domvpavlino.ru

Функции материнской платы. Системная плата - это что такое? Устройство и основные характеристики Устройство системной платы персонального компьютера центральный процессор

Обойтись без материнской платы не получится. Кроме этого, от того, какая у вашего компьютера материнская плата, зависит дальнейшая его модернизация. Если материнская плата позволяет, то со временем может быть расширена оперативная память и установлена видеокарта, с более высокими показателями. Но любой апгрейд возможен, если есть неиспользуемые до сих пор слоты и разъемы.

В первую очередь поговорим о такой материнской плате, которая позволяет расширять систему во всех направлениях. Это полноразмерная плата и рекомендуемая фирма «Asus». Здесь имеется достаточное количество слотов и элементов, благодаря которым дальнейший апгрейд дает радужные перспективы. Так же нужно отметить хорошую разводку. Все элементы хорошо пропаяны и производитель гарантирует, что прослужит плата долго.

Как обычно, рассмотрим все по пунктам

На рисунке есть обозначения и давайте с ними разберемся. Это основные элементы материнской платы:

  • разъем или сокет для подключения процессора;
  • слоты для подключения видеокарты, иногда в продвинутых моделях плат одновременно могут быть установлены две видеокарты;
  • в эти слоты подключается оперативная память, в данном случае стандарт DDR2;
  • чип материнской платы и его «северный мост»;
  • теперь южный мост;
  • система, охлаждающая фазы для питания процессора;
  • всем знакомые USB разъемы, их четыре, которые выводятся на заднюю стенку системного блока;
  • звуковая карта встроенная и ее выходы;
  • интерфейс дисковода FDC controller;
  • это выходы, их тоже четыре, в которые подключаются нового стандарта жесткие диски;
  • в эти три слота PCI можно при расширении подключить дополнительные платы, например, платы видео-захвата, ТВ тюнер и другие;
  • BIOS батарейка;
  • разъем в 12 V четырехконтактный для процессора;
  • бок питания подключается в этот разъем из 24-х контактов, отсюда на материнскую плату подается напряжение;
  • здесь подключаются устаревшие жесткие IDE диски для DVD, CD Rom;
  • BIOS или микросхема.

Теперь еще подробнее

Комментарии могут потребоваться для таких элементов как система охлаждения. Отлично видно, что на рисунке она находится в самой середине и от нее идут медные трубки. Микросхема чипсета с северной стороны закрывается центральным радиатором. Конечно, он перекликается с микросхемой с южной стороны. Кроме того, здесь же находится контролер системной шины, оперативной памяти, встроенное видео.

Наверное, понятно, что когда говорится о северном и южном мосте, то в первую очередь имеется в виду их месторасположение. Северный мост находится выше слотов PCI, а южный, соответственно, ниже. Радиатор частично закрывает и южный мост, в котором находится контролер сетевой карты, встроенной в компьютер, USB шины, встроенный звук, и прочее.

Микросхемы, которые объединяются для выполнения каких-либо задач и называют чипсетами. По-английски это chipset. Северный и южный мост это две большие микросхемы на материнской плате компьютера.
Задача «Северного моста» соединять высокопроизводительные устройства и ЦПУ. Эти устройства находятся на материнской плате: видеоадаптер и память.

В отличие от него, «Южный мост» заведует жесткими дисками, платами расширения, картами сетевой и звуковой, USB и так далее. То есть в его ведении переферийные устройства.

Ниже пример, как выглядит два чипсета «Северный» и «Южный». Северный мост всегда больше, а южный меньше. Эти чипсеты от фирмы «VIA».


То, что на рисунке выше мы отметили цифрой «6» - это радиаторы. Они на материнской плате и их задача охлаждать фазы, питающие процессор. Транзисторы и конденсаторы находятся ниже этих радиаторов. Они не дают напряжению питания испытывать перепады, когда вдруг нагрузка возрастает. Если на материнской плате эти устройства есть, тогда не сомневайтесь, она качественная. При некачественной материнской плате процессор может работать нестабильно. Это уже нехорошо.

Фазы питания или цепи состоят из преобразователей напряжения, резисторов, транзисторов, дросселей, ШИМ-контролеров, конденсаторов и прочего. Все это входит в элементную базу питания процессора.

Чем занимаются преобразователи напряжения?

Они контролируют напряжение и подают его таким, каким оно необходимо для нормальной работы каждого элемента. Мы уже знаем, что питание приходит в 12 вольт. Однако не для всех элементов нужно именно такое напряжение. Поэтому его требуется понизить, что и делает преобразователь и потом перенаправляет к микросхеме или элементу, который в нем нуждается.

Вообще, это важная тема и здесь нужно остановиться подробнее. Есть модуль регулирования напряжения или Voltage Regulation Module. Сокращенно его называют VRM. Он и понижает напряжение. Но чаще этим занимается другой модуль VRD или Voltage Regulator Down. Обычному пользователю информации достаточно. Глубже вникать нет необходимости. Просто знайте, аббревиатуры и понимайте для чего они.

Преобразователь напряжения, обычно в своей схеме имеет еще и полевые МОП-транзисторы. Полевые от различных электрических полей. Этими полями они и управляются. Что значит МОП? По-английски это звучит как metal-oxide-semiconductor field effect transistor, а по-русски металл-оксид-полупроводник. Можно еще встретить сокращенную английскую версию MOSFET или мосфеты.

Основной контроль и управление фазами питания сосредоточено на материнской плате на PWM-контролере. Расшифровывается аббревиатура как Pulse Wide Modulation , переводится «широтно-импульсная модуляция» или ШИМ. Проще, это ШИМ-контролеры.

Как ШИМ-контролер понимает, какое напряжение необходимо подавать в центральный процессор? Ему об этом сигнализирует восьмибитный знак. В разные моменты напряжение должно быть разным и поэтому такой сигнал необходим.

Сейчас все компьютеры многофазные. Они имеют до 24 фаз. Но обычно можно увидеть и четырехфазные и восьмифазные компьютеры. А вот однофазные теперь редкость. Но когда-то только они и были на службе у человека. Теперь они признаны неэффективными.

Но, что такое однофазный регулятор?

Он имеет ограничение в максимальном напряжении, которое проходит через дроссели, мосфеты, конденсаторы или через основные элементы, формирующие его. Напряжение может быть не более тридцати ампер. Для сравнения, современные процессоры способны принимать электричество до ста и выше ампер. Если в современный компьютер установить одну фазу, то при таких «требованиях» она просто расплавится. Чтобы ограничения снять и стали производить питание процессора многофазное.

Если регулятор многофазный, тогда нагрузку электричества можно распределить или направить по отдельным фазам, их количество может быть самым разным. Но при этом все вместе эти фазы дадут именно ту мощность, которая необходима. Допустим, что установлено шесть фаз. Каждая фаза пропускает тридцать ампер. Это цифра ограничения, помните? Итак, каждая фаза подает по тридцать ампер и в сумме это будет все сто восемьдесят ампер.

