domvpavlino.ru

Краткий словарь некоторых космических терминов и названий. Изучение дальнего космоса при помощи аппаратов и телескопов

Клементина — 25 января1994 года. Цель — картографирование и наблюдение Луны в различных диапазонах: видимом, УФ, ИК; лазерная альтиметрия и гравиметрия. Впервые была составлена глобальная карта элементного состава Луны, были обнаружены большие запасы льда на её южном полюсе.
  • Lunar Prospector — 7 января1998 года. Был уточнён возможный объём льда на южном полюсе Луны, его содержание в грунте оценили в 1—10 %, ещё более сильный сигнал указывает на наличие льда на северном полюсе. На обратной стороне Луны магнитометром были обнаружены сравнительно мощные локальные магнитые поля — 40 нТл, которые сформировали 2 небольшие магнитосферы диаметром около 200 км. По возмущениям в движении аппарата было обнаружено 7 новых масконов. Была проведена первая глобальная спектрометрическая съёмка в гамма-лучах, по итогам которой были составлены карты распределения титана, железа, алюминия, калия, кальция, кремния, магния, кислорода, урана, редкоземельных элементов и фосфора, и создана модель гравитационного поля Луны с гармониками до 100-го порядка, что позволяет очень точно рассчитывать орбиту спутников Луны.
  • Смарт-1 — 27 сентября2003 года. Аппарат создавался как экспериментальная АМС для отработки перспективных технологий, в первую очередь — электрореактивной двигательной установки для будущих миссий к Меркурию и Солнцу.
  • Кагуя — 14 сентября2007 года. Полученные данные дали возможность составить топографическую карту Луны с разрешением около 15 км. При помощи вспомогательного спутника «Окина» удалось составить карту распределении сил тяжести на обратной стороне Луны. Также полученные данные позволили сделать выводы о затухании вулканической активности Луны 2,84 миллиарда лет назад.
  • Чанъэ-1 — 24 октября2007 года. Планировалось, что аппарат выполнит несколько задач: построение трёхмерной топографической карты Луны — для научных целей и для определения места посадок будущих аппаратов; составление карт распределения химических элементов типа титана и железа (необходимы для оценки возможности промышленной разработки месторождений); оценка глубинного распределения элементов с помощью микроволнового излучения — поможет уточнить как распределяется гелий-3 и велико ли его содержание; изучение среды между Землёй и Луной, например, «хвостовой» области магнитосферы Земли, плазмы в солнечном ветре и т. д.
  • Чандраян-1 — 22 октября2008 года. В число основных целей запуска «Чандраян-1» входит поиск полезных ископаемых и запасов льда в полярных регионах Луны, а также составление трёхмерной карты поверхности. Часть программы — запуск ударного зонда. Он был запущен с окололунной орбиты и в течение 25 минут достиг поверхности Луны, совершив жёсткую посадку. Выбросы лунной породы на месте падения модуля будут проанализированы орбитальным аппаратом. Данные, полученные при жёсткой посадке ударного зонда, будут использованы для мягкой посадки будущего индийского лунохода, доставка которого на Луну запланирована в ходе полёта следующего зонда «Чандраян-2».
  • Lunar Crater Observation and Sensing Satellite — 18 июня2009 года. От полёта LCROSS ожидалось получить окончательные сведения о наличии водяного льда на южном полюсе луны, который мог бы сыграть важную роль для будущих пилотируемых экспедиций на Луну. 9 октября 2009 года в 11:31:19 UTC в районе кратераКабеус упал разгонный блок «Центавр». В результате падения выброшено облако из газа и пыли. LCROSS пролетел сквозь выброшенное облако, анализируя вещество, поднятое со дна кратера и упал в тот же кратер в 11:35:45 UTC, успев передать на Землю результаты своих исследований. С лунной орбиты за падением следил зонд «LRO», с околоземной — космический телескоп Хаббл и европейский спутник «Odin». С Земли — крупные обсерватории.
  • Gravity Recovery and Interior Laboratory — 10 сентября2011 года. Программа изучения гравитационного поля и внутреннего строения Луны, реконструкции её тепловой истории.
  • — 4 сентября2013 год. После завершения миссии 17 апреля2014 годаLADEE столкнулся с поверхностью Луны
  • Чанъэ-5Т1 — 23 октября 2014 года. Китайская автоматическая лунная станция для испытаний возвращения на Землю спускаемого аппарата. Китай стал третьей после СССР и США страной, выполнившей возвращение аппарата который облетел Луну и двигался со скоростью близкой ко второй космической.
  • Текущие миссии

    • Lunar Reconnaissance Orbiter — 19 июня2009 года. Аппарат будет производить следующие исследования: изучение лунной глобальной топографии; измерение радиации на лунной орбите; изучение лунных полярных регионов, включающее в себя поиск залежей водяного льда и исследование параметров освещённости; составление сверхточных карт с нанесением объектов не менее 0,5 метра с целью найти лучшие посадочные площадки.
    • ARTEMIS P1 и ARTEMIS P2 — 17 февраля2009 года. Изучения магнитного поля Луны.
    • Чанъэ-2 — 1 октября2010 года. 27 октября аппарат начал фотосъёмку участков Луны, пригодных для посадки следующих космических аппаратов. Для решения данной задачи спутник приблизится к Луне на расстояние 15 километров.
    • Чанъэ-3 — Запуск аппарата осуществлён 1 декабря 2013 года с космодрома Сичан.
    • Юйту — первый китайский луноход , запущен вместе с Чанъэ-3.

    Марс

    Успешные миссии

    Текущие миссии

    • Марс Одиссей — 7 апреля2001 года. Искусственный спутник Марса.
    • Марс-экспресс — 2 июня2003 года. Искусственный спутник Марса.
    • Оппортьюнити — 7 июля2003 года.Марсоход.
    • Mars Reconnaissance Orbiter — 12 августа2005 года. Искусственный спутник Марса.
    • Кьюриосити — 26 ноября2011 года. Марсоход.
    • Mangalyaan — 4 ноября2013 года, искусственный спутник Марса.
    • — 18 ноября 2013 года, искусственный спутник Марса.
    • Трейс Гас Орбитер — запущен 14 марта 2016 года. Аппарат исследует и выяснит природу возникновения в атмосфере Марса малых составляющих метана, других газов и водяного пара, о содержании которых известно с 2003 года. Наличие метана, быстро разлагающегося под ультрафиолетовым излучением, означает его постоянное поступление из неизвестного источника. Таким источником могут быть ископаемые или биосфера — живые организмы.

    Юпитер

    Успешные миссии

    Текущие миссии

    Сатурн


    2 января 1959 года советская космическая ракета впервые в истории достигла второй космической скорости, необходимой для межпланетных полетов, и вывела на лунную траекторию автоматическую-межпланетную станцию «Луна-1». Это событие положило начало «лунной гонки» между двумя сверхдержавами - СССР и США.

    «Луна-1»


    2 января 1959 года СССР осуществил пуск ракеты-носителя «Восток-Л», которая вывела на лунную траекторию автоматическую межпланетную станцию «Луна-1». АМС пролетела на расстоянии 6 тыс. км. от лунной поверхности и вышла на гелиоцентрическую орбиту. Целью полёта было достижение «Луной-1» поверхности Луны. Вся бортовая аппаратура работала корректно, но в циклограмму полёта закралась ошибка, и АМП на поверхность Луны не попала. На результативности бортовых экспериментов это не отразилось. В ходе полёта «Луны-1» удалось зарегистрировать внешний радиационный пояс Земли, впервые измерить параметры солнечного ветра, установить отсутствие у Луны магнитного поля и провести эксперимент по созданию искусственной кометы. К тому же «Луна-1» стала космическим аппаратом, который сумел достичь второй космической скорости, преодолел земное притяжение и стал искусственным спутником Солнца.

