domvpavlino.ru

Гипотезы байеса. Решение задач с помощью формулы полной вероятности и формулы байеса

Сибирский государственный университет телекоммуникаций и информатики

Кафедра высшей математики

по дисциплине: «Теория вероятностей и математическая статистика»

«Формула полной вероятности и формула Бейеса(Байеса) и их применение»

Выполнил:

Руководитель: профессор Б.П.Зеленцов

Новосибирск, 2010


Введение 3

1. Формула полной вероятности 4-5

2. Формула Байеса(Бейеса) 5-6

3. Задачи с решениями 7-11

4. Основные сферы применения формулы Байеса(Бейеса) 11

Заключение 12

Литература 13


Введение

Теория вероятностей является одним из классических разделов математики. Она имеет длительную историю. Основы этого раздела науки были заложены великими математиками. Назову, например, Ферма, Бернулли, Паскаля.
Позднее развитие теории вероятностей определились в работах многих ученых.
Большой вклад в теорию вероятностей внесли ученые нашей страны:
П.Л.Чебышев, А.М.Ляпунов, А.А.Марков, А.Н.Колмогоров. Вероятностные и статистические методы в настоящее время глубоко проникли в приложения. Они используются в физике, технике, экономке, биологии и медицине. Особенно возросла их роль в связи с развитием вычислительной техники.

Например, для изучения физических явлений производят наблюдения или опыты. Их результаты обычно регистрируют в виде значений некоторых наблюдаемых величин. При повторении опытов мы обнаруживаем разброс их результатов. Например, повторяя измерения одной и той же величины одним и тем же прибором при сохранении определенных условий (температура, влажность и т.п.), мы получаем результаты, которые хоть немного, но все же отличаются друг от друга. Даже многократные измерения не дают возможности точно предсказать результат следующего измерения. В этом смысле говорят, что результат измерения есть величина случайная. Еще более наглядным примером случайной величины может служить номер выигрышного билета в лотерее. Можно привести много других примеров случайных величин. Все же и в мире случайностей обнаруживаются определенные закономерности. Математический аппарат для изучения таких закономерностей и дает теория вероятностей.
Таким образом, теория вероятностей занимается математическим анализом случайных событий и связанных с ними случайных величин.

1. Формула полной вероятности.

Пусть имеется группа событий H 1 , H 2 ,..., H n , обладающая следую­щими свойствами:

1) все события попарно несовместны: H i

H j =Æ; i , j =1,2,...,n ; i ¹ j ;

2) их объединение образует пространство элементарных исходов W:

.
Рис.8

В этом случае будем говорить, что H 1 , H 2 ,...,H n образуют полную группу событий . Такие события иногда называют гипотезами .

Пусть А – некоторое событие: А ÌW (диаграмма Венна представлена на рисунке 8). Тогда имеет место формула полной вероятности:

P (A ) = P (A /H 1)P (H 1) + P (A /H 2)P (H 2) + ...+P (A /H n )P (H n ) =

Доказательство. Очевидно: A =

, причем все события (i = 1,2,...,n ) попарно несовместны. Отсюда по теореме сложения вероятностей получаем

P (A ) = P (

) + P () +...+ P (

Если учесть, что по теореме умножения P (

) = P (A/H i)P (H i) (i = 1,2,...,n ), то из последней формулы легко получить приведенную выше формулу полной вероятности.

Пример . В магазине продаются электролампы производства трех заводов, причем доля первого завода - 30%, второго - 50%, третьего - 20%. Брак в их продукции составляет соответственно 5%, 3% и 2%. Какова вероятность того, что случайно выбранная в магазине лампа оказалась бракованной.

Пусть событие H 1 состоит в том, что выбранная лампа произведена на первом заводе, H 2 на втором, H 3 - на третьем заводе. Очевидно:

P (H 1) = 3/10, P (H 2) = 5/10, P (H 3) = 2/10.

Пусть событие А состоит в том, что выбранная лампа оказалась бракованной; A/H i означает событие, состоящее в том, что выбрана бракованная лампа из ламп, произведенных на i -ом заводе. Из условия задачи следует:

P (A / H 1) = 5/10; P (A / H 2) = 3/10; P (A / H 3) = 2/10

По формуле полной вероятности получаем

2. Формула Байеса(Бейеса)

Пусть H 1 ,H 2 ,...,H n - полная группа событий и А Ì W – некоторое событие. Тогда по формуле для условной вероятности

(1)

Здесь P (H k /A ) – условная вероятность события (гипотезы) H k или вероятность того, что H k реализуется при условии, что событие А произошло.

По теореме умножения вероятностей числитель формулы (1) можно представить в виде

P = P = P (A /H k )P (H k )

Для представления знаменателя формулы (1) можно использовать формулу полной вероятности

P (A )

Теперь из (1) можно получить формулу, называемую формулой Байеса :

По формуле Байеса исчисляется вероятность реализации гипотезы H k при условии, что событие А произошло. Формулу Байеса еще называют формулой вероятности гипотез. Вероятность P (H k ) называют априорной вероятностью гипотезы H k , а вероятность P (H k /A ) – апостериорной вероятностью.

Теорема. Вероятность гипотезы после испытания равна произведению вероятности гипотезы до испытания на соответствующую ей условную вероятность события, которое произошло при испытании, деленному на полную вероятность этого события.

Пример. Рассмотрим приведенную выше задачу об электролампах, только изменим вопрос задачи. Пусть покупатель купил электролампу в этом магазине, и она оказалась бракованной. Найти вероятность того, что эта лампа изготовлена на втором заводе. Величина P (H 2) = 0,5 в данном случае это априорная вероятность события, состоящего в том, что купленная лампа изготовлена на втором заводе. Получив информацию о том, что купленная лампа бракованная, мы можем поправить нашу оценку возможности изготовления этой лампы на втором заводе, вычислив апостериорную вероятность этого события.

Кто такой Байес? и какое отношение он имеет к менеджменту? – может последовать вполне справедливый вопрос. Пока поверьте мне на слово: это очень важно!.. и интересно (по крайней мере, мне).

В какой парадигме действуют большинство менеджеров: если я наблюдаю нечто, какие выводы могу из этого сделать? Чему учит Байес: что должно быть на самом деле, чтобы мне довелось наблюдать это нечто? Именно так развиваются все науки, и об этом пишет (цитирую по памяти): человек, у которого нет в голове теории, будет шарахаться от одной идеи к другой под воздействием различных событий (наблюдений). Не даром говорят: нет ничего более практичного, чем хорошая теория.

Пример из практики. Мой подчиненный совершает ошибку, и мой коллега (руководитель другого отдела) говорит, что надо бы оказать управленческое воздействие на нерадивого сотрудника (проще говоря, наказать/обругать). А я знаю, что этот сотрудник делает 4–5 тысяч однотипных операций в месяц, и совершает за это время не более 10 ошибок. Чувствуете различие в парадигме? Мой коллега реагирует на наблюдение, а я обладаю априорным знанием, что сотрудник допускает некоторое количество ошибок, так что еще одна не повлияла на это знание… Вот если по итогам месяца окажется, что таких ошибок, например, 15!.. Это уже станет поводом для изучения причин несоответствия стандартам.

Убедил в важности Байесовского подхода? Заинтриговал? Надеюсь, что «да». А теперь ложка дегтя. К сожалению, идеи Байеса редко даются с первого захода. Мне откровенно не повезло, так как я знакомился с этими идеями по популярной литературе, после прочтения которой оставалось много вопросов. Планируя написать заметку, я собрал всё, что ранее конспектировал по Байесу, а также изучил, что пишут в Интернете. Предлагаю вашему вниманию мое лучшее предположение на тему Введение в Байесовскую вероятность .

Вывод теоремы Байеса

Рассмотрим следующий эксперимент: мы называем любое число лежащее на отрезке и фиксируем, когда это число будет, например, между 0,1 и 0,4 (рис. 1а). Вероятность этого события равна отношению длины отрезка к общей длине отрезка , при условии, что появления чисел на отрезке равновероятны . Математически это можно записать p (0,1 <= x <= 0,4) = 0,3, или кратко р (X ) = 0,3, где р – вероятность, х – случайная величина в диапазоне , Х – случайная величина в диапазоне . То есть, вероятность попадания в отрезок равна 30%.

Рис. 1. Графическая интерпретация вероятностей

Теперь рассмотрим квадрат x (рис. 1б). Допустим, мы должны называть пары чисел (x , y ), каждое из которых больше нуля и меньше единицы. Вероятность того, что x (первое число) будет в пределах отрезка (синяя область 1), равна отношению площади синей области к площади всего квадрата, то есть (0,4 – 0,1) * (1 – 0) / (1 * 1) = 0,3, то есть те же 30%. Вероятность того, что y находится внутри отрезка (зеленая область 2) равна отношению площади зеленой области к площади всего квадрата p (0,5 <= y <= 0,7) = 0,2, или кратко р (Y ) = 0,2.

Что можно узнать о значениях одновременно x и y . Например, какова вероятность того, что одновременно x и y находятся в соответствующих заданных отрезках? Для этого надо посчитать отношение площади области 3 (пересечения зеленой и синей полос) к площади всего квадрата: p (X , Y ) = (0,4 – 0,1) * (0,7 – 0,5) / (1 * 1) = 0,06.

