domvpavlino.ru

Бактерии теория. Внимание! лживая теория инфекционных заболеваний в официальной медицине. почему на самом деле люди болеют (с физической точки зрения) и кто такие бактерии? Роль бактерий в природе и жизни человека


Вакцинация

Вспоминая горячие дебаты по вопросам эволюции и витализма, мы не должны забывать, что интерес людей к теоретической биологии возник в результате усиленных занятий медициной, настойчивого изучения функциональных нарушений в организме. Как бы быстро ни развивалась биологическая наука в теоретическом отношении, как бы далеко она ни отошла от повседневных нужд практики, все равно рано или поздно она должна была вернуться к запросам медицины.
Изучение теории отнюдь не является чем-то отвлеченным и неоправданным, так как внедрение достижений теоретической науки позволяет практике быстро двигаться вперед. И хотя прикладная наука может развиваться чисто эмпирически, без теории это развитие идет гораздо медленнее и неувереннее.
В качестве примера вспомним историю изучения инфекционных заболеваний. Вплоть до начала XIX в. врачи, по сути дела, были совершено беспомощны во время эпидемий чумы или других инфекционных болезней, время от времени вспыхивавших на нашей планете. К заболеваниям, от которых страдало человечество, относится и оспа. Трагично было то, что она распространялась, как настоящее стихийное бедствие, каждый третий из заболевших погибал, а выжившие на всю жизнь оставались обезображенными: покрытые рябинами лица отталкивали даже близких.
Однако было замечено, что перенесенное заболевание обеспечивало иммунитет при следующей вспышке. Поэтому многие считали более целесообразным не избегать заболевания, а перенести его, но в очень слабой форме, которая не была бы опасна для жизни и не обезображивала больного. В этом случае человек был бы гарантирован от повторных заболеваний. В таких странах, как Турция и Китай, уже давно пытались заражать людей содержимым пустул от больных легкой формой оспы. Риск был велик, так как порой болезнь протекала в очень тяжелой форме. В начале XVIII в. подобные прививки проводились и в Англии, но трудно сказать, приносили ли они больше пользы или вреда. Занимаясь практической врачебной деятельностью, англичанин Эдуард Дженнер (1749–1823) изучал известные в народной медицине предохранительные свойства коровьей оспы: люди, переболевшие ею, становятся иммунными как к коровьей, так и к человеческой оспе. После долгих и тщательных наблюдений 14 мая 1796 г. Дженнер впервые провел прививку коровьей оспы восьмилетнему мальчику, использовав материал, взятый от женщины, болевшей коровьей оспой. Прививка сопровождалась недомоганием. А два месяца спустя мальчик был инфицирован гноем из пустулы больного натуральной оспой - и остался здоровым. В 1798 г., после многократного повторения этого опыта, Дженнер опубликовал результаты своей работы. Он предложил назвать новый метод вакцинацией (от латинского vaccinia - коровья оспа).
Страх перед оспой был так велик, что метод Дженнера приняли с восторгом, а сопротивление наиболее консервативных было быстро сломлено. Вакцинация распространилась по всей Европе, и болезнь отступила. В странах с высокоразвитой медициной врачи уже не чувствовали себя беспомощными в борьбе с оспой. В истории человечества это был первый случай быстрой и радикальной победы над опасной болезнью.
Но дальнейшие успехи могла принести только разработка теории. В то время никто не знал возбудителей инфекционных болезней, на использование в целях вакцинации легких форм рассчитывать не приходилось. Перед биологами встала задача научиться «изготавливать» свои собственные «варианты» легких форм болезни, но для этого требовалось знать гораздо больше, чем было известно во времена Дженнера.

Микробная теория болезней

Бактериология

Нельзя надеяться, что когда-нибудь удастся полностью изолировать людей от болезнетворных микробов. Рано или поздно человек подвергается риску заражения. Как же лечить больного? Безусловно, у организма есть какие-то свои средства борьбы с микробами: ведь, как известно, иногда больной выздоравливает и без оказания ему помощи. Выдающемуся русскому биологу Илье Ильичу Мечникову (1845–1916) удалось показать на примере такую «антибактериальную борьбу» организма. Он показал, что лейкоциты выполняют функцию защиты от патогенных агентов, проникших в организм животных и человека: выходят из кровеносных сосудов и устремляются к месту внедрения инфекции, где развертывается настоящая битва белых кровяных телец с бактериями. Клетки, осуществляющие защитную роль в организме, Мечников назвал фагоцитами.
Кроме того, выздоровление от многих болезней сопровождается выработкой иммунитета (невосприимчивости), хотя никаких видимых изменений и не обнаруживается. Это можно было бы довольно логично объяснить тем, что в организме переболевшего образуются антитела, обладающие способностью убивать либо нейтрализовать внедрившиеся микробы. Такое представление объясняет и действие вакцинации; в организме вакцинируемого образуются антитела, активные в отношении как микроба коровьей оспы, так и очень похожего на него микроба натуральной оспы. Теперь победа обеспечена, но уже не над самой болезнью, а над вызывающим ее микробом.
Пастер наметил пути борьбы с сибирской язвой, смертельной болезнью, которая уничтожала стада домашних животных. Он нашел возбудителя заболевания и доказал его принадлежность к особому виду бактерий. Пастер нагревал препарат из бактерий, чтобы уничтожить их способность вызывать болезнь (патогенность). Введение в организм животного ослабленных (аттенуированных) бактерий приводило к образованию антител, способных противостоять исходным патогенным бактериям.
В 1881 г. Пастер поставил чрезвычайно показательный опыт. Для эксперимента было взято стадо овец, одной части которых ввели ослабленных бактерий сибирской язвы, а другая осталась непривитой. Через некоторое время всех овец заразили патогенными штаммами. У привитых овец не было обнаружено каких-либо признаков заболевания; непривитые овцы заболели сибирской язвой и погибли.
Сходные методы применял Пастер для борьбы с куриной холерой и, что особенно показательно, с одной из самых ужасных болезней - бешенством (или водобоязнью), передающимся человеку от зараженных диких или домашних животных.
Успех микробной теории Пастера возродил интерес к бактериям. Немецкий ботаник Фердинанд Юлиус Кон (1828–1898) изучал под микроскопом растительные клетки. Он показал, например, что протоплазмы растительной и животной клеток, в сущности, идентичны. В 60-х годах XIX столетия он обратился к изучению бактерий. Крупнейшей заслугой Кона было установление растительной природы бактерий. Он впервые четко отделил бактерии от простейших и попытался систематизировать бактерии по родам и видам. Это позволяет считать Кона основоположником современной бактериологии.
Кон первым заметил дарование молодого немецкого врача Роберта Коха (1843–1910). В 1876 г. Кох выделил бактерию, вызывающую сибирскую язву, и научился ее выращивать. Поддержка Кона, ознакомившегося с работой Коха, сыграла важную роль в жизни великого микробиолога. Кох культивировал бактерии на твердой среде - желатине (который позднее был заменен агаром, добываемым из морских водорослей), а не в жидкости, наливаемой в пробирки. Это техническое усовершенствование дало массу преимуществ. В жидкой среде бактерии различных видов легко смешиваются, и трудно установить, какая именно вызывает ту или иную болезнь. Если культуру нанести в виде мазка на твердую среду, отдельные бактерии, многократно делясь, образуют колонии новых клеток, строго фиксированные в своем положении. Даже если исходная культура состоит из смеси различных видов бактерий, каждая колония является чистой культурой клеток, что позволяет совершенно точно определить вид болезнетворных микробов. Сначала Кох наливал среду на плоский кусок стекла, но его ассистент Юлиус Рихард Петри (1852–1921) заменил стекло двумя плоскими мелкими стеклянными чашками, одна из которых служила крышкой. Чашки Петри и сейчас широко применяются в бактериологии. Используя разработанный метод выделения чистых микробных культур, Кох и его сотрудники выделили возбудителей многих болезней, в том числе туберкулеза (1882).

