domvpavlino.ru

Как самому сделать хороший сетевой фильтр? Фильтр питания Качественный сетевой фильтр своими руками

Если говорить совсем простым языком, то сетевой фильтр – это такой тройник с выключателем, очень часто применяется для подключения компьютера к электросети. Данное устройство можно встретить на прилавках магазинов электротоваров, а также уже подключенным к розетке в квартирах и домах. Но для чего нужен сетевой фильтр и что в нем особенного? Об этом мы и поговорим далее.

Предназначение сетевого фильтра

Известно, что у вас в розетке имеется сеть переменного тока напряжением в 220 Вольт. «Переменное ()» значит, что его величина и/или знак непостоянны, а меняются с течением времени по определенному закону.

Природа генерирующих электрических машин (генераторов) такова, что на выходных клеммах генерируется ЭДС синусоидальной формы. Однако всё было бы хорошо, если бы все устройства имели резистивный характер, отсутствовали пусковые токи, и не имели в своем составе импульсных преобразователей. К сожалению, так не бывает, т.к. большинство устройств имеют индуктивный, емкостной характер, щёточные двигателя, импульсные источники вторичного питания. Весь этот замысловатый набор слов – это главные виновники электромагнитных помех.

Мы начали статью с речи об электромагнитных помехах не просто так. Эти помехи «портят» ровную форму синусоиды. Образуются так называемые гармоники. Если разложить реальный сигнал из розетки в виде ряда Фурье мы увидим, что синусоида дополнилась различными функциями, различной частоты и амплитуды. Форма напряжения в настоящей розетке стала далека от идеальной.

Ну и что в итоге? Плохое электропитание – проблема для радиопередающих устройств. Попросту ваш телевизор или радиоприемник будет работать с помехами. Кроме помех от потребителей в сети присутствуют помехи случайного происхождения, которые мы не можем предугадать. Это всплески, перепады напряжения от перебоев электроснабжения, включения мощной нагрузки и т.д.

Читайте также: Принцип работы стиральной машины - или как ее придумали

Сетевой фильтр нужен для того, чтобы:

  1. Отфильтровать помехи для чистого питания устройств.
  2. Снизить помехи, исходящие от питающих приборов.

Как работает сетевой фильтр

Фильтрация ненужных составляющих сигнала осуществляется, как это ни странно, специальными фильтрами, их собирают из индуктивностей (L) и конденсаторов (С). Ограничение всплесков высокого напряжения – варисторами. Это работает благодаря таким электротехническим понятиям – постоянная времени и законы коммутации, реактивное сопротивление.

Постоянная времени – это время, за которое заряжается конденсатор или накапливает энергию индуктивность. Зависит от элементов фильтра (R, L и C). Реактивное сопротивление – это сопротивление элементов, которое зависит от частоты сигнала, а также от их номинала. Присутствует у индуктивностей и конденсаторов. Обусловлено только передачей энергии переменного тока электрическому или магнитному полю.


Простыми словами – с помощью реактивного сопротивления можно снизить, ограничить высокочастотные гармоники нашей синусоиды. Известно, что в розетке частота питания 50 Гц. Значит нужно рассчитывать фильтр на частоты на порядок выше и более. У индуктивности сопротивление растет с ростом частоты, у конденсатора – падает. То есть принцип работы сетевого фильтра заключается в подавлении высокочастотных составляющих сетевой синусоиды, при этом оказывая минимальное влияние на основную 50 Гц составляющую.

Смотрим что внутри

Мы разобрались, где применяется сетевой фильтр, поэтому теперь давайте разберемся, из чего состоит реальный сетевой фильтр, абстрагируемся от теории.

  1. Фильтр помех.
  2. Кнопка или тумблер.
  3. Варистор .
  4. Розеточная группа.
  5. Сетевой шнур.

Внутренности дорогого и качественного фильтра, обратите внимание на батарею конденсаторов справа и размеры дросселя по центру:


Пойдем по порядку – фильтр. Конструкция такого элемента представляет собой LC-фильтр. Нулевой и фазные провода из розетки подключатся к катушке индуктивности (каждый к своей), а между ними 1 и больше конденсаторов. Типовые номиналы деталей:

  • индуктивность каждой катушки – 50-200 мкГн;
  • конденсаторы 0,22-1 мкФ.

Читайте также: Управление люстрой по двум проводам | Электрика и слаботочка

Варистор – это полупроводниковый элемент с нелинейной ВАХ. При достижении определенного напряжения, приложенного к нему, защищает нагрузку кратковременным замыканием входных цепей питания, принимая «удар» на себя. Нужен для того, чтобы сберечь вашу технику от «плохого питания». Чаще всего применяется варистор на 470 Вольт. Принцип действия такой защиты очевиден – при скачках напряжения цепи питания защищаемой нагрузки шунтируются варистором.

