domvpavlino.ru

1 4 дюйма какой диаметр. Какой размер дюймовых труб в мм? Какая бывает резьба и где ее применяют

В западной технической литературе все измерения вы встретите в дюймовой метрике. Такое положение вещей имеет исторические корни. Великобритания всегда была впереди по уровню технического развития, поэтому и во всех колониях, которыми тогда владела (а их было немало), была применена именно эта система измерений. В принципе, технические специалисты свободно переводят дюймы в сантименты и обратно. Так и по сей день в этих странах стандартно все измерения производятся именно в дюймах. Далее мы расскажем о главных особенностях и характеристиках дюймовой резьбы и чем это отличается от метрической.

Дюймовая резьба. Параметры

Если говорить об обычном измерении, то даже в уме перевести одну величину в другую и наоборот не составит труда. Но вот что касается именно резьбы, то нужно знать несложные, но важные нюансы. Дело в том, что метрическая и дюймовая метрика измерения длин есть большие совпадения. Отличие составляет количество витков на резьбовом шаге. Кроме того, эта резьба отличается другим углом наклона при ее вершине, который равен 55°, если ссылаться на стиль Витворта. Это в Англии считается нормой, или, как еще говорят - "британский угол". Если же принять за основу стандарт UNC и UNF, который считается эталоном в Америке, то угол тут равен 60°.

Метрический стандарт и дюймовая резьба. Самые принципиальные отличия

Виды дюймовой резьбы:

  • Наружная;
  • Коническая;
  • Цилиндрическая;
  • Внутренняя.

1 дюйм = 25,4 мм. Это - главное отличие. В документах это имеет определенное обозначение - 1´ (со штрих).

Если говорить об американских стандартах, то у них есть разделение на резьбу с крупным шагом, которую они обозначают, как UNC и с мелким - UNF. Также для канонической дюймовой резьбы установлено обозначение NPT, а для трубной - NPSM.

Какая бывает резьба и где ее применяют

Используемые при производстве, строительстве и конструировании виды резьбы в зависимости от детали разделяют на внутренние, наружные и конические.

  • Наружная применяется для болтов, винтов, штифтов и шпилек.
  • Внутренняя используется при изготовлении пробок или гаек. Нарезается она в отверстиях, когда нужно организовать соединение в определенном месте.
  • Чтобы создать герметичное соединение, а также стопорения без дополнительных деталей, то делается коническая дюймовая резьба.

Их обозначение идет согласно стандарту. d (D)- наружный диаметр болта либо внутренний диаметр гайки (d-диаметр болта до нарезки резьбы). Внутренний диаметр резьбы имеет обозначение d1 (D1). Также существует обозначение и среднего диаметра d2 (D2). Этот размер зависит от номинального шага, обозначаемого буквой Р.

Для обозначения профильного угла резьбы используют букву α. Показатель α = 55° будет означать, что угол при вершине равностороннего треугольника зуба резьбы равен 55°, и соответствует дюймовой резьбе BSW по Британскому стандарту. Дюймовая же резьба UTS широко используемая в Канаде и США имеет α = 60°.

Где применяют дюймовую резьбу

α = 55° -дюймовая резьба, применяемая в промышленности для фиксации механических узлов и деталей при помощи резьбовых соединений. Особенно часто она встречается в процессе ремонта импортного оборудования и станков,а также подержанных автомобилей. Металлические изделия с дюймовой резьбой производятся и в нашей стране. Во время работы иногда возникает потребность перевести метрическую резьбу в дюймовую и наоборот. Это легко быстро и удобно можно сделать при помощи специального справочника.

Резьбы по системе мер делятся на метрическую и дюймовую. Метрическая и дюймовая резьба применяется в резьбовых соединениях и винтовых передачах. Резьбовыми называют разъемные соединения, выполняемые с помощью резьбовых крепежных деталей - болтов, винтов, гаек, шпилек или резьбы, непосредственно нанесенной на соединяемые детали.

Метрическая резьба (рис. 1)

Имеет в профиле вид равностороннего треугольника с углом при вершине, равном 60°. Вершины выступов сопрягающихся винта и гайки срезаны. Характеризуется метрическая резьба диаметром винта в миллиметрах и шагом резьбы в миллиметрах. Метрическую резьбу выполняют с крупным и мелким шагом. За основную принята резьба с крупным шагом. Мелкую резьбу применяют для регулировки, для свинчивания тонкостенных, а также динамически нагруженных деталей. Метрическую резьбу с крупным шагом обозначают буквой М и числом, выражающим номинальный диаметр в миллимет-рах, например М20. Для мелкой метрической резьбы дополнитель-но указывают шаг, например М20х1,5.

Рис. 1 Метрическая резьба

Дюймовая резьба (рис. 2)

Дюймовая резьба (рис. 2) имеет в профиле такой же вид, как метрическая резьба, но у нее угол при вершине равен 55° (резьба Витворта - британский стандарт BSW (Ww) и BSF), угол при вершине равен 60° (американский стандарт UNC и UNF). Hаpужный диаметp pезьбы измеpяется в дюймах (1" = 25,4мм) - штpихи (") обозначают дюйм. Характеризуется эта резьба числом ниток на один дюйм. Дюймовую американскую резьбу выполняют с крупным (UNC) и мелким (UNF) шагом.


Рис. 2 Дюймовая резьба

Таблица размеров крепежных изделий для американской дюймовой машиностроительной резьбы UNC с крупным шагом (угол профиля 60 градусов)

Размер в дюймах Размер в мм Шаг ниток / дюйм
UNC № 1 1.854 64
UNC № 2 2.184 56
UNC № 3 2.515 48
UNC № 4 2.845 40
UNC № 5 3.175 40
UNC № 6 3.505 32
UNC № 8 4.166 32
UNC № 10 4.826 24
UNC № 12 5.486 24
UNC 1/4 6.35 20
UNC 5/16 7.938 18
UNC 3/8 9.525 16
UNC 7/16 11.11 14
UNC 1/2 12.7 13
UNC 9/16 14.29 12
UNC 5/8 15.88 11
UNC 3/4 19.05 10
UNC 7/8 22.23 9
UNC 1" 25.4 8
UNC 1 1/8 28.58 7
UNC 1 1/4 31.75 7
UNC 1 1/2 34.93 6
UNC 1 3/8 38.1 6
UNC 1 3/4 44.45 5
UNC 2" 50.8 4 1/2

Резьба

Резьба может быть внутренней и наружной.

  • На болтах, шпильках, винтах, штифтах и на разных других цилиндрических деталях нарезают наружную резьбу;
  • В фасонных частях, гайках, во фланцах, в пробках, деталях машин и металлических конструкциях нарезают внутреннюю резьбу.

