доброжилательность, толерантность в процессе работи в малых группах;

развивать интерес к изучению физики.

Тип урока: урок формирования умений и навыков.

Оборудование: длины световой волны, инструкция по ОТ, инструкции по выполнению лабораторной работы, компьютеры.

Методы проведения: лабораторная работа, работа в группах.

Межпредметные связи: математика, информатика ИКТ.

Все познание реального мира

исходит из опыта и завершается им

А. Эйнштейн.

Ход урока

І. Организационный момент.

    Сообщение темы и цели урока.

ІІ. 1. Актуализация опорных знаний. Опрос обучающихся (Дополнение 1).

    Выполнение лабораторной работы.

Обучающимся предлагается измерять длину световой волны с помощью дифракционной решетки.

Обучающиеся объединяются в малые группы (по 4-5 человек) и вместе выполняют лабораторную работу согласно инструкции. С помощью компьютерной программы Excel делают вычисления и результаты работы заносят в таблицу (в программе Word).

Критерии оценивания:

Команда, выполнившая задание первой, получает – оценку 5;

второй – оценку 4;

третьей – оценку 3

    Правила безопасности жизнедеятельности во время выполнения работы.

    Работа в группах под руководством преподавателя.

    Обобщение и систематизация обучающимися результатов работы.

Результат работы заносится в таблицу на компьютере (Дополнение 2) .

ІІІ.

    Подведение итогов. Сравнить полученные результаты с табличными данными. Сделать выводы.

    Рефлексия.

    Всё ли получилось так, как я задумывал?

    Что было сделано хорошо?

    Что было сделано плохо?

    Что было выполнить легко, а что оказалось неожиданно трудно?

    Работа в малой группе мне помогла или создала дополнительные трудности?

VI. Домашнее задание.

    Оформить работу.

    Повторить теоретический материал по теме «Интерференция и дифракция света» .

    Составить кроссворд по теме «Свойства электромагнитных волн».

Дополнение 1

1. Что такое свет?

2. Из чего состоит белый свет?

3. Почему свет называется видимым излучением?

4. Как разложить белый свет в цветной спектр?

5. Что такое дифракционная решетка?

6. Что можно измерить с помощью дифракционной решетки?

7. Могут ли две разноцветные световые волны, например красного и зеленого излучений, иметь одинаковые длины волн?

8. А в одной среде?

Дополнение 2

Красный

10 -7 м

Оранжевый

10 -7 м

Желтый

10 -7 м

Зеленый

10 -7 м

Голубой

10 -7 м

Синий

10 -7 м

Фиолетовый

10 -7 м

Лабораторная работа

Тема: Измерение длины световой волны.

Цель работы: измерить длину волны красного и фиолетового цветов, сравнить полученные значения с табличными.

Оборудование: электрическая лампочка с прямой нитью накаливания, прибор для определения длины световой волны.

Теоретическая часть

В работе для определения длины световой волны используется дифракционная решетка с периодом 1/100 мм или 1/50 мм (период указан на решетке). Она является основной частью измерительной установки, показанной на рисунке. Решетка 1 устанавливается в держателе 2, который прикреплен к концу линейки 3. На линейке же располагается черный экран 4 с узкой вертикальной щелью 5 посредине. Экран может перемещаться вдоль линейки, что позволяет изменять расстояние между ним и дифракционной решеткой. На экране и линейке имеются миллиметровые шкалы. Вся установка крепится на штативе 6.

Если смотреть сквозь решетку и прорезь на источник света (лампу накаливания или свечу), то на черном фоне экрана молено наблюдать по обе стороны от щели дифракционные спектры 1-го, 2-го и т. д. порядков.

Рис. 1

Длина волны λ определяется по формуле λ = dsinφ/k , где d - период решетки; k - порядок спектра; φ - угол, под которым наблюдается максимум света соответствующего цвета.

Поскольку углы, под которыми наблюдаются максимумы 1-го и 2-го порядков, не превышают 5°, можно вместо синусов углов использовать их тангенсы. Из рисунка видно, что tgφ = b/a . Расстояние а отсчитывают по линейке от решетки до экрана, расстояние Ь - по шкале экрана от щели до выбранной линии спектра.