Насекомые

Факторы питания

На протяжении последней трети прошлого века микробная теория владела умами большинства врачей, но находились и такие, которые придерживались иного мнения. Немецкий патолог Вирхов - самый знаменитый противник пастеровской теории - считал, что болезни вызываются скорее расстройством в самом организме, чем внешними агентами. Заслугой Вирхова было то, что за несколько десятков лет работы в берлинском муниципалитете и национальных законодательных органах он добился таких серьезных улучшений в области гигиены, как очистка питьевой воды и создание эффективной системы обеззараживания сточных вод. В этой области очень много сделал и другой ученый - Петтенкофер. Он и Вирхов могут считаться основателями современной социальной гигиены (изучение профилактики заболеваний в человеческом обществе).
Подобные мероприятия, препятствующие распространению эпидемий, безусловно, были не менее важны, чем непосредственное воздействие на самих микробов.
Естественно, что забота о чистоте, которую проповедовал еще Гиппократ, сохранила свое значение и тогда, когда всем стала понятна роль микробов. Остались в силе и советы Гиппократа относительно необходимости полноценного и разнообразного питания, причем выяснилось их значение не только для поддержания здоровья вообще, но и как специфического метода профилактики некоторых заболеваний. Мысль о том, что неполноценное питание может быть причиной заболевания, считалась «старомодной» - ученые были увлечены микробами, - но ее подтверждали достаточно веские доказательства.
В эпоху великих географических открытий люди проводили долгие месяцы на борту кораблей, питаясь только теми продуктами, которые могли хорошо сохраняться, так как использование искусственного холода было еще не известно. Страшным бичом моряков была цинга. Шотландский врач Джеймс Линд (1716–1794) обратил внимание на то, что заболевания встречаются не только на борту кораблей, но и в осажденных городах и тюрьмах - повсюду, где питание однообразно. Может быть, болезнь вызывает отсутствие какого-либо продукта в пище? Линд попробовал разнообразить пищевой рацион моряков, больных цингой, и вскоре выявил целительное действие цитрусовых. Великий английский мореплаватель Джемс Кук (1728–1779) ввел цитрусовые в рацион экипажа своих тихоокеанских экспедиций в 70-х годах XVIII в. В результате от цинги умер только один человек. В 1795 г., во время войны с Францией, морякам британского флота начали давать лимонный сок, и не было отмечено ни одного случая заболевания цингой.
Однако такие чисто эмпирические достижения при отсутствии необходимых теоретических обоснований внедрялись очень медленно. В XIX в. главные открытия в области питания относились к выявлению роли белка. Было установлено, что одни белки, «полноценные», присутствуя в пищевом рационе, могут поддерживать жизнь, другие, «неполноценные», вроде желатина, не в состоянии делать этого. Объяснение пришло, лишь когда лучше узнали природу молекулы белка. В 1820 г., обработав кислотой сложную молекулу желатина, выделили из нее простую молекулу, которую назвали глицином. Глицин принадлежит к классу аминокислот. Вначале предположили, что он и служит строительным блоком для белков, подобно тому как простой сахар, глюкоза, - кирпичиком, из которого строится крахмал. Однако к концу XIX в. выяснилась несостоятельность этой теории. Из самых различных белков были получены другие простые молекулы - все они, различаясь только деталями, принадлежали к классу аминокислот. Молекула белка оказалась построенной не из одной, а из целого ряда аминокислот. К 1900 г. были известны десятки различных аминокислотных «строительных блоков». Теперь уже не казалось невероятным, что белки различаются соотношением содержащихся в них аминокислот. Первым ученым, показавшим, что тот или иной белок может не иметь одной или нескольких аминокислот, играющих существенную роль в жизнедеятельности организма, был английский биохимик Фредерик Гауленд Гопкинс (1861–1947). В 1903 г. он открыл новую аминокислоту - триптофан - и разработал методы ее выявления. Зеин - белок, выделенный из кукурузы, - давал отрицательную реакцию и, следовательно, не содержал триптофана. Он оказался неполноценным белком, так как, будучи единственным белком в рационе, не обеспечивал жизнедеятельности организма. Но уже небольшая добавка триптофана позволяла продлить жизнь подопытных животных.
Последующие опыты, поставленные в первом десятилетии XX в., ясно показали, что некоторые аминокислоты синтезируются в организме млекопитающих из веществ, обычно находящихся в тканях. Однако часть аминокислот обязательно должна поступать с пищей. Отсутствие одной или нескольких таких «незаменимых» аминокислот и делает белок неполноценным, приводя к заболеванию, а иногда и смерти. Так было введено понятие о добавочных питательных факторах - соединениях, которые не могут синтезироваться в организме животных и человека и для обеспечения нормальной жизнедеятельности обязательно должны входить в пищу.
Строго говоря, аминокислоты не являются серьезной медицинской проблемой для специалистов диетологов. Нехватка аминокислот обычно возникает только при искусственном и однообразном питании. Естественная пища, даже если она не очень богата, доставляет организму достаточное разнообразие аминокислот.
Раз такая болезнь, как цинга, излечивается лимонным соком, разумно предположить, что лимонный сок снабжает организм каким-то недостающим пищевым фактором. Маловероятно, что им является аминокислота. И действительно, все известные биологам XIX в. составные части лимонного сока, взятые вместе или в отдельности, не могли вылечить цинги. Этим пищевым фактором должно было быть вещество, необходимое лишь в очень малых количествах и химически отличное от обычных компонентов пищи.
Обнаружить загадочное вещество оказалось не так уж трудно. После разработки учения о существенно важных для жизни аминокислотах были выявлены более тонкие пищевые факторы, нужные организму лишь в ничтожных количествах, но произошло это не в процессе изучения цинги.