Рис. 3 Элементы резьбы

Основные элементы резьб представлены на рис. 3 К ним относятся следующие элементы:

  • шаг резьбы - расстояние между вершинами или основаниями двух соседних витков;
  • глубина резьбы - расстояние от вершины резьбы до ее основания;
  • угол профиля резьбы - угол, заключенный между боковыми сторонами профиля в плоскости оси;
  • наружный диаметр - наибольший диаметр резьбы болта, измеряемый по вершине резьбы перпендикулярно к оси резьбы;
  • внутренний диаметр - расстояние, равное диаметру цилиндра, на которой навернута нитка резьбы.
  • Ещё о дюймовом крепеже:

В машиностроении приняты три системы резьб: метрическая, дюймовая и трубная.

Метрическая резьба (рис. 145, а) имеет треугольный профиль при вершине 60°.

Рис. 145. Системы резьб : а - метрическая, б - дюймовая, в - трубная

Существует шесть видов метрических резьб: основная и мелкие -1; 2; 3; 4 и 5-я. Мелкие резьбы отличаются величиной шага при данном диаметре, выраженном в миллиметрах. Метрические резьбы обозначаются буквой М и цифрами, характеризующими размерность наружного диаметра и шага. Например, М42Х4,5 обозначает метрическую основную с наружным диаметром 42 мм и шагом 4,5 мм.

Мелкая резьба, кроме того, в обозначении имеет цифру, указывающую номер резьбы, например 2М20Х1,75 - вторая метрическая мелкая, наружный диаметр 20 мм, шаг 1,75 мм.

Дюймовая резьба (рис. 145, б) имеет при вершине угол 55°. Дюймовая резьба нарезается при изготовлении запасных деталей к машинам с дюймовыми нарезками и не должна нарезаться на новых изделиях. Дюймовая резьба характеризует­ся числом ниток, приходящихся на один дюйм (1") длины. Наружный диаметр дюймовой резьбы измеряется в дюймах.

Трубная резьба (рис. 145, в) измеряется также, как и дюймовая, в дюймах и характеризуется числом ниток резьбы, приходящихся на 1". Профиль резьбы имеет угол 55°. У трубной резьбы за диаметр условно принимается диаметр отверстия трубы, на наружной поверхности которой нарезается резьба.

Вершины выступов у винта и гайки с трубной резьбой выполняются с плоскими или закругленными срезами.

Плоскосрезанный профиль более прост в изготовлении и применяется для резьб обычных трубных соединений. Обозначается трубная резьба: 1/4" ТРУБ.; 1/2" ТРУБ. и т. д. (табл. 25).

Таблица 25 Обозначение резьб на чертежах

Тип резьбы Условные обозначения Элементы обозначений Пример обозначения резьбы болта и гайки

Метрическая основная

М Наружный диаметр резьбы (мм) или наружный диаметр и шаг (мм) М64 или М64Х6 или 64x6

Метрические мелкие

1M
1М 64X4 или 64X4
2M
2М 64X3 или 64X3

3М 64X2 или 64X2

4М 64X1,5 или 64X1,5

5М 64X1 или 64X1

Трапецеидальная

ТРАП Наружный диаметр и шаг резьбы (мм) ТРАП. 22x5
УП
УП 70X10

Дюймовая с углом профиля 55°


Номинальный диаметр резьбы в дюймах 1"

Трубная цилиндрическая

ТРУБ. ПР* ТРУБ. КР ** Условное обозначение резьбы в дюймах 3 / 4 " ТРУБ. ПР 3 / 4 " ТРУБ. КР

Трубная коническая

ТРУБ. КОНИЧ.
3 / 4 " ТРУБ.КОНИЧ.

* Профиль с плоскосрезанными вершинами (прямой). ** Профиль закругленный.

Резьбы бывают правые и левые; по числу заходов - одно-, двух-, трехзаходные и многозаходные.

Для того чтобы определить число заходов резьбы, достаточно посмотреть в торец винта или гайки и подсчитать, сколько концов витков имеется на нем.

Как правило, все крепежные детали (болты, винты, шурупы и т, п.) имеют однозаходную резьбу.

В нашем метрическом мире порой бывает трудно ориентироваться в других системах измерения. Мы порой удивляемся тому, как американцы или англичане могут пользоваться устаревшими мерами длины, массы, площади и т.п. А они, в свою очередь, не понимают нас - живущих по законам единой Системы Измерений. Однако, как и в любом правиле, существуют определенные исключения, которые понятны всем – и жителям Америки, и Туманного Альбиона, и Европы, и России. Данная статья посвящена обзору трубных и метрических резьб, с разнообразием которых приходится довольно часто сталкиваться в повседневной жизни .

Метрические резьбы и их применение

Резьбовые соединения очень распространены в строительстве, технике, машиностроении, аэрокосмической промышленности и в повседневной жизни. Что такое винт и гайка знают даже дети в детском саду , так как занятия с конструктором не могут обойтись без этих деталей. Несмотря на то, что первый винт был придуман еще Архимедом, а наши древние предки широко использовали винтовые передачи в прессах для отжима масла из оливковых косточек и семян подсолнуха, а так же для подъема воды для орошения полей, идея создать настоящее винтовое соединение нашла свою реализацию только в 15 веке, когда один из швейцарских часовщиков впервые сумел при помощи простейших приспособлений выточить первый винт и гайку.

Вместе с тем, к разумной мысли о том, что резьба должна быть одинаковой во всех странах мира человечество пришло не скоро. Так, широко распространенная и привычная всем, кто хоть немного сталкивался с техникой, метрическая резьба появилась и была описана в стандартах лишь после введения единой Системы Измерений, основанной на эталонах метра, килограмма и секунды. Так что появление и широкое распространение метрической резьбы датируется концом 19 века. До того времени в мире господствовали дюймовые резьбы.

Главное отличие метрической резьбы от дюймовой состоит в том, что все её параметры привязаны к миллиметру, а за основу профиля самой резьбы взят равносторонний треугольник, так как все его угловые размеры одинаковы и равны 60 градусам. В стандартизации метрических резьбовых соединений важно, чтобы у гайки и болта совпадали не только угловые размеры резьбы, но и ее диаметр и шаг. Многие, особенно те, у кого имеются автомобили, сталкивались с непонятным явлением, когда винт и гайка имеют одинаковый диаметр, но винт вкрутить в гайку невозможно. Это говорит о том, что в данном месте используется резьба с меньшим шагом и для того чтобы винт вкрутился без проблем, его шаг резьбы должен быть тоже уменьшенным.