    «Пионер-4»


    3 марта 1959 с космодрома на мысе Канаверал был запущен американский космический аппарат «Пионер-4», который первым совершил облёт Луны. На его борту были установлены счётчик Гейгера и фотоэлектрический сенсор для фотографирования лунной поверхности. Космический аппарат пролетел на расстоянии 60 тыс. километров от Луны на скорости 7,230 км/с. На протяжении 82 часов «Пионер-4» передавал на Землю данные о радиационной обстановке: в лунных окрестностях радиации обнаружено не было. «Пионер-4» стал первым американским космическим аппаратом, которому удалось преодолеть земное притяжение.

    «Луна-2»


    12 сентября 1959 года с космодрома Байконур стартовала автоматическая межпланетная станция «Луна-2», которая стала первой в мире станцией, достигшей поверхности Луны. Собственной двигательной установки у АМК не было. Из научного оборудования на «Луна-2» были установлены счётчики Гейгера, сцинтилляционные счётчики, магнитометры и детекторы микрометеоритов. «Луна-2» доставила на лунную поверхность вымпел с изображением герба СССР. Копию этого вымпела Н.С. Хрущев вручил президенту США Эйзенхауэру. Стоит отметить, что СССР демонстрировал модель «Луна-2» на различных европейских выставках, и ЦРУ смогло получить неограниченный доступ к модели для изучения возможных характеристик.

    «Луна-3»


    4 октября 1959 года с Байконура стартовала АМС «Луна-3», целью которой было изучение космического пространства и Луны. В ходе этого полёты впервые в истории были получены фото обратной стороны Луны. Масса аппарата «Луна-3» - 278,5 кг. На борту космического аппарата были установлены системы телеметрической, радиотехнической и фототелеметрической ориентации, позволявшие ориентироваться относительно Луны и Солнца, система энергопитания с солнечными батареями и комплекс научной аппаратуры с фотолабораторией.


    «Луна-3» совершила 11 оборотов вокруг Земли, а затем вошла в земную атмосферу и прекратила своё существование. Несмотря на низкое качество снимков, полученные фотографии обеспечили СССР приоритет в наименовании объектов на поверхности Луны. Так на карте Луны появились цирки и кратеры Лобачевского, Курчатова, Герца, Менделеева, Попова, Склодовской-Кюри и лунное море Москвы.

    «Рейнджер-4»


    23 апреля 1962 года с мыса Канаверал стартовала американская автоматическая межпланетная станция Рейнджер-4. АМС несла капсулу весом 42,6 кг, содержавшую магнитный сейсмометр и гамма- спектрометр. Американцы планировали произвести сброс капсулы в районе Океана Бурь и в течение 30 суток проводить исследования. Но бортовая аппаратуры вышла из строя, и Рейнджер-4 не смог обрабатывать команды, которые поступали с Земли. Продолжительность полёта АМС «Рейнджер-4» 63 часа и 57 минут.

    «Луна-4С»


    4 января 1963 года ракета-носитель «Молния» вывела на орбиту АМС «Луна-4С», которая должна была впервые в истории космических полётов совершить мягкую посадку на поверхность Луны. Но старт в сторону Луны по техническим причинам не произошёл, и 5 января 1963 года «Луна-4С» вошла в плотные слои атмосферы и прекратила существование.

    Рейнджер-9


    21 марта 1965 года американцы запустили Рейнджер-9, целью полёта которого было получение детальных фото лунной поверхности на последних минутах перед жёсткой посадкой. Аппарат был сориентирован таким образом, чтобы центральная ось камер полностью совпадала с вектором скорости. Это должно было позволить избежать «смазывания изображения».


    За 17,5 минут до падения (расстояние до поверхности Луны составляло 2360 км) удалось получить 5814 телевизионных изображений лунной поверхности. Работа Рейнджера-9 получила высшие оценки мирового научного сообщества.

    «Луна-9»


    31 января 1966 года с Байконура стартовала советская АМС «Луна-9», которая 3 февраля совершила первую мягкую посадку на Луне. АМС прилунился в Океане Бурь. Со станцией состоялось 7 сеансов связи, продолжительность которых составляла более 8 часов. Во время сеансов связи «Луна-9» передавала панорамные изображения лунной поверхности вблизи места посадки.

    «Аполлон-11»


    16-24 июля 1969 года состоялся полёт американского пилотируемого космического корабля серии «Аполлон». Этот полёт знаменит в первую очередь тем, что земляне впервые в истории совершили посадку на поверхность космического тела. 20 июля 1969 года в 20:17:39 лунный модуль корабля на борту с командиром экипажа Нилом Армстронгом и пилотом Эдвином Олдрином прилунился в юго-западной части Моря Спокойствия. Астронавты совершили выход на лунную поверхность, который продолжался 2 часа 31 минуту 40 секунд. Пилот командного модуля Майкл Коллинз ждал их на окололунной орбите. Астронавтами в месте посадки был установлен флаг США. Американцы разместили на поверхности Луны комплект научных приборов и собрали 21,6 кг образцов лунного грунта, который доставили на Землю. Известно, что после возвращения члены экипажа и лунные образцы прошли строгий карантин, не выявивший никаких лунных микроорганизмов.


    «Аполлон-11» привёл к достижению цели, поставленной президентом США Джоном Кеннеди – осуществить высадку на Луну, обогнав в лунной гонке СССР. Стоит отметить, что факт высадки американцев на поверхность Луны вызывает у современных учёных сомнения.

    «Луноход-1»



    10 ноября 1970 с космодрома Байконур АМС «Луна-17». 17 ноября АМС прилунилась в Море Дождей, и на лунный грунт съехал первый в мире планетоход – советский дистанционно-управляемый самоходный аппарат «Луноход-1», который был предназначен для исследования Луны и проработал на Луне 10,5 месяцев (11 лунных дней).

    За время работы «Луноход-1» преодолел 10 540 метров, двигаясь со скоростью 2 км/ч, и обследовал площадь 80 тыс. кв.м. Он передал на землю 211 лунных панорам и 25 тыс. фото. За 157 сеансов с Землёй «Луноход-1» принял 24 820 радиокоманд и произвёл химический анализ грунта в 25 точках.


    15 сентября 1971 года ресурс изотопного источника тепла исчерпался, и температура внутри герметичного контейнера лунохода начала падать. 30 сентября аппарат на связь не вышел, а 4 октября учёные прекратили попытки войти с ним в контакт.

    Стоит отметить, что битва за Луну продолжается и сегодня: космические державы разрабатывают самые невероятные технологии, планируя .

    Космические аппараты во всем своем многообразии - одновременно гордость и забота человечества. Их созданию предшествовала многовековая история развития науки и техники. Космическая эра, позволившая людям со стороны взглянуть на мир, в котором они живут, вознесла нас на новую ступень развития. Ракета в космосе сегодня - это не мечта, а предмет забот высококлассных специалистов, перед которыми стоят задачи по усовершенствованию существующих технологий. О том, какие виды космических аппаратов выделяют и чем они друг от друга отличаются, пойдет речь в статье.

    Определение

    Космические аппараты - обобщенное название для любых устройств, предназначенных для работы в условиях космоса. Есть несколько вариантов их классификации. В самом простом случае выделяют космические аппараты пилотируемые и автоматические. Первые, в свою очередь, подразделяются на космические корабли и станции. Различные по своим возможностям и назначению, они сходны во многом по строению и используемому оборудованию.

    Особенности полета

    Любой космический аппарат после старта проходит через три основных стадии: выведение на орбиту, собственно полет и посадка. Первый этап предполагает развитие аппаратом скорости, необходимой для выхода в космическое пространство. Для того чтобы попасть на орбиту, ее значение должно быть 7,9 км/с. Полное преодоление земного притяжения предполагает развитие второй равной 11,2 км/с. Именно так движется ракета в космосе, когда ее целью являются удаленные участки пространства Вселенной.

    После освобождения от притяжения следует второй этап. В процессе орбитального полета движение космических аппаратов происходит по инерции, за счет приданного им ускорения. Наконец, стадия посадки предполагает снижение скорости корабля, спутника или станции практически до нуля.