Витамины

В 1886 г. голландского врача Кристиана Эйкмана (1858–1930) послали на Яву для борьбы с болезнью бери-бери. Были основания думать, что эта болезнь возникает в результате неправильного питания. Японские моряки сильно страдали от бери-бери и перестали болеть, лишь когда в 80-х годах XIX столетия в их пищевой рацион, состоявший почти исключительно из риса и рыбы, ввели молоко и мясо. Эйкман, однако, будучи в плену микробной теории Пастера, был убежден, что бери-бери - бактериальная болезнь. Он привез с собой кур, надеясь заразить их микробами. Но все его попытки успеха не имели. Правда, в 1896 г. куры неожиданно заболели болезнью, похожей на бери-бери. Выясняя обстоятельства заболевания, ученый обнаружил, что именно перед вспышкой болезни кур кормили шлифованным рисом с больничного склада продуктов. Когда их перевели на прежний корм, наступило выздоровление. Постепенно Эйкман убедился, что эту болезнь можно вызывать и излечивать простым изменением рациона.
Вначале ученый не оценил истинного значения полученных данных. Он предположил, что в зернах риса содержится какой-то токсин, который нейтрализуется чем-то содержащимся в оболочке зерна, а так как при обдирке риса оболочку удаляют, то в шлифованном рисе остаются ненейтрализованные токсины. Но зачем создавать гипотезу о наличии двух неизвестных веществ, токсина и антитоксина, когда гораздо проще предположить, что существует какой-то пищевой фактор, нужный в ничтожных количествах? Такого мнения придерживались Гопкинс и американский биохимик Казимир Функ (род. в 1884 г.). Они высказали мысль, что не только бери-бери, но и такие заболевания, как цинга, пеллагра и рахит, объясняются отсутствием в пище ничтожнейших количеств определенных веществ.
Еще находясь под впечатлением, что эти вещества принадлежат к классу аминов, Функ предложил в 1912 г. называть их витаминами (амины жизни). Название привилось и сохранилось поныне, хотя с тех пор и выяснилось, что они никакого отношения к аминам не имеют.
Витаминная гипотеза Гопкинса - Функа была полностью сформулирована, и первая треть XX в. показала, что различные заболевания могут излечиваться назначением разумного рациона и режима питания. Например, американский врач Джозеф Гольдбергер (1874–1929) обнаружил (1915), что болезнь пеллагра, распространенная в южных штатах США, отнюдь не микробного происхождения. В самом деле, она вызывалась отсутствием какого-то витамина и исчезала, как только к рациону больных добавляли молоко. Вначале о витаминах было известно лишь то, что они способны предупреждать и лечить определенные заболевания. В 1913 г. американский биохимик Элмер Вернон Макколлум (род. в 1879 г.) предложил называть витамины буквами алфавита; так появились витамины A, B, C и D, а потом к ним добавили и витамины Е и К. Выяснилось, что пища, содержащая витамин В, в действительности содержит более одного фактора, способного воздействовать более чем на один симптомокомплекс. Биологи заговорили о витаминах B1, B2 и т. д.
Оказалось, что именно отсутствие витамина B1 вызывало бери-бери, а отсутствие витамина B2 - пеллагру. Отсутствие витамина С приводило к цинге (наличием небольших количеств витамина С в соке цитрусовых и объясняется их целительное действие, позволившее Линду вылечить цингу), отсутствие витамина D - к рахиту. Нехватка витамина A влияла на зрение и вызывала куриную слепоту. Недостаток витамина В12 вызывал злокачественное малокровие. Таковы основные болезни, обусловливаемые витаминной недостаточностью. По мере накопления знаний о витаминах все эти болезни перестали быть серьезной медицинской проблемой. Уже с 30-х годов XX столетия стали выделять витамины в чистом виде и осуществлять их синтез.



Царство Бактерии (теория и практика к экзамену по биологии)

Бактерии – самая древняя группа организмов из ныне существующих на Земле. Первые бактерии появились, вероятно, более 3,5 млрд лет назад и на протяжении почти миллиарда лет были единственными живыми существами на нашей планете. Размеры бактерий достаточно малы 0,15-10 мкм.

Первооткрывателем мира бактерий был Антоний Левенгук – голландский естествоиспытатель 17 века, впервые создавший совершенную лупу-микроскоп.

Микробиология – наука, изучающая бактерии.

Бактерии относят к прокариотам и выделяют в отдельное царство – Бактерии.

Форма тела

Бактерии – многочисленные и разнообразные организмы. Они различаются по форме.