А теперь допустим мы хотим знать какова вероятность того, что y находится в интервале , если x уже находится в интервале . То есть фактически у нас есть фильтр и когда мы называем пары (x , y ), то мы сразу отбрасывает те пары, которые не удовлетворяют условию нахождения x в заданном интервале, а потом из отфильтрованных пар мы считаем те, для которых y удовлетворяет нашему условию и считаем вероятность как отношение количества пар, для которых y лежит в вышеупомянутом отрезке к общему количеству отфильтрованных пар (то есть для которых x лежит в отрезке ). Мы можем записать эту вероятность как p (Y |X у х попал в диапазоне ». Очевидно, что эта вероятность равна отношению площади области 3 к площади синей области 1. Площадь области 3 равна (0,4 – 0,1) * (0,7 – 0,5) = 0,06, а площадь синей области 1 (0,4 – 0,1) * (1 – 0) = 0,3, тогда их отношение равно 0,06 / 0,3 = 0,2. Другими словами, вероятность нахождения y на отрезке при условии, что x принадлежит отрезку p (Y |X ) = 0,2.

В предыдущем абзаце мы фактически сформулировали тождество: p (Y |X ) = p (X , Y ) / p(X ). Читается: «вероятность попадания у в диапазон , при условии, что х попал в диапазон , равна отношению вероятности одновременного попадания х в диапазон и у в диапазон , к вероятности попадания х в диапазон ».

По аналогии рассмотрим вероятность p (X |Y ). Мы называем пары (x , y ) и фильтруем те, для которых y лежит между 0,5 и 0,7, тогда вероятность того, что x находится в отрезке при условии, что y принадлежит отрезку равна отношению площади области 3 к площади зеленой области 2: p (X |Y ) = p (X , Y ) / p (Y ).

Заметим, что вероятности p (X , Y ) и p (Y, Х ) равны, и обе равны отношению площади зоны 3 к площади всего квадрата, а вот вероятности p (Y |X ) и p (X |Y ) не равны; при этом вероятность p (Y |X ) равна отношению площади области 3 к области 1, а p (X |Y ) – области 3 к области 2. Заметим также, что p (X , Y ) часто обозначают как p (X &Y ).

Итак, мы ввели два определения: p (Y |X ) = p (X , Y ) / p(X ) и p (X |Y ) = p (X , Y ) / p (Y )

Перепишем эти равенства виде: p (X , Y ) = p (Y |X ) * p(X ) и p (X , Y ) = p (X |Y ) * p (Y )

Поскольку левые части равны, равны и правые: p (Y |X ) * p(X ) = p (X |Y ) * p (Y )

Или мы можем переписать последнее равенство в виде:

Это и есть теорема Байеса!

Неужели столь несложные (почти тавтологические) преобразования рождают великую теорему!? Не спешите с выводами. Давайте еще раз проговорим, что же мы получили. Имелась некая исходная (априорная) вероятность р (Х), того, что случайная величина х равномерно распределенная на отрезке попадает в диапазон Х . Произошло некое событие Y , в результате которого мы получили апостериорную вероятность той же самой случайной величины х : р (Х|Y), и эта вероятность отличается от р (Х) на коэффициент . Событие Y называется свидетельством, в большей или меньшей степени подтверждающим или опровергающим Х . Указанный коэффициент иногда называют мощностью свидетельства . Чем мощнее свидетельство, тем больше факт наблюдения Y изменяет априорную вероятность, тем больше апостериорная вероятность отличается от априорной. Если свидетельство слабое, апостериорная вероятность почти равна априорной.

Формула Байеса для дискретных случайных величин

В предыдущем разделе мы вывели формулу Байеса для непрерывных случайных величин х и y, определенных на отрезке . Рассмотрим пример с дискретными случайными величинами, принимающими каждая по два возможных значения. В ходе проведения плановых медицинских осмотров установлено, что в сорокалетнем возрасте 1% женщин болеет раком молочной железы. 80% женщин больных раком получают положительные результаты маммографии. 9,6% здоровых женщин также получают положительные результаты маммографии. В ходе проведения осмотра женщина данной возрастной группы получила положительный результат маммографии. Какова вероятность того, что у неё на самом деле рак молочной железы?

Ход рассуждений/вычислений следующий. Из 1% больных раком маммография даст 80% положительных результатов = 1%*80% = 0,8%. Из 99% здоровых женщин маммография даст 9,6% положительных результатов = 99%*9,6% = 9,504%. Итого из 10,304% (9,504% + 0,8%) с положительными результатами маммографии, только 0,8% больных, а остальные 9,504% здоровых. Таким образом, вероятность того, что при положительном результате маммографии женщина больна раком составляет 0,8%/10,304% = 7,764%. А вы думали, что 80% или около того?

В нашем примере формула Байеса принимает следующий вид:

Давайте еще раз проговорим «физический» смысл этой формулы. Х – случайная величина (диагноз), принимающая значения: Х 1 – болен и Х 2 – здоров; Y – случайная величина (результат измерения –маммографии), принимающая значения: Y 1 – положительный результат и Y 2 – отрицательный результат; р(Х 1) – вероятность болезни до проведения маммографии (априорная вероятность), равная 1%; р(Y 1 |X 1 ) – вероятность положительного результата в случае, если пациентка больна (условная вероятность, так как она должна быть задана в условиях задачи), равная 80%; р(Y 1 |X 2 ) – вероятность положительного результата в случае, если пациентка здорова (также условная вероятность), равная 9,6%; р(Х 2) – вероятность того, что пациентка здорова до проведения маммографии (априорная вероятность), равная 99%; р(Х 1 |Y 1 ) – вероятность того, что пациентка больна, при условии положительного результата маммографии (апостериорная вероятность).

Видно, что апостериорная вероятность (то, что мы ищем) пропорциональна априорной вероятности (исходной) с несколько более сложным коэффициентом . Подчеркну еще раз. На мой взгляд, это фундаментальный аспект Байесовского подхода. Измерение (Y ) добавило некоторое количество информации к первоначально имевшейся (априорной), что уточнило наше знание об объекте.

Примеры

Для закрепления пройденного материала попробуйте решить несколько задач.

Пример 1. Имеется 3 урны; в первой 3 белых шара и 1 черный; во второй - 2 белых шара и 3 черных; в третьей - 3 белых шара. Некто подходит наугад к одной из урн и вынимает из нее 1 шар. Этот шар оказался белым. Найдите апостериорные вероятности того, что шар вынут из 1-й, 2-й, 3-й урны.

Решение. У нас есть три гипотезы: Н 1 = {выбрана первая урна), Н 2 = {выбрана вторая урна}, Н 3 = {выбрана третья урна}. Так как урна выбирается наугад, то априорные вероятности гипотез равны: Р(Н 1) = Р(Н 2) = Р(Н 3) = 1/3.

В результате опыта появилось событие А = {из выбранной урны вынут белый шар}. Условные вероятности события А при гипотезах Н 1 , Н 2 , Н 3: Р(A|Н 1) = 3/4, Р(A|Н 2) = 2/5, Р(A|Н 3) = 1. Например, первое равенство читается так: «вероятность вынуть белый шар, если выбрана первая урна равна 3/4 (так как всего шаров в первой урне 4, а белых из них – 3)».

Применяя формулу Бейеса, находим апостериорные вероятности гипотез:

Таким образом, в свете информации о появлении события А вероятности гипотез изменились: наиболее вероятной стала гипотеза Н 3 , наименее вероятной - гипотеза Н 2 .

Пример 2. Два стрелка независимо друг от друга стреляют по одной и той же мишени, делая каждый по одному выстрелу. Вероятность попадания в мишень для первого стрелка равна 0,8, для второго - 0,4. После стрельбы в мишени обнаружена одна пробоина. Найти вероятность того, что эта пробоина принадлежит первому стрелку (Исход {обе пробоины совпали} отбрасываем, как ничтожно маловероятный).

Решение. До опыта возможны следующие гипотезы: Н 1 = {ни первый, ни второй стрелки не попадут}, Н 2 = {оба стрелка попадут}, H 3 - {первый стрелок попадет, а второй - нет}, H 4 = {первый стрелок не попадет, а второй попадет). Априорные вероятности гипотез:

Р(H 1) = 0,2*0,6 = 0,12; Р(H 2) = 0,8*0,4 = 0,32; Р (H 3) = 0,8*0,6 = 0,48; Р(H 4) = 0,2*0,4 = 0,08.

Условные вероятности наблюденного события А = {в мишени одна пробоина} при этих гипотезах равны: P(A|H 1) = P(A|H 2) = 0; P(A|H 3) = P(A|H 4) = 1

После опыта гипотезы H 1 и H 2 становятся невозможными, а апостериорные вероятности гипотез H 3 , и H 4 по формуле Бейеса будут:

Байес против спама

Формула Байеса нашла широкое применение в разработке спам-фильтров. Предположим, вы хотите обучить компьютер определять, какие из писем являются спамом. Будем исходить из словаря и словосочетаний, используя байесовские оценки. Создадим вначале пространство гипотез. Пусть относительно любого письма у нас есть 2 гипотезы: H A – это спам, H B – это не спам, а нормальное, нужное, письмо.

Вначале «обучим» нашу будущую систему борьбы со спамом. Возьмем все имеющиеся у нас письма и разделим их на две «кучи» по 10 писем. В одну отложим спам-письма и назовем ее кучей H A , в другую – нужную корреспонденцию и назовем ее кучей H B . Теперь посмотрим: какие слова и словосочетания встречаются в спам- и нужных письмах и с какой частотой? Эти слова и словосочетания назовем свидетельствами и обозначим E 1 , E 2 … Выясняется, что общеупотребительные слова (например, слова «как», «твой») в кучах H A и H B встречаются примерно с одинаковой частотой. Таким образом, наличие этих слов в письме ничего не говорит нам о том, к какой куче его отнести (слабое свидетельство). Присвоим этим словам нейтральное значение оценки вероятности «спамности», скажем, 0,5.