Содержимое дешевого фильтра, здесь вообще нет дросселя – его эффективность минимальна, но всё еще есть варистор (голубой в центре кадра), и он спасет от скачков напряжения:

Для чего нужен тумблер, если всё может работать и без него? Просто чтобы вы не дергали каждый раз вилку из розетки, ведь, чаще всего через сетевой фильтр подключается стационарное оборудование. Это снизит износ контактных пластин розетки.

Принципиальная схема сетевого фильтра:

Где применяется фильтр и что делать, если его нет

Дело в том, что в качественных блоках питания он должен быть установлен, прям на плате и тем более на БП высокой мощности, например компьютерных. Но, к сожалению, ваши зарядные устройства для смартфона, БП от ноутбука, люминесцентных и светодиодных ламп чаще всего не имеют их в своем составе. Это связано с тем, что китайские производители упрощают схемы своих устройств для снижения их себестоимости. Часто бывает, что на плате есть места для деталей, назначение которых фильтровать помехи, но они просто не распаяны и вместо них стоят перемычки. Компьютерные блоки – это отдельная тема, схема практически у всех одна, но исполнение разное, и в самых дешевых моделях фильтр отсутствует.

Вы можете снизить помехи вашего телевизора или другого устройства которое хотите защитить и улучшить свойства его электропитания дополнив обычный удлинитель таким фильтром. Его можно собрать самому или извлечь из хорошего, но ненужного или неисправного БП.

Для предотвращения помех от электро - и радиоприборов необходимо снабдить их фильтром для подавления помех от питающей сети, расположенным внутри аппаратуры, что позволяет бороться с помехами в самом их источнике.

Если не удастся отыскать готовый фильтр, его можно сделать самостоятельно. Схема помехоподавляющего фильтра представлена на рисунке ниже:

Фильтр двухкаскадный. Первый каскад выполнен на основе продольного трансформатора (двухобмоточного дросселя) Т1, второй представляет собой высокочастотные дроссели L1 и L2. Обмотки трансформатора Т1 включены последовательно с линейными проводами питающей сети. По этой причине низкочастотные поля частотой 50 Гц в каждой обмотке имеют противоположные направления и взаимно компенсируют друг друга. При воздействии помехи на провода питания, обмотки трансформатора оказываются включенными последовательно, а их индуктивное сопротивление XL растет с увеличением частоты помех: XL = ωL = 2πfL, f - частота помех, L - индуктивность включенных последовательно обмоток трансформатора.

Сопротивление конденсаторов C1, С2, наоборот, уменьшается с ростом частоты (Хс =1/ωС =1/2πfC), следовательно, помехи и резкие скачки «закорачиваются» на входе и выходе фильтра. Такую же функцию выполняют конденсаторы СЗ и С4.

Дроссели LI, L2 представляют еще одно последовательное дополнительное сопротивление для высокочастотных помех, обеспечивая их дальнейшее ослабление. Резисторы R2, R3 уменьшают добротность L1, L2 для устранения резонансных явлений.

Резистор R1 обеспечивает быстрый разряд конденсаторов C1-С4 при отключении сетевого шнура от питающей сети и необходим для безопасного обращения с устройством.

Детали сетевого фильтра размещены на печатной плате, показанной на рисунке ниже:

Печатная плата рассчитана на установку промышленного продольного трансформатора от блоков персональных компьютеров. Можно изготовить трансформатор самостоятельно, выполнив его на ферритовом кольце проницаемостью 1000НН...3000НН диаметром 20...30 мм. Кромки кольца обрабатывают мелкозернистой шкуркой, после чего кольцо обматывают фторопластовой лентой. Обе обмотки наматывают в одном направлении проводом ПЭВ-2 диаметром 0,7 мм и имеют по 10...20 витков. Обмотки размещены строго симметрично на каждой половине кольца, зазор между выводами должен быть не менее 3...4 мм. Дроссели L2 и L3 также промышленного производства, намотаны на ферритовых сердечниках диаметром 3 мм и длиной 15 мм. Каждый дроссель содержит три слоя провода ПЭВ-2 диаметром 0,6 мм, длина намотки 10 мм. Чтобы витки не сползали, дроссель пропитан эпоксидным клеем. Параметры намоточных изделий выбраны из условия максимальной мощности фильтра до 500 Вт. При большей мощности размеры сердечников фильтра и диаметр проводов необходимо увеличить. Придется изменить и размеры печатной платы, однако всегда следует стремиться к компактному размещению элементов фильтра.

Сетевой фильтр – это электрическая схема, реализующая функционал низкочастотного фильтра для цепей питания переменным током 220 В (сети бытового назначения).