Способы передвижения

Среди бактерий есть подвижные и неподвижные формы. Подвижные передвигаются за счёт волнообразных сокращений или при помощи жгутиков (скрученные винтообразные нити), которые состоят из особого белка флагеллина. Жгутиков может быть один или несколько. Располагаются они у одних бактерий на одном конце клетки, у других – на двух или по всей поверхности.

Место обитания

В силу простоты организации и неприхотливости бактерии широко распространены в природе. Бактерии обнаружены везде

Строение бактерий

Клетка бактерии одета особой плотной оболочкой – клеточной стенкой, которая выполняет защитную и опорную функции, а также придаёт бактерии постоянную, характерную для неё форму. Клеточная стенка бактерии состоит из муреина. Она проницаема: через неё питательные вещества свободно проходят в клетку, а продукты обмена веществ выходят в окружающую среду. Часто поверх клеточной стенки у бактерий вырабатывается дополнительный защитный слой слизи – капсула. Толщина капсулы может во много раз превышать диаметр самой клетки, но может быть и очень небольшой. Она предохраняет бактерию от высыхания. В зависимости от строения клеточной стенки бактерии делятся на 2 группы: грамположительные (окрашиваются по Грамму при приготовлении препаратов для микроскопирования) и грамотрицательные (не окрашиваются этим способом).

На поверхности некоторых бактерий имеются длинные жгутики (один, два или много) или короткие тонкие ворсинки. Длина жгутиков может во много раз превышать разметы тела бактерии. С помощью жгутиков и ворсинок бактерии передвигаются.

Между клеточной стенкой и цитоплазмой располагается плазматическая мембрана. Внутри клетки бактерии находится густая неподвижная цитоплазма. Вакуолей нет, поэтому различные белки (ферменты) и запасные питательные вещества размещаются в самом веществе цитоплазмы или во включениях. Клетки бактерий не имеют ядра, поэтому называются ПРОКАРИОТЫ . Наследственная информация представлена 1 кольцевой молекулой ДНК, которая образует нуклеоид, и находится непосредственно в цитоплазме.

Мембранные органоиды отсутствуют (ЭПС, аппарат Гольджи, митохондрии, хлоропласты и др.), их функции выполняют впячивания плазматической мембраны – мезосомы. Имеется большое количество рибосом, но они мелкие в отличие от эукариотической (ядерной) клетки.

Способы питания


У бактерий наблюдаются разные способы питания. Среди них есть автотрофы и гетеротрофы. Автотрофы – организмы, способные самостоятельно образовывать органические вещества для своего питания. В зависимости от того, откуда они берут для этого энергию, они делятся на фототрофов и хемотрофов.

Фототрофы – используют солнечный свет.

Хемотрофы– используют энергию химических связей.

Бактерии-сапрофиты- извлекают питательные вещества из мёртвого и разлагающего органического материала или выделений живых. Обычно они выделяют в этот гниющий материал свои пищеварительные ферменты, а затем всасывают и усваивают растворённые продукты.

Бактерии-симбионты- живут совместно с другими организмами и часто приносят им ощутимую пользу (Симбиоз – взаимовыгодное сожительство организмов). Например, бактерии, живущие в утолщениях корней бобовых растений – клубеньковые бактерии.

Растения нуждаются в азоте, но сами усваивать азот из воздуха не могут. Некоторые бактерии (клубеньковые) соединяют содержащиеся в воздухе молекулы азота с другими молекулами, в результате чего получаются вещества, доступные для растений.

Эти бактерии поселяются в клетках молодых корней, что приводит к образованию на корнях утолщений, называемых клубеньками. Такие клубеньки образуются на корнях растений семейства бобовых и некоторых других растений.

Растения дают бактериям углеводы (органические вещества), а бактерии корням – такие содержащие азот вещества, которые могут быть усвоены растением. Их сожительство взаимовыгодно.

К бактериям-симбионтам относят и бактерии желудочно-кишечного тракта животных и человека. Они помогают организмам переваривать пищу и вырабатывать некоторые витамины.

Обмен веществ

Бактерии отличаются друг от друга обменом веществ. У одних он идёт при участии кислорода (аэробы), у других – без его участия (анаэробы).

Большинство бактерий питается готовыми органическими веществами. Лишь некоторые из них (сине-зелёные, или цианобактерии), способны создавать органические вещества из неорганических. Они сыграли важную роль в накоплении кислорода в атмосфере Земли.

Спорообразование

При неблагоприятных условиях бактерии могут покрываться плотной оболочкой и образовывать спору. В процессе спорообразования бактериальная клетка претерпевает ряд биохимических процессов. В ней уменьшается количество свободной воды, снижается ферментативная активность. Это обеспечивает устойчивость спор к высокой температуре, высокой концентрации солей, высушиванию и др. неблагоприятным условиям.

Бактерии в виде спор могут длительное время находиться в состоянии покоя. Споры бактерий выдерживают продолжительное кипячение и очень длительное проммораживание. При наступлении благоприятных условий спора прорастает и становится жизнеспособной. Спора бактерий – это приспособление к выживанию в неблагоприятных условиях.

Размножение

Размножаются бактерии делением одной клетки на две. Достигнув определённого размера, бактерия делится на две одинаковые бактерии. Затем каждая из них начинает питаться, растёт, делится и так далее.

При благоприятных условиях деление клеток у многих бактерий происходит через каждые 20-30 минут. При таком быстром размножении потомство одной бактерии за 5 суток способно образовать массу, которой можно заполнить все моря и океаны. Однако в природе этого не происходит, так как большинство бактерий быстро погибают под действием солнечного света, при высушивании, недостатке пищи, нагревании до 65-100ºС, в результате борьбы между видами и т.д.

Роль бактерий в природе и жизни человека


Круговорот

Бактерии – важнейшее звено общего круговорота веществ в природе. Растения создают сложные органические вещества из углекислого газа, воды и минеральных солей почвы. Бактерии разрушают сложные органические вещества отмерших растений и трупов животных, выделения живых организмов и разные отбросы. Питаясь этими органическими веществами, сапрофитные бактерии гниения превращают их в перегной. Это своеобразные санитары нашей планеты. Таким образом, бактерии активно участвуют в круговороте веществ в природе.