Пусть словосочетание «разговорный английский» встречается всего в 10 письмах, причем чаще в спам-письмах (например, в 7 спам-письмах из всех 10), чем в нужных (в 3 из 10). Поставим этому словосочетанию для спама более высокую оценку 7/10, а для нормальных писем более низкую: 3/10. И наоборот, выяснилось, что слово «дружище» чаще встречалось в нормальных письмах (6 из 10). И вот мы получили коротенькое письмо: «Дружище! Как твой разговорный английский?» . Попробуем оценить его «спамность». Общие оценки P(H A), P(H B) принадлежности письма к каждой куче поставим, воспользовавшись несколько упрощенной формулой Байеса и нашими приблизительными оценками:

P(H A) = A/(A+B), где А = p a1 *p a2 *…*p an , B = p b1 *p b2 *…*p b n = (1 – p a1)*(1 – p a2)*… *(1 – p an).

Таблица 1. Упрощенная (и неполная) Байес-оценка письма

Таким образом, наше гипотетическое письмо получило оценку вероятности принадлежности с акцентом в сторону «спамности». Можем ли мы принять решение о том, чтобы бросить письмо в одну из куч? Выставим пороги принятия решений:

  • Будем считать, что письмо принадлежит куче H i , если P(H i) ≥ T.
  • Письмо не принадлежит куче, если P(H i) ≤ L.
  • Если же L ≤ P(H i) ≤ T, то нельзя принять никакого решения.

Можно принять T = 0,95 и L = 0,05. Поскольку для рассматриваемого письма и 0,05 < P(H A) < 0,95, и 0,05 < P(H В) < 0,95, то мы не сможем принять решение, куда отнести данное письмо: к спаму (H A) или к нужным письмам (H B). Можно ли улучшить оценку, используя больше информации?

Да. Давайте вычислим оценку для каждого свидетельства другим способом, так, как это, собственно, и предложил Байес. Пусть:

F a – это общее количество писем спама;

F ai – это количество писем со свидетельством i в куче спама;

F b – это общее количество нужных писем;

F bi – это количество писем со свидетельством i в куче нужных (релевантных) писем.

Тогда: p ai = F ai /F a , p bi = F bi /F b . P(H A) = A/(A+B), P(H B) = B/(A+B), где А = p a1 *p a2 *…*p an , B = p b1 *p b2 *…*p b n

Обратите внимание – оценки слов-свидетельств p ai и p bi стали объективными и их можно вычислять без участия человека.

Таблица 2. Более точная (но неполная) Байес-оценка по наличным признакам из письма

Мы получили вполне определенный результат – с большим перевесом с вероятностью письмо можно отнести к нужным письмам, поскольку P(H B) = 0,997 > T = 0,95. Почему результат изменился? Потому, что мы использовали больше информации – мы учли количество писем в каждой из куч и, кстати, гораздо более корректно определили оценки p ai и p bi . Определили их так, как это сделано у самого Байеса, вычислив условные вероятности. Другими словами, p a3 – это вероятность появления в письме слова «дружище» при условии того, что это письмо уже принадлежит спам-куче H A . Результат не заставил себя ждать – кажется, мы можем принять решение с большей определенностью.

Байес против корпоративного мошенничества

Любопытное применение Байесовского подхода описал MAGNUS8 .

В моем текущем проекте (ИС для выявления мошенничества на производственном предприятии) используется формула Байеса для определения вероятности фрода (мошенничества) при наличии/отсутствии нескольких фактов, косвенно свидетельствующих в пользу гипотезы о возможности совершения фрода. Алгоритм самообучаем (с обратной связью), т.е. пересчитывает свои коэффициенты (условные вероятности) при фактическом подтверждении или неподтверждении фрода при проверке службой экономической безопасности.

Стоит, наверное, сказать, что подобные методы при проектировании алгоритмов требуют достаточно высокой математической культуры разработчика, т.к. малейшая ошибка в выводе и/или реализации вычислительных формул сведет на нет и дискредитирует весь метод. Вероятностные методы особенно этим грешат, поскольку мышление человека не приспособлено для работы с вероятностными категориями и, соответственно, отсутствует «наглядность» и понимание «физического смысла» промежуточных и итоговых вероятностных параметров. Такое понимание есть лишь для базовых понятий теории вероятностей, а дальше нужно лишь очень аккуратно комбинировать и выводить сложные вещи по законам теории вероятностей - здравый смысл для композитных объектов уже не поможет. С этим, в частности, связаны достаточно серьезные методологические баталии, проходящие на страницах современных книг по философии вероятности, а также большое количество софизмов, парадоксов и задачек-курьезов по этой теме.

Еще один нюанс, с которым пришлось столкнуться - к сожалению, практически все мало-мальски ПОЛЕЗНОЕ НА ПРАКТИКЕ на эту тему написано на английском языке. В русскоязычных источниках в основном только общеизвестная теория с демонстрационными примерами лишь для самых примитивных случаев.

Полностью соглашусь с последним замечанием. Например, Google при попытке найти что-то типа «книги Байесовская вероятность», ничего внятного не выдал. Правда, сообщил, что книгу с байесовской статистикой запретили в Китае . (Профессор статистики Эндрю Гельман сообщил в блоге Колумбийского университета, что его книгу «Анализ данных с помощью регрессии и многоуровневых/иерархических моделей» запретили публиковать в Китае. Тамошнее издательство сообщило, что «книга не получила одобрения властей из-за различных политически чувствительных материалов в тексте».) Интересно, не аналогичная ли причина привела к отсутствию книг по Байесовской вероятности в России?

Консерватизм в процессе обработки информации человеком

Вероятности определяют степень неопределенности. Вероятность, как согласно Байесу, так и нашей интуиции, составляет просто число между нулем и тем, что представляет степень, для которой несколько идеализированный человек считает, что утверждение верно. Причина, по которой человек несколько идеализирован, состоит в том, что сумма его вероятностей для двух взаимно исключающих событий должна равняться его вероятности того, что произойдет любое из этих событий. Свойство аддитивности имеет такие последствия, что мало реальных людей могут соответствовать им всем.

Теорема Байеса – это тривиальное последствие свойства аддитивности, бесспорное и согласованное для всех сторонников вероятностей, как Байеса, так и других. Один их способов написать это следующий. Если Р(H А |D) – последующая вероятность того, что гипотеза А была после того, как данная величина D наблюдалась, Р(H А) – его априорная вероятность до того, как наблюдалась данная величина D, Р(D|H А) – вероятность того, что данная величина D будет наблюдаться, если верно Н А, а Р(D) – безусловная вероятность данной величины D, то

(1) Р(H А |D) = Р(D|H А) * Р(H А) / Р(D)

Р(D) лучше всего рассматривать как нормализующую константу, заставляющую апостериорные вероятности составить в целом единицу по исчерпывающему набору взаимно исключающих гипотез, которые рассматриваются. Если ее необходимо подсчитать, она может быть такой:

Но чаще Р(D) устраняется, а не подсчитывается. Удобный способ устранять ее состоит в том, чтобы преобразовать теорему Байеса в форму отношения вероятность–шансы.

Рассмотрим другую гипотезу, Н B , взаимно исключающую Н А, и изменим мнение о ней на основе той же самой данной величины, которая изменила ваше мнение о Н А. Теорема Байеса говорит, что

(2) Р(H B |D) = Р(D|H B) * Р(H B) / Р(D)

Теперь разделим Уравнение 1 на Уравнение 2; результат будет таким:

где Ω 1 – апостериорные шансы в пользу Н А через H B , Ω 0 – априорные шансы, a L – количество, знакомое статистикам как отношение вероятности. Уравнение 3 – это такая же соответствующая версия теоремы Байеса как и Уравнение 1, и часто значительно более полезная особенно для экспериментов, с участием гипотез. Сторонники Байеса утверждают, что теорема Байеса – формально оптимальное правило о том, как пересматривать мнения в свете новых данных.

Мы интересуемся сравнением идеального поведения, определенного теоремой Байеса, с фактическим поведением людей. Чтобы дать вам некоторое представление о том, что это означает, давайте попробуем провести эксперимент с вами как с испытуемым. Эта сумка содержит 1000 покерных фишек. У меня две такие сумки, причем в одной 700 красных и 300 синих фишек, а в другой 300 красных и 700 синих. Я подбросил монету, чтобы определить, какую использовать. Таким образом, если наши мнения совпадают, ваша вероятность в настоящее время, что выпадет сумка, в которой больше красных фишек – 0,5. Теперь, Вы наугад составляете выборку с возвращением после каждой фишки. В 12 фишках вы получаете 8 красных и 4 синих. Теперь, на основе всего, что вы знаете, какова вероятность того, что выпала сумка, где больше красных? Ясно, что она выше, чем 0,5. Пожалуйста, не продолжайте читать, пока вы не записали вашу оценку.

Если вы похожи на типичного испытуемого, ваша оценка попала в диапазон от 0,7 до 0,8. Если бы мы проделали соответствующее вычисление, тем не менее, ответ был бы 0,97. Действительно очень редко человек, которому предварительно не продемонстрировали влияние консерватизма, приходит к такой высокой оценке, даже если он был знаком с теоремой Байеса.

Если доля красных фишек в сумке – р , то вероятность получения r красных фишек и (n – r ) синих в n выборках с возвращением – p r (1– p) n– r . Так, в типичном эксперименте с сумкой и покерными фишками, если Н A означает, что доля красных фишек составляет р А и Н B – означает, что доля составляет р B , тогда отношение вероятности:

При применении формулы Байеса необходимо учитывать только вероятность фактического наблюдения, а, не вероятности других наблюдений, которые он, возможно, сделал бы, но не сделал. Этот принцип имеет широкое воздействие на все статистические и нестатистические применения теоремы Байеса; это самый важный технический инструмент размышления Байеса.