Суть работы устройства сводится к тому, чтобы отсечь побочные электромагнитные излучения и наводки (ПЭМИН), возникающие вследствие облучения электрических проводов бытовой сети питания сторонними радиоизлучающими приборами (радиостанции, ретрансляторы, базовые станции для беспроводного Интернета и т.п.) или мощной бытовой техникой без надлежащей защиты цепи питания (кондиционеры, холодильники, сплит-системы и др.).

Возникающие в сети питания ПЭМИН могут оказывать губительное влияние на работу других слаботочных приборов (цифровой техники, телевизоров, радиоприемников и т.п.) или вызывать помехи в приеме различных сигналов.

Кроме того, ПЭМИН могут стать источником утечки конфиденциальной информации, например, в работе спецтехники (информация может перехватываться по цепям питания или заземления).

Защитить приборы поможет сетевой фильтр, который выполняет сразу две функции:

  1. отсекает высокочастотные сторонние сигналы в цепи питания,
  2. предохраняет приборы от скачков напряжения.

Многие часто сталкиваются с сетевыми фильтрами, встроенными в электрический удлинитель. Однако, производители и/или продавцы зачастую вводят в заблуждение покупателей.

Недорогие модели удлинителей на самом деле не выполняют заявленных функций фильтров, они лишь обеспечивают защиту от кратковременных перегрузок при повышении напряжения или силы тока (короткого замыкания).

В состав таких «сетевых фильтров» входит всего один варистор (элемент электрической цепи, который реализует функцию переменного резистора, повышающего свое сопротивление при увеличении прикладываемого к нему напряжения) и автоматического выключателя (предохранителя, срабатывающего при резком увеличении силы тока). Помочь такое устройство сможет только, например, от помех, создаваемых разрядом молнии во время грозы.

Устройства, в полной мере реализующие функционал сетевых фильтров стоят гораздо дороже своих упрощенных аналогов. Так, сетевыми фильтрами можно назвать продукцию компании Pilot (серии начиная с Pilot L, Pilot GL и др., исключая Pilot S), цены на которую стартуют с 1 тыс. руб. Или аналоги от APC, IPPON, BURO и др.

По этой причине возникает вполне закономерное желание изготовить недорогой, но при этом не менее функциональный сетевой фильтр своими руками.

Что потребуется — подбор инвентаря и схем

В первую очередь можно переделать под высокочастотную (ВЧ) фильтрацию купленный недорогой фильтр с варисторной защитой.

Для его модификации понадобятся:

  • Катушки индуктивности / дроссели,
  • Варистор (можно оставить имеющийся в удлинителе, если он там был),
  • Конденсаторы,
  • Резисторы,
  • Ферритовый фильтр.

Схема сетевого фильтра 220в

Простой варисторный фильтр выглядит так.

Возможны две простые его модификации.

Вторая схема на LC-фильтре:

Такие элементы и схемы выбраны не случайно, так как все комплектующие могут поместиться в старый корпус удлинителя без необходимости монтирования отдельного корпуса на проводе и т.п.

Принцип работы, как и всех низкочастотных LC-фильтров, прост:

  1. Высокочастотные колебания, попадая на катушку индуктивности, повышают ее сопротивление и потому не проходят дальше (сопротивление индукции прямо пропорционально частоте),
  2. Попадая на контакты конденсатора высокие частоты гасятся при правильном подборе емкости (сопротивление емкости при таком подключении обратно пропорционально частоте колебаний электрического тока).

На обоих схемах параллельно конденсатору включается резистор с большим сопротивлением. Он выполняет роль нагрузки для конденсатора при отключении питания (на конденсаторе может накапливаться свободный заряд, который будет опасен даже после полного отключения фильтра от сети переменного тока).

Ферритовый фильтр лучше всего приобрести разъемным по диаметру кабеля удлинителя. Его назначение в работе схемы – гашение высокочастотных помех по цепи питания за счет повышения индуктивности проводника, а также поглощения излучений самим ферритом. Это отличное решение для подключения к сети питания цифровой техники.

Возможны и другие реализации сетевого электрического фильтра . В качестве примера можно привести схемы, используемые в технике Pilot.

Инструкция по сборке простого сетевого фильтра своими руками

Собрать фильтр из указанных схем (рис.2 и рис.3) достаточно просто, для этого не понадобится печатных плат или отдельного корпуса на удлинителе. При правильном подборе габаритов элементов и их компоновке можно уместить их в корпусе недорогого варисторного сетевого фильтра.

Имеющаяся цепь разрезается (контакты от варистора к розеткам, сам варистор оставляется), элементы размещаются в соответствие со схемой и спаиваются.

Должно получится так по схеме из рис.2:

Только катушки индуктивности необходимо разместить перпендикулярно друг другу.