Есть один нюанс, который нужно учитывать при покупке компьютера. Если его процессор Intel поколения Core i7, то энергию он потребляет в пределах 130 Ватт. Таким образом, для его питания хватит и шести фаз. Если вам говорят, что фаз больше, не верьте, привирают. Да сами элементы сейчас создаются полимерные твердотельные. Раньше элементная база состояла из электролитических конденсаторов. Теперь полимерные конденсаторы могут работать не менее пятидесяти тысяч часов. Даже дроссели другие, сердечко у них ферритовое. Поэтому и ток они пропускают не тридцать, как было когда-то, а все сорок ампер. И если питание шестифазное, тогда процессор получит 240 ампер. Энергии при этом он будет потреблять больше двухсот Ватт.

Современные материнские платы оснащены таким устройством, которое обеспечивает динамическое переключение между цепями питания. Все не так сложно, как может показаться на первый взгляд. Просто компьютер обычно энергии потребляет не так много, но иногда возникает необходимость и тогда уже во время работы фазы подключаются одна за другой. Если нагрузка уменьшается, тогда фазы отключаются. В принципе, как мы уже говорили, для работы процессора достаточно и одной фазы. Но это для слабого процессора. Иногда такой режим используют в процессе тестирования.

От фаз питания к материнской плате

Давайте вернемся к теме разговора. Чуть ниже, расположена картинка, где схематично изображены на материнской плате все основные разъемы и элементы:


Во главе стоит центральный процессор. С него-то все и начинается. То есть, буквально на каждый узел от центрального процессора передача данных производится через центральную шину.

На следующей картинке эта ситуация так же проиллюстрирована:

Что же это за шина такая, о которой мы так часто вспоминаем?

Это процессорная шина платы и ее название Front Side Bus. Если сказать коротко, то FSB. Через эту шину, взаимодействуют северный мост материнской платы и процессор. Можно сравнить с магистралью, с какой скоростью мчатся данные с такой скоростью, и работает вся система. Работа шины, ее частота, измеряется в мегагерцах, и чем показатель выше, тем работа идет активнее.

Когда-то мы уже подробно описывали, что такое частота и как ее измеряют. Об этом отдельно можно почитать в специальной статье.

У центрального процессора есть привилегия, только он подключается непосредственно к этой шине. Все остальные элементы передают и получают данные, через установленные контролеры. Все они встроены в микросхему «северного моста».

Иногда контролеры интегрируют в ядро CPU, и сейчас это происходит все чаще и чаще.

Что дает перенос контролеров? Когда контролер оперативной памяти перенесли из чипсета в ядро процессора, то сильно уменьшились задержки передачи данных. В принципе эти задержки неизбежны, когда они передаются через системную шину. Но здесь они оказались минимальны.

Интересно привести в пример процессор «Intel LGA1156». Там практически уже нет FSB. Почему? Просто все необходимые контролеры перенесены с материнской платы в процессор.

Идея компании «AMD» оказалась плодотворной. Теперь у этой технологии есть имя и называется она «Hyper Transport». Сначала она была исключительно для компьютеров, а сейчас по этому принципу оснащены сетевые маршрутизаторы компании «Cisco». Как уже понятно, устройства эти высокопроизводительные.

Постепенно ядро процессора все усложняется. Туда переносятся уже практически все устройства, включая видео. Сначала его место было на материнской плате в северном мосту. Место казалось идеальным. Но когда оно было перенесено в ядро процессора, оказалось, что это намного эффективнее.

Почему этот процесс стал вообще возможен?

Дело в том, что техпроцесс производства процессоров сокращается. Для примера посмотрим на процессоры серии. Там техпроцесс используется в 22 нанометра. И благодаря этому, появилась возможность размещать транзисторы в количестве 1,4 миллиарда. И это все на одной и той же площади.

Чтобы было понятнее, нанометром называют одну миллиардную часть метра. Соответственно, 22 нанометра это линейное разрешение литографического оснащения. Оно входит в состав центрального процессора.

Как видно, эволюция идет по пути уменьшения всего, транзисторов и других элементов. И появляется возможность размещать их на одном кристалле. И количество транзисторов постоянно растет это закономерно. Таким образом, на их базе можно создать любой элемент и встроить его графическое ядро ЦП. Сейчас разработчики именно этим и занимаются. Они постоянно уменьшают техпроцесс.

Процесс этот привел к тому, что под одной крышей в центральном процессоре оказались практически все контролеры и интерфейсы. Во многих современных материнских платах южный мост оказался овсе ненужным. И от него просто отказались. Зато в северный мост попали некоторые из них. Классический вариант описанной нами ранее материнской платы можно увидеть теперь редко.

Если материнская плата дешевая, то можно увидеть такую картину: она укорочена, а все элементы все равно не на ней размещены. Только вот находятся они и сбоку и снизу текстолитовой пластины. Понятно, что ни о разъемах, ни о выходах говорить не приходится. Куда уж тут, элементы бы разместить!

Рейтинг: / 4
Подробности Просмотров: 2719

Персональный компьютер: системная плата

Компьютер - это универсальная техническая система, способная четко выполнять последовательность операций определенной программы. Персональным компьютером (ПК) может пользоваться один человек без помощи обслуживающего персонала. Взаимодействие с пользователем происходит через много сред, от алфавитно-цифрового или графического диалога с помощью дисплея, клавиатуры и мышки до устройств виртуальной реальности.

Конфигурацию ПК можно изменять по мере необходимости. Но, существует понятие базовой конфигурации, которую можно считать типичной:

  • системный блок;
  • монитор;
  • клавиатура;
  • мышка.

Компьютеры выпускаются и в портативном варианте (laptop или notebook выполнение). В этом случае, системный блок, монитор и клавиатура размещены в одном корпусе: системный блок находится под клавиатурой, а монитор встроен в крышку.

Системный блок - основная составляющая ПК, в середине которой находятся важнейшие компоненты. Устройства, находящиеся в середине системного блока называют внутренними, а устройства, подсоединенные извне называют внешними. Внешние дополнительные устройства, предназначенные для ввода и вывода информации называются также периферийными.

По внешнему виду, системные блоки отличаются формой корпуса, который может быть горизонтального (desktop) или вертикального (tower) выполнение. Корпусы вертикального выполнения могут иметь разные размеры: полноразмерный (BigTower), среднеразмерный (MidiTower), малоразмерный (MiniTower). Корпусы горизонтального выполнения бывают двух форматов: узкий (Full-AT) и очень узкий (Baby-AT). Корпусы персональных компьютеров имеют разные конструкторские особенности и дополнительные элементы (элементы блокировки несанкционированного доступа, средства контроля внутренней температуры, шторки от пыли).