Почвообразование

Осенью опадают листья деревьев и кустарников, отмирают надземные побеги трав, опадают старые ветки, время от времени падают стволы старых деревьев. Всё это постепенно превращается в перегной. В 1 см 3 . поверхностного слоя лесной почвы содержатся сотни миллионов сапрофитных почвенных бактерий нескольких видов. Эти бактерии превращают перегной в различные минеральные вещества, которые могут быть поглощены из почвы корнями растений.

Благодаря симбиозу с клубеньковыми бактериями бобовые растения обогащают почву азотом, способствуя повышению урожая.

Силосование – заготовка сочного корма для животных путем консервирования зеленой массы растений. Силосование происходит в результате жизнедеятельности молочнокислых бактерий. В результате молочнокислого брожения выделяется молочная кислота, выступающая в качестве консерванта.

ПРАКТИКУМ

    Сходство жизнедеятельности цианобактерий и цветковых растений проявляется в способности к

1) образованию семян

2) автотрофному питанию

3) двойному оплодотворению

4) гетеротрофному питанию

    Некоторые бактерии выживают в условиях вечной мерзлоты в виде

1) спор

2) вегетативных клеток

3) симбиоза с грибами

4) множественных колоний

    Чем спора отличается от свободной бактерии?

1) Спора - многоклеточное образование, а свободная бактерия - одноклеточное.

2) Спора менее долговечна, чем свободная бактерия.

3) Спора питается автотрофно, а свободная бактерия - гетеротрофно.

4) Спора имеет более плотную оболочку, чем свободная бактерия.

    Возбудители дифтерии являются

1) автотрофами

4) симбионтами

    Какой из приёмов борьбы с болезнетворными бактериями наиболее эффективен в операционном блоке?

1) пастеризация

2) регулярное проветривание

3) облучение ультрафиолетовыми лучами

4) мытье полов горячей водой

    Укажите случай симбиоза бактерии с другим организмом.

1) бацилла сибирской язвы и овца

2) вибрион холеры и человека

3) кишечная палочка и человек

4) сальмонелла и курица

    Какие бактерии считают «санитарами планеты»?

1) молочнокислые

2) гниения

3) уксуснокислые

4) клубеньковые

    По способу питания молочнокислые бактерии относят к

1) бактериям-сапротрофам

3) фотосинтезирующим бактериям

4) автотрофным бактериям

    По способу питания цианобактерии (синезелёные) относят к

1) гетеротрофным бактериям

2) автотрофным бактериям

3) бактериям-сапротрофам

    Бактерии, вызывающие ангину, относят к группе

1) автотрофных бактерий

3) бактерий гниения

4) бактерий-сапротрофов

    У бактериальной клетки отсутствует(-ют)

1) нуклеиновые кислоты

2) клеточная оболочка

3) клеточное ядро

4) рибосомы

    К какому царству относится организм, схема строения клетки которого изображена на рисунке?

1) Бактерии

2) Растения

3) Грибы

4) Животные

    Бактерии, наиболее полезные для человека, - это

1) молочнокислые

2) стрептококки

3) туберкулёзные палочки

4) пневмококки

    Представителей царства Бактерии относят к прокариотам, так как в их клетках отсутствует(-ют)

1) оформленное ядро

2) митохондрии

3) пластиды

4) рибосомы

    Какие заболевания человека вызываются бактериями? Выберите три верных ответа из шести и запишите цифры, под которыми они указаны.

1) грипп

2) коклюш

3) СПИД

4) кариес

5) герпес

6) столбняк

    Что из перечисленного входит в состав клеток прокариот? Выберите три верных ответа из шести и запишите в таблицу цифры, под которыми они указаны.

1) ядро

2) цитоплазма

3) эндоплазматическая сеть

4) плазматическая мембрана

5) рибосомы

6) пластиды

    Установите соответствие между признаком и типом клеток, для которых он характерен. Для этого к каждому элементу первого столбца подберите позицию из второго столбца. Впишите в таблицу цифры выбранных ответов.

ПРИЗНАК

ТИП КЛЕТОК

A) отсутствует оформленное ядро

1) прокариотная

Б) хромосомы расположены в ядре

2) эукариотная

В) имеется аппарат Гольджи

Г) в клетке одна кольцевая хромосома

Д) АТФ образуется в митохондриях

    Вставьте в текст «Типы клеток» пропущенные термины из предложенного перечня, используя для этого цифровые обозначения. Запишите в текст цифры выбранных ответов, а затем получившуюся последовательность цифр (по тексту) впишите в приведённую ниже таблицу.

ТИПЫ КЛЕТОК

Первыми на пути исторического развития появились организмы, имеющие мелкие клетки с простой организацией, - _________(А). Эти доядерные клетки не имеют оформленного_________(Б). В них выделяется лишь ядерная зона, содержащая_________(В) ДНК. Такие клетки есть у современных_________(Г) и синезелёных.

ПЕРЕЧЕНЬ ТЕРМИНОВ:

1) хромосома

2) прокариотные

3) цитоплазма

4) кольцевая молекула

5) ядро

6) одноклеточное животное

7) бактерия

8) эукариотные

    Классификация бактерий – очень сложная задача, поскольку существует очень мало морфологических признаков, по которым бактерии можно различать. Ниже приведены некоторые из них.

А. Форма клеток:

Б. Окраска по Граму:

1. грамположительные (краситель проникает в цитоплазму всех клеток)

2. грамотрицательные (краситель проникает в цитоплазму только мёртвых клеток)

В. По связи клеток друг с другом:

1. одиночные

2. колониальные

Г. По наличию жгутиков:

1. без жгутиков

2. с одним жгутиком

3. с двумя и более жгутиками

Внимательно рассмотрите микрофотографию окрашенного по Граму препарата бактерий Enterococcus sp. и классифицируйте их по приведённым выше вариантам классификации. Впишите в таблицу цифры выбранных ответов.

Ответы:

О которой писал лайфстайл-ресурс Гвинет Пэлтроу Goop - самое невозможное из мира ЗОЖ на сегодняшний момент, то вы думали не совсем правильно. Просто потому, что сейчас мы расскажем о чем-то еще более странном. Что самое интересное, в деле «новых пробиотиков» Goop не замешан. А замешана исключительно наука.