В стандартах, описывающих метрические резьбы, указано, что они должны обозначаться буквой M, а далее указывается диаметр резьбы и её шаг. Диапазон диаметров метрической резьбы лежит в пределах от одного до шестисот миллиметров. Разброс шага резьбы составляет от 0,075 до 3,5 мм. Резьбы с малым шагом применяют для измерительного инструмента, резьбы со средним шагом для нагруженных и работающих в условиях вибрации деталей и узлов, а резьбы с большим шагом применяют для крепления тяжелых несущих конструкций.

При создании стандартов метрических резьб были учтены различные допуски, которые задают степень округлости наружной кромки резьбы и отклонения от профиля, чтобы винт и гайка могли быть свободно закручены до момента упора при помощи руки.

Хоть метрические резьбы и не нашли широкого применения в уплотняемых соединениях, однако такая возможность заложена в стандарты. Так, резьба с обозначением MK применяется для самоуплотняемых соединений за счет конусности наружной и внутренней резьбы. Причем, для герметичного соединения необязательно чтобы винт и гайка были с конусной резьбой. Достаточно того, чтобы эта резьба была нарезана на винте.

Цилиндрическая метрическая резьба встречается достаточно редко. Её обозначение MJ. Главное отличие в винте, который имеет увеличенный радиус впадины на резьбе, что придает резьбовому соединению на основе цилиндрической метрической резьбы более высокие жаростойкие и усталостные качества. Такую резьбу применяют в аэрокосмической промышленности. Впрочем, в гайку с такой резьбой можно закрутить обычный метрический винт.

Несмотря на поголовное преобладание правой резьбы во всех устройствах и механизмах, все же бывает необходимо для реализации определенных функций применять левую резьбу. Метрическая левая резьба не отличается ничем от правой резьбы, кроме направления вращения, которое противоположно правым винтам. Если обычный винт закручивается по часовой стрелке, то левый в эту же сторону откручивается.

Также иногда можно встретиться с многозаходной метрической резьбой. Она отличается тем, что на болте и гайке одновременно нарезают не одну спираль, а две или даже три. Многозаходную резьбу часто применяют в высокоточном оборудовании, например, в фототехнике, чтобы однозначно позиционировать положение деталей при взаимном вращении. Такую резьбу можно отличить от обычной по двум или трем началам витков на торце.

Несмотря на очень широкое применение метрической резьбы, во многих развитых странах мира традиционно в большем ходу остаются так называемые дюймовые резьбы. А трубная резьба повсеместно измеряется в дюймах. И, несмотря на сильные отличия таких видов резьбы, сантехникам во всем мире на нужно объяснять отличия полудюймовой трубы от трехчетвертной.

Дюймовые резьбы и их применение

Отличия дюймовых резьб от метрических в том, что угол при вершине резьбы у них составляет 55 градусов, шаг резьбы вычисляется как соотношение числа витков резьбы на дюйм длины резьбы. Под дюймом понимают расстояние, равное 2,54 см. Что первоначально соответствовало длине первой фаланги большого пальца руки человека, которое практически у всех людей одинаково.

Так как угол при вершине иной, чем в метрических резьбах, то совместить метрические и дюймовые резьбы не представляется возможным. В странах с метрической системой применение находят только трубные дюймовые резьбы, которые обозначают буквой G. За буквой следует дробный или целый номинал, который обозначает не величину резьбы, а условный просвет трубы в дюймах или долях дюйма. Особенностью трубной резьбы является как раз тот факт, что она учитывает толщину стенок трубы, которые могут быть толще или тоньше в зависимости от материала изготовления и рабочего давления, на которое рассчитаны трубы. Поэтому дюймовый стандарт трубных резьб понятен и принят во всем мире как исключение из метрических правил.

Кроме простой цилиндрической трубной резьбы существует и коническая трубная резьба. Она имеет такие же характеристики, что и обычная трубная, за исключением конусности, которая позволяет создавать более герметичные соединения. Обозначается буквой R для наружной резьбы и Rc для внутренней. Левая резьба помечается дополнительно буквами LH, за которыми идет числовой номинал в целых и дробных долях дюйма.

Для применения в прочих соединениях, кроме сантехники, в США и Канаде применяют дюймовые резьбы с углом при вершине 60 градусов. Существует довольно широкий соратмент этих резьб, которые различаются диапазоном шага резьбы и прочими характеристиками. Стоит отметить, что некоторые резьбы из дюймового ряда совпадают с метрическими, что в некоторых случаях может быть на руку. Например, в фототехнике диаметр присоединительной резьбы, посредством которой фотокамера крепится к штативу, одинакова во всем мире вне зависимости от страны-производителя, так как характеристики этой резьбы одинаковы и для метрической, и для дюймовой резьбы.

Однако не стоит путать английскую дюймовую индустриальную резьбу, которая была одобрена еще в 1841 году, а разработкой её занимался сам Джозеф Витуорт. Эта резьба практически повторяет трубную, так как имеет величину угла у вершины 55 градусов. Винты и гайки с такой резьбой не сопрягаются с дюймовым крепежом из Америки и Канады.


В настоящей статье я хочу не только привести сухие факты, о размерах дюймовой трубной резьбы с ссылками на стандарты и ГОСТы, но довести до читателя интерсный факт об особенностях обозначения последней.

Так, кто уже сталкивался с трубными резьбами не раз удивлялся несоответсвию наружного диаметра резьбы и ее обозначению. К примеру резьба 1/2 дюйма имеет наружный диаметр 20,95 мм, хотя по логике с метрическими резьбами должна быть 12,7 мм. Все дело в том, что в дюймовой резьбе фактически указывают проходное отверстие трубы, а не наружный диаметр резьбы. При этом, добавляя к размеру отверстия стенки трубы мы и получаем завышенный наружный диаметр к которому привыкли в обозначениях метрических резьб. Условно так называемый трубный дюйм составляет 33,249 мм, то есть 25,4 + 3,92+ 3,92 (где 25,4 проход, 3,92 - стенки трубы). Стенки трубы принимаются исходя из рабочего давления для резьбы. В зависимости от диаметра трубы также соответственно увеличиваются, так как труба с большим диаметром должна иметь более толстые стенки, чем труба с меньшим диматером на одно и то же рабочее давление.

Трубные резьбы делятся на следующие:

Резьба трубная цилиндрическая

Это дюймовая резьба основанная на резьбе BSW (British Standard Whitworth) и соответствует резьбе BSP (British standard pipe thread), имеет четыре значения шагов 28,19,14,11 ниток на дюйм. Нарезается на трубах до размера 6", трубы свыше 6" свариваются.

Угол профиля при вершине 55°, теоретическая высота профиля Н=0,960491Р.

Стандарты:
ГОСТ 6357-81 - Основные нормы взаимозаменяемости.
Резьба трубная цилиндрическая. ISO R228, EN 10226, DIN 259, BS 2779, JIS B 0202.