Байесовская революция

Ваши друзья и коллеги разговаривают о чем-то, под названием «Теорема Байеса» или «Байесовское правило», или о чем-то под названием байесовское мышление. Они действительно заинтересованы в этом, так что вы лезете в интернет и находите страницу о теореме Байеса и… Это уравнение. И все… Почему математическая концепция порождает в умах такой энтузиазм? Что за «байесианская революция» происходит в среде учёных, причем утверждается, что даже сам экспериментальный подход может быть описан, как её частный случай? В чём секрет, который знают последователи Байеса? Что за свет они видят?

Байесовская революция в науке произошла не потому, что все больше и больше когнитивных ученых внезапно начали замечать, что ментальные явления имеют байесовскую структуру; не потому, что ученые в каждой области начали использовать байесовский метод; но потому, что наука сама по себе является частным случаем теоремы Байеса; экспериментальное свидетельство есть байесовское свидетельство. Байесовские революционеры утверждают, что когда вы выполняете эксперимент и получаете свидетельство, которое «подтверждает» или «опровергает» вашу теорию, это подтверждение или опровержение происходит по байесовским правилам. Для примера, вы должны принимать во внимание не только то, что ваша теория может объяснить явление, но и то, что есть другие возможные объяснения, которые также могут предсказать это явление.

Ранее, наиболее популярной философией науки была – старая философия, которая была смещена байесовской революцией. Идея Карла Поппера, что теории могут быть полностью фальсифицированы, однако никогда не могут быть полностью подтверждены, это еще один частный случай байесовских правил; если p(X|A) ≈ 1 – если теория делает верные предсказания, тогда наблюдение ~X очень сильно фальсифицирует А. С другой стороны, если p(X|A) ≈ 1 и мы наблюдаем Х, это не очень сильно подтверждает теорию; возможно какое-то другое условие В, такое что p(X|B) ≈ 1, и при котором наблюдение Х не свидетельствует в пользу А но свидетельствует в пользу В. Для наблюдения Х определенно подтверждающего А, мы должны были бы знать не то, что p(X|A) ≈ 1, а что p(X|~A) ≈ 0, что мы не можем знать, поскольку мы не можем рассматривать все возможные альтернативные объяснения. Например, когда эйнштейновская теория общей относительности превзошла ньютоновскую хорошо подтверждаемую теорию гравитации, это сделало все предсказания ньютоновской теории частным случаем предсказаний эйнштейновской.

Похожим образом, попперовское заявление, что идея должна быть фальсифицируема может быть интерпретировано как манифестация байесовского правила о сохранении вероятности; если результат Х является положительным свидетельством для теории, тогда результат ~Х должен опровергать теорию в каком-то объеме. Если вы пытаетесь интерпретировать оба Х и ~Х как «подтверждающие» теорию, байесовские правила говорят, что это невозможно! Чтобы увеличить вероятность теории вы должны подвергнуть ее тестам, которые потенциально могут снизить ее вероятность; это не просто правило, чтобы выявлять шарлатанов в науке, но следствие из теоремы байесовской вероятности. С другой стороны, идея Поппера, что нужна только фальсификация и не нужно подтверждение является неверной. Теорема Байеса показывает, что фальсификация это очень сильное свидетельство, по сравнению с подтверждением, но фальсификация все еще вероятностна по своей природе; она не управляется фундаментально другими правилами и не отличается в этом от подтверждения, как утверждает Поппер.

Таким образом, мы обнаруживаем, что многие явления в когнитивных науках, плюс статистические методы, используемые учеными, плюс научный метод сам по себе – все они являются частными случаями теоремы Байеса. В этом и состоит Байесовская революция.

Добро пожаловать в Байесовский Заговор!

Литература по Байесовской вероятности

2. Очень много различных применений Байеса описывает нобелевский лауреат по экономике Канеман (со товарищи) в замечательной книге . Только в моем кратком конспекте этой очень большой книги я насчитал 27 упоминаний имени пресвитерианского священника. Минимум формул. (.. Мне очень понравилась. Правда, сложноватая, много математики (а куда без нее), но отдельные главы (например, глава 4. Информация), явно по теме. Советую всем. Даже, если математика для вас сложна, читайте через строку, пропуская математику, и выуживая полезные зерна…

14. (дополнение от 15 января 2017 г. ) , глава из книги Тони Крилли. 50 идей, о которых нужно знать. Математика.

Физик Нобелевский лауреат Ричарда Фейнмана, отзываясь об одном философе с особо большим самомнением, как-то сказал: «Меня раздражает вовсе не философия как наука, а та помпезность, которая создана вокруг нее. Если бы только философы могли сами над собой посмеяться! Если бы только они могли сказать: «Я говорю, что это вот так, а Фон Лейпциг считал, что это по-другому, а ведь он тоже кое-что в этом смыслит». Если бы только они не забывали пояснить, что это всего лишь их .

Формула Байеса

Теорема Байеса - одна из основных теорем элементарной теории вероятностей , которая определяет вероятность наступления события в условиях, когда на основе наблюдений известна лишь некоторая частичная информация о событиях. По формуле Байеса можно более точно пересчитывать вероятность, беря в учёт как ранее известную информацию, так и данные новых наблюдений.

«Физический смысл» и терминология

Формула Байеса позволяет «переставить причину и следствие»: по известному факту события вычислить вероятность того, что оно было вызвано данной причиной.

События, отражающие действие «причин», в данном случае обычно называют гипотезами , так как они - предполагаемые события, повлекшие данное. Безусловную вероятность справедливости гипотезы называют априорной (насколько вероятна причина вообще ), а условную - с учетом факта произошедшего события - апостериорной (насколько вероятна причина оказалась с учетом данных о событии ).

Следствие

Важным следствием формулы Байеса является формула полной вероятности события, зависящего от нескольких несовместных гипотез (и только от них! ).

- вероятность наступления события B , зависящего от ряда гипотез A i , если известны степени достоверности этих гипотез (например, измерены экспериментально);

Вывод формулы

Если событие зависит только от причин A i , то если оно произошло, значит, обязательно произошла какая-то из причин, т.е.

По формуле Байеса

Переносом P (B ) вправо получаем искомое выражение.

Метод фильтрации спама

Метод, основанный на теореме Байеса, нашел успешное применение в фильтрации спама .

Описание

При обучении фильтра для каждого встреченного в письмах слова высчитывается и сохраняется его «вес» - вероятность того, что письмо с этим словом - спам (в простейшем случае - по классическому определению вероятности: «появлений в спаме / появлений всего» ).

При проверке вновь пришедшего письма вычисляется вероятность того, что оно - спам, по указанной выше формуле для множества гипотез. В данном случае «гипотезы» - это слова, и для каждого слова «достоверность гипотезы» - % этого слова в письме, а «зависимость события от гипотезы» P (B | A i ) - вычисленнный ранее «вес» слова. То есть «вес» письма в данном случае - не что иное, как усредненный «вес» всех его слов.

Отнесение письма к «спаму» или «не-спаму» производится по тому, превышает ли его «вес» некую планку, заданную пользователем (обычно берут 60-80 %). После принятия решения по письму в базе данных обновляются «веса» для вошедших в него слов.

Характеристика

Данный метод прост (алгоритмы элементарны), удобен (позволяет обходиться без «черных списков» и подобных искусственных приемов), эффективен (после обучения на достаточно большой выборке отсекает до 95-97 % спама, и в случае любых ошибок его можно дообучать). В общем, есть все показания для его повсеместного использования, что и имеет место на практике - на его основе построены практически все современные спам-фильтры.

Впрочем, у метода есть и принципиальный недостаток: он базируется на предположении , что одни слова чаще встречаются в спаме, а другие - в обычных письмах , и неэффективен, если данное предположение неверно. Впрочем, как показывает практика, такой спам даже человек не в состоянии определить «на глаз» - только прочтя письмо и поняв его смысл.

Еще один, не принципиальный, недостаток, связанный с реализацией - метод работает только с текстом. Зная об этом ограничении, спамеры стали вкладывать рекламную информацию в картинку, текст же в письме либо отсутствует, либо не несет смысла. Против этого приходится пользоваться либо средствами распознавания текста («дорогая» процедура, применяется только при крайней необходимости), либо старыми методами фильтрации - «черные списки» и регулярные выражения (так как такие письма часто имеют стереотипную форму).

См. также

Примечания

Ссылки

Литература

  • Берд Киви. Теорема преподобного Байеса . // Журнал «Компьютерра», 24 августа 2001 г.
  • Paul Graham. A plan for spam (англ.). // Персональный сайт Paul Graham.

Wikimedia Foundation . 2010 .