Корпусы поставляются вместе с блоком питания, мощность которого является одним из параметров корпуса. Для массовых моделей достаточной является мощность 200-250 Вт.

Основные узлы системного блока:

  • электрические платы, руководящие работой компьютера (микропроцессор, оперативная память, контроллеры устройств и т.п.);
  • накопитель на жестком диске (винчестер), предназначенный для чтения или записи информации;
  • накопители (дисководы) для гибких магнитных дисков (дискет).

Основной платой ПК является материнская плата (MotherBoard). На ней расположены:

  • процессор - основная микросхема, выполняющая математические и логические операции;
  • чипсет (микропроцессорный комплект) - набор микросхем, которые руководят работой внутренних устройств ПК и определяют основные функциональные возможности материнской платы;
  • шины - набор проводников, по которым происходит обмен сигналами между внутренними устройствами компьютера;
  • оперативное запоминающее устройство (ОЗУ) - набор микросхем, предназначенных для временного сохранения данных, пока включен компьютер;
  • постоянное запоминающее устройство (ПЗУ) - микросхема, предназначенная для долговременного хранения данных, даже при отключенном компьютере;
  • разъемы для подсоединения дополнительных устройств (слоты).

Процессор

Процессор - это главная микросхема компьютера, его "мозг". Он разрешает выполнять программный код, находящийся в памяти и руководит работой всех устройств компьютера. Скорость его работы определяет быстродействие компьютера. Конструктивно, процессор - это кристалл кремния очень маленьких размеров. Процессор имеет специальные ячейки, которые называются регистрами. Именно в регистрах помещаются команды, которые выполняются процессором, а также данные, которыми оперируют команды. Работа процессора состоит в выборе из памяти в определенной последовательности команд и данных и их выполнении. На этом и базируется выполнение программ.

В ПК обязательно должен присутствовать центральный процессор (Central Rpocessing Unit - CPU), который выполняет все основные операции. Часто ПК оснащен дополнительными сопроцесорами, ориентированными на эффективное выполнение специфических функций, такие как, математический сопроцесор для обработки числовых данных в формате с плавающей точкой, графический сопроцесор для обработки графических изображений, сопроцесор ввода/вывода для выполнения операции взаимодействия с периферийными устройствами.

Основными параметрами процессоров являются:

  • тактовая частота,
  • разрядность,
  • рабочее напряжение,
  • коэффициент внутреннего умножения тактовой частоты,
  • размер кеш памяти.

Тактовая частота определяет количество элементарных операций (тактов), выполняемые процессором за единицу времени. Тактовая частота современных процессоров измеряется в МГц (1 Гц соответствует выполнению одной операции за одну секунду, 1 МГц=106 Гц). Чем больше тактовая частота, тем больше команд может выполнить процессор, и тем больше его производительность. Первые процессоры, которые использовались в ПК работали на частоте 4,77 МГц, сегодня рабочие частоты современных процессоров достигают отметки в 2 ГГц (1 ГГц = 103 МГц).

Разрядность процессора показывает, сколько бит данных он может принять и обработать в своих регистрах за один такт. Разрядность процессора определяется разрядностью командной шины, то есть количеством проводников в шине, по которой передаются команды. Современные процессоры семейства Intel являются 32-разрядными.

Рабочее напряжение процессора обеспечивается материнской платой, поэтому разным маркам процессоров отвечают разные материнские платы. Рабочее напряжение процессоров не превышает 3 В. Снижение рабочего напряжения разрешает уменьшить размеры процессоров, а также уменьшить тепловыделение в процессоре, что разрешает увеличить его производительность без угрозы перегрева.

Коэффициент внутреннего умножения тактовой частоты - это коэффициент, на который следует умножить тактовую частоту материнской платы, для достижения частоты процессора. Тактовые сигналы процессор получает от материнской платы, которая из чисто физических причин не может работать на таких высоких частотах, как процессор. На сегодня тактовая частота материнских плат составляет 100-133 Мгц. Для получения более высоких частот в процессоре происходит внутреннее умножение на коэффициент 4, 4.5, 5 и больше.

Кэш-память. Обмен данными внутри процессора происходит намного быстрее, чем обмен данными между процессором и оперативной памятью. Поэтому, для того чтобы уменьшить количество обращений к оперативной памяти, внутри процессора создают так называемую сверхоперативную или кэш-память. Когда процессору нужны данные, он сначала обращается к кэш-памяти, и только тогда, когда там отсутствуют нужные данные, происходит обращение к оперативной памяти. Чем больше размер кэш-памяти, тем большая вероятность, что необходимые данные находятся там. Поэтому высокопроизводительные процессоры имеют повышенные объемы кэш-памяти.

Различают кэш-память первого уровня (выполняется на одном кристалле с процессором и имеет объем порядка несколько десятков Кбайт), второго уровня (выполняется на отдельном кристалле, но в границах процессора, с объемом в сто и более Кбайт) и третьего уровня (выполняется на отдельных быстродействующих микросхемах с расположением на материнской плате и имеет объем один и больше Мбайт).

В процессе работы процессор обрабатывает данные, находящиеся в его регистрах, оперативной памяти и внешних портах процессора. Часть данных интерпретируется как собственно данные, часть данных - как адресные данные, а часть - как команды. Совокупность разнообразных команд, которые может выполнить процессор над данными, образовывает систему команд процессора. Чем больше набор команд процессора, тем сложнее его архитектура, тем длиннее запись команд в байтах и тем дольше средняя продолжительность выполнения команд.

Процессоры Intel, используемые в IBM-совместных ПК, насчитывают более тысячи команд и относятся к процессорам с расширенной системой команд - CISC-процессоров (CISC - Complex Instruction Set Computing). В противоположность CISC-процессорам разработаны процессоры архитектуры RISC с сокращенной системой команд (RISC - Reduced Instruction Set Computing). При такой архитектуре количество команд намного меньше, и каждая команда выполняется быстрее. Таким образом, программы, состоящие из простых команд выполняются намного быстрее на RISC-процессорах. Обратная сторона сокращенной системы команд состоит в том, что сложные операции приходится эмулировать далеко не всегда эффективной последовательностью более простых команд. Поэтому CISC-процессоры используются в универсальных компьютерных системах, а RISC-процессоры - в специализированных. Для ПК платформы IBM PC доминирующими являются CISC-процессоры фирмы Intel, хотя в последнее время компания AMD изготовляет процессоры семейства AMD-K6, которые имеют гибридную архитектуру (внутреннее ядро этих процессоров выполненное по RISC-архитектуре, а внешняя структура - по архитектуре CISC).