Условное обозначение: буква G, числовое значение условного прохода трубы в дюймах (inch), класс точности среднего диаметра (А, В), и буквы LH для левой резьбы. Например, резьба с номинальным диаметром 1 1/4", класс точности А - обозначается как G1 1/4-A. Еще раз намопним, что следует иметь в виду, что номинальный размер резьбы соответствует просвету трубы в дюймах. Наружный диаметр трубы находится в некоторой пропорции с этим размером и больше соответственно на толщину стенок трубы.

Обозначение размера резьбы трубной цилиндрической (G), шаги и номинальные значения наружного, среднего и внутреннего диаметров резьбы, мм

Обозначение размера резьбы Шаг Р Диаметры резьбы
Ряд 1 Ряд 2 d=D d 2 =D 2 d 1 =D 1
1/16" 0,907 7,723 7,142 6,561
1/8" 9,728 9,147 8,566
1/4" 1,337 13,157 12,301 11,445
3/8" 16,662 15,806 14,950
1/2" 1,814 20,955 19,793 18,631
5/8" 22,911 21,749 20,587
3/4" 26,441 25,279 24,117
7/8" 30,201 29,0З9 27,877
1" 2,309 33,249 31,770 30,291
1⅛" 37,897 36,418 34,939
1¼" 41,910 40,431 38,952
1⅜" 44,323 42,844 41,365
1½" 47,803 46,324 44,845
1¾" 53,746 52,267 50,788
2" 59,614 58,135 56,656
2¼" 65,710 64,231 62,762
2½" 75,184 73,705 72,226
2¾" 81,534 80,055 78,576
3" 87,884 86,405 84,926
3¼" 93,980 92,501 91,022
3½" 100,330 98,851 97,372
3¾" 106,680 105,201 103,722
4" 113,030 111,551 110,072
4½" 125,730 124,251 122,772
5" 138,430 136,951 135,472
5½" 151,130 148,651 148,172
6" 163,830 162,351 160,872

ОСНОВНЫЕ ПАРАМЕТРЫ ДЮЙМОВЫХ РЕЗЬБ
(стандарты BSW (Ww), BSF, UNC, UNF)

Вершины и впадины профиля дюймовой резьбы, аналогично метрической , плоско срезаны. Шаг дюймовой резьбы определяется числом ниток (витков) на один дюйм 1", но у нее угол при вершине равен 55° (резьба Витворта - британский стандарт BSW (Ww) и BSF), угол при вершине равен 60° (американский стандарт UNC и UNF).

Hаpужный диаметp pезьбы измеpяется в дюймах 1" = 25,4 мм - штpих (") условное обозначение дюйма. Дюймовая резьба характерезуется числом ниток на один дюйм. По американским стандартам дюймовую резьбу выполняют с крупным (UNC) и мелким (UNF) шагом.
NPSM - американский стандарт на резьбу дюймовую трубную цилиндрическую.
NPT - американский стандарт на резьбу дюймовую коническую.

Стандарты:

ASME/ANSI B1.1 – 2003 Unified Inch Screw Threads, UN & UNR Thread Form
ASME/ANSI B1.10M – 2004 Unified Miniature Screw Threads
ASME/ANSI B1.15 – 1995 Unified Inch Screw Threads, UNJ Thread Form

АМЕРИКАНСКАЯ ДЮЙМОВАЯ РЕЗЬБА

Основные параметры дюймовой резьбы:

d (D) – наружный диаметр резьбы соответственно болта и гайки;
d p (D p) – средний диаметр резьбы соответственно болта и гайки;
d i (D i) – внутренний диаметр резьбы соответственно болта и гайки;
n – число ниток на дюйм.

Американская резьба с крупным шагом – UNS

Размеры резьбы , дюймы (мм)

D

D p

D i

Размеры резьбы , дюймы (мм)

D

D p

D i

№1 (1,8542)

№2 (2,1844)

1 (25,4)

№3 (2,5146)

1 1/8 (28,58)

№4 (2,8448)

1 1/4 (31,75)

№5 (3,1750)

1 3/8 (34,925)

№6 (3,5052)

1 1/2 (38,10)

№8 (4,1656)

1 3/4 (44,45)

№10 (4,8260)

№12 (5,4864)

2 (50,8)

2 1/4 (57,15)

1/4 (6,3500)

2 1/2 (63,5)

5/16 (7,9375)

2 3/4 (69,85)

3/8 (9,5250)

7/16 (11,1125)

3 (76,2)

1/2 (12,700)

3 1/4 (82,55)

9/16 (14,2875)

3 1/2 (88,9)

5/8 (15,8750)

3 3/4 (95,25)

3/4 (19,0500)

4 (101,6)

7/8 (22,2250)

Американская резьба с мелким шагом – UNF

Размеры резьбы , дюймы (мм)

D

D p

D i

Размеры резьбы , дюймы (мм)

D

D p

D i

№0 (1,524)

3/8 (9,525)

№1 (1,8542)

7/16 (11,1125)

№2 (2,1844)

1/2 (12,700)

№3 (2,5146)

9/16 (14,2875)

№4 (2,8448)

5/8 (15,875)

№5 (3,1750)

3/4 (19,050)

№6 (3,5052)

7/8 (22,225)

№8 (4,1656)

№10 (4,8260)

1 (25,4)

№12 (5,4864)

1 1/8 (28,58)

1 1/4 (31,75)

1/4 (6,350)

1 3/8 (34,925)

5/16 (7,9375)

1 1/2 (38,10)

Американская резьба с особо мелким шагом – UNEF

Размеры резьбы , дюймы (мм)

D

D p

D i

Размеры резьбы , дюймы (мм)

D

D p

D i

№12 (5,4864)

1 (25,4)

1/4 (6,350)

1 1/16 (26,987)

5/16 (7,9375)

1 1/8 (28,58)

3/8 (9,525)

1 3/16 (30,162)

7/16 (11,1125)

1 1/4 (31,75)

1/2 (12,700)

1 5/16 (33,337)

9/16 (14,2875)

1 3/8 (34,925)

5/8 (15,875)

1 7/16 (36,512)

11/16 (17,462)

1 1/2 (38,10)

3/4 (19,050)

1 9/16 (39,687)

13/16 (20,637)

1 5/8 (41,27)

7/8 (22,225)

1 11/16 (42,86)

15/16 (23,812)

Размеры резьб – это наружный диаметр резьбы, выраженный в дробных долях дюйма. Одной из основных характеристик дюймовой винтовой резьбы является количество витков на дюйм длины резьбы (n). Количество витков и шаг резьбы Р связаны соотношением:

Американские стандарты предусматривают две формы резьбы:

Резьба с плоской впадиной, которая обозначается буквами UN;
- резьба с радиусной впадиной, которая обозначается буквами UNR.