Смотреть что такое "Формула Байеса" в других словарях:

    Формула, имеющая вид: где a1, А2,..., Ап несовместимые события, Общая схема применения Ф. в. г.: если событие В может происходить в разл. условиях, относительно которых сделано п гипотез А1, А2, ..., Аn с известными до опыта вероятностями P(A1),… … Геологическая энциклопедия

    Позволяет вычислить вероятность интересующего события через условные вероятности этого события в предположении неких гипотез, а также вероятностей этих гипотез. Формулировка Пусть дано вероятностное пространство, и полная группа попарно… … Википедия

    Позволяет вычислить вероятность интересующего события через условные вероятности этого события в предположении неких гипотез, а также вероятностей этих гипотез. Формулировка Пусть дано вероятностное пространство, и полная группа событий, таких… … Википедия

    - (или формула Байеса) одна из основных теорем теории вероятностей, которая позволяет определить вероятность того, что произошло какое либо событие (гипотеза) при наличии лишь косвенных тому подтверждений (данных), которые могут быть неточны … Википедия

    Теорема Байеса одна из основных теорем элементарной теории вероятностей, которая определяет вероятность наступления события в условиях, когда на основе наблюдений известна лишь некоторая частичная информация о событиях. По формуле Байеса можно… … Википедия

    Байес, Томас Томас Байес Reverend Thomas Bayes Дата рождения: 1702 год(1702) Место рождения … Википедия

    Томас Байес Reverend Thomas Bayes Дата рождения: 1702 год(1702) Место рождения: Лондон … Википедия

    Байесовский вывод один из методов статистического вывода, в котором для уточнения вероятностных оценок на истинность гипотез при поступлении свидетельств используется формула Байеса. Использование байесовского обновления особенно важно в… … Википедия

    Для улучшения этой статьи желательно?: Найти и оформить в виде сносок ссылки на авторитетные источники, подтверждающие написанное. Проставив сноски, внести более точные указания на источники. Пере … Википедия

    Будут ли заключенные друг друга предавать, следуя своим эгоистическим интересам, или будут молчать, тем самым минимизируя общий срок? Дилемма заключённого (англ. Prisoner s dilemma, реже употребляется название «дилемма … Википедия

Книги

  • Теория вероятностей и математическая статистика в задачах: Более 360 задач и упражнений , Борзых Д.. В предлагаемом пособии содержатся задачи различного уровня сложности. Однако основной акцент сделан на задачах средней сложности. Это сделано намеренно с тем, чтобы побудить студентов к…

Если событие А может произойти только при выполнении одного из событий , которые образуютполную группу несовместных событий , то вероятность события А вычисляется по формуле

Эта формула называется формулой полной вероятности .

Вновь рассмотрим полную группу несовместных событий , вероятности появления которых. СобытиеА может произойти только вместе с каким-либо из событий , которые будем называтьгипотезами . Тогда по формуле полной вероятности

Если событие А произошло, то это может изменить вероятности гипотез .

По теореме умножения вероятностей

.

Аналогично, для остальных гипотез

Полученная формула называется формулой Байеса (формулой Бейеса ). Вероятности гипотез называютсяапостериорными вероятностями , тогда как -априорными вероятностями .

Пример. В магазин поступила новая продукция с трех предприятий. Процентный состав этой продукции следующий: 20% - продукция первого предприятия, 30% - продукция второго предприятия, 50% - продукция третьего предприятия; далее, 10% продукции первого предприятия высшего сорта, на втором предприятии - 5% и на третьем - 20% продукции высшего сорта. Найти вероятность того, что случайно купленная новая продукция окажется высшего сорта.

Решение. Обозначим через В событие, заключающееся в том, что будет куплена продукция высшего сорта, через обозначим события, заключающиеся в покупке продукции, принадлежащей соответственно первому, второму и третьему предприятиям.

Можно применить формулу полной вероятности, причем в наших обозначениях:

Подставляя эти значения в формулу полной вероятности, получим искомую вероятность:

Пример. Один из трех стрелков вызывается на линию огня и производит два выстрела. Вероятность попадания в мишень при одном выстреле для первого стрелка равна 0,3, для второго - 0,5; для третьего - 0,8. Мишень не поражена. Найти вероятность того, что выстрелы произведены первым стрелком.

Решение. Возможны три гипотезы:

На линию огня вызван первый стрелок,

На линию огня вызван второй стрелок,

На линию огня вызван третий стрелок.

Так как вызов на линию огня любого стрелка равновозможен, то

В результате опыта наблюдалось событие В - после произведенных выстрелов мишень не поражена. Условные вероятности этого события при сделанных гипотезах равны:

по формуле Байеса находим вероятность гипотезы после опыта:

Пример. На трех станках-автоматах обрабатываются однотипные детали, поступающие после обработки на общий конвейер. Первый станок дает 2% брака, второй – 7%, третий – 10%. Производительность первого станка в 3 раза больше производительности второго, а третьего – в 2 раза меньше, чем второго.

а) Каков процент брака на конвейере?

б) Каковы доли деталей каждого станка среди бракованных деталей на конвейере?

Решение. Возьмем с конвейера наудачу одну деталь и рассмотрим событие А – деталь бракованная. Оно связано с гипотезами относительно того, где была обработана эта деталь: – взятая наудачу деталь обработана на-ом станке,.

Условные вероятности (в условии задачи они даны в форме процентов):

Зависимости между производительностями станков означают следующее:

А так как гипотезы образуют полную группу, то .

Решив полученную систему уравнений, найдем: .

а) Полная вероятность того, что взятая наудачу с конвейера деталь – бракованная:

Другими словами, в массе деталей, сходящих с конвейера, брак составляет 4%.

б) Пусть известно, что взятая наудачу деталь – бракованная. Пользуясь формулой Байеса, найдем условные вероятности гипотез:

Таким образом, в общей массе бракованных деталей на конвейере доля первого станка составляет 33%, второго – 39%, третьего – 28%.

Практические задания

Задание 1

Решение задач по основным разделам теории вероятности

Цель - получение практических навыков в решении задач по

разделам теории вероятностей

Подготовка к выполнению практического задания

Ознакомиться с теоретическим материалом по данной тематике, изучить содержание теоретического, а также соответствующие разделы в литературных источниках

Порядок выполнения задания

Решить 5 задач согласно номеру варианта задания, приведенного в таблице 1.

Варианты исходных данных

Таблица 1

номер задачи

Состав отчета по заданию 1

5 решенных задач согласно номеру варианта.

Задачи для самостоятельного решения

1.. Являются ли случаями следующие группы событий: а) опыт - бросание монеты; события: А1 - появление герба; А2 - появление цифры; б) опыт - бросание двух монет; события: В1 - появление двух гербов; В2 - появление двух цифр; В3 - появление одного герба и одной цифры; в) опыт - бросание игральной кости; события: С1 - появление не более двух очков; С2 - появление трех или четырех очков; С3 - появление не менее пяти очков; г) опыт - выстрел по мишени; события: D1 - попадание; D2 - промах; д) опыт - два выстрела по мишени; события: Е0 - ни одного попадания; Е1 - одно попадание; Е2 - два попадания; е) опыт - вынимание двух карт из колоды; события: F1 - появление двух красных карт; F2 - появление двух черных карт?

2. В урне A белых и B черных шаров. Из урны вынимают наугад один шар. Найти вероятность того, что этот шар - белый.

3. В урне A белых и B черных шаров. Из урны вынимают один шар и откладывают в сторону. Этот шар оказался белым. После этого из урны берут еще один шар. Найти вероятность того, что этот шар тоже будет белым.

4. В урне A белых и B черных шаров. Из урны вынули один шар и, не глядя, отложили в сторону. После этого из урны взяли еще один шар. Он оказался белым. Найти вероятность того, что первый шар, отложенный в сторону, - тоже белый.

5. Из урны, содержащей A белых и B черных шаров, вынимают один за другим все шары, кроме одного. Найти вероятность того, что последний оставшийся в урне шар будет белым.

6. Из урны, в которой A белых шаров и B черных, вынимают подряд все находящиеся в ней шары. Найти вероятность того, что вторым по порядку будет вынут белый шар.

7. В урне A белых и B черных шаров (A > 2). Из урны вынимают сразу два шара. Найти вероятность того, что оба шара будут белыми.

8. В урне A белых и B черных шаров (A > 2, B > 3). Из урны вынимают сразу пять шаров. Найти вероятность р того, что два из них будут белыми, а три черными.

9. В партии, состоящей из X изделий, имеется I дефектных. Из партии выбирается для контроля I изделий. Найти вероятность р того, что из них ровно J изделий будут дефектными.

10. Игральная кость бросается один раз. Найти вероятность следующих событий: А - появление четного числа очков; В - появление не менее 5 очков; С- появление не более 5 очков.

11. Игральная кость бросается два раза. Найти вероятность р того, что оба раза появится одинаковое число очков.

12. Бросаются одновременно две игральные кости. Найти вероятности следующих событий: А - сумма выпавших очков равна 8; В - произведение выпавших очков равно 8;С- сумма выпавших очков больше, чем их произведение.

13. Бросаются две монеты. Какое из событий является более вероятным: А - монеты лягут одинаковыми сторонами; В - монеты лягут разными сторонами?

14. В урне A белых и B черных шаров (A > 2; B > 2). Из урны вынимают одновременно два шара. Какое событие более вероятно: А - шары одного цвета; В - шары разных цветов?

15. Трое игроков играют в карты. Каждому из них сдано по 10 карт и две карты оставлены в прикупе. Один из игроков видит, что у него на руках 6 карт бубновой масти и 4 - не бубновой. Он сбрасывает две карты из этих четырех и берет себе прикуп. Найти вероятность того, что он прикупит две бубновые карты.

16. Из урны, содержащей п перенумерованных шаров, наугад вынимают один за другим все находящиеся в ней шары. Найти вероятность того, что номера вынутых шаров будут идти по порядку: 1, 2,..., п.

17. Та же урна, что и в предыдущей задаче, но каждый шар после вынимания вкладывается обратно и перемешивается с другими, а его номер записывается. Найти вероятность того, что будет записана естественная последовательность номеров: 1, 2,..., п.

18. Полная колода карт (52 листа) делится наугад на две равные пачки по 26 листов. Найти вероятности следующих событий: А - в каждой из пачек окажется по два туза; В - в одной из пачек не будет ни одного туза, а в другой - все четыре; С-в одной из пачек будет один туз, а в другой - три.

19. В розыгрыше первенства по баскетболу участвуют 18 команд, из которых случайным образом формируются две группы по 9 команд в каждой. Среди участников соревнований имеется 5 команд

экстра-класса. Найти вероятности следующих событий: А - все команды экстра-класса попадут в одну и ту же группу; В - две команды экстра-класса попадут в одну из групп, а три - в другую.

20. На девяти карточках написаны цифры: 0, 1, 2, 3, 4, 5, 6, 7, 8. Две из них вынимаются наугад и укладываются на стол в порядке появления, затем читается полученное число, например 07(семь), 14 (четырнадцать) и т. п. Найти вероятность того, что число будет четным.