В компьютерах IBM PC используют процессоры, разработанные фирмой Intel, или совместимые с ними процессоры других фирм, относящиеся к семейству x86. Родоначальником этого семейства был 16-разрядный процессор Intel 8086. В дальнейшем выпускались процессоры Intel 80286, Intel 80386, Intel 80486 с модификациями, разные модели Intel Pentium, Pentium MMX, Pentium Pro, Pentium II, Celeron, Pentium III. Новейшей моделью фирмы Intel является процессор Pentium IV. Среди других фирм-производителей процессоров следует отметить AMD с моделями AMD-K6, Athlon, Duron и Cyrix.

Шины

С другими устройствами, и в первую очередь с оперативной памятью, процессор связан группами проводников, которые называются шинами. Основных шин три:

  • шина данных,
  • адресная шина,
  • командная шина.

Адресная шина. Данные, которые передаются по этой шине трактуются как адреса ячеек оперативной памяти. Именно из этой шины процессор считывает адреса команд, которые необходимо выполнить, а также данные, с которыми оперируют команды. В современных процессорах адресная шина 32-разрядная, то есть она состоит из 32 параллельных проводников.

Шина данных. По этой шине происходит копирование данных из оперативной памяти в регистры процессора и наоборот. В ПК на базе процессоров Intel Pentium шина данных 64-разрядная. Это означает, что за один такт на обработку поступает сразу 8 байт данных.

Командная шина. По этой шине из оперативной памяти поступают команды, выполняемые процессором. Команды представлены в виде байтов. Простые команды вкладываются в один байт, но есть и такие команды, для которых нужно два, три и больше байта. Большинство современных процессоров имеют 32-разрядную командную шину, хотя существуют 64-разрядные процессоры с командной шиной.

Шины на материнской плате используются не только для связи с процессором. Все другие внутренние устройства материнской платы, а также устройства, которые подключаются к ней, взаимодействуют между собой с помощью шин. От архитектуры этих элементов во многом зависит производительность ПК в целом.

Основные шинные интерфейсы материнских плат:

ISA (Industry Standard Architecture). Разрешает связать между собой все устройства системного блока, а также обеспечивает простое подключение новых устройств через стандартные слоты. Пропускная способность составляет до 5,5 Мбайт/с. В современных компьютерах может использоваться лишь для подсоединения внешних устройств, которые не требуют большей пропускной способности (звуковые карты, модемы и т.д.).

EISA (Extended ISA). Расширение стандарта ISA. Пропускная способность возросла до 32 Мбайт/с. Как и стандарт ISA, этот стандарт исчерпал свои возможности и в будущем выпуск плат, которые поддерживают эти интерфейсы прекратится.

VLB (VESA Local Bus). Интерфейс локальной шины стандарта VESA. Локальная шина соединяет процессор с оперативной памятью в обход основной шины. Она работает на большей частоте, чем основная шина, и позволяет увеличить скорость передачи данных. Позже, в локальную шину "врезали" интерфейс для подключения видеоадаптера, который требует повышенной пропускной способности, что и привело к появлению стандарта VLB. Пропускная способность - до 130 Мбайт/с, рабочая тактовая частота - 50 МГц, но она зависит от количества устройств, подсоединенных к шине, что является главным недостатком интерфейса VLB.

PCI (Peripherial Component Interconnect). Стандарт подключения внешних устройств, введенный в ПК на базе процессора Pentium. По своей сути, это интерфейс локальной шины с разъемами для подсоединения внешних компонентов. Данный интерфейс поддерживает частоту шины до 66 МГц и обеспечивает быстродействие до 264 Мбайт/с независимо от количества подсоединенных устройств. Важным нововведением этого стандарта является поддержка механизма plug-and-play, суть которого состоит в том, что после физического подключения внешнего устройства к разъему шины PCI происходит автоматическая конфигурация этого устройства.

FSB (Front Side Bus). Начиная с процессора Pentium Pro для связи с оперативной памятью используется специальная шина FSB. Эта шина работает на частоте 100-133 МГц и имеет пропускную способность до 800 Мбайт/с. Частота шины FSB является основным параметром, именно она указывается в спецификации материнской платы. За шиной PCI осталась лишь функция подключения новых внешних устройств.

AGP (Advanced Graphic Port). Специальный шинный интерфейс для подключения видеоадаптеров. Разработан в связи с тем, что параметры шины PCI не отвечают требованиям видеоадаптеров по быстродействию. Частота этой шины - 33 или 66 МГц, пропускная способность до 1066 Мбайт/с.

USB (Universal Serial Bus). Стандарт универсальной последовательной шины определяет новый способ взаимодействия компьютера с периферийным оборудованием. Он разрешает подключать до 256 разных устройств с последовательным интерфейсом, причем устройства могут подсоединяться цепочкой. Производительность шины USB относительно небольшая и составляет 1,55 Мбит/с. Среди преимуществ этого стандарта следует отметить возможность подключать и отключать устройства в "горячем режиме" (то есть без перезагрузки компьютера), а также возможность объединения нескольких компьютеров в простую сеть без использования специального аппаратного и программного обеспечения.

Внутренняя память

Под внутренней памятью понимают все виды запоминающих устройств, расположенные на материнской плате. К ним относятся оперативная память, постоянная память и энергонезависимая память.

Оперативная память RAM (Random Access Memory)

Память RAM - это массив кристаллических ячеек, способных сохранять данные. Она используется для оперативного обмена информацией (командами и данными) между процессором, внешней памятью и периферийными системами. Из нее процессор берет программы и данные для обработки, в нее записываются полученные результаты. Название "оперативная" происходит от того, что она работает очень быстро и процессору не нужно ждать при считывании данных из памяти или записи. Однако, данные сохраняются лишь временно при включенном компьютере, иначе они исчезают.

По физическому принципу действия различают динамическую память DRAM и статическую память SRAM.

Ячейки динамической памяти можно представить в виде микроконденсаторов, способных накапливать электрический заряд. Недостатки памяти DRAM: медленнее происходит запись и чтение данных, требует постоянной подзарядки. Преимущества: простота реализации и низкая стоимость.

Ячейки статической памяти можно представить как электронные микроэлементы - триггеры, состоящие из транзисторов. В триггере сохраняется не заряд, а состояние (включенный/выключенный). Преимущества памяти SRAM: значительно большее быстродействие. Недостатки: технологически более сложный процесс изготовления, и соответственно, большая стоимость.

Микросхемы динамической памяти используются как основная оперативная память, а микросхемы статической - для кэш-памяти.

Каждая ячейка памяти имеет свой адрес, выраженный числом. В современных ПК на базе процессоров Intel Pentuim используется 32-разрядная адресация. Это означает, что всего независимых адресов есть 232, то есть возможное адресное пространство составляет 4,3 Гбайт. Однако, это еще не означает, что именно столько оперативной памяти может быть в системе. Предельный размер объема памяти определяется чипсетом материнской платы и обычно составляет несколько сотен мегабайт.