    «Начинка»

    Каждый космический аппарат оснащается оборудованием под стать тем задачам, которые он призван решить. Однако основное расхождение связано с так называемым целевым оборудованием, необходимым как раз для получения данных и различных научных исследований. В остальном оснащение у космических аппаратов схоже. В него входят следующие системы:

    • энергообеспечение - чаще всего снабжают космические аппараты необходимой энергией солнечные или радиоизотопные батареи, химические аккумуляторы, ядерные реакторы;
    • связь - осуществляется при использовании радиоволнового сигнала, при существенном удалении от Земли особенно важным становится точное наведение антенны;
    • жизнеобеспечение - система характерна для пилотируемых космических аппаратов, благодаря ей становится возможным пребывание людей на борту;
    • ориентация - как и любые другие корабли, космические оснащены оборудованием для постоянного определения собственного положения в пространстве;
    • движение - двигатели космических аппаратов позволяют вносить изменения в скорость полета, а также в его направление.

    Классификация

    Один из основных критериев для разделения космических аппаратов на типы - это режим работы, определяющий их возможности. По данному признаку выделяют аппараты:

    • размещающиеся на геоцентрической орбите, или искусственные спутники Земли;
    • те, целью которых является изучение удаленных участков космоса, - автоматические межпланетные станции;
    • используемые для доставки людей или необходимого груза на орбиту нашей планеты, называются они космическими кораблями, могут быть автоматическими или же пилотируемыми;
    • созданные для пребывания людей в космосе на протяжении длительного периода, - это ;
    • занимающиеся доставкой людей и грузов с орбиты на поверхность планеты, они называются спускаемыми;
    • способные исследовать планету, непосредственно располагаясь на ее поверхности, и передвигаться по ней, - это планетоходы.

    Остановимся подробнее на некоторых типах.

    ИСЗ (искусственные спутники Земли)

    Первыми аппаратами, запущенными в космос, были искусственные спутники Земли. Физика и ее законы делают выведение любого подобного устройства на орбиту непростой задачей. Любой аппарат должен преодолеть притяжение планеты и затем не упасть на нее. Для этого спутнику необходимо двигаться с или чуть быстрее. Над нашей планетой выделяют условную нижнюю границу возможного расположения ИСЗ (проходит на высоте 300 км). Более близкое размещение приведет к достаточно быстрому торможению аппарата в условиях атмосферы.

    Первоначально только ракеты-носители могли доставлять на орбиту искусственные спутники Земли. Физика, однако, не стоит на месте, и сегодня разрабатываются новые способы. Так, один из часто используемых в последнее время методов - запуск с борта другого спутника. В планах применение и других вариантов.

    Орбиты космических аппаратов, вращающихся вокруг Земли, могут пролегать на разной высоте. Естественно, от этого зависит и время, требуемое на один круг. Спутники, период обращения которых равен суткам, размещаются на так называемой Она считается наиболее ценной, поскольку аппараты, находящиеся на ней, для земного наблюдателя кажутся неподвижными, а значит, отсутствует необходимость создания механизмов поворота антенн.

    АМС (автоматические межпланетные станции)

    Огромное число сведений о различных объектах Солнечной системы ученые получают при помощи космических аппаратов, направляемых за пределы геоцентрической орбиты. Объекты АМС - это и планеты, и астероиды, и кометы, и даже галактики, доступные для наблюдения. Задачи, которые ставятся перед такими аппаратами, требуют огромных знаний и сил от инженеров и исследователей. Миссии АМС представляют собой воплощение технического прогресса и являются одновременно его стимулом.

    Пилотируемый космический корабль

    Аппараты, созданные для доставки людей к назначенной цели и возвращения их обратно, в технологическом плане ничуть не уступают описанным видам. Именно к этому типу относится «Восток-1», на котором совершил свой полет Юрий Гагарин.

    Самая сложная задача для создателей пилотируемого космического корабля - обеспечение безопасности экипажа во время возвращения на Землю. Также значимой частью таких аппаратов является система аварийного спасения, в которой может возникнуть необходимость во время выведения корабля в космос при помощи ракеты-носителя.

    Космические аппараты, как и вся космонавтика, непрестанно совершенствуются. В последнее время в СМИ можно было часто видеть сообщения о деятельности зонда «Розетта» и спускаемого аппарата «Филы». Они воплощают все последние достижения в области космического кораблестроения, расчета движения аппарата и так далее. Посадка зонда «Филы» на комету считается событием, сравнимым с полетом Гагарина. Самое интересное, что это не венец возможностей человечества. Нас еще ожидают новые открытия и достижения в плане как освоения космического пространства, так и строения

    Неизведанные глубины Космоса интересовали человечество на протяжении многих веков. Исследователи и ученые всегда делали шаги к познанию созвездий и космического простора. Это были первые, но значительные достижения на то время, которые послужили дальнейшему развитию исследований в этой отрасли.

    Немаловажным достижением было изобретение телескопа, с помощью которого человечеству удалось заглянуть значительно дальше в космические просторы и познакомиться с космическими объектами, которые окружают нашу планету более близко. В наше время исследования космического пространства осуществляются значительно легче, чем в те года. Наш портал сайт предлагает Вам массу интересных и увлекательных фактов о Космосе и его загадках.

    Первые космические аппараты и техника

    Активное исследование космического пространства началось с запуска первого искусственно созданного спутника нашей планеты. Это событие датируется 1957 годом, когда он и был запущен на орбиту Земли. Что касается первого аппарата, который появился на орбите, то он был предельно простым в своей конструкции. Этот аппарат был оснащен достаточно простым радиопередатчиком. При его создании конструкторы решили обойтись самым минимальным техническим набором. Все же первый простейший спутник послужил стартом к развитию новой эры космической техники и аппаратуры. На сегодняшний день можно сказать, что это устройство стало огромным достижением для человечества и развития многих научных отраслей исследований. Кроме того, вывод спутника на орбиту был достижением для всего мира, а не только для СССР. Это стало возможным за счет упорной работы конструкторов над созданием баллистических ракет межконтинентального действия.

    Именно высокие достижения в ракетостроении дали возможность осознать конструкторам, что при снижении полезного груза ракетоносителя можно достичь очень высоких скоростей полета, которые будут превышать космическую скорость в ~7,9 км/с. Все это и дало возможность вывести первый спутник на орбиту Земли. Космические аппараты и техника являются интересными из-за того, что предлагалось много различных конструкций и концепций.

    В широком понятии космическим аппаратом называют устройство, которое осуществляет транспортировку оборудования или людей к границе, где заканчивается верхняя часть земной атмосферы. Но это выход лишь в ближний Космос. При решении различных космических задач космические аппараты разделены на такие категории:

    Суборбитальные;

    Орбитальные или околоземные, которые передвигаются по геоцентрическим орбитам;

    Межпланетные;

    Напланетные.

    Созданием первой ракеты для вывода спутника в Космос занимались конструкторы СССР, причем само ее создание заняло меньше времени, чем доводка и отладка всех систем. Также временной фактор повлиял на примитивную комплектацию спутника, поскольку именно СССР стремился достичь показателя первой космической скорости ее творения. Тем более что сам факт вывода ракеты за пределы планеты был более веским достижением на то время, чем количество и качество установленной аппаратуры на спутник. Вся проделанная работа увенчалась триумфом для всего человечества.

    Как известно, покорение космического пространства только было начато, именно поэтому конструкторы достигали все большего в ракетостроении, что и позволило создать более совершенные космические аппараты и технику, которые помогли сделать огромный скачок в исследовании Космоса. Также дальнейшее развитие и модернизация ракет и их компонентов позволили достичь второй космической скорости и увеличить массу полезного груза на борту. За счет всего этого стал возможным первый вывод ракеты с человеком на борту в 1961 году.

    Портал сайт может поведать много интересного о развитии космических аппаратов и техники за все года и во всех странах мира. Мало кому известно, что действительно космические исследования учеными были начаты еще до 1957 года. В космическое пространство первая научная аппаратура для изучения была отправлена еще в конце 40-х годов. Первые отечественные ракеты смогли поднять научную аппаратуру на высоту в 100 километров. Кроме того, это был не единичный запуск, они проводились достаточно часто, при этом максимальная высота их подъема доходила до показателя в 500 километров, а это значит, что первые представления о космическом пространстве уже были до начала космической эры. В наше время при использовании самых последних технологий те достижения могут показаться примитивными, но именно они позволили достичь того, что мы имеем на данный момент.