Рис. 2

Окончательная формула для определения длины волны имеет вид λ = db/ka

В этой работе погрешность измерений длин волн не оценивается из-за некоторой неопределенности выбора середины части спектра данного цвета.

Работу можно выполнять используя инструкции №2 или №2

Инструкция №1

Ход работы

1. Подготовьте бланк отчета с таблицей для записи результатов измерений и вычислений.

2. Соберите измерительную установку, установите экран на расстоянии 50 см от решетки.

3. Глядя сквозь дифракционную решетку и щель в экране на источник света и перемещая решетку в держателе, установите ее так, чтобы дифракционные спектры располагались параллельно шкале экрана.

4. Вычислите длину волны красного цвета в спектре 1-го порядка справа и слева от щели в экране, определите среднее значение результатов измерения.

5. Проделайте то же для других цвет ов .

6. Сравните полученные результаты с табличными длинами волн.

Инструкция № 2

Ход работы

    Измерьте расстояние b до соответствующего цвета в спектре первого по строке влево и вправо от центрального максимума. Измерьте от-стань а от дифракционной решетки до экрана (см.рисунок 2).

    Определите или рассчитайте период решетки d.

    Вычислите длину света для каждого из семи цветов спектра.

    Результаты измерений и вычислений занесите в таблицу:

Цвет

b ,слева,м

b ,справа,м

b ,среднее,м

а

Порядок

спектра k

Период решетки

d

Измеренное λ , нм

Фи олетовый

Син ий

Голубой

Зелен ый

Жёлтый

Оранжев ый

Красный

4. Вычислите относительную погрешность эксперимента для каждого цвета по формуле

Лабораторная работа №6.

Измерение световой волны.

Оборудование: дифракционная решетка с периодом 1/100 мм или 1/50 мм.

Схема установки:

  1. Держатель.

  2. Черный экран.

    Узкая вертикальная щель.

Цель работы: экспериментальное определение световой волны с помощью дифракционной решетки.

Теоретическая часть:

Дифракционная решетка представляет собой совокупность большого числа очень узких щелей, разделенных непрозрачными помежутками.

Источник

Длина волны определяется по формуле:

Где d – период решетки

k – порядок спектра

    Угол, под котором наблюдается максимум света

Уравнение дифракционной решетки:

Поскольку углы, под которыми наблюдается максимумы 1-го и 2-го порядков, не превышают 5 , можно вместо синусов углов использовать их тангенсы.

Следовательно,

Расстояние а отсчитывают по линейке от решетки до экрана, расстояние b – по шкале экрана от щели до выбранной линии спектра.

Окончательная формула для определения длины волны имеет вид

В этой работе погрешность измерений длин волн не оценивается из-за некоторой неопределенности выбора середины части спектра.

Примерный ход работы:

    b=8 см, a=1 м; k=1; d=10 -5 м

(красный цвет)

d – период решетки

Вывод: Измерив экспериментально длину волн красного света с помощью дифракционной решетки, мы пришли к выводу, что она позволяет очень точно измерить длины световых волн.

Лабораторная работа №5

Лабораторная работа №5

Определение оптической силы и фокусного расстояния собирающей линзы .

Оборудование: линейка, два прямоугольных треугольника, длиннофокусная собирающая линза, лампочка на подставке с колпачком, источник тока, выключатель, соединительные провода, экран, направляющая рейка.

Теоретическая часть:

Простейший способ измерения оптической силы и фокусного расстояния линзы основан на использовании формулы линзы

d – расстояние от предмета до линзы

f – расстояние от линзы до изображения

F – фокусное расстояние

Оптической силой линзы называют величину

В качестве предмета используется светящаяся рассеянным светом буква в колпачке осветителя. Действительное изображение этой буквы получают на экране.

Изображение действительное перевернутое увеличенное:

Изображение мнимое прямое увеличенное:

Примерный ход работы:

    F = 8 см = 0,08 м

    F = 7 см = 0,07 м

    F = 9 см = 0,09 м

Лабораторная работа № 4

Лабораторная работа № 4

Измерение показателя преломления стекла

ученицы 11 класса «Б» Алексеевой Марии.

