domvpavlino.ru

Подача при сверлении алюминия таблица. Выбор рационального режима резания при сверлении. Методика расчета режима резания при сверлении

Для сверления обрабатываемую заготовку (деталь) неподвижно закрепляют в приспособлении, а сверлу сообщают два одновременных движения (рисунок 6.7.1) - вращательное по стрелке, которое называется главным (рабочим) движением или движением резания (обозначается буквой V), и поступательное, направленное вдоль оси сверла, которое называется движением подачи (обозначается буквой f).

Рисунок 6.7.1 Рабочие движения при сверлении (Каталог Sandvik coromant 2012)

При сверлении под влиянием силы резания происходит отделение частиц металла и образование элементов стружки.

Скорость резания, подача и глубина составляют режим резания .

Скорость резания - это путь, проходимый в направлении главного движения наиболее удаленной от оси инструмента точкой режущей кромки в единицу времени.

Рисунок 6.7.2 Элементы резания (Макиенко Н.И. Общий курс слесарного дела М.: Высш. шк. , 1989.)

Если известны частота вращения сверла и его диаметр, то скорость резания (м/мин) подсчитывают по формуле V = πDn/1000*, где π - постоянное число, равное 3,14; D - диаметр сверла, мм; n - частота вращения сверла, об/мин.

*Так как диаметр отверстия выражается в миллиметрах, а скорость резания в метрах в минуту, то произведение πD необходимо разделить на 1000.

Скорость резания зависит от обрабатываемого материала, диаметра, материала, сверла и формы его заточки, подачи, глубины резания и охлаждения. Однако надо помнить общее правило: чем тверже материал, подлежащий сверлению, и больше диаметр сверла, тем меньше скорость резания.

Если известны диаметр сверла и скорость резания, то частоту вращения инструмента и (об/мин) можно определить по формуле n = 1000V/(πD).

Таблица 6.7.1 Режимы сверления в зависимости от диаметров отверстия обрабатываемого материала, материала сверла (Макиенко Н.И. Общий курс слесарного дела М.: Высш. шк. , 1989.)

Подача S, мм/об

Скорость резания V, м/мин, при обработке

Материал

Диаметр, мм

Углеродистая сталь

Свыше 10 до 20

Быстрорежущая сталь

Свыше 10 до 20

Примечание. В таблице приведены скорости резания обработки материалов средней твердости. Для твердых сталей необходимо табличные данные уменьшить на 15...20 %, для мягких - увеличить на 15...20 %. Для твердосплавных инструментов можно скорость резания брать в 3...4 раза большую, чем для инструмента из быстрорежущей стали.

Подача f (рис. 221,б) - это перемещение сверла вдоль оси за один его оборот или за один оборот заготовки (если вращается заготовка, а сверло движется поступательно). Она выражается в миллиметрах на оборот (мм/об). Правильный выбор подачи имеет большое значение для увеличения стойкости инструмента. Всегда выгоднее работать с большой подачей и меньшей скоростью резания - в этом случае сверло изнашивается медленнее.

Глубина резания t - это расстояние от обработанной поверхности до оси сверла (т.е. радиус сверла). Глубину резания (мм) определяют по формуле t = D/2.

При рассверливании глубина резания t (мм) определяется как половина разности между диаметром D сверла и диаметром d ранее обработанного отверстия, т.е. t = (D - d) /2.

При выборе режимов резания в первую очередь подбирают наибольшую подачу в зависимости от качества обрабатываемой поверхности, прочности сверла и станка и других факторов (по таблицам, приводимым в справочниках) и корректируют по кинематическим данным станка (берется ближайшая меньшая), а затем устанавливают такую скорость резания, при которой стойкость инструмента между переточками будет наибольшей.

Режимы сверления в зависимости от диаметров отверстия обрабатываемого материала, материала сверла и других факторов приведены в справочниках или специальных таблицах (табл. 6.7.1).

Работа по сверлению отверстий в металле, в зависимости от вида отверстий и свойств металла, может выполняться разным инструментом и с использованием различных приёмов. О способах сверления, инструментарии, а также о технике безопасности при выполнении этих работ мы хотим вам рассказать.

Сверление отверстий в металле может понадобиться при ремонте инженерных систем, бытовой техники, автомобиля, создании конструкций из листовой и профильной стали, конструировании поделок из алюминия и меди, при изготовлении плат для радиоаппаратуры и во многих других случаях. Важно понимать, какой инструмент нужен для каждого вида работ, чтобы отверстия получились нужного диаметра и в строго намеченном месте, и какие меры безопасности помогут избежать травм.