21. На пяти карточках написаны цифры: 1, 2, 3, 4, 5. Две из них, одна за другой, вынимаются. Найти вероятность того, что число на второй карточке будет больше, чем на первой.

22. Тот же вопрос, что в задаче 21, но первая карточка после вынимания кладется обратно и перемешивается с остальными, а стоящее на ней число записывается.

23. В урне A белых, B черных и C красных шаров. Из урны вынимают один за другим все находящиеся в ней шары и записывают их цвета. Найти вероятность того, что в этом списке белый цвет появится раньше черного.

24. Имеется две урны: в первой A белых и B черных шаров; во второй C белых и D черных. Из каждой урны вынимается по шару. Найти вероятность того, что оба шара будут белыми.

25. В условиях задачи 24 найти вероятность того, что вынутые шары будут разных цветов.

26. В барабане револьвера семь гнезд, из них в пяти заложены патроны, а два оставлены пустыми. Барабан приводится во вращение, в результате чего против ствола случайным образом оказывается одно из гнезд. После этого нажимается спусковой крючок; если ячейка была пустая, выстрела не происходит. Найти вероятность р того, что, повторив такой опыт два раза подряд, мы оба раза не выстрелим.

27. В тех же условиях (см. задачу 26)найти вероятность того, что оба раза выстрел произойдет.

28. В урне имеется А; шаров, помеченных номерами 1, 2, ..., к Из урны I раз вынимается по одному шару (I <к), номер шара записывается и шар кладется обратно в урну. Найти вероятность р того, что все записанные номера будут различны.

29. Из пяти букв разрезной азбуки составлено слово «книга». Ребенок, не умеющий читать, рассыпал эти буквы и затем собрал в произвольном порядке. Найти вероятность р того, что у него снова получилось слово «книга».

30. Из букв разрезной азбуки составлено слово «ананас». Ребенок, не умеющий читать, рассыпал эти буквы и затем собрал в произвольном порядке. Найти вероятность р того, что у него снова слово «ананас

31. Из полной колоды карт (52 листа, 4 масти) вынимается сразу несколько карт. Сколько карт нужно вынуть для того, чтобы с вероятностью, большей чем 0,50, утверждать, что среди них будут карты одной и той же масти?

32. N человек случайным образом рассаживаются за круглым столом (N > 2). Найти вероятность р того, что два фиксированных лица А и В окажутся рядом.

33. Та же задача (см 32), но стол прямоугольный, и N человек рассаживаются случайно вдоль одной из его сторон.

34. На бочонках лото написаны числа от 1 до N. Из этих N бочонков случайно выбираются два. Найти вероятность того что на обоих бочонках написаны числа, меньшие чем k (2

35. На бочонках лото написаны числа от 1 до N. Из этих N бочонков случайно выбираются два. Найти вероятность того что на одном из бочонков написано число, большее чем k, а на другом - меньшее чем k. (2

36. Батарея из М орудий ведет огонь по группе, состоящей из N целей (М < N). Орудия выбирают себе цели последовательно, случайным образом, при условии, что никакие два орудия стрелять по одной цели не могут. Найти вероятность р того, что будут обстреляны цели с номерами 1, 2,..., М.

37.. Батарея, состоящая из к орудий, ведет огонь по группе, состоящей из I самолетов (к < 2). Каждое орудие выбирает себе цель случайно и независимо от других. Найти вероятность того, что все к орудий будут стрелять по одной и той же цели.

38. В условиях предыдущей задачи найти вероятность того, что все орудия будут стрелять по разным целям.

39. Четыре шарика случайным образом разбрасываются по четырем лункам; каждый шарик попадает в ту или другую лунку с одинаковой вероятностью и независимо от других (препятствий к попаданию в одну и ту же лунку нескольких шариков нет). Найти вероятность того, что в одной из лунок окажется три шарика, в другой - один, а в двух остальных лунках шариков не будет.

40. Маша поссорилась с Петей и не хочет ехать с ним в одном автобусе. От общежития до института с 7 до 8 отправляется 5 автобусов. Не успевший на эти автобусы опаздывает на лекцию. Сколькими способами Маша и Петя могут доехать до института на разных автобусах и не опоздать на лекцию?

41. В информационно-технологическом управлении банка работает 3 аналитика, 10 программистов и 20 инженеров. Для сверхурочной в праздничный день начальник управления должен выделить одного сотрудника. Сколькими способами это можно сделать?

42. Начальник службы безопасности банка должен ежедневно расставлять 10 охранников по 10 постам. Сколькими способами это можно сделать?

43. Новый президент банка должен назначить 2 новых вице президентов из числа 10 директоров. Сколькими способами это можно сделать?

44. Одна из воюющих сторон захватил 12, а другая – 15 пленных. Сколькими способами можно обменять 7 военнопленных?

45. Петя и Маша коллекционируют видеодиски. У Пети есть 30 комедий, 80 боевиков и 7 мелодрам, у Маши – 20 комедий, 5 боевиков и 90 мелодрам. Сколькими способами Петя и Маша могут обменяться 3 комедиями, 2 боевиками и 1 мелодрамой?

46. В условиях задачи 45 сколькими способами Петя и Маша могут обменяться 3 мелодрамами и 5 комедиями?

47. В условиях задачи 45 сколькими способами Петя и Маша могут обменяться 2 боевиками и 7 комедиями.

48. Одна из воюющих сторон захватил 15, а другая – 16 пленных. Сколькими способами можно обменять 5 военнопленных?

49. Сколько автомобилей можно зарегистрировать в 1 городе, если номер имеет 3 цифры и 3 буквы (только те чьё написание совпадает с латинскими – А,В,Е,К,М,Н,О,Р,С,Т,У,Х)?

50. Одна из воюющих сторон захватил 14, а другая – 17 пленных. Сколькими способами можно обменять 6 военнопленных?

51. Сколько различных слов можно составить переставляя буквы в слове «мама»?

52. В корзине 3 красных и 7 зеленых яблок. Из нее вынимают одно яблоко. Найти вероятность того, что оно будет красным.

53. В корзине 3 красных и 7 зеленых яблок. Из нее вынули и отложили в сторону одно зеленое яблоко. После чего из корзины вынимают еще 1 яблоко. Какова вероятность того, что это яблоко будет зеленым?

54. В партии, состоящей из 1000 изделий, 4 имеют дефекты. Для контроля выбирают партию из 100 изделий. Какова вероятность ТОО, что в контрольной партии не окажется бракованных?

56.В 80-е годы в СССР была популярна игра «спортлото 5 из 36». Играющий отмечал на карточке 5 чисел от 1 до 36 и получал призы различного достоинства если он угадывал разное число чисел, объявленных тиражной комиссией. Найти вероятность того, что игрок не угадал ни одного числа.

57.В 80-е годы в СССР была популярна игра «спортлото 5 из 36». Играющий отмечал на карточке 5 чисел от 1 до 36 и получал призы различного достоинства если он угадывал разное число чисел, объявленных тиражной комиссией. Найти вероятность того, что игрок угадал одно число.

58.В 80-е годы в СССР была популярна игра «спортлото 5 из 36». Играющий отмечал на карточке 5 чисел от 1 до 36 и получал призы различного достоинства если он угадывал разное число чисел, объявленных тиражной комиссией. Найти вероятность того, что игрок угадал 3 числа.

59.В 80-е годы в СССР была популярна игра «спортлото 5 из 36». Играющий отмечал на карточке 5 чисел от 1 до 36 и получал призы различного достоинства если он угадывал разное число чисел, объявленных тиражной комиссией. Найти вероятность того, что игрок не угадал все 5 чисел.

60.В 80-е годы в СССР была популярна игра «спортлото 6 из 49». Играющий отмечал на карточке 6 чисел от 1 до 49 и получал призы различного достоинства если он угадывал разное число чисел, объявленных тиражной комиссией. Найти вероятность того, что игрок угадал 2 числа.

61. В 80-е годы в СССР была популярна игра «спортлото 6 из 49». Играющий отмечал на карточке 6 чисел от 1 до 49 и получал призы различного достоинства если он угадывал разное число чисел, объявленных тиражной комиссией. Найти вероятность того, что игрок не угадал ни одного числа.

62.В 80-е годы в СССР была популярна игра «спортлото 6 из 49». Играющий отмечал на карточке 6 чисел от 1 до 49 и получал призы различного достоинства если он угадывал разное число чисел, объявленных тиражной комиссией. Найти вероятность того, что игрок угадал все 6 чисел.

63. В партии, состоящей из 1000 изделий, 4 имеют дефекты. Для контроля выбирают партию из 100 изделий. Какова вероятность ТОО, что в контрольной партии окажется только 1 бракованная?

64. Сколько различных слов можно составить переставляя буквы в слове «книга»?

65. Сколько различных слов можно составить переставляя буквы в слове «ананас»?

66. В лифт вошло 6 человек, а общежитие имеет 7 этажей. Какова вероятность того что все 6 человек выйдут на одном этаже?

67. В лифт вошло 6 человек, здание имеет 7 этажей. Какова вероятность того что все 6 человек выйдут на разных этажах?

68. Во время грозы на участке между 40 и 79 км линии электропередачи произошел обрыв провода. Считая что обрыв одинаково возможен в любой точке, найти вероятность того что обрыв произошел между 40-м и 45-м километрами.

69. На 200 километровом участке газопровода происходит утечка газа между компрессорными станциями А и В, которая одинаково возможна в любой точке трубопровода. какова вероятность того что утечка происходит не далее 20 км от А

70. На 200 километровом участке газопровода происходит утечка газа между компрессорными станциями А и В, которая одинаково возможна в любой точке трубопровода. какова вероятность того что утечка происходит ближе к А, чем к В

71. Радар инспектора ДПС имеет точность 10 км\час и округляет в ближайшую сторону. Что происходит чаще – округление в пользу водителя или инспектора?