Стандартом определены три класса точности резьб. Эти классы обозначаются, как 1А, 2А, 3А, 1В, 2В, 3В. Классы точности 1А, 2А, 3А относятся к наружным резьбам; классы точности 1В, 2В, 3В относятся к внутренним резьбам. Класс точности 1А, 1В является самым грубым и применяется в случаях, когда требуется быстрая и легкая сборка, даже с частично загрязненной и помятой резьбой. Класс точности 2А, 2В является наиболее распространенными и применяется для резьб общего назначения. Класс точности 3А, 3В предъявляет наиболее жесткие требования к резьбам и применяется в случаях, когда требуется обеспечить минимальный зазор в резьбовом соединении.

Обозначение резьбы . Сначала записывается номинальный размер, затем число витков на дюйм резьбы, символы группы резьбы и символ класса точности. Буквы LH в конце записи обозначают левую резьбу. Номинальный размер – это наружный диаметр, определяемый как дробный размер или номер резьбы, или их десятичный эквивалент.
Например: 1/4 – 20UNS – 2A или 0,250 – 20UNC – 2A

БРИТАНСКИЙ СТАНДАРТ ДЮЙМОВЫХ РЕЗЬБ
(BSW (Ww) и BSF)

Обозн. резьбы BSP
размер
in
шаг резьбы наибольший диаметр наименьший диаметр A/F
мм
длина
мм
трубы диаметр отверстия под резьбу
(для сверла) мм
in
(TPI)
мм мм in мм in DN
мм
OD
мм
OD
in
толщина
мм
BSP.PL
(Rp)
BSP.F
(G)
-1 1 / 16 28 0,907 7,723 0,304 6,561 0,2583 4±0,9 6,60 6,80
-2 1 / 8 28 0,907 9,728 0,383 8,565 0,3372 15 4±0,9 6 10,2 0,40 2 8,60 8,80
-4 1 / 4 19 1,337 13,157 0,518 11,445 0,4506 19 6±1,3 8 13,5 0,53 2,3 11,50 11,80
-6 3 / 8 19 1,337 16,662 0,656 14,950 0,5886 22/23 6,4±1,3 10 17,2 0,68 2,3 15,00 15,25
-8 1 / 2 14 1,814 20,955 0,825 18,633 0,7336 27 8,2±1,8 15 21,3 0,84 2,6 18,75 19,00
-10 5 / 8 14 1,814 22,911 0,902 20,589 0,8106 16 2,6 - 21,00
-12 3 / 4 14 1,814 26,441 1,041 24,120 0,9496 32 9,5±1,8 20 26,9 1,06 2,6 24,25 24,50
-16 1 11 2,309 33,249 1,309 30,292 1,1926 43 10,4±2,3 25 33,7 1,33 3,2 30,40 30,75
-20 1 1 / 4 11 2,309 41,910 1,650 38,953 1,5336 53 12,7±2,3 32 42,4 1,67 3,2 39,00 39,50
-24 1 1 / 2 11 2,309 47,803 1,882 44,846 1,7656 57 12,7±2,3 40 48,3 1,90 3,2 45,00 45,00
-32 2 11 2,309 59,614 2,347 56,657 2,2306 70 15,9±2,3 50 60,3 2,37 3,6 56,75 57,00
-40 2 1 / 2 11 2,309 75,184 2,960 72,227 2,8436 17,5±3,5 65 76,1 3,00 3,6
-48 3 11 2,309 87,884 3,460 84,927 3,3436 20,6±3,5 80 88,9 3,50 4
-64 4 11 2,309 113,030 4,450 110,073 4,3336 25,5±3,5 100 114,3 4,50 4,5
-80 5 11 2,309 138,430 5,450 135,472 5,3335 28,6±3,5 125 139,7 5,50 5
-96 6 11 2,309 163,830 6,450 160,872 6,3335 28,6±3,5 150 165,1 6,50 5

Похожие документы:

ГОСТ 3469-91 - Микроскопы. Резьба для объективов. Размеры
ГОСТ 4608-81 - Резьба метрическая. Посадки с натягом
ГОСТ 5359-77 - Резьба окулярная для оптических приборов. Профиль и размеры
ГОСТ 6042-83 - Резьба Эдисона круглая. Профили, размеры и предельные размеры
ГОСТ 6111-52 - Резьба коническая дюймовая с углом профиля 60 градусов
ГОСТ 6211-81 - Резьба трубная коническая
ГОСТ 6357-81 - Резьба трубная цилиндрическая
ГОСТ 8762-75 - Резьба круглая диаметром 40 мм для противогазов и калибры к ней. Основные размеры
ГОСТ 9000-81 - Резьба метрическая для диаметров менее 1 мм. Допуски
ГОСТ 9484-81 - Резьба трапецеидальная. Профили
ГОСТ 9562-81 - Резьба трапецеидальная однозаходная. Допуски
ГОСТ 9909-81 - Резьба коническая вентилей и баллонов для газов
ГОСТ 10177-82 - Резьба упорная. Профиль и основные размеры
ГОСТ 11708-82 - Резьба. Термины и определения
ГОСТ 11709-81 - Резьба метрическая для деталей из пластмасс
ГОСТ 13535-87 - Резьба упорная усиленная 45 градусов
ГОСТ 13536-68 - Резьба круглая для санитарно-технической арматуры. Профиль, основные размеры, допуски
ГОСТ 16093-2004 - Резьба метрическая. Допуски. Посадки с зазором
ГОСТ 16967-81 - Резьба метрическая для приборостроения. Диаметры и шаги
ГОСТ 24737-81 - Резьба трапецеидальная однозаходная. Основные размеры
ГОСТ 24739-81 - Резьба трапецеидальная многозаходная
ГОСТ 25096-82 - Резьба упорная. Допуски
ГОСТ 25229-82 - Резьба метрическая коническая
ГОСТ 28487-90 - Резьба коническая замковая для элементов бурильных колонн. Профиль. Размеры. Допуски

На строительном рынке популярны 2 размера конструкций:

  • 1\2 и 3\4 – составляют отдельную категорию. из-за специальных параметров резьбы (1,814), на 1 ед. меры приходится 14 нитей;
  • в пределах 1 - 6 дюймов производится уменьшение шага до 2,309, образующего 11 нитей, не влияющих на снижение или повышения качества соединения.

Один дюйм составляет длину 25,4 мм, она используется для определения внутренних параметров, но при прокладке усиленных труб диаметр составляет 33,249 мм (включая внутреннее сечение и 2 стенки). В сортаменте стальных конструкций имеется исключение – изделия в ½ дюйма, где наружное сечение равно 21,25 мм. Данный параметр используется при вычислении габаритов труб с цилиндрическим типом резьбы. При проведении расчетов для труб поперечным сечением в 5 дюймов, внутренний размер составит 12,7 см, а внешний – 166,245 (допускается сокращение до 1 знака после запятой).