Инструменты, приспособления, сверла

Основными инструментами для сверления являются ручные и электрические дрели, а также, при возможности, сверлильные станки. Рабочий орган этих механизмов — сверло — может иметь различную форму.

Различают сверла:

  • спиральные (наиболее распространённые);
  • винтовые;
  • коронки;
  • конусные;
  • перовые и т. д.

Производство свёрл различной конструкции нормируется многочисленными ГОСТами. Свёрла до Ø 2 мм не имеют маркировку, до Ø 3 мм — на хвостовике указано сечение и марка стали, большие диаметры могут содержать дополнительную информацию. Для получения отверстия определённого диаметра нужно взять сверло на несколько десятых миллиметра меньше. Чем лучше заточено сверло, тем меньше разница между этими диаметрами.

Свёрла отличаются не только диаметром, но и длиной — производятся короткие, удлинённые и длинные. Важной информацией является и предельная твёрдость обрабатываемого металла. Хвостовик свёрл может быть цилиндрическим и коническим, что следует иметь в виду при подборе сверлильного патрона или переходной втулки.

1. Сверло с цилиндрическим хвостовиком. 2. Сверло с коническим хвостовиком. 3. Сверло с мечиком для резьбы. 4. Центровое сверло. 5. Сверло с двумя диаметрами. 6. Центровочное сверло. 7. Коническое сверло. 8. Коническое многоступенчатое сверло

Для некоторых работ и материалов требуется выполнение специальной заточки. Чем твёрже обрабатываемый металл, тем острее должна быть заточена кромка. Для тонколистового металла обычное спиральное сверло может не подойти, понадобится инструмент со специальной заточкой. Подробные рекомендации для различного типа свёрл и обрабатываемых металлов (толщина, твёрдость, тип отверстия) достаточно обширны, и в этой статье мы их рассматривать не будем.

Различные типы заточки сверла. 1. Для жёсткой стали. 2. Для нержавеющей стали. 3. Для меди и медных сплавов. 4. Для алюминия и алюминиевых сплавов. 5. Для чугуна. 6. Бакелит

1. Стандартная заточка. 2. Свободная заточка. 3. Разбавленная заточка. 4. Тяжёлая заточка. 5. Раздельная заточка

Для закрепления деталей перед сверлением используют тиски, упоры, кондукторы, уголки, прихваты с болтами и другие приспособления. Это не только требование безопасности, так на самом деле удобнее, и отверстия получаются более качественные.

Для снятия фасок и обработки поверхности канала пользуются зенковкой цилиндрической или конической формы, а для наметки точки под сверление и чтобы сверло «не соскочило» — молоток и кернер.

Совет! Лучшими свёрлами до сих пор считаются выпущенные в СССР — точное следование ГОСТ по геометрии и составу металла. Хороши и немецкие Ruko с титановым напылением, а также свёрла от Bosch — проверенное качество. Хорошие отзывы о продукции Haisser — мощные, как правило, большого диаметра. Достойно показали себя свёрла «Зубр», особенно серии «Кобальт».

Режимы сверления

Очень важно правильно закрепить и направить сверло, а также выбрать режим резания.

При выполнении отверстий в металле сверлением важными факторами являются количество оборотов сверла и усилие на подачу, прилагаемое к сверлу, направленное по его оси, обеспечивающее заглубление сверла при одном обороте (мм/об). При работе с различными металлами и свёрлами рекомендуются различные режимы резания, причём чем твёрже обрабатываемый металл и чем больше диаметр сверла, тем меньше рекомендуемая скорость резания. Показатель правильного режима — красивая, длинная стружка.

Воспользуйтесь таблицами, чтобы правильно выбрать режим и не затупить сверло преждевременно.