Оперативная память в компьютере размещена на стандартных панельках, которые называются модулями. Модули оперативной памяти вставляют в соответствующие разъемы на материнской плате. Конструктивно модули памяти имеют два выполнения - однорядные (SIMM - модули) и двурядные (DIMM - модули). На компьютерах с процессорами Pentium однорядные модули можно применять лишь парами (количество разъемов для их установления на материнской плате всегда четное). DIMM - модули можно устанавливать по одному. Комбинировать на одной плате разные модули нельзя.

Основные характеристики модулей оперативной памяти:

  • объем памяти,
  • время доступа.

SIMM - модули имеют объем 4, 8, 16, 32, 64 мегабайт; DIMM - модули - 16, 32, 64, 128, 256, 512 Мбайт. Время доступа показывает, сколько времени необходимо для обращения к ячейкам памяти, чем меньше, тем лучше. Измеряется в наносекундах. SIMM - модули - 50-70 нс, DIMM - модули - 7-10 нс.

Постоянная память ROM (Read Only Memory)

В момент включения компьютера в его оперативной памяти отсутствуют любые данные, поскольку оперативная память не может сохранять данные при отключенном компьютере. Но процессору необходимы команды, в том числе и сразу после включения. Поэтому процесор обращается по специальному стартовому адресу, который ему всегда известен, за своей первой командой. Этот адрес указывает на память, которую принято называть постоянной памятью ROM или постоянным запоминающим устройством (ПЗУ). Микросхема ПЗУ способна продолжительное время сохранять информацию, даже при отключенном компьютере. Говорят, что программы, которые находятся в ПЗУ, "зашиты" в ней - они записываются туда на этапе изготовления микросхемы. Комплект программ, находящийся в ПЗУ образовывает базовую систему ввода/вывода BIOS (Basic Input Output System).

Основное назначение этих программ состоит в том, чтобы проверить состав и трудоспособность системы и обеспечить взаимодействие с клавиатурой, монитором, жесткими и гибкими дисками.

Энергонезависимая память CMOS

Работа таких стандартных устройств, как клавиатура, может обслуживаться программами BIOS, но такими средствами невозможно обеспечить роботу со всеми возможными устройствами (в связи с их огромным разнообразием и наличием большого количества разных параметров). Но для своей работы программы BIOS требуют всю информацию о текущей конфигурации системы. По очевидной причине эту информацию нельзя сохранять ни в оперативной памяти, ни в постоянной. Специально для этих целей на материнской плате есть микросхема энергонезависимой памяти, которая называется CMOS. От оперативной памяти она отличается тем, что ее содержимое не исчезает при отключении компьютера, а от постоянной памяти она отличается тем, что данные можно заносить туда и изменять самостоятельно, в соответствии с тем, какое оборудование входит в состав системы.

Микросхема памяти CMOS постоянно питается от небольшой батарейки, расположенной на материнской плате. В этой памяти сохраняются данные про гибкие и жесткие диски, процессоры и т.д. Тот факт, что компьютер четко отслеживает дату и время, также связанн с тем, что эта информация постоянно хранится (и обновляется) в памяти CMOS. Таким образом, программы BIOS считывают данные о составе компьютерной системы из микросхемы CMOS, после чего они могут осуществлять обращение к жесткому диску и другим устройствам.

Контрольные вопросы

Что такое материнская плата? Какие компоненты персонального компьютера на ней находятся?

В чем состоит выполнение программ центральным процессором?

Какие основные параметры процессора? Что характеризует тактовая частота и в каких единицах она измеряется?

Что такое кэш-память? Уровни кэш-памяти?

Для чего предназначенны шины? Какие есть типы шин?

Какие шинные интерфейсы материнской платы вы знаете?

Чем отличается оперативная память от постоянной памяти?

Что такое RISC-процессоры? В чем состоит их отличие от CISC-процессоров?

В какой памяти сохраняются программы BIOS?

Какая информация сохраняется в энергонезависимой памяти?

Какие вы знаете типы оперативной памяти? Какая между ними разница?

Материнская или системная плата - это тот фундамент, на котором построен любой современный компьютер, будь то настольный ПК, ноутбук или встраиваемая система.

Именно материнская плата объединяет такие различные по своей сути и функциональности комплектующие, как процессор, оперативная память, платы расширения и всевозможные накопители.

Именно благодаря материнской плате к компьютеру можно подключать периферийные устройства, ведь даже если набор системной логики (чипсет) поддерживает разнообразные шины и интерфейсы, к обычной микросхеме напрямую подключить, к примеру, принтер, вряд ли у кого получится.

Что же представляет собой современная материнская плата?
Разговор у нас пойдет, в основном, о платах для настольных ПК, как наиболее распространенных и близких читателю, однако значительная часть их описания применима и к платам для серверов, ноутбуков и встраиваемых компьютеров.

Системная плата - это главная и самая большая печатная плата в вычислительной машине.
По сложности изготовления самой печатной платы «материнки» отстают лишь от самых ультрасовременных графических ускорителей.

Типичная материнская плата построена на базе четырех-шестислойной текстолитовой печатной платы, в то время как некоторые видеокарты выпускаются на основе восьми- и даже десятислойных печатных плат.

Использование многослойных плат позволяет при сохранении стандартных размеров развести различные электрические цепи таким образом, чтобы их взаимовлияние было минимальным.
По тем слоям, которые находятся в глубине платы, разводятся цепи питания и заземления, а по прочим, включая верхний и нижний - собственно сигнальные цепи.

Чтобы не загружать читателя специфической информацией, остановимся лишь на двух чисто электрических параметрах материнской платы.
Поскольку микросхемы рассчитаны на работу строго оговоренных режимах, для обеспечения их надежности и долговечности необходимо качественное питание.

Конечно, значительную роль здесь играет блок питания, к которому подключается плата, однако различным компонентам необходима разная мощность, причем энергопотребление отдельных комплектующих, к примеру, процессора, непостоянно.

Все эти факторы вынуждают прибегать к дополнительным ухищрениям.
Для подачи необходимого напряжения на различные комплектующие во всех современных материнских платах используется стабилизатор напряжения, который чаще всего устанавливается непосредственно на плате, но, бывает, и выполняется в виде отдельной небольшой платы, размещаемой в целях надлежащего охлаждения в непосредственной близости от блока питания.

Стабилизатор напряжения работает в автоматическом режиме, в зависимости от того, на какие контакты подается нагрузка, иными словами, к какому разъему подключено то или иное устройство, или элемент платы.

Функция разгона процессора, часто поддерживаемая современными платами, использует ручную регулировку напряжения (в разумных пределах, безусловно), которая реализуется для пользователя через BIOS или через специализированную утилиту.