Как пишет Live Science, недавно проведенные эксперименты показали, что типы бактерий, выделенных из детских фекалий, могут способствовать выработке короткоцепочечных жирных кислот (SCFA) у мышей и в среде, имитирующей человеческий кишечник.

Молекулы SCFA, напомним, представляют собой подмножество , которые вырабатываются некоторыми типами микроорганизмов в кишечнике в процессе ферментации . По данным многочисленных исследований, их следует связывать с сохранением здоровья кишечника и защитой от ряда болезней.

«Короткоцепочечные жирные кислоты являются ключевым компонентом нормального функционирования кишечника, - пишет в журнале Scientific Reports ведущий автор исследования Хариом Ядав (Hariom Yadav), специалист в области молекулярной медицины из Wake Forest School of Medicine. - Пациенты с диабетом, ожирением, аутоиммунными расстройствами и раком часто имеют меньше короткоцепочечных жирных кислот. Увеличение их может быть полезным для поддержания или даже восстановления нормальной кишечной среды и, надеюсь, улучшения здоровья».

Трансплантация фекальной микробиоты (или «пересадка кала»), предполагают исследователи, может лечить самые разные типы расстройств кишечника, позволяя устранять дисбаланс микробного разнообразия. Ученые объясняют, что решили использовать младенческие микробы по той простой причине, что микробиом кишечника младенцев, как правило, свободен от . А также, добавляют авторы исследования полушутя, потому что этого материала всегда в избытке.

В ходе экспериментов они выделили 10 бактериальных штаммов - пять видов Lactobacillus и пять видов Enterococcus, полученные от 34 «кандидатов». Затем они протестировали разные дозы 10-бактериальной пробиотической смеси на мышах: именно это позволило обнаружить, что даже низкие дозировки поддерживали здоровый микробный баланс, увеличивая продукцию SCFA.

«Наши результаты говорят о том, что пробиотики человеческого происхождения могут быть использованы для лечения заболеваний, связанных с дисбалансом микробиома кишечника и недостатком короткоцепочечных жирных кислот в кишечнике», - комментирует Ядав. Тем не менее, потребуется гораздо больше исследований, прежде чем необычные пробиотики появятся на полках магазинов. Но это, кажется, даже хорошо.

Инфекционные заболевания вызываются микроорганизмами, которые попадают в тело человека извне.

В середине XIX века среди медиков разгорелся спор о происхождении инфекционных заболеваний. Представители одного лагеря защищали старую точку зрению, что причина заболевания — нарушение равновесия в организме, возможно обостренное внешними воздействиями. Им противостояла группа ученых, отстаивавших революционное представление, согласно которому инфекционные заболевания возникают в результате внедрения в тело микроорганизмов.

Новое течение возглавлял французский ученый Луи Пастер. В своих исследованиях он шел не таким путем, как все. В 1854 году он был профессором химии в Лилле, где деятельность университета была направлена в основном на помощь местной промышленности. Пастер изучал процесс брожения, который, безусловно, очень важен для получения вина. Он пришел к заключению, что брожение вызвано микробами, которые питаются сахаром, содержащимся в виноградном соке, и производят в качестве побочного продукта своей жизнедеятельности спирт. Пастеру стало ясно, что брожение — это биохимический процесс, а не просто химический, как считали многие, и этот процесс невозможен без микроорганизмов, а именно дрожжей.

Пастер также обнаружил, что нагревание способствует более длительному хранению вина. Оно убивает микробов, которые в противном случае запустили бы дальнейшие реакции, приводящие к порче вина. Этот принцип лег в основу пастеризации , до сих пор применяющейся в молочной промышленности большинства стран мира для предохранения молока от скисания.

Подобно многим своим современникам, Пастер предчувствовал, что между процессом брожения и болезнетворным процессом в организме человека должно быть нечто общее. В конце XIX века представление о том что, заболевание, подобно брожению, вызывается микроорганизмами, уже имело немало сторонников, и количество доказательств в пользу этой точки зрения все возрастало. Пастер смог показать, что болезнь, нанесшая огромный ущерб шелковичным червям во Франции, имела бактериальное происхождение. В 1860-е годы английский хирург Джозеф Листер (Joseph Lister, 1827-1912), разделявший представления Пастера, с их помощью продемонстрировал преимущества антисептической хирургии, а немецкий бактериолог Роберт Кох (Robert Koch, 1843-1910) добился успеха в обосновании бактериального происхождения сибирской язвы — болезни крупных животных (которой иногда болеет и человек). Пастер показал, что сибирская язва может передаваться даже с сильно разбавленной кровью, но не передается с кровью, пропущенной через фильтр (процесс фильтрования приводит к удалению бактерий). Вскоре он обнаружил, что микробы вызывают и ряд других заболеваний, включая родильную лихорадку (послеродовой сепсис), которая в то время была основной причиной смертности среди женщин. Пастер даже навлек на себя гнев медиков, установив, что врачи сами распространяют это заболевание, переходя от одной роженицы к другой.

Впоследствии Пастер, изучая холеру домашней птицы, обнаружил (почти случайно), что после длительного выдерживания вирулентность микроорганизмов снижается. Такие ослабленные микроорганизмы стали использоваться в качестве вакцины. Затем последовало создание вакцины против сибирской язвы, а также против бешенства — эта вакцина принесла Пастеру известность. Еще до смерти Пастера в 1895 году микробная теория инфекционных заболеваний была признана в научных и медицинских кругах.

Луи ПАСТЕР
Louis Pasteur, 1822-95

Французский химик и микробиолог, родился в небольшой деревне в семье кожевника. Изучал химию парижской Высшей нормальной школе и в 1847 году получил докторскую степень. Первые научные работы Пастера посвящены оптическим свойствам материалов. В 1854 году, после непродолжительной работы в университетах Дижона и Страсбурга, Пастер получил должность профессора химии в Лилльском университете, где занимался исследованием брожения. В 1867 году переехал в Сорбонну, где занимал должность профессора химии, а с 1888 года и до конца жизни возглавлял Институт Пастера в Париже.
Наиболее важное достижение Пастера в области химии — это открытие оптических изомеров: химических соединений-двойников, имеющих одинаковую формулу, но вращающих плоскость поляризованного света в противоположных направлениях. Микробиологические работы и эксперименты в области брожения и гниения внесли огромный вклад в борьбу с болезнями: Пастер первый сделал овцам прививку против сибирской язвы, а человеку против бешенства.