Подача S 0 , мм/об Диаметр сверла D, мм
2,5 4 6 8 10 12 146 20 25 32
Скорость резания v, м/мин
При сверлении стали
0,06 17 22 26 30 33 42
0,10 17 20 23 26 28 32 38 40 44
0,15 18 20 22 24 27 30 33 35
0,20 15 17 18 20 23 25 27 30
0,30 14 16 17 19 21 23 25
0,40 14 16 18 19 21
0,60 14 15 11
При сверлении чугуна
0,06 18 22 25 27 29 30 32 33 34 35
0,10 18 20 22 23 24 26 27 28 30
0,15 15 17 18 19 20 22 23 25 26
0,20 15 16 17 18 19 20 21 22
0,30 13 14 15 16 17 18 19 19
0,40 14 14 15 16 16 17
0,60 13 14 15 15
0,80 13
При сверлении алюминиевых сплавов
0,06 75
0,10 53 70 81 92 100
0,15 39 53 62 69 75 81 90
0,20 43 50 56 62 67 74 82 - -
0,30 42 48 52 56 62 68 75
0,40 40 45 48 53 59 64 69
0,60 37 39 44 48 52 56
0,80 38 42 46 54
1,00 42

Таблица 2. Поправочные коэффициенты

Таблица 3. Обороты и подача при различном диаметре сверла и сверлении углеродистой стали

Виды отверстий в металле и способы их сверления

Виды отверстий:

  • глухие;
  • сквозные;
  • половинчатые (неполные);
  • глубокие;
  • большого диаметра;
  • под внутреннюю резьбу.

Отверстия под резьбу требуют определения диаметров с допусками, установленными в ГОСТ 16093-2004. Для распространённых метизов расчёт приведен в таблице 5.

Таблица 5. Соотношение метрической и дюймовой резьбы, а также подбор размера отверстия для засверливания

Метрическая резьба Дюймовая резьба Трубная резьба
Диаметр резьбы Шаг резьбы, мм Диаметр отверстия под резьбу Диаметр резьбы Шаг резьбы, мм Диаметр отверстия под резьбу Диаметр резьбы Диаметр отверстия под резьбу
мин. макс. мин. макс.
М1 0,25 0,75 0,8 3/16 1,058 3,6 3,7 1/8 8,8
М1,4 0,3 1,1 1,15 1/4 1,270 5,0 5,1 1/4 11,7
М1,7 0,35 1,3 1,4 5/16 1,411 6,4 6,5 3/8 15,2
М2 0,4 1,5 1,6 3/8 1,588 7,7 7,9 1/2 18,6
М2,6 0,4 2,1 2,2 7/16 1,814 9,1 9,25 3/4 24,3
М3 0,5 2,4 2,5 1/2 2,117 10,25 10,5 1 30,5
М3,5 0,6 2,8 2,9 9/16 2,117 11,75 12,0
М4 0,7 3,2 3,4 5/8 2,309 13,25 13,5 11/4 39,2
М5 0,8 4,1 4,2 3/4 2,540 16,25 16,5 13/8 41,6
М6 1,0 4,8 5,0 7/8 2,822 19,00 19,25 11/2 45,1
М8 1,25 6,5 6,7 1 3,175 21,75 22,0
М10 1,5 8,2 8,4 11/8 3,629 24,5 24,75
М12 1,75 9,9 10,0 11/4 3,629 27,5 27,75
М14 2,0 11,5 11,75 13/8 4,233 30,5 30,5
М16 2,0 13,5 13,75
М18 2,5 15,0 15,25 11/2 4,333 33,0 33,5
М20 2,5 17,0 17,25 15/8 6,080 35,0 35,5
М22 2,6 19,0 19,25 13/4 5,080 33,5 39,0
М24 3,0 20,5 20,75 17/8 5,644 41,0 41,5

Сквозные отверстия

Сквозные отверстия пронизывают заготовку полностью, образуя в ней проход. Особенностью процесса является защита поверхности верстака или столешницы от выхода сверла за пределы заготовки, что может повредить и само сверло, а также снабдить заготовку «заусенцем» — гартом. Чтобы этого избежать, применяют следующие способы:

  • используют верстак с отверстием;
  • подкладывают под деталь прокладку из дерева или «сэндвич» — дерево+металл+дерево;
  • подкладывают под деталь металлический брусок с отверстием для свободного прохода сверла;
  • снижают скорость подачи на последнем этапе.

Последний способ обязателен при высверливании отверстий «по месту», чтобы не повредить близко расположенные поверхности или детали.

Отверстия в тонколистовом металле вырезаются перовыми свёрлами, потому как спиральное сверло повредит края заготовки.

Глухие отверстия

Такие отверстия выполняются на определённую глубину и не пронизывают заготовку насквозь. Отмерить глубину можно двумя способами:

  • ограничивая длину сверла втулочным упором;
  • ограничивая длину сверла патроном с регулируемым упором;
  • пользуясь линейкой, закреплённой на станке;
  • комбинацией способов.