    Созданные космические аппараты и техника требовали решения огромного количества различных задач. Самыми важными проблемами были:

    1. Выбор правильной траектории полета космического аппарата и дальнейший анализ его движения. Для осуществления данной проблемы пришлось более активно развивать небесную механику, которая становилась прикладной наукой.
    2. Космический вакуум и невесомость поставили перед учеными свои задачи. И это не только создание надежного герметичного корпуса, который мог бы выдерживать достаточно жесткие космические условия, а и разработка аппаратуры, которая могла бы выполнять свои задачи в Космосе так же эффективно, как и на Земле. Поскольку не все механизмы могли отлично работать в невесомости и вакууме так же, как и в земных условиях. Основной проблемой было исключение тепловой конвекции в герметизированных объемах, все это нарушало нормальное протекание многих процессов.

    1. Работу оборудования нарушало также тепловое излучение от Солнца. Для устранения этого влияния пришлось продумывать новые методы расчета для устройств. Также была продумана масса устройств для поддержания нормальных температурных условий внутри самого космического аппарата.
    2. Большой проблемой стало электроснабжение космических устройств. Самым оптимальным решением конструкторов стало преобразование солнечного радиационного излучения в электроэнергию.
    3. Достаточно долго пришлось решать проблему радиосвязи и управления космическими аппаратами, поскольку наземные радиолокационные устройства могли работать только на расстоянии до 20 тысяч километров, а этого недостаточно для космических пространств. Эволюция сверхдальней радиосвязи в наше время позволяет поддерживать связь с зондами и другими аппаратами на расстоянии в миллионы километров.
    4. Все же наибольшей проблемой осталась доводка аппаратуры, которой были укомплектованы космические устройства. Прежде всего, техника должна быть надежной, поскольку ремонт в Космосе, как правило, был невозможен. Также были продуманы новые пути дублирования и записи информации.

    Возникшие проблемы пробудили интерес исследователей и ученых разных областей знаний. Совместное сотрудничество позволило получить положительные результаты при решении поставленных задач. В силу всего этого начала зарождаться новая область знаний, а именно космическая техника. Возникновение данного рода конструирования было отделено от авиации и других отраслей за счет его уникальности, особых знаний и навыков работы.

    Непосредственно после создания и удачного запуска первого искусственного спутника Земли развитие космической техники проходило в трех основных направлениях, а именно:

    1. Проектирование и изготовление спутников Земли для выполнения различных задач. Кроме того, данная отрасль занимается модернизацией и усовершенствованием этих устройств, за счет чего появляется возможность применять их более широко.
    2. Создание аппаратов для исследования межпланетного пространства и поверхностей других планет. Как правило, данные устройства осуществляют запрограммированные задачи, также ими можно управлять дистанционно.
    3. Космическая техника прорабатывает различные модели создания космических станций, на которых можно проводить исследовательскую деятельность учеными. Эта отрасль также занимается проектированием и изготовлением пилотируемых кораблей для космического пространства.

    Множество областей работы космической техники и достижения второй космической скорости позволили ученым получить доступ к более дальним космическим объектам. Именно поэтому в конце 50-х годов удалось осуществить пуск спутника в сторону Луны, кроме того, техника того времени уже позволяла отправлять исследовательские спутники к ближайшим планетам возле Земли. Так, первые аппараты, которые были посланы на изучение Луны, позволили человечеству впервые узнать о параметрах космического пространства и увидеть обратную сторону Луны. Все же космическая техника начала космической эры была еще несовершенная и неуправляемая, и после отделения от ракетоносителя главная часть вращалась достаточно хаотически вокруг центра своей массы. Неуправляемое вращение не позволяло ученым производить много исследований, что, в свою очередь, стимулировало конструкторов к созданию более совершенных космических аппаратов и техники.

    Именно разработка управляемых аппаратов позволила ученым провести еще больше исследований и узнать больше о космическом пространстве и его свойствах. Также контролируемый и стабильный полет спутников и других автоматических устройств, запущенных в Космос, позволяет более точно и качественно передавать информацию на Землю за счет ориентации антенн. За счет контролируемого управления можно осуществлять необходимые маневры.

    В начале 60-х годов активно проводились пуски спутников к самым близким планетам. Эти запуски позволили более подробно ознакомиться с условиями на соседних планетах. Но все же самым большим успехом этого времени для всего человечества нашей планеты является полет Ю.А. Гагарина. После достижений СССР в строении космической аппаратуры большинство стран мира также обратили особое внимание на ракетостроение и создание собственной космической техники. Все же СССР являлся лидером в данной отрасли, поскольку ему первому удалось создать аппарат, который осуществил мягкое прилунение. После первых успешных посадок на Луне и других планетах была поставлена задача для более детального исследования поверхностей космических тел с помощью автоматических устройств для изучения поверхностей и передачи на Землю фото и видео.

    Первые космические аппараты, как говорилось выше, были неуправляемыми и не могли вернуться на Землю. При создании управляемых устройств конструкторы столкнулись с проблемой безопасного приземления устройств и экипажа. Поскольку очень быстрое вхождение устройства в атмосферу Земли могло просто сжечь его от высокой температуры при трении. Кроме того, при возвращении устройства должны были безопасно приземляться и приводняться в самых различных условиях.

    Дальнейшее развитие космической техники позволило изготовлять орбитальные станции, которые можно использовать на протяжении многих лет, при этом менять состав исследователей на борту. Первым орбитальным аппаратом данного типа стала советская станция «Салют». Ее создание стало очередным огромным скачком человечества в познании космических пространств и явлений.

    Выше указана очень маленькая часть всех событий и достижений при создании и использовании космических аппаратов и техники, которая была создана в мире для изучения Космоса. Но все же самым знаменательным стал 1957 год, с которого и началась эпоха активного ракетостроения и изучения Космоса. Именно запуск первого зонда породил взрывоподобное развитие космической техники во всем мире. А это стало возможным за счет создания в СССР ракетоносителя нового поколения, который и смог поднять зонд на высоту орбиты Земли.

    Чтобы узнать обо всем этом и многом другом, наш портал сайт предлагает Вашему вниманию массу увлекательных статей, видеозаписей и фотографий космической техники и объектов.

    Писатели-фантасты, отправлявшие своих героев к другим мирам, даже не предполагали, как быстро реализуются эти мечты. От первых запусков маленьких ракет, поднявшихся на несколько десятков метров, до первого искусственного спутника Земли про шло всего 30 лет. В наши дни многочисленные космические аппарата фотографируют поверхности далёких планет и их спутников, проводят всевозможные исследования, передавая данные на Землю. Пройдёт ещё немного времени, и в космосе появятся обширные колонии. Согласно оценкам экспертов, к 2030 г. за пределами земной атмосферы будут постоянно работать свыше 1000 человек

    Исследования Луны

    Вполне естественно, что Луна, как ближайшее к Земле небесное тело, стала первым объектом, к которому направились космические аппараты.

    Советские автоматические межпланетные станции первого поколения «Луна-1, −2, −3» не использовали ни коррекцию курса на траектории Земля — Луна, ни торможение при подлёте. Они совершали полёт напрямую. Стартовав с Земли 2 января 1959 г., станция «Луна-1» массой 361 кг впервые достигла второй космической скорости (т. е. минимальной скорости, которую должен развить стартующий с небесного тела объект, чтобы преодолеть силу его притяжения; для Земли она равна 11,19 км/с) и прошла на расстоянии около б тыс. километров от поверхности Луны.

    «Луна-2» достигла лунной поверхности 14 сентября 1959 г. вблизи центрального меридиана (место посадки этой станции теперь называется Заливом Лунника). Её приборы показали, что Луна практически не имеет собственного магнитного поля. А на борту станции «Луна-3» находилась фототелевизионная аппаратура, впервые передавшая на Землю снимки части видимого и почти 2/3 невидимого полушария. На них было большое количество дефектов, но, несмотря на это, учёным удалось выбить множество деталей на обратной стороне Луны. Открытые «Луной-3» кратеры получили названия: Циолковский, Курчатов, Джордано Бруно, Жюль Берн и др.