Элементы схем

Касательно схемы с рис.2. Сопротивления R1 и R2 следует подбирать исходя из предполагаемой нагрузки. Например, при фактической мощности потребителя до 250 Вт, подойдут резисторы 0,82 Ом, до 380 Вт – 0,36 Ом, до 500 Вт – 0,22 Ом. Если планируется большая мощность – резисторы можно исключить из схемы, однако работа дросселей ухудшится.

Дроссели L1 и L2 – должны иметь ферритовый сердечник, показатель максимально допустимого тока должен быть не менее планируемого тока нагрузки, индуктивность – от 10 мкГн до 10 мГн (лучше всего в большую сторону, то есть чем больше, тем лучше, но до 10 мГн).

Конденсаторы C1 и C2 можно объединить в один, если позволяет свободное место и показатели. Или наоборот, набрать несколькими параллельно соединенными, если позволяет свободное место. Лучше всего использовать пленочные емкости от 0,22 до 1 мкФ. Максимально допустимое напряжение лучше взять с запасом (на случай помех со скачками напряжения), например, до 680 В.

Сопротивление R3 должно быть в пределах 0,5-1,5 МОм. Мощность тоже лучше взять с запасом для лучшей теплоотдачи – 0,5 Вт.

В схеме на рис.3 изменяются конденсатор и катушки, последние обладают самыми оптимальными показателями индуктивности при миниатюрных габаритах и стоящих перед ними задач. Соответственно меньше деталей к пайке.

Меры предосторожности — что стоит учесть

Самодельный сетевой фильтр 220в своими руками – это сложное техническое устройство. Его сборка невозможна без знаний в области электротехники.

Все работы должны проводиться с соблюдением мер безопасности. В противном случае возможно поражение электрическим током.

Как и было сказано выше, конденсаторы рассчитаны на высокое напряжение. Они могут накапливать остаточный заряд. Удар током будет возможен даже после полного отключения фильтра от сети переменного тока. Поэтому наличие параллельно включенного сопротивления обязательно!

Перед пайкой следует убедиться в исправности всех элементов (тестером замеряются основные параметры и сравниваются с заявленными).

Не стоит допускать пересечения проводов, особенно в местах потенциального нагрева (на резисторах, оголенных контактах и т.п.). Перед включением в сеть обязательно следует убедиться («прозвонить» тестером) в отсутствии замыкания.

В последние годы ваш HiFi или даже High-End аудио комплекс всё меньше радует детальностью, сочностью и прозрачностью звучания? Вы подумываете обновить всю систему? Или вы уже подыскиваете качественный сетевой фильтр ? Если последнее - вы на верном пути 😉

Посчитаем?

В этом веке количество источников электромагнитных помех в наших домах растёт по экспоненте. Оглядитесь, попробуйте посчитать, сколько на вид безобидных лёгких и маленьких зарядных устройств, экономичных ламп, "электронных трансформаторов" для галогенок, компьютеров, принтеров, и прочей электроники с питанием от сети и/или всевозможными "зарядниками" пришло в ваш дом за последнее десятилетие? Пальцев не хватило, даже вместе с ногами, женой и... то-то! 🙂

Сегодня пожалуй 95% источников сетевого питания построены на базе высокочастотного преобразователя и не используют старые громоздкие и тяжёлые, гудящие трансформаторы на 50 (60) Герц. Ура, партия зелёных торжествует: большинство таких преобразователей весьма экономичны, компактны и... каждый такой импульсный блок питания а ) свистит на частоте преобразования и гармониках и б ) создаёт броски зарядного тока во входном выпрямителе (весьма широкополосная помеха - и прямиком в сеть).

В по-настоящему качественных (и дорогих) импульсных источниках питания с помехами борются весьма успешно, но всё равно недостаточно, чтобы весь производимый ими электромусор остался незаметным для чувствительных ушей меломана. Да что там меломаны... У нас в доме старый добрый 39-мегагерцовый радио-телефон. Постепенно он начал гудеть и жужжать так, что я серьёзно собирался сменить аппарат. Но пользуемся мы им относительно редко и проблема однажды решилась сама собою, когда я в погоне за красивым звуком повырубал к чертям все импульсные блоки питания вкупе с компьютерами в доме. После того эксперимента, кстати, и появились у нас вот эти .

Так что же покупить?

В этой статье я не подскажу, какой сетевой фильтр надо покупать. Причины две: за разумные деньги я не встречал адекватных фильтров; а те фильтры, что я мог бы порекомендовать - стоили совершенно несообразно, да и места занимали много больше, чем выполняемая ими функция того требует. Тем не менее решение существует: для умелых рук - собирать фильтры самому, и я постараюсь разъяснить его работу настолько, что любой, кто дружен с паяльником, сможет снабдить свою аппаратуру адекватной защитой от электромагнитных помех, проникающих из питающей сети. Если же вы не имеете возможности, либо желания дышать канифолью - покажите статью товарищу, который сможет вам помочь.