Бороться со скачками напряжения, губительными для многих комплектующих, призваны конденсаторы, способные накапливать и затем плавно отдавать заряд.
Неслучайно конденсаторов так много на материнских платах, в особенности, вокруг центрального процессора, для которого характерны резкие скачки энергопотребления, в зависимости от нагрузки.

Именно с конденсаторами связано снижение со временем надежности работы материнской платы: они емкости стареют быстрее прочих компонентов, в частности, из-за воздействия высоких температур.

В результате емкость конденсаторов падает, и они теряют способность «держать удар» и выравнивать напряжение в схеме, что негативно сказывается на прочих компонентах и, в худшем случае, выводит их из строя.
Так что рекомендации к смене компьютера каждые три года порождены не только маркетинговыми соображениями «морального устаревания», но и вполне объективные причинами.

Перейдем к непосредственным функциям материнской платы.
В обязательном порядке на этой плате размещаются системная шина, процессорный разъем, слоты для модулей оперативной памяти (возможен вариант, когда микросхемы памяти впаиваются непосредственно в плату), слоты расширения, различные контроллеры, а также порты ввода и вывода.

Как видим, системная плата объединяет в единую систему все компоненты компьютера - без нее они бы оставались просто набором не связанных друг с другом комплектующих.

Обратимся к фотографии.
На ней изображена типичная современная материнская плата P5GDC-V Deluxe производства известной тайваньской компании Asus.

Эта плата на основе набора системной логики Intel 915G рассчитана на процессоры Intel Pentium 4 в корпусировке LGA 775 и поддерживает почти все технологии, встречающиеся в современных настольных компьютерах.

Краткие характеристики этой модели:

Чипсет 915G со встроенным графическим ускорителем («северный мост») + ICH6R («южный мост»).
- Поддержка процессоров Pentium 4 или Celeron D в корпусировке LGA 775.
- Поддержка оперативной памяти DDR и DDR2 533 объемом до 4 Гбайт.
- Поддержка шины PCI Express x16 и x1.
- Поддержка шины PCI.
- Поддержка скоростных интерфейсов USB 2.0 и IEEE 1394 (FireWire).
- Контроллеры IDE и Serial ATA.
- Гигабитный сетевой контроллер.
- Восьмиканальный (7.1) звуковой контроллер.
- Форм-фактор ATX (размеры - 305 x 244 мм).

Twin BiCS FLASH - новая технология трехмерной флэш-памяти

11 декабря 2019 г. на Международном совещании по электронным устройствам (IEDM) IEEE корпорация TOKYO-Kioxia анонсировала технологию трехмерной флэш-памяти - Twin BiCS FLASH.

Драйвер AMD Radeon Software Adrenalin Edition 2020 19.12.2 WHQL (добавлено)

10 декабря компания AMD представила мега драйвер Radeon Software Adrenalin 2020 Edition 19.12.2 WHQL.

Накопительное обновление Windows 10 1909 KB4530684

10 декабря 2019 г. Microsoft выпустила накопительное обновление KB4530684 (Build 18363.535) для Windows 10 November 2019 Update (версия 1909) на базе процессоров x86, x64 (amd64), ARM64 и Windows Server 2019 (1909) для систем на базе процессоров x64.

Драйвер NVIDIA Game Ready GeForce 441.66 WHQL

Системная (материнская) плата - основа электронной составляющей компьютера. Она крепится к корпусу. Затем на материнскую плату устанавливается процессор, память, и многое другое. Т.е. она как бы соединительный элемент, база, к которой подключаются все остальные устройства. На материнской плате обычно установлены микросхемы, отвечающие за работу с процессором, памятью и другими устройствами (т.н. чипсет). Вот почему выбор материнской платы очень важен и с точки зрения производительности компьютера, и с точки зрения его надежности.

Из производителей материнских плат самыми качественными я бы назвала Intel и ASUSTeC. Но даже и у них не без недостатков. Например, у Intel были проблемы с совместимостью, а у ASUS последнее время (возможно, в связи с переносом части производства в Китай) начали появляться проблемы с надежностью.

А вообще мамки от Intel или ASUS можно покупать, не задумываясь - любая модель будет работать. С гарантией лучше у Intel.

Второй эшелон производителей материнских плат - Gigabyte, Abit, MSI, ECS, FoxConn. Они тоже вполне качественные, но отличаются от первого эшелона тем, что есть модели удачные, а есть не очень, удачная же модель по качеству может «дать фору» любой другой.

Материнские (системные) платы характеризуются:

  • - форм-фактором (конструктив для установки в корпус - ATX, microATX, Baby AT, BTX и т.п.)
  • - чипсетом (производителем и типом микросхем чипсета, на котором сделана материнская плата).
  • - типом поддерживаемых процессоров и разъемом под проц (LGA775, Socket 478 и т.п.)
  • - типом поддерживаемой памяти и разъемами под оперативную память
  • - типом и кол-вом стандартных составляющих (контроллеры IDE, порты USB и т.п.)
  • - наличием дополнительно установленных элементов - звук, графика, сеть и т.п.
  • - и, конечно же, фирмой-производителем и качеством изготовления

БАЗОВАЯ СИСТЕМА ВВОДА - ВЫВОДА - BIOS

BIOS (англ. Basic Input-Output System -- базовая система ввода-вывода, БСВВ) -- небольшая программа, находящаяся на ПЗУ и отвечающая за самые базовые функции интерфейса и настройки оборудования, на котором она установлена. Наиболее широко среди пользователей компьютеров известна BIOS материнской платы, но BIOS присутствуют почти у всех компонентов компьютера: у видеоадаптеров, сетевых адаптеров, модемов, дисковых контроллеров, принтеров.

Главная функция BIOS материнской платы -- инициализация устройств, подключенных к материнской плате, прямо после включения питания компьютера. BIOS проверяет работоспособность устройств (т. н. самотестирование, англ. POST - Power-On Self Test), задает низкоуровневые параметры их работы (например, частоту шины центрального микропроцессора), и после этого ищет загрузчик операционной системы (англ. Boot Loader) на доступных носителях информации и передает управление операционной системе. Операционная система по ходу работы может изменять большинство настроек, изначально заданных в BIOS. Многие старые персональные компьютеры, которые не имели полноценной операционной системы, либо её загрузка не была необходимой пользователю, вызывали встроенный интерпретатор языка Бейсик. В некоторых реализациях BIOS позволяет производить загрузку операционной системы через интерфейсы, изначально для этого не предназначенные, в том числе USB и IEEE 1394. Также возможна загрузка по сети (применяется, например, в т. н. «тонких клиентах»).

Также BIOS содержит минимальный набор сервисных функций (например, для вывода сообщений на экран или приёма символов с клавиатуры), что и обусловливает расшифровку её названия: Basic Input-Output System -- Базовая система ввода-вывода.