Некоторые станки снабжены системой автоматической подачи на заданную глубину, после чего механизм останавливается. В процессе сверления может потребоваться несколько раз остановить работу, чтобы удалить стружку.

Отверстия сложной формы

Отверстия, расположенные на краю заготовки (половинчатые) можно выполнять, соединив гранями и зажав тисками две заготовки или заготовку и прокладку и высверлив полное отверстие. Прокладка должна быть выполнена из такого же материала, что и обрабатываемая заготовка, иначе сверло будет «уходить» в сторону наименьшего сопротивления.

Сквозное отверстие в уголке (профильный металлопрокат) выполняют, зафиксировав заготовку в тисках и используя деревянную прокладку.

Сложнее выполнить сверление цилиндрической заготовки по касательной. Процесс разделяется на две операции: подготовка перпендикулярной отверстию площадки (фрезеровка, зенковка) и собственно сверление. Высверливание отверстий в поверхностях, расположенных под углом, также начинают с подготовки площадки, после чего вставляют деревянную прокладку между плоскостями, образуя треугольник, и сверлят отверстие сквозь угол.

Полые детали просверливают, заполнив полость пробкой из древесины.

Отверстия с уступами получают с использованием двух техник:

  1. Рассверливание. Отверстие высверливается на всю глубину сверлом наименьшего диаметра, после чего на заданную глубину рассверливают свёрлами диаметрами от меньшего к большему. Достоинство метода — хорошо отцентрованное отверстие.
  2. Уменьшение диаметра. На заданную глубину высверливается отверстие максимального диаметра, затем свёрла меняются с последовательным уменьшением диаметра и углублением отверстия. При этом методе легче контролировать глубину каждой ступени.

1. Рассверливание отверстия. 2. Уменьшение диаметра

Отверстия большого диаметра, кольцевое высверливание

Получение отверстий большого диаметра в массивных заготовках, толщиной до 5-6 мм, дело трудоёмкое и затратное. Относительно небольшие диаметры — до 30 мм (максимум 40 мм) можно получить, используя конусные, а лучше ступенчато-конусные свёрла. Для отверстий большего диаметра (до 100 мм) понадобятся полые биметаллические коронки или коронки с твердосплавными зубьями с центровочным сверлом. Причём мастера традиционно в этом случае рекомендуют Bosch, в особенности на твёрдом металле, например, стали.

Такое кольцевое высверливание менее энергозатратное, но может быть более затратным финансово. Помимо свёрл важна мощность дрели и возможность работы на самых низких оборотах. Причём чем толще металл, тем сильнее захочется выполнить отверстие на станке, а при большом количестве отверстий в листе толщиной более 12 мм лучше сразу искать такую возможность.

В тонколистовой заготовке отверстие большого диаметра получают с помощью узкозубых коронок или фрезой, закреплённой на «болгарке», но края в последнем случае оставляют желать лучшего.

Глубокие отверстия, СОЖ

Иногда требуется выполнить глубокое отверстие. В теории, это такое отверстие, длина которого в пять раз больше диаметра. На практике, глубоким называют сверление, требующее принудительного периодического удаления стружки и применения СОЖ (смазочно-охлаждающих жидкостей).

В сверлении СОЖ нужны в первую очередь для снижения температуры сверла и заготовки, которые нагреваются от трения. Поэтому при получении отверстий в меди, которая обладает высокой теплопроводностью и сама способна отводить тепло, СОЖ можно не применять. Относительно легко и без смазки сверлится чугун (кроме высокопрочных).

На производстве в качестве СОЖ применяют индустриальные масла, синтетические эмульсии, эмульсолы и некоторые углеводороды. В домашних мастерских можно использовать:

  • технический вазелин, касторовое масло — для мягких сталей;
  • хозяйственное мыло — для алюминиевых сплавов типа Д16Т;
  • смесь керосина с касторовым маслом — для дюралюминия;
  • мыльную воду — для алюминия;
  • скипидар, разведённый спиртом — для силумина.

Универсальная охлаждаемая жидкость может быть приготовлена самостоятельно. Для этого нужно растворить 200 г мыла в ведре воды, добавить 5 ложек машинного масла, можно отработанного, и прокипятить раствор до получения мыльной однородной эмульсии. Некоторые мастера для снижения трения используют свиное сало.