Грамотные производители должны были всё предусмотреть!

Фиг-вам! (изба такая индейская (с) кот Матроскин)

Открываем CD-проигрыватель, купленный в своё время за шесть сотен "зелёных". И что мы видим: рудиментарный сетевой фильтр тут имеется, но увы, лишь нарисованный шелкографией на плате, на дросселе и конденсаторах сэкономили. Вполне допускаю, что в их комнатах прослушивания, с идеальной фильтрацией питания, фильтр тот был и не нужен - не услышали "гуру" разницы от отсутствия фильтра. Ну и внесли "рацуху" - пошёл аппарат в массы голенький и беззащитный супротиву нового поколения электронных домов...

За работу!

В принципе, качественные фильтры промышленность выпускает. Только стОят они опять же дороговато. Этакие полностью экранированные коробочки со схемкой на боку. Катушечки там, конденсаторчики. Давайте же разберёмся, что там для чего, и соберём сами из доступных деталюх. Кстати, в пику аудиоманьякам я утверждаю, что грамотный сетевой фильтр в устройстве, собранный из качественных обычных (не аудиофильских) компонентов - гораздо эффективнее и "звучит" лучше, нежели любые самые эзотерические кабели питания, а так же и большинство "аудиофильских" же фильтров питания. Спорим? 😉

Скажи мне, кто твой враг

1) Дифференциальное напряжение помехи. Это такой "вредный" сигнал, который приходит вместе с "полезным" напряжением питания (или сигналом), его измеряют между двумя соединительными проводниками, "горячим" и "общим" проводами, или проще говоря - между двумя шинами питания.

2) Синфазное напряжение помехи. Этот сигнал измеряется между корпусом прибора (землей) и любым соединительным проводником. Особенность этой помехи в том, что она будет идентична на обоих проводах питания, т.е. в отличие от дифференциальной помехи её не поймать между проводами и она просачивается внутрь в обход обычных фильтров.

Блокировочный конденсатор

Конденсатор шунтирует дифференциальные ВЧ помехи и не пускает их дальше в аппарат. Надо не забыть разрядить его при выключении аппарата, а то взявшись нечаянно за вилку можно получить весьма ощутимую "мотивацию". Для этого ставим резистор, мирно греющийся в нормальном режиме работы. Ох не водить мне дружбы с "зелёными"...

Дроссель

Индуктивность (обыкновенный небольшой дроссель) формирует уже Г-образный LP фильтр с совместно с конденсатором. Конкретная частота среза фильтра нас не очень интересует. Дроссель потолще (лишь бы был рассчитан на _постоянный_ ток в несколько раз выше тока, потребляемого аппаратом), конденсатор побольше на напряжение не менее 310 вольт - и все довольны.

Синфазный трансформатор

Обмотки в таком трансформаторе идентичны и включены встречно, таким образом он беспрепятственно пропускает всё, что приходит как разница потенциалов между L и N. Иначе можно объяснить так: нормальный ток нагрузки создаёт встречные идентичные поля в сердечнике, которые взаимно компенсируются. Тогда зачем это всё - спросите вы?

Сердечник такого трансформатора остаётся неподмагниченным основной нагрузкой. Если же представить себе провода питания L и N вместе как один провод - то мы имеем немалую индуктивность на пути уже синфазной помехи, т.е. всего того, что наводится на обоих проводах одновременно. Провода же те, будь то обычный кабель питания за доллар, или экзотическое аудиофильское чудо - суть антенна, принимающая и станцию "Маяк", и всё, что излучают домашние электронные вонючки. Внутри же аудио агрегата нам и синфазная помеха ни к чему: через емкостную связь она может проникать в кишочки наших любимцев весьма агрессивно.

Два маленьких компаньона

Два маленьких конденсатора в компанию синфазному трансформатору. Они закорачивают на защитное заземление именно синфазную помеху и создают уже вкупе с синфазным трансформатором тоже своего рода Г-образный фильтр для синфазной помехи, не пускают её дальше в аппарат. Без них синфазная помеха, пусть и встретившая на своём пути немалое сопротивление нашего трансформатора - всё равно пойдёт искать свою жертву внутрь аппарата.

Антизвон

Антизвонная цепочка, или RC-цепь Цобеля. Несколько мистический зверёк, но очень полезный. Тут совместно с первичной обмоткой трансформатора в аппарате мы формируем колебательный контур с низкой добротностью, чтобы "поймать" то, что "выскочит" из первички при отключении питания. Искрогаситель. Защита остального фильтра и самого трансформатора от ЭДС самоиндукции при отключении в неудачный момент (при большом токе через первичку). Он так же вносит свою лепту в перевод ВЧ помех в тепло.