    Крупномасштабное фотографирование отдельных участков поверхности видимого полушария выполнил в процессе падения на Луну американские космические аппараты «Рейнджер-7, −8, −9» в 1964 и 1965 гг. Советская станция «Зонд-3» завершила фотографирование невидимого полушария.

    Первая мягкая посадка на лунную поверхность была осуществлена в феврале 1966 г. советской автоматической станцией «Луна-9». Телекамеры передали на Землю панорамы окружающего ландшафта с разрешением до нескольких миллиметров. В 1966 г. на орбиту вокруг Луны также были выведены искусственные спутники «Луна-10, -11, −12». На них были установлены приборы для исследования спектрального состава инфракрасного и гамма-излучения лунной поверхности, оборудование для регистрации метеорных частиц и др. В том же году американский аппарат «Сервейор-1» совершил мягкую посадку на Луну и в течение шести недель передавал на Землю снимки поверхности. В конце декабря 1966 г. мягкую посадку выполнила станция «Луна-13», её выносные приборы исследовали свойства лунного грунта, а телевизионные камеры фотографировали окружающую местность.

    Мягкие посадки в различных районах Луны осуществили американские космические аппараты «Сервей-ор-3,-5,-6,-7» (1967-1968 гг.), которые должны были исследовать лунную поверхность и выбрать места посадок космических кораблей серии «Аполлон». Пять американских искусственных спутников «Лунар орбитер» в 1966-1967 гг. фотографировали Луну и изучали её гравитационное поле. Детальная съёмка поверхности в районе лунного экватора, выполненная этими спутниками, также нужна была для отбора будущих мест посадок космических кораблей с астронавтами.

    Отработка элементов программы полёта на Луну проводилась сначала непилотируемыми кораблями серии «Аполлон», а затем и пилотируемыми («Аполлон-8, −9, −10»). Весил «Аполлон» 44 т и состоял из основного блока и лунной кабины, включавшей посадочную и взлётную ступени. Пилотируемые облёты Луны планировались и в нашей стране. Для отработки манёвров на орбите использовались космические аппараты «Зонд-4, −5, −6, −7, −8». Однако от этих планов отказались после того, как такие облёты совершили американские астронавты.

    Место посадки лунной кабины космического корабля «Аполлон-11» было выбрано в Море Спокойствия, где уже побывали аппараты «Рейнджер-8» и «Сервейор-5». Астронавты Нил Армстронг и Эдвин Олдрин осуществили посадку 20 июля 1969 г. Первым из кабины вышел Армстронг, произнеся при этом фразу, ставшую исторической: «Это небольшой шаг для челнока, но огромный скачок для человечества». Астронавты разговаривали президентом США, используя чешскую радиосвязь; установили сжатель лазерного излучения, сейс метр, сделали снимки, собрали 221 образцов лунного грунта. Все раб заняли у них 2 ч 30 мин. За это вр астронавты удалялись от посадочного модуля на расстояние до 100 м. В ос-г новном блоке на орбите наход Майкл Коллинз, который также пр дил научные исследования.

    Астронавты «Аполлона-12», запу-1 щенного 14 ноября 1969 г., Чарлз! Конрад и Алан Бин совершили посадку в районе Океана Бурь, недалеко от лунного экватора. В основном блоке корабля на орбите вокруг Луны оставался Ричард Гордон. Конрад и Бин дважды выходили на поверхность, установили аппаратуру для изучения сейсмической активности Луны и состава частиц солнечного ветра у её поверхности. Поскольку место посадки было выбрано рядом со станцией «Сервейор-3», которая пробыла на Луне два года семь месяцев, в задачу астронавтов входило её обследование. Они не обнаружили никаких следов разрушения станции; только слой рыже-коричневой пыли покрывал её. На этот раз было собрано 34кг образцов лунной породы.

    Экипаж «Аполлона-13» не смог выполнить посадку на Луну из-за взрыва в двигательном отсеке основного блока. Совершив облёт Луны, астронавты вернулись на Землю через семь дней.

    Советская автоматическая станция «Луна-16» в сентябре 1970 г. произвела мягкую посадку в Море Изобилия, где специальным грунтозаборным устройством была взята лунная порода весом 105 г и помещена в возвращаемый аппарат, который доставил её на Землю. В том же году станцией «Луна-17» впервые был доставлен самоходный аппарат «Луноход-1», проделавший путь длиной 10,5 км и передавший на Землю множество снимков. С помощью установленного на «Луноходе-1» лазерного уголкового отражателя удалось уточнить расстояние от Земли до Луны.

    Экспедиция «Аполлона-14» проходила с 31 января по 9 февраля 1971 г. Репортаж с места посадки лунной кабины в районе кратера Фра Мауро передавался на Землю. Астронавты Алан Шепард и Эдгар Митчелл провели на поверхности Луны 9 ч и собрали 44,5 кг пород. В августе 1971 г. у подножия лунных гор Апеннины высадился экипаж корабля «Аполлон-15». Впервые астронавты Дэвид Скотт и Джеймс Ирвин использовали для передвижения луноход, проделав на нём путь длиной 10 км, и провели многочисленные исследования. В частности, они изучали глубокое ущелье, носящее название Борозда Хэдли, однако спуститься вниз без специального снаряжения не решились.

    В апреле 1972 г. экипаж лунной кабины космического корабля «Аполлон-16» совершил посадку в материковом районе в окрестностях кратера Декарт. В декабре того же года была успешно выполнена последняя, шестая экспедиция на корабле «Аполлон-17».

    Второй самоходный аппарат «Лу-ноход-2», доставленный станцией «Луна-21» в январе 1973 г., продолжил исследования в довольно сложном районе Луны, являющемся переходным от моря к материку. С помощью бортовой телевизионной аппаратуры на Землю были переданы многочисленные панорамы и снимки окружающей местности, данные о свойствах грунта и его химическом составе. Всего было пройдено 37 км. В 1974 г. аппарат «Луна-22» выполнял изучение рельефа и гравитационного поля с орбиты искусственного спутника Луны. В том же году «Луне-23» удалось совершить посадку в районе Моря Кризисов. Исследования Луны советскими автоматическими станциями были завершены космическим аппаратом «Луна-24», выполнившим автоматическое бурение лунного грунта в Море Кризисов на глубину 2 м и доставившим на Землю 22 августа 1976 г. 170 г лунной породы.

    После этого довольно долго к Луне не было запусков ни в нашей стране, ни в США. Интересно, что лишь 14 лет спустя, в марте 1990 г., Япония с помощью ракеты «Нисан» вывела на орбиту вокруг Луны автоматический аппарат «Мусес-А» для дистанционного исследования лунной поверхности.

    К аппаратам нового поколения, создающимся с использованием сверхлёгких материалов, относится станция «Клементина», запущенная в январе 1994 г. Помимо фотографирования поверхности Луны ею выполнены измерения высот рельефа, а также уточнены толщина лунной коры, модель гравитационного поля и некоторые другие параметры.

    В недалёком будущем начнётся освоение Луны. Уже в наши дни детально разрабатываются проекты создания на её поверхности постоянно действующей обитаемой базы. Длительное или постоянное присутствие на Луне сменных экипажей такой базы позволит решать более сложные научные и прикладные задачи.

    Исследования Меркурия

    О поверхности ближайшей к Солнцу планеты ничего не было известно до полёта космического аппарата «Мари-нер-10», запущенного 3 ноября 1973 г. Вес научной аппаратуры составлял около 80 кг. Сначала аппарат был направлен к Венере, в поле тяготения которой получил гравитационный разгон и, изменив траекторию, 29 марта 1974 г. подлетел к Меркурию. Снимки поверхности, полученные в результате трёх пролётов «Маринера-10» с интервалом в шесть месяцев, показали удивительное сходство рельефа Меркурия с ближайшей соседкой Земли — Луной. Как оказалось, вся его поверхность покрыта множеством кратеров разных размеров.

    Учёных несколько разочаровало то, что атмосферы на Меркурии обнаружено не было. Найдены следы аргона, неона, гелия и водорода, но столь незначительные, что можно говорить лишь о вакууме с такой степенью разрежения, которую на Земле не умеют ещё получать.