Разница между системами измерения

По внешним параметрам дюймовые конструкции не отличаются от метрических, разница заключается в типе насечек. Различают 2 типа резьбы по дюймовой системе – английский и американский. Первый вариант соответствует углу насечки 55 гр., а метрическая (американская) система с углом на 60 гр. общепринята.

При разных градусах сложно отличить угол на 55 - у дюймовых и 60 - у метрических конструкций, а закругления нитей видны сразу, возникновение ошибки невозможно. Для замер шага резьбы служит резьбомер, но вместо него хорошо используется обычная линейка или другое приспособление.

Замена стальных труб полимерными

В газо- и водопроводной сети применяются стальные изделия, диаметр которых обозначается в дюймах (1", 2") или долях (1/2", 3/4"). При замере поперечного сечения трубы 1", в результате получится 33,5 мм, что соответствует 1" (25,4 мм). При обустройстве трубопроводных армирующих элементов, где параметры обозначены в дюймах, сложностей не возникает. Но при установке вместо стальных конструкций изделия из ПП, меди или нержавейки, требуется учесть разницу в наименовании и параметрах.

Для создания заданного уровня потока, учитывается внутренний диаметр труб. Для дюймовых обыкновенных труб он составляет 27,1 мм, для усиленных 25,5 мм, наиболее приближенный к 1". Трубопроводы обозначают в условных единицах проходного сечения Ду (DN). Он определяет параметры просвета труб и обозначается в цифровых значениях. Шаг условного проходного сечения подбирают с учетом увеличения пропускных характеристики на 40-60% с ростом индекса. Если известно внешнее поперечное сечение и назначение конструкций, используя таблицу размеров, определяется внутреннее поперечное сечение.

В процессе соединения стальных труб с полимерными конструкциями, замены одних на другие, используются обычные переходники. Несоответствие размеров получается в результате применения изделий из меди, алюминия или нержавейки, выпускаемых по метрическим стандартам. Учитываются реальные метрические габариты труб - внутренние и внешние.

Стальные трубы РФ в сравнении с евростандартом

Для сравнения сортамента труб по ГОСТ РФ и евростандартов, используется следующая таблица:

Как определиться с выбором диаметра?

От диаметра водопроводных труб зависят их пропускные характеристики - объем воды, пропускаемый за 1 ед. времени. Она зависит от скорости протекания воды. С ее увеличением повышается риск перепада давления в магистрали. Пропускные характеристики рассчитываются по формулам, но планируя внутриквартирную разводку, берут трубы определенных параметров.

Для водопроводной системы:

  • 1,5 см (1/2 дюйма)
  • 1 см (3/8 дюйма).

Для стояка применяются конструкции с внутренним поперечным сечением:

  • 2,5 см (1 дюйм);
  • 2 см (3/4 дюйма).

С учетом того, что внутреннее поперечное сечение полудюймовых полимерных труб варьирует в диапазоне от 11 до 13 мм, а однодюймовых – от 21 до 23, определить точные параметры при замене сможет опытный сантехник. При сложном типе разводки, многочисленных стыках, поворотах и прокладки сети на большом расстоянии, снижении напора, следует предусмотреть возможность выполнения разводки труб с большим поперечным сечением. С увеличением диаметра повышается уровень напора.

Ниже представлена таблица для определения проходимости стальных труб:

Диаметр труб из стали

Поперечное сечение труб соответствует ряду показателей:

  • Условному диаметру (Ду, Dy) – номинальные параметры (в мм) внутреннего поперечного сечения труб или их округленные показатели, в дюймах.
  • Номинальному параметру (Дн Dn,).
  • Внешнему размеру.

    Метрическая система расчетов позволяет классифицировать конструкции на малые – от 5…102 мм, средние – от 102…426, большие - 426 мм и более.

  • Толщине стенок.
  • Внутреннему диаметру.

Внутреннее поперечное сечение у труб с разной резьбой соответствует параметрам:

  • трубопровод 1/2 дюйма – 1,27 см;
  • 3/4 дюйма – 1,9 см;
  • 7/8 дюйма – 2,22 см;
  • 1 дюйм – 2,54 см;
  • 1,5 дюйма – 3,81 см;
  • 2 дюйма – 5,08 см.

Для определения диаметра резьбы используются следующие показатели:

  • трубопровод 1/2 дюйма – 2,04 - 2,07 см;
  • 3/4 дюйма – 2, 59 - 2,62 см;
  • 7/8 дюйма – 2,99 - 3 см;
  • 1 дюйм – 3,27 - 3, 3 см;
  • 1,5 дюйма – 4,58 - 4,62 см;
  • 2 дюйма – 5,79 - 5,83 см.

Таблица соответствия диаметра стальных труб полимерным конструкциям:

Цены стальных труб:

Диаметр труб ПП

ПП трубы выпускают диаметром от 0,5 до 40 см и более. Диаметр бывает внутренним и наружным. Первый показатель позволяет узнать объем сред, проходимых за 1 ед. времени. Внешнее поперечное сечение служит для проведения строительных подсчетов, а именно выбора ниши или ямы для прокладки магистрали. Внешние параметры позволяют правильно подобрать фитинги с соответствующими внутренними показателями.

  • Малый – 0,5; 1; 1,5; 2; 2,5; 3,2; 4; 5; 6,3 и 7,5 см служит для отопительных систем, слива и водоснабжения в частных строениях. Внутреннее поперечное сечение в 3,2 см наиболее популярно в многоэтажных строениях.
  • Cредний – 8; 9; 10; 11; 12,5; 16; 20; 25 и 31,5 см служит для обустройства водопровода и канализационных систем, позволяя сменить чугунные изделия с аналогичными внешними параметрами. Внутренний размер в 8, 9 и 10 см идеально подходит для химических сред.
  • Большой – 40 cм и более применяется для обустройства холодного водопровода и вентиляционных систем.

Трубы маркируются в дюймах и мм. При выборе конструкций для водопроводной и отопительной системы, учитывается толщина стенок, влияющая на условную проходимость магистралей с одинаковыми внешними параметрами. С увеличением ее параметра, допускается повышение давления в водопроводной системе. Малые габариты позволяют снизить уровень затрат на покупку материала и расход воды.

Стоимость труб ПП:

Видео

Калькулятор позволяет переводить целые и дробные числа из одной системы счисления в другую. Основание системы счисления не может быть меньше 2 и больше 36 (10 цифр и 26 латинских букв всё-таки). Длина чисел не должна превышать 30 символов. Для ввода дробных чисел используйте символ. или, . Чтобы перевести число из одной системы в другую, введите исходное число в первое поле, основание исходной системы счисления во второе и основание системы счисления, в которую нужно перевести число, в третье поле, после чего нажмите кнопку "Получить запись".