Цель работы: измерение показателя преломления стеклянной пластины, имеющей форму трапеции.

Теоретическая часть: показатель преломления стекла относительно воздуха определяется по формуле:

Таблица вычислений:

Вычисления:

n пр1=AE 1 / DC 1 =34мм/22мм=1,5

n пр2=AE 2 / DC 2 =22мм/14мм=1,55

Вывод: Определив показатель преломления стекла, можно доказать что это величина не зависит от угла падения.

Лабораторная работа по физике №3

Лабораторная работа по физике №3

ученицы 11 класса «Б»

Алексеевой Марии

Определение ускорения свободного падения при помощи маятника.

Оборудование:

Теоретическая часть:

Для измерения ускорения свободного падения применяются разнообразные гравиметры, в частности маятниковые приборы. С их помощью удается измерить ускорение свободного падения с абсолютной погрешностью порядка 10 -5 м/с 2 .

В работе используется простейший маятниковый прибор – шарик на нити. При малых размерах шарика по сравнению с длиной нити и небольших отклонениях от положения равновесия период колебания равен

Для увеличения точности измерения периода нужно измерить время t остаточно большого числа N полных колебаний маятника. Тогда период

И ускорение свободного падения может быть вычислено по формуле

Проведение эксперимента:

    Установить на краю стола штатив.

    У его верхнего конца укрепить с помощью муфты кольцо и повесить к нему шарик на нити. Шарик должен висеть на расстоянии 1-2 см от пола.

    Измерить лентой длину l маятника.

    Возбудить колебания маятника, отклонив шарик в сторону на 5-8 см и отпустив его.

    Измерить в нескольких экспериментах время t 50 колебаний маятника и вычислить t ср:

    Вычислить среднюю абсолютную погрешность измерения времени и результаты занести в таблицу.

    Вычислить ускорение свободного падения по формуле

    Определить относительную погрешность измерения времени.

    Определить относительную погрешность измерения длины маятника

    Вычислить относительную погрешность измерения g по формуле

Вывод: Получается, что ускорение свободного падения, измеренное при помощи маятника, приблизительно равно табличному ускорению свободного падения (g=9,81 м/с 2) при длине нити 1 метр.

Алексеева Мария, ученица 11 “Б” класса гимназии № 201 , г. Москва

Учитель физики гимназии № 201 Львовский М.Б.

Лабораторная работа по физике №7

Ученицы 11 класса «Б» Садыковой Марии

Наблюдение сплошного и линейчатого спектров.

О
борудование:
проекционный аппарат, спектральные трубки с водородом, неоном или гелием, высоковольтный индуктор, источник питания, штатив, соединительные провода, стеклянная пластина со скошенными гранями.

Цель работы: с помощью необходимого оборудования наблюдать (экспериментально) сплошной спектр, неоновый, гелиевый или водородный.

Ход работы:

Располагаем пластину горизонтально перед глазом. Сквозь грани наблюдаем на экране изображение раздвижной щели проекционного аппарата. Мы видим основные цвета полученного сплошного спектра в следующем порядке: фиолетовый, синий, голубой, зеленый, желтый, оранжевый, красный.

Данный спектр непрерывен. Это означает, что в спектре представлены волны всех длин. Таким образом, мы выяснили, что сплошные спектры дают тела, находящиеся в твердом или жидком состоянии, а также сильно сжатые газы.

Мы видим множество цветных линий, разделенных широкими темными полосами. Наличие линейчатого спектра означает, что вещество излучает свет только вполне определенной длины волны.

Водородный спектр: фиолетовый, голубой, зеленый, оранжевый.


Наиболее яркой является оранжевая линия спектра.

Спектр гелия: голубой, зеленый, желтый, красный.


Наиболее яркой является желтая линия.

Основываясь на нашем опыте, мы можем сделать вывод, что линейчатые спектры дают все вещества в газообразном состоянии. В этом случае свет излучают атомы, которые практически не взаимодействуют друг с другом. Изолированные атомы излучают строго определенные длины волн.

Загрузка...