В настоящее время на Земле описано более 2,5 млн видов живых организмов. Однако реальное число видов на Земле в несколько раз больше, так как многие виды микроорганизмов, насекомых и др. не учтены. Кроме того, считается, что современный видовой состав - это лишь около 5% от видового разнообразия жизни за период ее существования на Земле.
Для упорядочения такого многообразия живых организмов служат систематика, классификация и таксономия.

Систематика - раздел биологии, занимающийся описанием, обозначением и классификацией существующих и вымерших организмов по таксонам.
Классификация - распределение всего множества живых организмов по определённой системе иерархически соподчинённых групп - таксонов.
Таксономия - раздел систематики, разрабатывающий теоретические основы классификации. Таксон - искусственно выделенная человеком группа организмов, связанных той или иной степенью родства, и в то же время достаточно обособленная, чтобы ей можно было присвоить определённую таксономическую категорию того или иного ранга.

В современной классификации существует следующая иерархия таксонов:

  • царство;
  • отдел (тип в систематике животных);
  • класс;
  • порядок (отряд в систематике животных);
  • семейство;

Кроме того, выделяют промежуточные таксоны: над- и подцарства, над- и подотделы, над- и подклассы и т. д.

Систематика живых организмов постоянно изменяется и обновляется. В настоящее время она имеет следующий вид:

  • Неклеточные формы
    • Царство Вирусы
  • Клеточные формы
    • Надцарство Прокариоты (Procariota):
      • царство Бактерии (Bacteria, Bacteriobionta ),
      • царство Архебактерии (Archaebacteria, Archaebacteriobionta ),
      • царство Прокариотические водоросли
        • отдел Сине-зелёные водоросли, или Цианеи (Cyanobionta );
        • отдел Прохлорофитовые водоросли, или Прохлорофиты (Prochlororhyta ).
    • Надцарство Эукариоты (Eycariota)
      • царство Растения (Vegetabilia, Phitobiota или Plantae ):
        • подцарство Багрянки (Rhodobionta );
        • подцарство Настоящие водоросли (Phycobionta );
        • подцарство Высшие растения (Embryobionta );
      • царство Грибы (Fungi, Mycobionta, Mycetalia или Mycota ):
        • подцарство Низшие грибы (одноклеточные) (Myxobionta );
        • подцарство Высшие грибы (многоклеточные) (Mycobionta );
      • царство Животные (Animalia, Zoobionta )
        • подцарство Простейшие, или Одноклеточные (Protozoa, Protozoobionta );
        • подцарство Многоклеточные (Metazoa, Metazoobionta ).

Ряд учёных выделяет в надцарстве Прокариоты одно царство Дробянки, которое включает три подцарства: Бактерии, Архебактерии и Цианобактерии.

Вирусы, бактерии, грибы, лишайники

Царство вирусы

Вирусы существуют в двух формах: покоящейся (внеклеточной), когда их свойства как живых систем не проявляются, и внутриклеточной , когда осуществляется размножение вирусов. Простые вирусы (например, вирус табачной мозаики) состоят из молекулы нуклеиновой кислоты и белковой оболочки - капсида .

Некоторые более сложные вирусы (гриппа, герпеса и др.), помимо белков капсида и нуклеиновой кислоты, могут содержать липопротеиновую мембрану, углеводы и ряд ферментов. Белки защищают нуклеиновую кислоту и обусловливают ферментативные и антигенные свойства вирусов. Форма капсида может быть палочковидной, нитевидной, сферической и др.

В зависимости от присутствующей в вирусе нуклеиновой кислоты различают РНК-содержащие и ДНК-содержащие вирусы. Нуклеиновая кислота содержит генетическую информацию, обычно о строении белков капсида. Она может быть линейная или кольцевидная, в виде одно- или двуцепочечной ДНК, одно- или двуцепочечной РНК.

Вирус, вызывающий заболевание СПИДом (синдром приобретённого иммунодефицита), поражает клетки крови, обеспечивающие иммунитет организма. В результате больной СПИДом может погибнуть от любой инфекции. Вирусы СПИДа могут проникнуть в организм человека во время половых сношений, во время инъекций или операций при несоблюдении условий стерилизации. Профилактика СПИДа заключается в избегании случайных половых связей, использовании презервативов, применении одноразовых шприцев.

Бактерии

Все прокариоты принадлежат к одному царству Дробянки. В его состав входят бактерии и сине-зелёные водоросли.

Строение и жизнедеятельность бактерий.

Прокариотические клетки не имеют ядра, область расположения ДНК в цитоплазме называется нуклеоидом, единственная молекула ДНК замкнута в кольцо и не связана с белками, клетки меньше эукариотических, в состав клеточной стенки входит гликопептид - муреин, поверх клеточной стенки располагается слизистый слой, выполняющий защитную функцию, отсутствуют мембранные органоиды (хлоропласты, митохондрии, эндоплазматическая сеть, комплекс Гольджи), их функции выполняют впячивания плазматической мембраны (мезосомы), рибосомы мелкие, микротрубочки отсутствуют, поэтому цитоплазма неподвижна, нет центриолей и веретена деления, реснички и жгутики имеют особую структуру. Деление клеток осуществляется путём перетяжки (митоза и мейоза нет). Этому предшествует репликация ДНК, затем две копии расходятся, увлекаемые растущей клеточной мембраной.

Выделяют три группы бактерий: архебактерии, эубактерии и цианобактерии.

Архебактерии - древнейшие бактерии (метанообразующие и др., всего известно около 40 видов). Имеют общие черты строения прокариот, но значительно отличаются по ряду физиологических и биохимических свойств от эубактерий. Эубактерии - истинные бактерии, более поздняя форма в эволюционном отношении. Цианобактерии (цианеи, сине-зелёные водоросли) - фототрофные прокариотические организмы, осуществляющие фотосинтез подобно высшим растениям и водорослям с выделением молекулярного кислорода.