72. Маша тратит на дорогу в институт от 40 до 50 минут, причем любое время в этом промежутке является равновероятным. Какова вероятность того что она потратит на дорогу от 45 до 50 минут.

73. Петя и Маша договорились встретиться у памятника Пушкину с 12 до 13 часов, однако никто не смог указать точно время прихода. Они договорились ждать друг друга 15 минут. Какова вероятность их встречи?

74. Рыбаки поймали в пруду 120 рыб, из них 10 оказались окольцованными. Какова вероятность поймать окольцованную рыбу?

75. Из корзины содержащей 3 красных и 7 зеленых яблок вынимают все яблоки по очереди. какова вероятность того что 2-е яблоко окажется красным?

76. Из корзины содержащей 3 красных и 7 зеленых яблок вынимают все яблоки по очереди. какова вероятность того что последнее яблоко окажется зеленым?

77. Студенты считают что из 50 билетов 10 являются «хорошими». Петя и Маша по очереди тянут по одному билету. Какова вероятность того, что Маше достался «хороший» билет?

78. Студенты считают что из 50 билетов 10 являются «хорошими». Петя и Маша по очереди тянут по одному билету. Какова вероятность того, что им обоим достался «хороший» билет?

79. Маша пришла на экзамен зная ответы на 20 вопросов программы из 25. Профессор задает 3 вопроса. Какова вероятность того что Маша ответит на 3 вопроса?

80. Маша пришла на экзамен зная ответы на 20 вопросов программы из 25. Профессор задает 3 вопроса. Какова вероятность того что Маша не ответит ни на один вопрос?

81. Маша пришла на экзамен зная ответы на 20 вопросов программы из 25. Профессор задает 3 вопроса. Какова вероятность того что Маша ответит на 1 вопрос?

82. Статистика запросов кредитов в банке такова: 10% - гос. органы, 20% - другие банки, остальное – физические лица. Вероятность невозвращения кредитов соответственно 0.01, 0.05 и 0.2. Какая доля кредитов не возвращается?

83. вероятность того что недельный оборот торговца мороженым превысит 2000 руб. составляет 80% при ясной погоде, 50 % при переменной облачности и 10% при дождливой погоде. Какова вероятность что оборот превысит 2000 руб. если вероятность ясной погоды – 20%, а переменной облачности и дождей – по 40%.

84. В урне А белых (б) и В черных (ч) шаров. Из урны вынимают (одновременно или последовательно) два шара. Найти вероятность того, что оба шара будут белыми.

85. В урне А белых и В

86. В урне А белых и В

87. В урне А белых и В черных шаров. Из урны вынимается один шар, отмечается его цвет и шар возвращается в урну. После этого из урны берется еще один шар. Найти вероятность того, что эти шары будут разных цветов.

88. Имеется коробка с девятью новыми теннисными мячами. Для игры берут три мяча; после игры их кладут обратно. При выборе мячей игранные от неигранных не отличают. Какова вероятность того, что после трех игр в коробке не останется неигранных мячей?

89. Уходя из квартиры, N каждый гость наденет свои калоши;

90. Уходя из квартиры, N гостей, имеющих одинаковые размеры обуви, надевают калоши в темноте. Каждый из них может отличить правую калошу от левой, но не может отличить свою от чужой. Найти вероятность того что каждый гость, наденет калоши, относящиеся к одной паре (может быть и не свои).

91. В условиях задачи 90найти вероятность того что каждый уйдет в своих калошах если гости не могут отличить правой калоши от левой и просто берут первые попавшиеся две калоши.

92. Ведется стрельба по самолету, уязвимыми частями которого являются два двигателя и кабина пилота. Для того чтобы поразить (вывести из строя) самолет, достаточно поразить оба двигателя вместе или кабину пилота. При данных условиях стрельбы вероятность поражения первого двигателя равна p1 второго двигателя р2, кабины пилота р3. Части самолета поражаются независимо друг от друга. Найти вероятность того, что самолет будет поражен.

93. Два стрелка, независимо один от другого, делают по два выстрела (каждый по своей мишени). Вероятность попадания в мишень при одном выстреле для первого стрелка p1 для второго р2. Выигравшим соревнование считается тот стрелок, в мишени которого будет больше пробоин. Найти вероятность Рх того, что выиграет первый стрелок.

94. за космическим объектом, объект обнаруживается с вероятностью р. Обнаружение объекта в каждом цикле происходит независимо от других. Найти вероятность того, что при п циклах объект будет обнаружен.

95. 32 буквы русского алфавита написаны на карточках разрезной азбуки. Пять карточек вынимаются наугад одна за другой и укладываются на стол в порядке появления. Найти вероятность того, что получится слово «конец».

96. Два шарика разбрасываются случайно и независимо друг от друга по четырем ячейкам, расположенным одна за другой по прямой линии. Каждый шарик с одинаковой вероятностью 1/4 попадает в каждую ячейку. Найти вероятность того, что шарики попадут в соседние ячейки.

97. Производится стрельба по самолету зажигательными снарядами. Горючее на самолете сосредоточено в четырех баках, расположенных в фюзеляже один за другим. Площади баков одинаковы. Для того чтобы зажечь самолет, достаточно попасть двумя снарядами либо в один и тот же бак, либо в соседние баки. Известно, что в область баков попало два снаряда. Найти вероятность того, что самолет загорится.

98. Из полной колоды карт (52 листа) вынимаются сразу четыре карты. Найти вероятность того, что все эти четыре карты будут разных мастей.

99. Из полной колоды карт (52 листа) вынимаются сразу четыре карты, но каждая карта после вынимания возвращается в колоду. Найти вероятность того, что все эти четыре карты будут разных мастей..

100. При включении зажигания двигатель начинает работать с вероятностью р.

101. Прибор может работать в двух режимах: 1) нормальном и 2) ненормальном. Нормальный режим наблюдается в 80 % всех случаев работы прибора; ненормальный - в 20 %. Вероятность выхода прибора из строя за время t в нормальном режиме равна 0,1; в ненормальном - 0,7. Найти полную вероятность р выхода прибора из строя.

102. Магазин получает товар от 3 поставщиков: 55% от 1-го, 20 от 2-го и 25% от 3-го. Доля брака составляет 5, 6 и 8 процентов соответственно. Какова вероятность того что купленный бракованный товар поступил от второго поставщика.

103.Поток автомобилей мимо АЗС состоит на 60% из грузовых и на 40% из легковых автомобилей. Какова вероятность нахождения на АЗС грузового автомобиля, если вероятность его заправки 0.1, а легкового – 0.3

104. Поток автомобилей мимо АЗС состоит на 60% из грузовых и на 40% из легковых автомобилей. Какова вероятность нахождения на АЗС грузового автомобиля, если вероятность его заправки 0.1, а легкового – 0.3

105. Магазин получает товар от 3 поставщиков: 55% от 1-го, 20 от 2-го и 25% от 3-го. Доля брака составляет 5, 6 и 8 процентов соответственно. Какова вероятность того что купленный бракованный товар поступил от 1-го поставщика.

106. 32 буквы русского алфавита написаны на карточках разрезной азбуки. Пять карточек вынимаются наугад одна за другой и укладываются на стол в порядке появления. Найти вероятность того, что получится слово «книга».

107. Магазин получает товар от 3 поставщиков: 55% от 1-го, 20 от 2-го и 25% от 3-го. Доля брака составляет 5, 6 и 8 процентов соответственно. Какова вероятность того что купленный бракованный товар поступил от 1-го поставщика.

108. Два шарика разбрасываются случайно и независимо друг от друга по четырем ячейкам, расположенным одна за другой по прямой линии. Каждый шарик с одинаковой вероятностью 1/4 попадает в каждую ячейку. Найти вероятность того, что 2 шарика попадут в одну ячейку

109. При включении зажигания двигатель начинает работать с вероятностью р. Найти вероятность того, что двигатель начнет работать при втором включении зажигания;

110. Производится стрельба по самолету зажигательными снарядами. Горючее на самолете сосредоточено в четырех баках, расположенных в фюзеляже один за другим. Площади баков одинаковы. Для того чтобы зажечь самолет, достаточно попасть двумя снарядами в один и тот же бак. Известно, что в область баков попало два снаряда. Найти вероятность того, что самолет загорится

111. Производится стрельба по самолету зажигательными снарядами. Горючее на самолете сосредоточено в четырех баках, расположенных в фюзеляже один за другим. Площади баков одинаковы. Для того чтобы зажечь самолет, достаточно попасть двумя снарядами в соседние баки. Известно, что в область баков попало два снаряда. Найти вероятность того, что самолет загорится

112.В урне А белых и В черных шаров. Из урны вынимается один шар, отмечается его цвет и шар возвращается в урну. После этого из урны берется еще один шар. Найти вероятность того, что оба вынутые шара будут белыми.

113. В урне А белых и В черных шаров. Из урны вынимаются сразу два шара. Найти вероятность того, что эти шары будут разных цветов.

114. Два шарика разбрасываются случайно и независимо друг от друга по четырем ячейкам, расположенным одна за другой по прямой линии. Каждый шарик с одинаковой вероятностью 1/4 попадает в каждую ячейку. Найти вероятность того, что шарики попадут в соседние ячейки.

115. Маша пришла на экзамен зная ответы на 20 вопросов программы из 25. Профессор задает 3 вопроса. Какова вероятность того что Маша ответит на 2 вопроса?

116. Студенты считают что из 50 билетов 10 являются «хорошими». Петя и Маша по очереди тянут по одному билету. Какова вероятность того, что им обоим достался «хороший» билет?