Не было бы конденсатора - такой низкоомный резистор просто взорвался бы от напряжения сети. Не было бы резистора - получили бы относительно высокодобротный контур совместно с первичкой и/или дросселем фильтра.

Другой взгляд: привносим чисто резистивную и весьма низкоомную составляющую импеданса нагрузки на ВЧ... Кто может объяснить лучше - милости прошу, помещу "в книжку" с сохранением авторства 😉

#ground_loop

Разрываем контур заземления

Резистор в параллель со встречно включенными диодами. В другой версии это мог бы быть дроссель. Включено это дело между защитным заземлением и корпусом прибора. Зачем, спросите вы - это, вроде, к фильтрации помех никакого отношения не имеет? Давайте разбираться.

Встречно включенные диоды успешно закоротят любую сильноточную утечку внутри корпуса прибора (коротыш какой, пробой) на защитное заземление. Тем самым мы соблюдаем требования техники безопасности: в случае аварии на корпусе прибора не должно появится опасного для жизни и здоровья человека напряжения. При этом диоды "разрывают" цепь для небольших напряжений.

Резистор создаёт путь для небольших токов. Если бы его не было, а внутренности прибора неплохо отвязаны от земли, то даже небольшие утечки создавали бы избыточный размах напряжения на корпусе относительно земли, и через емкостные связи это всё проникало бы в прибор.

Так для чего же всё-таки "отвязывать" защитную землю от корпуса? Дело в том, что на защитном заземлении могут наводиться напряжения: например той самой синфазной помехой, что мы отфильтровываем. Так же, увы, нередко встречается такая разводка сети, когда защитное заземление одновременно является и возвратным проводом для собственно напряжения сети. В этом случае даже на небольшом сопротивлении проводки немалый ток потребления создаёт ощутимое падение напряжения. Все эти факторы могут "разогнать" в нормальных условиях до десятков и даже сотен милливольт разницы потенциалов между защитными заземлениями разных агрегатов. Теперь, если мы передаём аудио-сигнал через соединения, заведённые одним проводом на корпус (RCA разъёмы "колокольчики", к сожалению так популярные в бытовом HiFi), то эта самая разность потенциалов между корпусами приборов будет напрямую замешана в сигнал.

Итого, отвязывая корпус прибора (а в большинстве случаев это значит - и сигнальную землю оного) от защитного заземления, мы тем самым ощутимо уменьшаем замешивание любых "чудачеств", что могут случиться в розетке - прямиком в сигнал. Конечно же, уважающий себя любитель качественного звуковоспроизведения будет использовать исключительно балансные соединения, иммунные к синфазной помехе. Только, увы, у меня ещё не все аппараты соединены исключительно балансными кабелями. А как с этим дело обстоит у вас, дорогой читатель? 😉

Собираем

Выключатель питания пристроен по принципу - где меньше искра будет. В остальном фильтр не сильно отличается от того, что ставят в дорогих компьютерных блоках питания. Кстати, оттуда же можно и детальками разжиться.

Тот фирменный аппарат, что я упомянул вначале статьи, тоже получил свою дозу фильтрации, подробности .

А ещё лучше - можно?

Можно! Экстремалы включают "встречно" огромные трансформаторы и фильтруют всё в низковольтной части. Результат несколько лучше, бюджет - на порядки выше.

Или возможно, вы захотите подарить своему лучшему другу - меломану недорогой подарок, за который он будет вам искренне благодарен? 😉 Взвесьте все за и против, и примите верное решение! .

This entry was posted in , by . Bookmark the .

Комментарии ВКонтакте

159 thoughts on “Сетевой фильтр для аудио — своими руками

Импульсные источники питания, тиристорные регуляторы, коммутаторы, мощные радиопередатчики, электродвигатели, подстанции, любые электроразряды вблизи линии электропередач (молнии, сварочные аппараты, и т.д.) генерируют узкополосные и широкополосные помехи различной природы и спектрального состава. Это затрудняет функционирование слаботочной чувствительной аппаратуры, вносит искажения в результаты измерений, вызывает сбои и даже выход из строя как узлов приборов, так и целых комплексов оборудования.

В симметричных электрических цепях (незаземленные цепи и цепи с заземленной средней точкой) противофазная помеха проявляется в виде симметричных напряжений (на нагрузке) и называется симметричной, в иностранной литературе она называется «помехой дифференциального типа» (differential mode interference). Синфазная помеха в симметричной цепи называется асимметричной или «помехой общего типа» (common mode interference).

Симметричные помехи в линии обычно преобладают на частотах до нескольких сотен кГц. На частотах же выше 1 МГц преобладают асимметричные помехи.