Исходное число записано в 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 -ой системе счисления .

Хочу получить запись числа в 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 -ой системе счисления .

Получить запись

Выполнено переводов: 1710505

Также может быть интересно:

  • Калькулятор таблицы истинности. СДНФ. СКНФ. Полином Жегалкина

Системы счисления

Системы счисления делятся на два типа: позиционные и не позиционные . Мы пользуемся арабской системой, она является позиционной, а есть ещё римская − она как раз не позиционная. В позиционных системах положение цифры в числе однозначно определяет значение этого числа. Это легко понять, рассмотрев на примере какого-нибудь числа.

Пример 1 . Возьмём число 5921 в десятичной системе счисления. Пронумеруем число справа налево начиная с нуля:

Число 5921 можно записать в следующем виде: 5921 = 5000+900+20+1 = 5·10 3 +9·10 2 +2·10 1 +1·10 0 . Число 10 является характеристикой, определяющей систему счисления. В качестве степеней взяты значения позиции данного числа.

Пример 2 . Рассмотрим вещественное десятичное число 1234.567. Пронумеруем его начиная с нулевой позиции числа от десятичной точки влево и вправо:

Число 1234.567 можно записать в следующем виде: 1234.567 = 1000+200+30+4+0.5+0.06+0.007 = 1·10 3 +2·10 2 +3·10 1 +4·10 0 +5·10 -1 +6·10 -2 +7·10 -3 .

Перевод чисел из одной системы счисления в другую

Наиболее простым способом перевода числа с одной системы счисления в другую, является перевод числа сначала в десятичную систему счисления, а затем, полученного результата в требуемую систему счисления.

Перевод чисел из любой системы счисления в десятичную систему счисления

Для перевода числа из любой системы счисления в десятичную достаточно пронумеровать его разряды, начиная с нулевого (разряд слева от десятичной точки) аналогично примерам 1 или 2. Найдём сумму произведений цифр числа на основание системы счисления в степени позиции этой цифры:

1. Перевести число 1001101.1101 2 в десятичную систему счисления.
Решение: 10011.1101 2 = 1·2 4 +0·2 3 +0·2 2 +1·2 1 +1·2 0 +1·2 -1 +1·2 -2 +0·2 -3 +1·2 -4 = 16+2+1+0.5+0.25+0.0625 = 19.8125 10
Ответ: 10011.1101 2 = 19.8125 10

2. Перевести число E8F.2D 16 в десятичную систему счисления.
Решение: E8F.2D 16 = 14·16 2 +8·16 1 +15·16 0 +2·16 -1 +13·16 -2 = 3584+128+15+0.125+0.05078125 = 3727.17578125 10
Ответ: E8F.2D 16 = 3727.17578125 10

Перевод чисел из десятичной системы счисления в другую систему счисления

Для перевода чисел из десятичной системы счисления в другую систему счисления целую и дробную части числа нужно переводить отдельно.

Перевод целой части числа из десятичной системы счисления в другую систему счисления

Целая часть переводится из десятичной системы счисления в другую систему счисления с помощью последовательного деления целой части числа на основание системы счисления до получения целого остатка, меньшего основания системы счисления. Результатом перевода будет являться запись из остатков, начиная с последнего.

3. Перевести число 273 10 в восьмиричную систему счисления.
Решение: 273 / 8 = 34 и остаток 1, 34 / 8 = 4 и остаток 2, 4 меньше 8, поэтому вычисления завершены. Запись из остатков будет иметь следующий вид: 421
Проверка : 4·8 2 +2·8 1 +1·8 0 = 256+16+1 = 273 = 273 , результат совпал. Значит перевод выполнен правильно.
Ответ: 273 10 = 421 8

Рассмотрим перевод правильных десятичных дробей в различные системы счисления.

Перевод дробной части числа из десятичной системы счисления в другую систему счисления

Напомним, правильной десятичной дробью называется вещественное число с нулевой целой частью . Чтобы перевести такое число в систему счисления с основанием N нужно последовательно умножать число на N до тех пор, пока дробная часть не обнулится или же не будет получено требуемое количество разрядов. Если при умножении получается число с целой частью, отличное от нуля, то целая часть дальше не учитывается, так как последовательно заносится в результат.

4. Перевести число 0.125 10 в двоичную систему счисления.
Решение: 0.125·2 = 0.25 (0 - целая часть, которая станет первой цифрой результата), 0.25·2 = 0.5 (0 - вторая цифра результата), 0.5·2 = 1.0 (1 - третья цифра результата, а так как дробная часть равна нулю, то перевод завершён).
Ответ: 0.125 10 = 0.001 2

С помощю этого онлайн калькулятора можно перевести целые и дробные числа из одной системы счисления в другую. Дается подробное решение с пояснениями. Для перевода введите исходное число, задайте основание сисемы счисления исходного числа, задайте основание системы счисления, в которую нужно перевести число и нажмите на кнопку "Перевести". Теоретическую часть и численные примеры смотрите ниже.

Результат уже получен!

Перевод целых и дробных чисел из одной системы счисления в любую другую − теория, примеры и решения

Существуют позиционные и не позиционные системы счисления. Арабская система счисления, которым мы пользуемся в повседневной жизни, является позиционной, а римская − нет. В позиционных системах счисления позиция числа однозначно определяет величину числа. Рассмотрим это на примере числа 6372 в десятичном системе счисления. Пронумеруем это число справа налево начиная с нуля:

Тогда число 6372 можно представить в следующем виде:

6372=6000+300+70+2 =6·10 3 +3·10 2 +7·10 1 +2·10 0 .

Число 10 определяет систему счисления (в данном случае это 10). В качестве степеней взяты значения позиции данного числа.

Рассмотрим вещественное десятичное число 1287.923. Пронумеруем его начиная с нуля позиции числа от десятичной точки влево и вправо:

Тогда число 1287.923 можно представить в виде:

1287.923 =1000+200+80 +7+0.9+0.02+0.003 = 1·10 3 +2·10 2 +8·10 1 +7·10 0 +9·10 -1 +2·10 -2 +3·10 -3 .

В общем случае формулу можно представить в следующем виде:

Ц n ·s n +Ц n-1 ·s n-1 +...+Ц 1 ·s 1 +Ц 0 ·s 0 +Д -1 ·s -1 +Д -2 ·s -2 +...+Д -k ·s -k

где Ц n -целое число в позиции n , Д -k - дробное число в позиции (-k), s - система счисления.