Обрабатываемый материал Смазочно-охлаждающая жидкость
Сталь:
углеродистая Эмульсия. Осернённое масло
конструкционная Осернённое масло с керосином
инструментальная Смешанные масла
легированная Смешанные масла
Чугун ковкий 3-5%-ная эмульсия
Чугунное литье Без охлаждения. 3-5%-ная эмульсия. Керосин
Бронза Без охлаждения. Смешанные масла
Цинк Эмульсия
Латунь Без охлаждения. 3-5%-ная эмульсия
Медь Эмульсия. Смешанные масла
Никель Эмульсия
Алюминий и его сплавы Без охлаждения. Эмульсия. Смешанные масла. Керосин
Нержавеющие, жаропрочные сплавы Смесь из 50% осернённого масла, 30% керосина, 20% олеиновой кислоты (или 80% сульфофрезола и 20% олеиновой кислоты)
Волокнит, винипласт, оргстекло и так далее 3-5%-ная эмульсия
Текстолит, гетинакс Обдувка сжатым воздухом

Глубокие отверстия могут быть выполнены сплошным и кольцевым сверлением, причём в последнем случае центральный стержень, образованный вращением коронки, выламывают не целиком, а частями, ослабив его дополнительными отверстиями малого диаметра.

Сплошное сверление выполняется в хорошо зафиксированной заготовке спиральным сверлом, в каналы которого подается СОЖ. Периодически, не останавливая вращение сверла, нужно его извлекать и очищать полость от стружки. Работа спиральным сверлом выполняется поэтапно: сначала берут короткое и надсверливают отверстие, которое затем заглубляют сверлом соответствующего размера. При значительной глубине отверстия желательно пользоваться направляющими кондукторными втулками.

При регулярном высверливании глубоких отверстий можно рекомендовать приобретение специального станка с автоматической подачей СОЖ к сверлу и точной отцентровкой.

Сверление по разметке, шаблону и кондуктору

Сверлить отверстия можно по выполненной разметке или без неё — с применением шаблона или кондуктора.

Разметка выполняется кернером. Ударом молотка намечается место для острия сверла. Фломастером тоже можно отметить место, но отверстие нужно ещё и для того, чтобы острие не сдвигалось от намеченной точки. Работа выполняется в два этапа: предварительное сверление, контроль отверстия, окончательное сверление. Если сверло «ушло» от намеченного центра, узким зубилом делаются насечки (канавки), направляющие острие в заданное место.

Для определения центра цилиндрической заготовки пользуются квадратным кусочком жести, согнутым под 90° так, чтобы высота одного плеча составляла приблизительно один радиус. Прикладывая уголок с разных сторон заготовки, проведите карандашом вдоль края. В результате у вас образуется область вокруг центра. Найти центр можно по теореме — пересечением перпендикуляров от двух хорд.

Шаблон нужен при выполнении серии однотипных деталей с несколькими отверстиями. Им удобно пользоваться для пачки тонколистовых заготовок, соединённых струбциной . Так одновременно можно получить несколько просверленных заготовок. Вместо шаблона иногда используют чертёж или схему, например, при изготовлении деталей для радиоаппаратуры.

Кондуктором пользуются, когда очень важна точность выдерживания расстояний между отверстиями и строгая перпендикулярность канала. При сверловке глубоких отверстий или при работе с тонкостенными трубками кроме кондуктора могут применяться направляющие, фиксирующие положение дрели относительно поверхности металла.

При работе с электроинструментом важно помнить о безопасности человека и не допускать преждевременного износа инструмента и возможного брака. В связи с этим мы собрали некоторые полезные советы:

  1. Перед работой нужно проверить крепления всех элементов.
  2. Одежда при работе на станке или с электродрелью не должна быть с элементами, способными попасть под действие вращающихся частей. Глаза от стружки защитите очками.
  3. Сверло при приближении к поверхности металла должно уже вращаться, иначе оно быстро затупится.
  4. Вынимать сверло из отверстия нужно, не выключая дрель, по возможности снижая обороты.
  5. Если сверло не углубляется в металл, значит, его твёрдость ниже, чем у заготовки. Повышенную твёрдость у стали можно выявить, проведя по образцу напильником — отсутствие следов свидетельствует о повышенной твёрдости. В этом случае сверло нужно выбирать из твёрдого сплава с присадками и работать на низких оборотах с небольшой подачей.
  6. Если сверло маленького диаметра плохо закрепляется в патроне, намотайте на его хвостовик несколько оборотов латунной проволоки, увеличив диаметр для захвата.
  7. Если поверхность заготовки полированная, наденьте фетровую шайбу на сверло, чтобы гарантировано не нанести царапины даже при соприкосновении с патроном дрели. При закреплении заготовок из полированной или хромированной стали, используйте прокладки из ткани или кожи.
  8. При изготовлении глубоких отверстий прямоугольный кусочек пенопласта, насаженный на сверло, может служить измерителем и одновременно, вращаясь, сдувать мелкую стружку.