Довольно простым случаем являются узкополосные помехи, устранение которых сводится к фильтрации основной (несущей) частоты помехи и ее гармоник. Гораздо более сложный случай — высокочастотные импульсные помехи, спектр которых занимает диапазон до десятков МГц. Борьба с такими помехами представляет собой довольно сложную задачу.

Устранить сильные комплексные помехи поможет только системный подход, включающий в себя перечень мер по подавлению нежелательных составляющих питающего напряжения и сигнальных цепей: экранирование, заземление, правильный монтаж питающих и сигнальных линий и, конечно же, фильтрацию. Огромное количество фильтрующих устройств различных конструкций, добротности, области применения и т.д. выпускаются и используются во всем мире.

В зависимости от типа помех и области применения, различаются и конструкции фильтров. Но, как правило, устройство представляет собой комбинацию LC-цепей, образующих фильтрующие каскады и фильтры П-типа.

Важной характеристикой сетевого фильтра является максимальный ток утечки. В силовых приложениях этот ток может достигать опасной для человека величины. Исходя из значений тока утечки, фильтры классифицируются по уровням безопасности: применения, допускающие контакт человека с корпусом устройства и применения, где контакт с корпусом нежелателен. Важно помнить, что корпус фильтра требует обязательного заземления.

Компания TE-Connectivity, основываясь на более чем 50-летнем опыте компании Corcom в проектировании и разработке электромагнитных и радиочастотных фильтров, предлагает широчайший спектр устройств для применения в различных отраслях промышленности и узлах аппаратуры. На российском рынке представлен ряд популярных серий от этого производителя.

Фильтры общего назначения серии B

Фильтры серии В (рисунок 1) — надежные и компактные фильтры по доступной цене. Большой диапазон рабочих токов, хорошая добротность и богатый выбор типов присоединения обеспечивают широкую область применения этих устройств.

Рис. 1.

Серия B включает в себя две модификации — VB и EB, технические характеристики которых приведены в таблице 1.

Таблица 1. Основные технические характеристики сетевых фильтров серии B

Наименование Максимальный
ток утечки, мА
Рабочий диапазон частот, МГц Номинальное напряжение, В Номинальный ток, А
~120 В 60 Гц ~250 В 50 Гц «проводник-корпус» «проводник-проводник»
VB 0,4 0,7 0,1…30 2250 1450 ~250 1…30
EB 0,21 0,36

Электрическая схема фильтра приведена на рисунке 2.

Рис. 2.

Ослабление сигнала помехи в дБ приведено на рисунке 3.

Рис. 3.

Фильтры серии T

Фильтры этой серии (рисунок 4) — высокопроизводительные радиочастотные фильтры для силовых цепей импульсных источников питания. Преимуществами серии являются превосходное подавление противофазных и синфазных помех, компактные размеры. Малые токи утечки позволяют применять серию T в устройствах с низким энергопотреблением.

Рис. 4.

Серия включает две модификации — ET и VT, технические характеристики которых приведены в таблице 2.

Таблица 2. Основные технические характеристики сетевых фильтров серии T

Наименование Максимальный
ток утечки, мА
Рабочий диапазон частот, МГц Электрическая прочность изоляции (в течение 1 минуты), В Номинальное напряжение, В Номинальный ток, А
«проводник-корпус» «проводник-проводник»
ET 0,3 0,5 0,01…30 2250 1450 ~250 3…20
VT 0,75 (1,2) 1,2 (2,0)

Электрическая схема фильтра серии T приведена на рисунке 5.

Рис. 5.

Ослабление сигнала помехи в дБ при нагрузке линии на согласующий резистор сопротивлением 50 Ом приведено на рисунке 6.

Рис. 6.

Фильтры серии К

Фильтры серии К (рисунок 7) — силовые фильтры радиочастотного диапазона общего назначения. Они ориентированы на применение в силовых цепях с высокоомной нагрузкой. Отлично подходят для случаев, когда на линию наводится импульсная, непрерывная и/или пульсирующая помеха радиочастотного диапазона. Модели с индексом EK соответствуют требованиям стандартов для применения в портативных устройствах, медицинском оборудовании.

Рис. 7.

Фильтры с индексом С оснащены дросселем между корпусом и заземляющим проводом. Основные электрические параметры сетевых фильтров серии К приведены в таблице 3.

Таблица 3. Основные электрические параметры сетевых фильтров серии К

Наименование Максимальный
ток утечки, мА
Рабочий диапазон частот, МГц Электрическая прочность изоляции (в течение 1 минуты), В Номинальное напряжение, В Номинальный ток, А
~120 В 60 Гц ~250 В 50 Гц «проводник-корпус» «проводник-проводник»
VK 0,5 1,0 0,1…30 2250 1450 ~250 1…60
EK 0,21 0,36

Электрическая схема фильтра серии К приведена на рисунке 8.