По форме клеток различают следующие группы бактерий: шаровидные - кокки , палочковидные - бациллы , дугообразно изогнутые - вибрионы , спиралеобразные - спириллы и спирохеты . Многие бактерии способны к самостоятельному движению за счёт жгутиков или благодаря сокращению клеток. Бактерии - одноклеточные организмы. Некоторые способны образовывать колонии, но клетки в них существуют независимо друг от друга.

В неблагоприятных условиях некоторые бактерии способны образовывать споры за счёт формирования плотной оболочки вокруг молекулы ДНК с участком цитоплазмы. Споры бактерий служат не для размножения, как у растений и грибов, а для защиты организма от воздействия неблагоприятных условий (засухи, нагревания и др.).

По отношению к кислороду бактерии делят на аэробов (обязательно нуждающиеся в кислороде), анаэробов (погибающие в присутствие кислорода) и факультативные формы.

По способу питания бактерии делятся на автотрофные (в качестве источника углерода используют углекислый газ) и гетеротрофные (используют органические вещества). Автотрофные, в свою очередь, делятся на фототрофов (используют энергию солнечного света) и хемотрофов (используют энергию окисления неорганических веществ). К фототрофам относят цианобактерии (сине-зелёные водоросли), которые осуществляют фотосинтез, как и растения, с выделением кислорода, и зелёные и пурпурные бактерии , которые осуществляют фотосинтез без выделения кислорода. Хемотрофы окисляют неорганические вещества (нитрифицирующие бактерии, азотфиксирующие бактерии, железобактерии, серобактерии и др. ).

Размножение бактерий.

Бактерии размножаются бесполым путём - делением клетки (у прокариот митоза и мейоза нет) при помощи перетяжек или перегородок, реже почкованием . Этим процессам предшествует удвоение кольцевой молекулы ДНК.

Кроме того, для бактерий характерен половой процесс - конъюгация . При конъюгации по специальному каналу, образующемуся между двумя клетками, фрагмент ДНК одной клетки передаётся другой клетке, то есть изменяется наследственная информация, содержащаяся в ДНК обоих клеток. Поскольку количество бактерий при этом не увеличивается, для корректности используют понятие «половой процесс», но не «половое размножение».

Роль бактерий в природе и значение для человека

Благодаря очень разнообразному метаболизму бактерии могут существовать в самых различных условиях среды: в воде, воздухе, почве, живых организмах. Велика роль бактерий в образовании нефти, каменного угля, торфа, природного газа, в почвообразовании, в круговоротах азота, фосфора, серы и других элементов в природе. Сапротрофные бактерии участвуют в разложении органических останков растений и животных и в их минерализации до СО 2 , Н 2 О, H 2 S, NH 3 и других неорганических веществ. Вместе с грибами они являются редуцентами. Клубеньковые бактерии (азотфиксирующие) образуют симбиоз с бобовыми растениями и участвуют в фиксации атмосферного азота в минеральные соединения, доступные растениям. Сами растения такой способностью не обладают.

Человек использует бактерии в микробиологическом синтезе, в очистных сооружениях, для получения ряда лекарств (стрептомицин), в быту и пищевой промышленности (получение кисломолочных продуктов, виноделие).

Царство грибы

Общая характеристика грибов. Грибы выделяют в особое царство, насчитывающее около 100 тыс. видов.

Отличия грибов от растений:

  • гетеротрофный способ питания
  • запасное питательное вещество гликоген
  • наличие в клеточных стенках хитина

Отличия грибов от животных:

  • неограниченный рост
  • поглощение пищи путём всасывания
  • размножение с помощью спор
  • наличие клеточной стенки
  • отсутствие способности активно передвигаться
  • Строение грибов разнообразно - от одноклеточных форм до сложноустроенных шляпочных форм

Лишайники

Строение лишайников. Лишайники насчитывают более 20 тыс. видов. Это симбиотические организмы, образованные грибом и водорослью. При этом лишайники представляют собой морфологически и физиологически целостный организм. Тело лишайника состоит из переплетённых гиф гриба, между которыми располагаются водоросли (зелёные или сине-зелёные). Водоросли осуществляют синтез органических веществ, а грибы поглощают воду и минеральные соли. В зависимости от строения тела (слоевища ) различают три группы лишайников: накипные , или корковые (слоевище имеет вид налётов или корочек, плотно срастающихся с субстратом); листовидные (в форме пластинок, прикреплённых к субстрату пучками гиф); кустистые (в форме стволиков или лент, обычно разветвлённых и срастающихся с субстратом только основанием). Рост лишайников осуществляется крайне медленно - всего по несколько миллиметров в год.

Размножение лишайников осуществляется либо половым путём (за счёт грибного компонента), либо бесполым (образование спор или отламывание кусочков слоевища).
Значение лишайников. Благодаря своей «двойственной» природе лишайники очень выносливы. Это объясняется возможностью как автотрофного, так и гетеротрофного питания, а также способностью впадать в состояние анабиоза, при котором организм сильно обезвоживается. В таком состоянии лишайники могут переносить действие различных неблагоприятных факторов среды (сильный перегрев или переохлаждение, практически полное отсутствие влаги и т. п.). Биологические особенности позволяют лишайникам заселять самые неблагоприятные местообитания. Они часто являются пионерами заселения того или иного участка суши, разрушают горные породы и формируют первичный почвенный слой, который затем осваивают другие организмы.
В то же время лишайники очень чувствительны к загрязнению среды различными химическими веществами, что позволяет использовать их в качестве биоиндикаторов состояния окружающей среды.
Лишайники используют для получения лекарственных препаратов, лакмуса, дубильных и красящих веществ. Ягель (олений мох) является основным кормом для северных оленей. Некоторые народности употребляют лишайники в пищу. Поскольку рост лишайников очень медленный, необходимы меры по его охране: регулирование выпаса оленей, упорядоченное передвижение автотранспорта и др.

Загрузка...