    Во время первого пролёта, проходившего на высоте 705 км, были обнаружены ударная волна плазмы и магнитное поле вблизи Меркурия. Удалось уточнить значение радиуса планеты (2439 км) и её массы.

    21 сентября 1974 г. на довольно большом расстоянии (более 48 тыс. километров) был осуществлён второй пролёт около Меркурия. Датчики температуры позволили установить, что в течение дня, продолжительность которого составляет 88 земных суток. температура поверхности планеты поднимается до 510 °С, а ночью опускается до −210 °С. С помощью радиометра был определён тепловой поток, излучаемый поверхностью; на фоне нагретых участков, состоящих из рыхлых пород, выявлены более холодные, представляющие собой скальные породы.

    Во время третьего пролёта около Меркурия, происходившего 16 марта 1975 г. на наименьшем расстоянии −318 км, было подтверждено, что обнаруженное магнитное поле действительно принадлежит планете. Его напряжённость составляет около 1% от напряжённости земного магнитного поля. 3 тыс. фотографий, полученных на этом сеансе, имели разрешение до 50 м. Поскольку три сеанса фотографирования охватывали западное полушарие планеты, восточное оставалось неисследованным.

    В настоящее время разрабатываются проекты новых полётов космических станций к Меркурию, которые позволят изучить и его восточное полушарие.

    Исследования Венеры

    Поверхность Венеры полностью скрыта мощным облачным покровом, и только с помощью радиолокаторов возможно «увидеть» её рельеф.

    Первый спускаемый аппарат в виде сферы диаметром 0,9 м с теплозащитным покрытием был доставлен космическим аппаратом «Венера-3» в марте 1966 г. Спускаемые аппараты станций «Венера-4, −5, −6» передавали сведения о давлении, температуре и составе атмосферы во время спуска. Однако они не достигли поверхности планеты, поскольку не были рассчитаны на атмосферное давление Венеры, которое составляет, как оказалось, 90 атмосфер! И только спускаемый аппарат «Венеры-7» в декабре 1970 г. опустился наконец на поверхность Венеры и передал данные о составе атмосферы, температуре различных её слоев и поверхности, а также об изменении давления.

    В июле 1972 г. спускаемый аппарат станции «Венера-8» впервые сел на дневную сторону планеты и показал, что освещённость на её поверхности напоминает земной пасмурный день. Облака Венеры, через которые прошёл аппарат на высоте от 70 до 30 км, имели слоистую структуру и были не очень плотными.

    В октябре 1975 г. аппараты нового поколения «Венера-9, −10», совершившие мягкую посадку на расстоянии свыше 2 тыс. километров друг от друга на освещённой стороне планеты, впервые передали на Землю панорамы окружающей их местности. Масса каждого спускаемого аппарата диаметром 2,4 м составляла 1560 кг. В течение часа оставшиеся на орбите космические аппараты ретранслировали научную информацию с поверхности планеты на Землю.

    Увидеть глобальные особенности рельефа большей части поверхности Венеры люди смогли благодаря радиолокационному зондированию, выполненному с американской автоматической станции «Пионер-Венера-1» в 1978 г. На картах, составленных по результатам измерения высот поверхности, можно видеть обширные возвышенности, отдельные горные массивы и низменности.

    Интересный эксперимент был проведён на станции «Пионер-Венера-2»: с её помощью в атмосферу Венеры были сброшены один большой (диаметром 1,5 м и массой 316 кг) и три малых (диаметром 0,7 м и массой 96,6 кг) спускаемых аппарата на дневную и ночную стороны, а также в район северного полюса планеты. Аппараты передавали информацию в процессе падения, а один из малых аппаратов даже выдержал удар и передавал данные с поверхности в течение часа. Результаты этого эксперимента подтвердили, что атмосфера планеты содержит до 96% углекислого газа, до 4% азота и немного водяного пара. На поверхности был обнаружен тонкий слой пыли.

    В декабре 1978 г. проводили исследования и советские «Венера-11, −12», опустившиеся на расстоянии 800 км друг от друга. Интересными оказались данные о регистрации электрических разрядов в атмосфере планеты. Один из аппаратов выявил 25 ударов молнии в секунду, а другой около 1000, причём один из раскатов грома продолжался 15 мин. По-видимому, возникновению этих разрядов способствует высокое содержание серной кислоты в облачном покрове.

    Данные о химическом составе пород в месте посадок «Венеры-13, −14» были получены в марте 1982 г. с помощью специальных грунтозаборных устройств, поместивших породу внутрь спускаемого аппарата. Данные анализов, выполненных автоматами, были переданы на Землю, где учёные смогли сопоставить эти породы с базальтами, встречающимися в глубоководных впадинах земных океанов.

    С орбит искусственных спутников Венеры аппараты «Венера-15, −16», оборудованные радиолокационными системами, передали изображения поверхности части северного полушария планеты и данные измерений высот рельефа. В результате каждого пролёта по сильно вытянутым околополярным орбитам снималась полоса местности шириной 160 км и длиной 8 тыс. километров. По материалам этих съёмок составлен атлас поверхности Венеры, включающий карты рельефа, геологические и другие специальные карты.

    Спускаемые аппараты нового типа, состоявшие из посадочного аппарата и аэростатного зонда, были сброшены с советских станций «Ве-га-1, −2», предназначенных для проведения исследований Венеры и кометы Галлея в 1985 г. Аэростатные зонды дрейфовали на высоте около 54 км и передавали данные в течение двух суток, посадочные же аппараты провели исследование атмосферы и поверхности планеты.

    Наиболее подробные снимки всей поверхности Венеры были получены с помощью американского аппарата «Магеллан», запущенного астронавтами космического челнока «Атлантис» в мае 1989 г. Регулярная радиолокационная съёмка, проводимая в течение нескольких лет, позволила получить изображение рельефа поверхности Венеры с разрешением менее 300 м. В результате всех экспериментов, проведённых с помощью космических аппаратов, Венера, пожалуй, исследована лучше других планет.

    Исследования Марса и его спутников

    Полёт к Марсу занимает шесть — восемь месяцев. Поскольку взаимное расположение Земли и Марса всё время меняется, а минимальные расстояния между ними (противостояния) бывают только раз в два года, момент старта выбирается таким образом, чтобы Марс находился на пересечении с траекторией космического аппарата, достигшего к тому времени его орбиты.

    Первый запуск в сторону Марса был осуществлён в начале ноября 1962 г. Советский «Марс-1» прошёл на расстоянии 197 тыс. километров от красной планеты. Фотографии её поверхности были получены американским «Маринером-4», запущенным два года спустя и прошедшим 15 июля 196 5 г. на расстоянии 10 тыс. километров от поверхности планеты.

    Оказалось, что Марс тоже покрыт кратерами. Были уточнены масса планеты и состав её атмосферы. В 1969 г. аппараты «Маринер-6, −7» с расстояния 3400 км от Марса передали несколько десятков снимков с разрешением до 300 м, а также измерили температуру южной полярной шапки. которая оказалась очень низкой (-125 °С).

    В мае 1971 г. были запущены «Марс-2, −3» и «Маринер-9». Аппараты «Марс-2, −3» массой 4,65 т каждый имели орбитальный отсек и спускаемый аппарат. Мягкую посадку удалось совершить только спускаемому аппарату «Марса-3».

    Космические аппараты «Марс-2, −3» вели исследования с орбит искусственных спутников, передавая данные о свойствах атмосферы и поверхности Марса по характеру излучения в видимом, инфракрасном и ультрафиолетовом диапазонах спектра, а также в диапазоне радиоволн. Была измерена температура северной полярной шапки (ниже −110 °С); определены протяжённость, состав, температура атмосферы, температура поверхности планеты получены данные о высоте пылевых облаков и слабом магнитном поле, а также цветных изображения Марса.