В некоторых BIOS"ах реализуется дополнительная функциональность (например, воспроизведение аудио-CD или DVD-дисков), поддержка встроенной рабочей среды (например, интерпретатор языка Basic) и др.

Системная плата является основной в системном блоке. Она содержит компоненты, определяющие архитектуру компьютера:

    центральный процессор;

    постоянную (ROM ) и оперативную (RAM ) память,кэш-память ;

    интерфейсные схемы шин;

    гнёзда расширения;

    обязательные системные средства ввода-вывода и др.

Системные платы исполняются на основе наборов микросхем, которые называются чипсетами (ChipSets). Часто на системных платах устанавливают и контроллеры дисковых накопителей, видеоадаптер, контроллеры портов и др. В гнёзда расширения системной платы устанавливаются платы таких периферийных устройств, как модем, сетевая плата, видеоплата и т.п.

IV. Интерфейсы вычислительных систем

Для того, чтобы соединить друг с другом различные устройства компьютера, они должны иметь одинаковый интерфейс (англ. interface от inter - между, и face - лицо).

Если интерфейс является общепринятым, например, утверждённым на уровне международных соглашений, то он называется стандартным .

Интерфейс - это аппаратное и программное обеспечение (элементы соединения и вспомогательные схемы управления, их физические, электрические и логические параметры), предназначенное для сопряжения систем или частей системы (программ или устройств). Под сопряжением подразумеваются следующие функции:

    выдача и прием информации;

    управление передачей данных;

    согласование источника и приемника информации.

В связи с понятием интерфейса рассматривают также понятие шина (магистраль) - это среда передачи сигналов, к которой может параллельно подключаться несколько компонентов вычислительной системы и через которую осуществляется обмен данными. Очевидно, для аппаратных составляющих большинства интерфейсов применим термин шина , поэтому зачастую эти два обозначения выступают как синонимы, хотя интерфейс - понятие более широкое.

Каждый из функциональных элементов (память, монитор или другое устройство) связан с шиной определённого типа - адресной, управляющей или шиной данных.

Для согласования интерфейсов периферийные устройства подключаются к шине не напрямую, а через свои контроллеры (адаптеры) и порты примерно по такой схеме:

Контроллеры и адаптеры представляют собой наборы электронных цепей, которыми снабжаются устройства компьютера с целью совместимости их интерфейсов. Контроллеры, кроме этого, осуществляют непосредственное управление периферийными устройствами по запросам микропроцессора.

Портами также называют устройства стандартного интерфейса : последовательный, параллельный и игровой порты (или интерфейсы).

К последовательному порту обычно подсоединяют медленно действующие или достаточно удалённые устройства, такие, как мышь и модем. К параллельному порту подсоединяют более "быстрые" устройства - принтер и сканер. Через игровой порт подсоединяется джойстик. Клавиатура и монитор подключаются к своим специализированным портам, которые представляют собой просто разъёмы .

Основные электронные компоненты, определяющие архитектуру процессора, размещаются на основной плате компьютера, которая называется системной или материнской (MotherBoard). А контроллеры и адаптеры дополнительных устройств, либо сами эти устройства, выполняются в виде плат расширения (DаughterBoard - дочерняя плата) и подключаются к шине с помощью разъёмов расширения, называемых также слотами расширения (англ. slot - щель, паз).

Для интерфейсов , обеспечивающих соединение "точка-точка" (в отличие от шинных интерфейсов ), возможны следующие реализации режимов обмена: дуплексный, полудуплексный и симплексный. К дуплексным относят интерфейсы , обеспечивающие возможность одновременной передачи данных между двумя устройствами в обоих направлениях. В случае, когда канал связи между устройствами поддерживает двунаправленный обмен, но в каждый момент времени передача информации может производиться только в одном направлении, режим обмена называется полудуплексным. Важной характеристикой полудуплексного соединения является время реверсирования режима - то время, за которое производится переход от передачи сообщения к приему и наоборот. Если же интерфейс реализует передачу данных только в одном направлении и движение потока данных в противоположном направлении невозможно, такой интерфейс называют симплексным.

Важное значение имеют также следующие технические характеристики интерфейсов :

    вместимость (максимально возможное количество абонентов, одновременно подключаемых к контроллеру интерфейса без расширителей);

    пропускная способность или скорость передачи (длительность выполнения операций установления и разъединения связи и степень совмещения процессов передачи данных);

    максимальная длина линии связи;

    разрядность;

    топология соединения.

По функциональному назначению можно выделить системные интерфейсы (интерфейсы , связывающие отдельные части компьютера как микропроцессорной системы) и интерфейсы периферийных устройств.

Системный интерфейс выполняется обычно в виде стандартизированных системных шин. Однако в последнее время наметились тенденции внедрения концепций сетевого взаимодействия в архитектуру системных интерфейсов .

Различают два класса системных интерфейсов : с общей шиной (сигналы адреса и данных мультиплексируются) и с изолированной шиной (раздельные сигналы данных и адреса). Прародителями современных системных шин являются:

    Unibus фирмы DEC (интерфейс с общей шиной ),

    Multibus фирмы Intel (интерфейс с изолированной шиной ).

Системные интерфейсы для ПК на основе Intel-386 и Intel-486

Первым стандартным системным интерфейсом для ПК на основе ЦП IA-32 следует считать ISA (Industry Standard Architecture - Архитектура промышленного стандарта). ISA представляет собой шину , используемую в IBM PC-совместимых ПК для обеспечения питания и взаимодействия плат расширения с системной платой, в которую они вставляются. Полное описание шины , включая ее временные характеристики, было издано в виде стандарта IEEE P996-1987.

Первый вариант этой архитектуры для ЦП 8086/8088 с тактовой частотой 4,77 МГц представлял собой 62-контактную шину с 8 линиями данных, 20 линиями адреса, сигналами для прерываний и запросов и подтверждения DMA, а также линиями питания и сигналами синхронизации.

Появление 32-битных процессоров Intel-386 и Intel-486 показало, что быстродействие магистрали ISA является сдерживающим фактором на пути повышения производительности компьютеров. В 1989 году группой компаний (Compaq, Hewlett Packard, NEC и др.) было предложено эволюционное развитие архитектуры ISA - шина EISA (Extended ISA). С одной стороны, EISA имела все преимущества высокопроизводительной 32-битной шины, а с другой - была полностью совместима с ISA "сверху вниз" и не требовала перехода на новую элементарную базу.

Альтернативная системная архитектура MCA (Micro Channel Architecture - Микроканальная архитектура) была предложена IBM в 1987 году в серии ПК PS/2. Основным достоинством MCA по сравнению с ISA было увеличение разрядности шины данных до 32 бит.

MCA не зависит от типа процессора и является полностью асинхронной. Эта магистраль, кроме ПК IBM PS/2, применялась также в рабочих станциях IBM RS/6000 и в высокопроизводительных компьютерах серии Power Parallel SP2 (например, Deep Blue).