Рис. 8.

Ослабление сигнала помехи в дБ при нагрузке линии на согласующий резистор сопротивлением 50 Ом приведено на рисунке 9.

Рис. 9.

Фильтры серии EMC

Фильтры этой серии (рисунок 10) — компактные и эффективные двухступенчатые силовые фильтры радиочастотного диапазона. Обладают рядом преимуществ: высоким коэффициентом ослабления синфазных помех в области низких частот, высоким коэффициентом ослабления противофазных помех, компактными размерами. Серия EMC ориентирована на применение в устройствах с импульсными источниками питания.

Рис. 10.

Основные технические характеристики приведены в таблице 4.

Таблица 4. Основные электрические параметры сетевых фильтров серии EMC

Номинальные токи фильтра, А Максимальный
ток утечки, мА
Рабочий диапазон частот, МГц Электрическая прочность изоляции (в течение 1 минуты), В Номинальное напряжение, В Номинальный ток, А
~120 В 60 Гц для токов 3; 6; 10 А (15; 20 А) ~250 В 50 Гц для токов 3; 6; 10 А (15; 20 А) «проводник-корпус» «проводник-проводник»
3; 6; 10 0,21 0,43 0,1…30 2250 1450 ~250 3…30
15; 20; 30 0,73 1,52

Электрическая схема фильтра серии EMC приведена на рисунке 11.

Рис. 11.

Ослабление сигнала помехи в дБ при нагрузке линии на согласующий резистор сопротивлением 50 Ом приведено на рисунке 12.

Рис. 12.

Фильтры серии EDP

2. Corcom Product Guide, General purpose RFI filters for high impedance loads at low current B Series, TE Connectivity, 1654001, 06/2011, p. 15

3. Corcom Product Guide, PC board mountable general purpose RFI filters EBP, EDP & EOP series, TE Connectivity, 1654001, 06/2011, p. 21

4. Corcom Product Guide, Compact and cost-effective dual stage RFI power line filters EMC Series, TE Connectivity, 1654001, 06/2011, p. 24

5. Corcom Product Guide, Single phase power line filter for frequency converters FC Series, 1654001, 06/2011, p. 30

6. Corcom Product Guide, General purpose RFI power line filters — ideal for high-impedance loads K Series, 1654001, 06/2011, p. 49

7. Corcom Product Guide, High performance RFI power line filters for switching power supplies T Series, 1654001, 06/2011, p. 80

8. Corcom Product Guide, Compact low-current 3-phase WYE RFI filters AYO Series, 1654001, 06/2011, p. 111.

Получение технической информации, заказ образцов, поставка — e-mail:

Сетевые и сигнальные EMI/RFI-фильтры от TE Connectivity. От платы до промышленной установки

Компания TE Connectivity занимает лидирующие позиции в мире по разработке и производству сетевых фильтров для эффективного подавления электромагнитных и радиочастотных помех в электронике и промышленности. Модельный ряд включает в себя более 70 серий устройств для фильтрации как цепей питания от внешних и внутренних источников, так и сигнальных цепей в широчайшей сфере применений.

Фильтры имеют следующие варианты конструктивного исполнения: миниатюрные для установки на печатную плату; корпусные различных размеров и типов присоединения питающих линий и линий нагрузки; в виде готовых разъемов питания и коммуникационных разъемов сетевого и телефонного оборудования; индустриальные, выполненные в виде готовых промышленных шкафов.

Сетевые фильтры выпускаются для AC и DC приложений, одно- и трехфазных сетей, перекрывают диапазон рабочих токов 1…1200 А и напряжений 120/250/480 VAC, 48…130 VDC. Все устройства характеризуются низким падением напряжения — не более 1% от рабочего. Ток утечки, в зависимости от мощности и конструкции фильтра, составляет 0,2…8,0 мА. Усредненный частотный диапазон по сериям — 10 кГц…30 МГц. Серия AQ рассчитана на более широкий диапазон частот: 10 кГц…1 ГГц. Расширяя области применения своих устройств, TE Connectivity выпускает фильтры для цепей нагрузки с низким и высоким импедансом. Например, высокоимпедансные фильтры серий EP, H, Q, R и V для низкоимпедансных нагрузок и низкоимпедансные серии B, EC, ED, EF, G, K, N, Q, S, SK, T, W, X, Y и Z для высокоимпедансных нагрузок.

Коммуникационные разъемы со встроенными сигнальными фильтрами выпускаются в экранированном, спаренном и низкопрофильном исполнении.

Каждый фильтр производства TE Connectivity подвергается двойному тестированию: на этапе сборки и уже в виде готового изделия. Вся продукция соответствуют международным стандартам качества и безопасности.

Загрузка...