Несколько слов о системах счисления.Число в десятичной системе счисления состоит из множества цифр {0,1,2,3,4,5,6,7,8,9}, в восьмеричной системе счисления - из множества цифр {0,1,2,3,4,5,6,7}, в двоичной системе счисления - из множества цифр {0,1}, в шестнадцатеричной системе счисления - из множества цифр {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}, где A,B,C,D,E,F соответствуют числам 10,11,12,13,14,15.В таблице Таб.1 представлены числа в разных системах счисления.

Таблица 1
Система счисления
10 2 8 16
0 0 0 0
1 1 1 1
2 10 2 2
3 11 3 3
4 100 4 4
5 101 5 5
6 110 6 6
7 111 7 7
8 1000 10 8
9 1001 11 9
10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F

Перевод чисел из одной системы счисления в другую

Для перевода чисел с одной системы счисления в другую, проще всего сначала перевести число в десятичную систему счисления, а затем, из десятичной системы счисления перевести в требуемую систему счисления.

Перевод чисел из любой системы счисления в десятичную систему счисления

С помощью формулы (1) можно перевести числа из любой системы счисления в десятичную систему счисления.

Пример 1. Переводить число 1011101.001 из двоичной системы счисления (СС) в десятичную СС. Решение:

1 ·2 6 +0 ·2 5 +1 ·2 4 +1 ·2 3 +1 ·2 2 +0 ·2 1 +1 ·2 0 +0 ·2 -1 +0 ·2 -2 +1 ·2 -3 =64+16+8+4+1+1/8=93.125

Пример 2. Переводить число 1011101.001 из восьмеричной системы счисления (СС) в десятичную СС. Решение:

Пример 3 . Переводить число AB572.CDF из шестнадцатеричной системы счисления в десятичную СС. Решение:

Здесь A -заменен на 10, B - на 11, C - на 12, F - на 15.

Перевод чисел из десятичной системы счисления в другую систему счисления

Для перевода чисел из десятичной системы счисления в другую систему счисления нужно переводить отдельно целую часть числа и дробную часть числа.

Целую часть числа переводится из десятичной СС в другую систему счисления - последовательным делением целой части числа на основание системы счисления (для двоичной СС - на 2, для 8-ичной СС - на 8, для 16-ичной - на 16 и т.д.) до получения целого остатка, меньше, чем основание СС.

Пример 4 . Переведем число 159 из десятичной СС в двоичную СС:

159 2
158 79 2
1 78 39 2
1 38 19 2
1 18 9 2
1 8 4 2
1 4 2 2
0 2 1
0

Как видно из Рис. 1, число 159 при делении на 2 дает частное 79 и остаток 1. Далее число 79 при делении на 2 дает частное 39 и остаток 1 и т.д. В результате построив число из остатков деления (справа налево) получим число в двоичной СС: 10011111 . Следовательно можно записать:

159 10 =10011111 2 .

Пример 5 . Переведем число 615 из десятичной СС в восьмеричную СС.

615 8
608 76 8
7 72 9 8
4 8 1
1

При приведении числа из десятичной СС в восьмеричную СС, нужно последовательно делить число на 8, пока не получится целый остаток меньшее, чем 8. В результате построив число из остатков деления (справа налево) получим число в восьмеричной СС: 1147 (см. Рис. 2). Следовательно можно записать:

615 10 =1147 8 .

Пример 6 . Переведем число 19673 из десятичной системы счисления в шестнадцатеричную СС.

19673 16
19664 1229 16
9 1216 76 16
13 64 4
12

Как видно из рисунка Рис.3, последовательным делением числа 19673 на 16 получили остатки 4, 12, 13, 9. В шестнадцатеричной системе счисления числе 12 соответствует С, числе 13 - D. Следовательно наше шестнадцатеричное число - это 4CD9.

Для перевода правильных десятичных дробей (вещественное число с нулевой целой частью) в систему счисления с основанием s необходимо данное число последовательно умножить на s до тех пор, пока в дробной части не получится чистый нуль, или же не получим требуемое количество разрядов. Если при умножении получится число с целой частью, отличное от нуля, то эту целую часть не учитывать (они последовательно зачисливаются в результат).

Рассмотрим вышеизложенное на примерах.

Пример 7 . Переведем число 0.214 из десятичной системы счисления в двоичную СС.

0.214
x 2
0 0.428
x 2
0 0.856
x 2
1 0.712
x 2
1 0.424
x 2
0 0.848
x 2
1 0.696
x 2
1 0.392

Как видно из Рис.4, число 0.214 последовательно умножается на 2. Если в результате умножения получится число с целой частью, отличное от нуля, то целая часть записывается отдельно (слева от числа), а число записывается с нулевой целой частью. Если же при умножении получиться число с нулевой целой частью, то слева от нее записывается нуль. Процесс умножения продолжается до тех пор, пока в дробной части не получится чистый нуль или же не получим требуемое количество разрядов. Записывая жирные числа (Рис.4) сверху вниз получим требуемое число в двоичной системе счисления: 0.0011011 .

Следовательно можно записать:

0.214 10 =0.0011011 2 .

Пример 8 . Переведем число 0.125 из десятичной системы счисления в двоичную СС.

0.125
x 2
0 0.25
x 2
0 0.5
x 2
1 0.0

Для приведения числа 0.125 из десятичной СС в двоичную, данное число последовательно умножается на 2. В третьем этапе получилось 0. Следовательно, получился следующий результат:

0.125 10 =0.001 2 .

Пример 9 . Переведем число 0.214 из десятичной системы счисления в шестнадцатеричную СС.

0.214
x 16
3 0.424
x 16
6 0.784
x 16
12 0.544
x 16
8 0.704
x 16
11 0.264
x 16
4 0.224

Следуя примерам 4 и 5 получаем числа 3, 6, 12, 8, 11, 4. Но в шестнадцатеричной СС числам 12 и 11 соответствуют числа C и B. Следовательно имеем:

0.214 10 =0.36C8B4 16 .

Пример 10 . Переведем число 0.512 из десятичной системы счисления в восьмеричную СС.

0.512
x 8
4 0.096
x 8
0 0.768
x 8
6 0.144
x 8
1 0.152
x 8
1 0.216
x 8
1 0.728

Получили:

0.512 10 =0.406111 8 .

Пример 11 . Переведем число 159.125 из десятичной системы счисления в двоичную СС. Для этого переведем отдельно целую часть числа (Пример 4) и дробную часть числа (Пример 8). Далее объединяя эти результаты получим:

159.125 10 =10011111.001 2 .

Пример 12 . Переведем число 19673.214 из десятичной системы счисления в шестнадцатеричную СС. Для этого переведем отдельно целую часть числа (Пример 6) и дробную часть числа (Пример 9). Далее объединяя эти результаты получим.

Загрузка...