В процессе резания сверло испытывает сопротивление со стороны обрабатываемого материала. На каждую точку режущей кромки действуют силы сопротивления. Заменим их равнодействующей силой, приложенной к точке А на расстоянии, примерно равном D /4 от оси сверла. Последнюю можно разложить на три составляющие силы Р x , Р у и Р z (рис.72.)

Рис. 72. Силы, действующие на сверло

Сила сопротивления Р х направлена вдоль оси сверла. В этом же направлении действует сила Р п на поперечную кромку, сила трения Р т ленточки о поверхность отверстия, cилы сопротивления, действующие на сверло вдоль ее оси, на ось X заменим равнодействующей силой Р 0 , которая называется осевой силой или силой подачи. Она преодолевается механизмом подачи станка. Последний должен передать на шпиндель станка осевую силу Р" 0 , способную преодолеть силу Р 0 . Максимальная осевая сила, допускаемая механизмом подачи станка, приводится в его паспорте.

Формулы для подсчета осевой силы и момента при сверлении:

Определение силы Р 0 и момента М кр производится по эмпирическим формулам, полученным экспериментальным путём. Для сверл из инструментальных сталей при обработке стальных и чугунных деталей они имеют следующий вид:

; , кГс·мм – при сверлении;

; , кГс·мм при рассверливании.

где: С р и С м – коэффициенты, зависящие от обрабатываемого металла, формы заточки сверла и условий резания;

z p , x p , y p , z M , x M и y M – степени влияния диаметра сверла D , глубины резания t , подачи s на осевую силу P 0 и крутящий момент при сверлении М ;

K p и K M – поправочные коэффициенты на изменённые условия сверления;

Радиальные силы Р у , разнонаправленные, уравновешиваются (SР у = 0). Сила Р z создает момент сопротивления резанию М на главных режущих кромках, а сила Р т ’, касательная к ленточке, - момент трения на ней (им обычно пренебрегают).

Относительное влияние элементов сверла на силу резания и момент кручения при сверлении приведены в таблице 16.

Таблица 16. Влияние элементов сверла на осевую силу P 0 икрутящиймоментМ

Момент сопротивления резанию M рез преодолевается механизмом главного движения, т. е. крутящим моментом на шпинделе станка М кр . На каждой ступени шпинделя станка мощность N шп постоянна, момент М кр переменный. Он зависит от частоты вращения (числа оборотов) п на данной ступени и определяется:

М кр = 716200·1,36·() кГс мм ; N шп = N дв ·h , кВт ,

М кр = 974000·() кГс мм .

Зная момент сопротивления М , можно определить эффективную мощность N э затрачиваемую на резание при сверлении,

Мощность на подачу сверла составляет около 1 % от мощности и в расчетах не учитывается. По мощности определяют мощность, которую должен иметь электродвигатель станка для обеспечения заданного процесса резания:

, кВт

Станок пригоден для заданных условий сверления, если N шп > N e .

6.4. Влияние различных факторов на осевую силу и момент при сверлении. На осевую силу Р 0 и момент сопротивления резанию М влияют свойства обрабатываемого материала, геометрические параметры сверла, элементы среза (диаметр, подача) и др.

6.4.1. Свойства обрабатываемого материала . Чем выше предел прочности σ в и твердость НВ материала, тем больше его сопротивление резанию, тем выше значения Р 0 и М . Для сверл из быстрорежущей стали получены экспериментально следующие зависимости:

, и - для стали;

, и - для чугуна.

где: С р и С м – коэффициенты, зависящие от условий резания.