117. Статистика запросов кредитов в банке такова: 10% - гос. органы, 20% - другие банки, остальное – физические лица. Вероятность невозвращения кредитов соответственно 0.01, 0.05 и 0.2. Какая доля кредитов не возвращается?

118. 32 буквы русского алфавита написаны на карточках разрезной азбуки. Пять карточек вынимаются наугад одна за другой и укладываются на стол в порядке появления. Найти вероятность того, что получится слово «конец».

119 Статистика запросов кредитов в банке такова: 10% - гос. органы, 20% - другие банки, остальное – физические лица. Вероятность невозвращения кредитов соответственно 0.01, 0.05 и 0.2. Какая доля кредитов не возвращается?

120. вероятность того что недельный оборот торговца мороженым превысит 2000 руб. составляет 80% при ясной погоде, 50 % при переменной облачности и 10% при дождливой погоде. Какова вероятность что оборот превысит 2000 руб. если вероятность ясной погоды – 20%, а переменной облачности и дождей – по 40%.

Подробно теорема Байеса излагается в отдельной статье . Это замечательная работа, но в ней 15 000 слов. В этом же переводе статьи от Kalid Azad кратко объясняется самая суть теоремы.

  • Результаты исследований и испытаний – это не события. Существует метод диагностики рака, а есть само событие - наличие заболевания. Алгоритм проверяет, содержит ли письмо спам, но событие (на почту действительно пришел спам) нужно рассматривать отдельно от результата его работы.
  • В результатах испытаний бывают ошибки. Часто наши методы исследований выявляют то, чего нет (ложноположительный результат), и не выявляют то, что есть (ложноотрицательный результат).
  • С помощью испытаний мы получаем вероятности определенного исхода. Мы слишком часто рассматриваем результаты испытания сами по себе и не учитываем ошибки метода.
  • Ложноположительные результаты искажают картину. Предположим, что вы пытаетесь выявить какой-то очень редкий феномен (1 случай на 1000000). Даже если ваш метод точен, вероятнее всего, его положительный результат будет на самом деле ложноположительным.
  • Работать удобнее с натуральными числами. Лучше сказать: 100 из 10000, а не 1%. При таком подходе будет меньше ошибок, особенно при умножении. Допустим, нам нужно дальше работать с этим 1%. Рассуждения в процентах неуклюжи: «в 80% случаев из 1% получили положительный исход». Гораздо легче информация воспринимается так: «в 80 случаях из 100 наблюдали положительный исход».
  • Даже в науке любой факт - это всего лишь результат применения какого-либо метода. С философской точки зрения научный эксперимент – это всего лишь испытание с вероятной ошибкой. Есть метод, выявляющий химическое вещество или какой-нибудь феномен, и есть само событие - присутствие этого феномена. Наши методы испытаний могут дать ложный результат, а любое оборудование обладает присущей ему ошибкой.
Tеорема Байеса превращает результаты испытаний в вероятность событий.
  • Если нам известна вероятность события и вероятность ложноположительных и ложноотрицательных результатов, мы можем исправить ошибки измерений.
  • Теорема соотносит вероятность события с вероятностью определенного исхода. Мы можем соотнести Pr(A|X): вероятность события А, если дан исход X, и Pr(X|A): вероятность исхода X, если дано событие А.

Разберемся в методе

В статье, на которую дана ссылка в начале этого эссе, разбирается метод диагностики (маммограмма), выявляющий рак груди. Рассмотрим этот метод подробно.
  • 1% всех женщин болеют раком груди (и, соответственно, 99% не болеют)
  • 80% маммограмм выявляют заболевание, когда оно действительно есть (и, соответственно, 20% не выявляют)
  • 9,6% исследований выявляют рак, когда его нет (и, соответственно, 90,4% верно определяют отрицательный результат)
Теперь оформим такую таблицу:

Как работать с этим данными?
  • 1% женщин болеют раком груди
  • если у пациентки выявили заболевание, смотрим в первую колонку: есть 80% вероятность того, что метод дал верный результат, и 20% вероятность того, что результат исследования неправильный (ложноотрицательный)
  • если у пациентки заболевание не выявили, смотрим на вторую колонку. С вероятностью 9,6% можно сказать, что положительный результат исследования неверен, и с 90,4% вероятностью можно сказать, что пациентка действительно здорова.

Насколько метод точен?

Теперь разберем положительный результат теста. Какова вероятность того, что человек действительно болен: 80%, 90%, 1%?

Давайте подумаем:

  • Есть положительный результат. Разберем все возможные исходы: полученный результат может быть как истинным положительным, так и ложноположительным.
  • Вероятность истинного положительного результата равна: вероятность заболеть, умноженная на вероятность того, что тест действительно выявил заболевание. 1% * 80% = .008
  • Вероятность ложноположительного результата равна: вероятность того, что заболевания нет, умноженная на вероятность того, что метод выявил заболевание неверно. 99% * 9.6% = .09504
Теперь таблица выглядит так:

Какова вероятность, что человек действительно болен, если получен положительный результат маммограммы? Вероятность события - это отношение количества возможных исходов события к общему количеству всех возможных исходов.

Вероятность события = исходы события / все возможные исходы

Вероятность истинного положительного результата – .008. Вероятность положительного результата - это вероятность истинного положительного исхода + вероятность ложноположительного.

(.008 + 0.09504 = .10304)

Итак, вероятность заболевания при положительном результате исследования рассчитывается так: .008/.10304 = 0.0776. Эта величина составляет около 7.8%.

То есть положительный результат маммограммы значит только то, что вероятность наличия заболевания – 7,8%, а не 80% (последняя величина - это лишь предполагаемая точность метода). Такой результат кажется поначалу непонятным и странным, но нужно учесть: метод дает ложноположительный результат в 9,6% случаев (а это довольно много), поэтому в выборке будет много ложноположительных результатов. Для редкого заболевания большинство положительных результатов будут ложноположительными.

Давайте пробежимся глазами по таблице и попробуем интуитивно ухватить смысл теоремы. Если у нас есть 100 человек, только у одного из них есть заболевание (1%). У этого человека с 80% вероятностью метод даст положительный результат. Из оставшихся 99% у 10% будут положительные результаты, что дает нам, грубо говоря, 10 ложноположительных исходов из 100. Если мы рассмотрим все положительные результаты, то только 1 из 11 будет верным. Таким образом, если получен положительный результат, вероятность заболевания составляет 1/11.

Выше мы посчитали, что эта вероятность равна 7,8%, т.е. число на самом деле ближе к 1/13, однако здесь с помощью простого рассуждения нам удалось найти приблизительную оценку без калькулятора.

Теорема Байеса

Теперь опишем ход наших мыслей формулой, которая и называется теоремой Байеса. Эта теорема позволяет исправить результаты исследования в соответствии с искажением, которое вносят ложноположительные результаты:
  • Pr(A|X) = вероятность заболевания (А) при положительном результате (X). Это как раз то, что мы хотим знать: какова вероятность события в случае положительного исхода. В нашем примере она равна 7,8%.
  • Pr(X|A) = вероятность положительного результата (X) в случае, когда больной действительно болен (А). В нашем случае это величина истинных положительных – 80%
  • Pr(A) = вероятность заболеть (1%)
  • Pr(not A) = вероятность не заболеть (99%)
  • Pr(X|not A) = вероятность положительного исхода исследования в случае, если заболевания нет. Это величина ложноположительных – 9,6 %.
Можно сделать заключение: чтобы получить вероятность события, нужно вероятность истинного положительного исхода разделить на вероятность всех положительных исходов. Теперь мы можем упростить уравнение:
Pr(X) – это константа нормализации. Она сослужила нам хорошую службу: без нее положительный исход испытаний дал бы нам 80% вероятность события.
Pr(X) – это вероятность любого положительного результата, будет ли это настоящий положительный результат при исследовании больных (1%) или ложноположительный при исследовании здоровых людей (99%).

В нашем примере Pr(X) – довольно большое число, потому что велика вероятность ложноположительных результатов.

Pr(X) создает результат 7,8%, который на первый взгляд кажется противоречащим здравому смыслу.

Смысл теоремы

Мы проводим испытания, чтоб выяснить истинное положение вещей. Если наши испытания совершенны и точны, тогда вероятности испытаний и вероятности событий совпадут. Все положительные результаты будут действительно положительными, а отрицательные - отрицательными. Но мы живем в реальном мире. И в нашем мире испытания дают неверные результаты. Теорема Байеса учитывает искаженные результаты, исправляет ошибки, воссоздает генеральную совокупность и находит вероятность истинного положительного результата.

Спам-фильтр

Теорема Байеса удачно применяется в спам-фильтрах.

У нас есть:

  • событие А - в письме спам
  • результат испытания - содержание в письме определенных слов:

Фильтр берет в расчет результаты испытаний (содержание в письме определенных слов) и предсказывает, содержит ли письмо спам. Всем понятно, что, например, слово «виагра» чаще встречается в спаме, чем в обычных письмах.

Фильтр спама на основе черного списка обладает недостатками - он часто выдает ложноположительные результаты.

Спам-фильтр на основе теоремы Байеса использует взвешенный и разумный подход: он работает с вероятностями. Когда мы анализируем слова в письме, мы можем рассчитать вероятность того, что письмо - это спам, а не принимать решения по типу «да/нет». Если вероятность того, что письмо содержит спам, равна 99%, то письмо и вправду является таковым.

Со временем фильтр тренируется на все большей выборке и обновляет вероятности. Так, продвинутые фильтры, созданные на основе теоремы Байеса, проверяют множество слов подряд и используют их в качестве данных.

Дополнительные источники:

Теги: Добавить метки

Загрузка...