    «Маринер-9» тоже был переведёт на орбиту искусственного спутник Марса с периодом около 12 ч. Он передал на Землю 7329 снимков Марс с разрешением до 100 м, а также фотографии его спутников — Фобоса Деймоса. На снимках марсианских поверхности хорошо видны гигантские потухшие вулканы, множество крупных и мелких каньонов и долин напоминающих высохшие русл; Марсианские кратеры отличаются о лунных своими выбросами, свидетельствующими о наличии подповерхностного льда, а также следам: водной эрозии и ветровой активности

    Целая флотилия из четырёх космических аппаратов «Марс-4, −5, −6, −7 запущенных в 1973 г., достигла окрестностей Марса в начале 1974 г. Из-; неисправности бортовой систем торможения «Марс-4» прошёл на расстоянии около 2200 км от поверхности планеты, выполнив только её фотографирование. «Марс-5» проводил дистанционные исследования поверхности и атмосферы с орбиты искусственного спутника. Спускаемый аппарат «Марса-6» совершил мягкую посадку в южном полушарии. На Землю переданы данные о химическом составе, давлении и температуре атмосферы. «Марс-7» прошёл на расстоянии 1300 км от поверхности, не выполнив своей программы.

    Самыми результативными были полёты двух американских «Викингов», запущенных в 1975 г. На борту аппаратов находились телекамеры, инфракрасные спектрометры для регистрации водяных паров в атмосфере и радиометры для получения температурных данных. Посадочный блок «Викинга-1» совершил мягкую посадку на Равнине Хриса 20 июля 1976 г., а «Викинга-2» — на Равнине Утопия 3 сентября 1976 г. В местах посадок были проведены уникальные эксперименты с целью обнаружить признаки жизни в марсианском грунте. Специальное устройство захватывало образец грунта и помещало его в один из контейнеров, содержавших запас воды или питательных веществ. Поскольку любые живые организмы меняют среду своего обитания, приборы должны были это зафиксировать. Хотя некоторые изменения среды в плотно закрытом контейнере наблюдались, к таким же результатам могло привести наличие сильного окислителя в грунте. Вот почему учёные не смогли уверенно отнести эти изменения за счёт деятельности бактерий.

    С орбитальных станций было выполнено детальное фотографирование поверхности Марса и его спутников. На основе полученных данных составлены подробные карты поверхности планеты, геологические, тепловые и другие специальные карты.

    В задачу советских станций «Фо-бос-1, -2», запущенных после 13-летнего перерыва, входило исследование Марса и его спутника Фобоса. В результате неверной команды с Земли «Фобос-1» потерял ориентацию, и связь с ним не удалось восстановить.

    «Фобос-2» вышел на орбиту искусственного спутника Марса в январе 1989 г. Дистанционными методами получены данные об изменении температуры на поверхности Марса и новые сведения о свойствах пород, слагающих Фобос. Получено 38 изображений с разрешением до 40 м, измерена температура его поверхности, составляющая в наиболее горячих точках 30 °С. К сожалению, осуществить основную программу по исследованию Фобоса не удалось. Связь с аппаратом была потеряна 27 марта 1989 г.

    На этом не закончилась серия неудач. Американский космический аппарат «Марс-Обсервер», запущенный в 1992 г., также не выполнил своей задачи. Связь с ним была потеряна 21 августа 1993 г. Не удалось вывести на траекторию полёта к Марсу и российскую станцию «Марс-9б». В июле 1997 г. «Марс-Пасфайндер» доставил на планету первый автоматический марсоход, который успешно исследовал химический состав поверхности и метеорологические условия.

    В 1998 г. Япония планирует запуск к Марсу орбитального аппарата «Планета-Б». На 2003 г. Европейским космическим агентством совместно с США и Россией запланировано создание сети специальных станций на Марсе. Разрабатываются программы полёта на Марс астронавтов. Такая экспедиция займёт более двух лет, поскольку, чтобы вернуться, им придётся ждать удобного взаимного расположения Земли и Марса.

    Исследования Юпитера

    Изучать планеты-гиганты с помощью космической техники начали на десятилетие позже, чем планеты земной группы. 3 марта 1972 г. с Земли стартовал американский космический аппарат «Пионер-10». Через 6 месяцев полёта аппарат успешно миновал пояс астероидов и ещё через 15 месяцев достиг окрестностей «царя планет», пройдя на расстоянии 130 300 км от него в декабре 1973 г.

    С помощью оригинального фотополяриметра получено 340 снимков облачного покрова Юпитера и поверхностей четырёх самых крупных спутников: Ио, Европы, Ганимеда и Каллисто. Помимо Большого Красного Пятна, размеры которого превышают диаметр нашей планеты, обнаружено белое пятно поперечником более 10 тыс. километров. Инфракрасный радиометр показал, что температура внешнего облачного покрова составляет 133 °С. Было обнаружено также, что Юпитер излучает в 1,6 раза больше тепла, чем получает от Солнца; уточнена масса планеты и спутника Ио.

    Исследования показали, что Юпитер обладает мощным магнитным полем; также была зарегистрирована зона с интенсивной радиацией (в 10 тыс. раз больше, чем в околоземных радиационных поясах) на расстоянии 177 тыс. километров от планеты. Притяжение Юпитера сильно изменило траекторию полёта аппарата. «Пионер-10» начал двигаться по касательной к орбите Юпитера, удаляясь от Земли почти по прямой. Интересно, что шлейф магнитосферы Юпитера был обнаружен за пределами орбиты Сатурна. В 1987 г. «Пионер-10» вышел за границы Солнечной системы.

    Трасса «Пионера-11», пролетевшего на расстоянии 43 тыс. километров от Юпитера в декабре 1974 г., была рассчитана иначе. Он прошёл между поясами и самой планетой, не получив опасной дозы радиации. На этом аппарате были установлены те же приборы, что и на предыдущем. Анализ цветных изображений облачного слоя, полученных фотополяриметром, позволил выявить особенности и структуру облаков. Их высота оказалась различной в полосах и расположенных между ними зонах. Согласно исследованиям «Пионера-11», светлые зоны и Большое Красное Пятно характеризуются восходящими течениями в атмосфере. Облака в них расположены выше, чем в соседних областях полос, и здесь холоднее.

    Притяжение Юпитера развернуло «Пионер-11» почти на 180°. После нескольких коррекций траектории полёта он пересёк орбиту Сатурна недалеко от самой планеты.

    Уникальное взаимное расположение Земли и планет-гигантов с 1976 по 1978 г. было использовано для последовательного изучения этих планет. Под влиянием полей тяготения космические аппараты смогли переходить с трассы полёта от Юпитера к Сатурну, затем к Урану и Нептуну, Без использования гравитационных полей промежуточных планет полёт к Урану занял бы 16 лет вместо 9, а к Нептуну — 20 лет вместо 12. В 1977г. в длительное путешествие отправились аппараты «Вояджер −1, −2», причём «Вояджер-2» был запущен раньше, 20 августа 1977 г., по «медленной» траектории, а «Вояджер-1» — 5 сентября 1977 г. по «быстрой».

    «Вояджер-1» совершил пролёт около Юпитера в марте 1979 г., а «Вояд-жер-2» прошёл мимо гиганта на четыре месяца позже. Они передали на Землю снимки облачного покрова Юпитера и поверхностей ближайших спутников с удивительными подробностями. Атмосферные массы красного, оранжевого, жёлтого, коричневого и синего цветов постоянно перемещались. Полосы вихревых потоков захватывали друг друга, то сужаясь, то расширяясь. Скорость перемещения облаков оказалась равной 11 км/с. Большое Красное Пятно вращалось против часовой стрелки и делало полный оборот за 6 ч. «Вояджер-1» впервые показал, что у Юпитера имеется система бледных колец, расположенных на расстоянии 57 тыс. километров от облачного покрова планеты, а на спутнике Ио действуют восемь вулканов. «Вояджер-2» сообщил спустя несколько месяцев, что шесть из них продолжают активно действовать. Фотографии других галилеевых спутников — Европы, Ганимеда и Каллисто — показали, что их поверхности резко отличаются друг от друга.