Для магистрали MCA предусмотрена автоматическая конфигурация системы. При этом пользователь может изменять и назначать приоритеты различных устройств. Для увеличения скорости передачи в режиме DMA используется специальный блочный режим (burst mode).

В типичной системе на основе Intel-386/486 (рис. 14.1 ) использовались раздельные шины для памяти и устройств ввода-вывода, что позволяло максимально задействовать возможности оперативной памяти и обеспечивало максимальную скорость работы с ней. Однако в таком случае устройства, подключенные через описанные системные интерфейсы , не могут достичь скорости обмена, сравнимой с процессором. В основном это требуется для видеоадаптеров и контроллеров накопителей. Для решения проблемы была предложена архитектура на основе локальных шин (рис. 14.2 ), которые непосредственно связывали процессор с контроллерами периферийных устройств.

Рис. 14.1. Типичная система с низкоскоростной шиной устройств ввода-вывода

Рис. 14.2. Система с архитектурой локальной шины (VLB)

Наиболее распространенными локальными шинами считались VLB и PC I . VLB (VESA Local Bus) представляет собой расширение шины процессора без промежуточных буферов, что резко ограничивает ее нагрузочную способность (2-3 устройства). VLB имеет 32-разрядную шину данных и 32-разрядную шину адреса. Достоинством VLB является простота и низкая стоимость. Однако широкого применения эта разработка не нашла, т.к. была вытеснена шиной PCI .

Интерфейс PCI

Доминирующее положение на рынке ПК занимают системы на основе шины PCI (Peripheral Component Interconnect - Взаимодействие периферийных компонентов). Этот интерфейс был предложен фирмой Intel в 1992 году (стандарт PCI 2.0 - в 1993) в качестве альтернативы локальной шине VLB/VLB2. Она не является шиной процессора. Поскольку шина PCI не ориентирована на определенный процессор, ее можно использовать для других процессоров. Шина PCI была адаптирована к таким процессорам, как Alpha, MIPS, PowerPC и SPARC. Именно PCI сменила NuBus на платформе Apple Macintosh.

Шины ISA , EISA или MCA могут управляться шиной PCI с помощью моста сопряжения (рис. 14.3 ), что позволяет устанавливать в ПК платы устройств ввода-вывода с различными системными интерфейсами .

Рис. 14.3. Система на основе PCI

PCI поддерживает процедуру прямого доступа к памяти ведущего устройства на шине (bus mastering DMA). Процессор может функционировать параллельно с периферийными устройствами, являющимися ведущими на шине .

Кроме того, платы PCI поддерживают:

    автоматическую конфигурацию Plug&Play (не требуют назначения адресов расширений BIOS вручную);

    совместное использование прерываний (когда один и тот же номер прерывания может использоваться разными устройствами);

    контроль четности сигналов шины данных и адресной шины ;

    конфигурационную память от 64 до 256 байт (код производителя, код устройства, код класса (функции) устройства и др.).

Персональные компьютеры могут иметь две или больше шин PCI . Каждой шиной управляет свой мост PCI , что позволяет устанавливать в компьютер больше плат PCI (вплоть до 16 - ограничение адресации).

Порт AGP

С повсеместным внедрением технологий мультимедиа пропускной способности шины PCI стало не хватать для производительной работы видеокарты. Чтобы не менять сложившийся стандарт на шину PCI , но, в то же время, ускорить ввод-вывод данных в видеокарту и увеличить производительность обработки трехмерных изображений, в 1996 году фирмой Intel был предложен выделенный интерфейс для подключения видеокарты - AGP (Accelerated Graphics Port - высокоскоростной графический порт). Впервые порт AGP был представлен в системах на основе Pentium II. В таких системах чипсет был разделен на два моста (рис. 14.3 ): "северный" (North Bridge) и "южный" (South Bridge). Северный мост связывал ЦП, память и видеокарту - три устройства в системе, между которыми курсируют наибольшие потоки данных. Таким образом, на северный мост возлагаются функции контроллера основной памяти, моста AGP и устройства сопряжения с фасадной шиной процессора FSB (Front-Side Bus). Собственно мост PCI , обслуживающий остальные устройства ввода-вывода в системе, в том числе контроллер IDE (PIIX), реализован на основе южного моста.

Одной из целей разработчиков AGP было уменьшение стоимости видеокарты, за счет уменьшения количества встроенной видеопамяти. По замыслу Intel, большие объемы видеопамяти для AGP-карт были бы не нужны, поскольку технология предусматривала высокоскоростной доступ к общей памяти.

Главная обработка трехмерных изображений выполняется в основной памяти компьютера как центральным процессором, так и процессором видеокарты. AGP обеспечивает два механизма доступа процессора видеокарты к памяти:

    DMA (Direct Memory Access) - обычный прямой доступ к памяти. В этом режиме основной памятью считается встроенная видеопамять на карте, текстуры копируются туда из системной памяти компьютера перед использованием их процессором видеокарты;

    DIME (Direct In Memory Execute) - непосредственное выполнение в памяти. В этом режиме основная и видеопамять находятся как бы в общем адресном пространстве. Общее пространство эмулируется с помощью таблицы отображения адресов GARP (Graphic Address Remapping Table) блоками по 4 Кбайт. Таким образом, процессор видеокарты способен непосредственно работать с текстурами в основной памяти без необходимости их копирования в видеопамять. Этот процесс называется AGP-текстурированием.

Чтобы извлечь выгоду из применения порта AGP , помимо требуемой аппаратной поддержки (т.е. графического адаптера AGP и системной платы), необходимую поддержку должны обеспечивать операционная система и драйвер видеоадаптера, а в прикладной программе должны быть использованы новые возможности порта AGP (например, трехмерное проецирование текстур).

PCI Express

Интерфейс PCI Express (первоначальное название - 3GIO 1) ) использует концепцию PCI , однако физическая их реализация кардинально отличается. На физическом уровне PCI Express представляет собой не шину , а некое подобие сетевого взаимодействия на основе последовательного протокола. Высокое быстродействие PCI Express позволяет отказаться от других системных интерфейсов (AGP , PCI ), что дает возможность также отказаться от деления системного чипсета на северный и южный мосты в пользу единого контроллера PCI Express .

Одна из концептуальных особенностей интерфейса PCI Express , позволяющая существенно повысить производительность системы, - использование топологии "звезда". В топологии "шина" (рис. 14.5а ) устройствам приходится разделять пропускную способность PCI между собой. При топологии "звезда" (рис. 14.5б ) каждое устройство монопольно использует канал, связывающий его с концентратором (switch) PCI Express , не деля ни с кем пропускную способность этого канала.

Рис. 14.5. Сравнение топологий PCI и PCI Express

Загрузка...