    Американский космический аппарат «Галилео», доставленный на околоземную орбиту в грузовом отсеке корабля многоразового использования «Атлантис», представлял собой аппарат нового поколения для исследования химического состава и физических характеристик Юпитера, а также для более детального фотографирования его спутников. Аппарат состоял из орбитального модуля для длительных наблюдений и специального зонда, который должен был проникнуть в атмосферу планеты. Траектория «Галилео» была довольно сложной. Сначала аппарат направился к Венере, мимо которой прошёл в феврале 1990 г. Затем по новой траектории в декабре он вернулся к Земле. Были переданы многочисленные фотографии Венеры, Земли и Луны.

    В октябре 1991 г., проходя через пояс астероидов, аппарат сфотографировал малую планету Гаспра. Вернувшись к Земле второй раз в декабре 1992 г. и получив новое ускорение, он устремился к основной цели своего путешествия — Юпитеру. Оказавшись в августе 1993 г. снова в поясе астероидов, он сфотографировал ещё одну малую планету, Иду.

    Спустя два года «Галилео» достиг окрестностей Юпитера. По команде с Земли от него отделился спускаемый зонд и в течение пяти месяцев совершал самостоятельный полёт к границам атмосферы Юпитера со скоростью 45 км/с. За счёт сопротивления её верхних слоев в течение двух минут скорость снизилась до нескольких сот метров в секунду. При этом перегрузки превосходили земную силу тяжести в 230 раз. Аппарат проник в атмосферу на глубину 156 км и функционировал в течение 57 мин. Данные об атмосфере ретранслировались через основной блок «Галилео».

    Исследования Сатурна

    Первым космическим аппаратом, посетившим окрестности Сатурна, был «Пионер-11», который 1 сентября 1979 г. прошёл на расстоянии 21 400 км от облачного слоя планеты. Магнитное поле Сатурна оказалось сильнее земного, но слабее, чем у Юпитера. Была уточнена масса Сатурна. По характеру поля тяготения сделан вывод, что внутреннее строение Сатурна похоже на строение Юпитера. По данным измерений инфракрасного излучения учёные определили температуру видимой поверхности Сатурна. Она оказалась равной 100 К, и этот факт свидетельствовал о том, что планета излучает приблизительно в два раза больше тепла, чем получает от Солнца. В высоких широтах Сатурна предполагалось наличие полярных сияний.

    Впервые были получены изображения Титана, самого крупного из семейства спутников Сатурна, но, к сожалению, разрешение было очень низким.

    Необычно выглядели фотографии колец. К аппарату была обращена не освещённая Солнцем сторона колец, поэтому приборы фиксировали свет, не отражённый от колец, а прошедший сквозь них.

    «Пионер-11» покинул Солнечную систему, но слабые сигналы с него ещё улавливаются земными антеннами.

    Более качественные изображения были получены во время пролёта двух «Вояджеров», которые под действием притяжения Юпитера изменили свои траектории и направились к Сатурну. На снимках облачного покрова планеты видны завихряющиеся полосы, вихри, ореолы и пятна разных цветов — от жёлтого до коричневого, напоминающие образования на Юпитере. Обнаружено и красное пятно поперечником около 1250 км, а также быстро исчезающие тёмные овальные образования. «Вояджер- 1» впервые показал, что система колец Сатурна состоит из тысяч отдельных узких колечек, обнаружил шесть новых спутников и, пройдя на расстоянии 4030 км от Титана, установил, что основным компонентом его атмосферы является азот, а не метан, как предполагалось ранее. Получены интересные данные и о некоторых других спутниках Сатурна: Тефии, Мимасе, Дионе, Рее и Энцеладе. «Вояджер-1» выполнил основные задачи и отправился за пределы Солнечной системы.

    Ни самое близкое расстояние к Сатурну подошёл «Вояджер-2». В системе его колец оказалось ещё больше отдельных колечек, состоящих из бесчисленного множества частиц льда, крупных и мелких обломков. На спутнике Тефия «Вояджер-2» обнаружил крупнейший кратер во всей системе

    Сатурна диаметром 400 км и глубиной 16 км. После встречи с Сатурном траектория полёта «Вояджера-2» была изменена таким образом, чтобы он в январе 1986 г. прошёл около Урана.

    Новые исследования Сатурна, его колец и спутников запланированы в проекте, названном «Кассини». Запуск аппарата намечен на октябрь 1997 г. По сложной траектории аппарат достигнет окрестностей Сатурна в июне 2004 г. и будет проводить исследования в течение четырёх лет. Самым интересным в проекте является спуск специального зонда в атмосферу Титана.

    Исследования Урана

    В окрестностях Урана побывал только один космический аппарат «Вояджер-2», пролетевший на расстоянии 81 200 км от внешнего покрова облаков. Траектория аппарата была почти перпендикулярна плоскости, в которой находятся спутники, поэтому с близкого расстояния удалось сфотографировать только Миранду, самый маленький из известных до этого полёта спутников. Напряжённость магнитного поля Урана оказалась больше, чем у Сатурна, а интенсивность поясов радиации такая же, как у поясов Земли. В ультрафиолетовой области спектра зарегистрировано свечение атмосферы Урана, простирающееся на 50 тыс. километров от планеты.

    Как и у других планет-гигантов, в атмосфере Урана обнаружены вихри, струйные течения, пятна (но их гораздо меньше), а в глубине её зарегистрированы метановые облака. Гелия оказалось в три раза меньше, чем предполагалось ранее: всего 15%. Циркуляция атмосферы происходит в высоких широтах с большей скоростью, чем у экватора.

    Девять колец Урана были известны ещё по наземным наблюдениям покрытий звёзд планетой. «Вояджер-2» обнаружил десятое кольцо шириной 3 км и несколько неполных колец тёмного цвета. Частицы, слагающие кольца, имеют в поперечнике около 1 м.

    Получены изображения пяти ранее известных спутников и десяти новых, небольших по размерам. На Обероне обнаружено несколько крупных кратеров и гора высотой около 6000 м, на Титании — многочисленные кратеры и долины. Поверхность Умбриэля очень гладкая, на ней видны кратеры и светлое пятно. Сильно кратерированная поверхность Ариэля со следами различных геологических процессов напоминает спутник Сатурна Энцелад. Наиболее сложной оказалась поверхность Миранды, испещрённая бороздами, хребтами и разломами глубиной несколько километров. Такая активная тектоническая деятельность оказалась неожиданной на спутнике, диаметр которого меньше 500 км.

    Под действием поля тяготения Урана траектория «Вояджера-2» снова изменилась, и он направился к Нептуну.

    Исследования Нептуна

    К моменту встречи с Нептуном 25 августа 1989 г. «Вояджер-2» преодолел расстояние 4,5 млрд километров. Несмотря на долгий путь, занявший 12 лет, и многочисленные коррекции траектории при перелёте от Юпитера к Сатурну и Урану, «Вояджер» оказался на минимальном расстоянии от Нептуна (менее 5 тыс. километров) в точно рассчитанное на Земле время.

    На цветных снимках, синтезированных на основе слабых сигналов с «Вояджера», видимая поверхность Нептуна представляет собой плотный облачный слой голубого цвета с полосами и белыми и тёмными пятнами. Сильный вихревой шторм размером с нашу планету вращается против часовой стрелки. У Нептуна обнаружено магнитное поле, ось магнитных полюсов отклонена на 50° от оси вращения планеты. «Вояджер-2» выявил у Нептуна также пять слабых колец.

    По наземным исследованиям были известны лишь два спутника: Тритон и Нереида, обращающиеся вокруг Нептуна в обратном направлении. «Вояджер» открыл ещё шесть спутников размерами от 200 до 50 км, вращающихся в том же направлении, что и Нептун. У Тритона и Нереиды в ультрафиолетовом диапазоне обнаружены явления, напоминающие земные полярные сияния.

    Тритон имеет очень тонкую газовую оболочку, верхний слой которой состоит из азота. В нижних слоях обнаружены метан и твёрдые частицы азотных образований. Наряду с кратерами на его поверхности открыты действующие вулканы, каньоны и горы.

    «Вояджер-2» продолжает исследование космического пространства за пределами Солнечной системы. Учёные надеются получать сведения с этого космического аппарата до 2013 г.

    Загрузка...