6.4.2. Геометрические параметры сверла . С увеличением угла w осевая сила Р 0 и момент М уменьшаются в связи с увеличением передних углов γ х на главных режущих кромках и облегчением отвода стружки. Угол j , (2j ) влияет на составляющие силы резания и момент по аналогии с точением: при уменьшении угла осевая сила Р 0 уменьшается, а тангенциальная Р z увеличивается, тем самым увеличивается и М . С уменьшением угла 2j сопротивление резанию в связи с увеличением γ х уменьшается, но одновременно увеличивается ширина среза и уменьшается его толщина. Последнее ведет к росту деформации (тонкие стружки деформируются полнее) и, следовательно, росту силы Р x и момента М . Угол наклона поперечной кромки d > 90° (см. рис. 72) и это значительно увеличивает осевую силу Р 0 . Ранее было отмечено, что сила, действующая на поперечную кромку Рп = 0,55Р 0 . Для ее снижения уменьшают длину кромки путем подточки, увеличивают ее передний угол, тем самым создаются более благоприятные условия резания вблизи нее. На величину М геометрия поперечной кромки влияет слабо. Двойная заточка сверла также слабо влияет на Р 0 и М .

Диаметр сверла и подача. С увеличением диаметра сверла D и подачи s увеличиваются ширина и толщина срезаемого слоя, следовательно, возрастают силы и момент резания. Экспериментально установлено, что диаметр сверла влияет на Р 0 в большей степени (1), чем подача (0,8). Для объяснения можно привести аналогию с точением, где глубина резания t влияет в большей степени на силы резания, чем подача (см.), а при сверлении t = D /2 мм. Подача влияет примерно в одинаковой степени (0.8) на осевую силу Р 0 и крутящий момент М , а диаметр влияет в большей степени (1,9) на М и в меньшей - на Р 0 (1). Это объясняется тем, что при увеличении диаметра й возрастает сила Р z , создающая момент М , и одновременно увеличивается длина плеча, на котором действует эта сила, что также способствует увеличению М (рис.).

Охлаждающая жидкость. Подача охлаждающей жидкости в зону резания облегчает отвод стружки, уменьшает работу трения и замедляет износ сверла. Она способствует снижению осевой силы Р 0 и момента М до 25% при обработке стальных деталей и до 15% - при обработке чугунных.

Износ сверла

Природа и характер износа сверл и резцов одинаковы. При обработке вязких материалов (сталей и др.) быстрорежущими сверлами изнашиваются передние и задние поверхности сверла (рис. 73.), а у твердосплавных сверл передние поверхности изнашиваются незначительно.

Рис. 73. Характер износа сверла: А – по задней поверхности; Б – по ленточке; В – по уголкам; Г – по передней поверхности

При обработке хрупких материалов (чугуна, пластмассы и др.) преимущественно изнашиваются задние поверхности и уголки сверла. Передние и задние поверхности сверла более интенсивно изнашиваются на периферии, так как здесь скорость резания наибольшая и уголки сверла, являясь ослабленным местом, сильно нагреваются и разрушаются. Закономерность износа свёрл примерно та же, что и резцов при точении (Рис. 74).

Рис. 74. Характер протекания износа сверла от времени работы

Оценку износа рекомендуется производить: при обработке вязких материалов -по длине износа по задним поверхностям h з , для хрупких материалов - по длине износа уголков h y . Допустимая величина износа -критерий износа при сверлении быстрорежущими свёрлами:

h З кр = 0,4…1,2 мм, при обработке стали;

При обработке чугуна быстрорежущими свёрлами в качестве критерия износа принимается износ по длине уголков.

h у = 0,4…1,2 мм – обработка сверлом из быстрорежущей стали;

h у = 0,9…1,4 мм. – обработка сверлом из твёрдого сплава;

Период стойкости Т , мин, зависит от диаметра сверла и обрабатываемого материала.

Т = (1,0…1,25)∙D – обработка стали быстрорежущими свёрлами;

T = (1,25…1,5) D – обработка чугуна быстрорежущими свёрлами;

Т = (1,5…2,0) D – обработка чугуна свёрлами из твёрдого сплава.

В результате проведенных опытов при сверлении стали быстрорежущими сверлами получена следующая зависимость:

Из полученных результатов видно, что на износ сверла в большей степени влияет скорость, в меньшей - подача. Это становится понятным, если учесть, что на температуру резания степень влияния скорости примерно в 2 раза выше, чем подачи.

Режимы резания при сверлении. Производительность труда при сверлении во многом зависит от скорости вращения сверла и величины подачи, т. е. на какую величину сверло углубляется за один оборот в обрабатываемую деталь.

Но скорость вращения сверла и подача не могут быть беспредельно увеличены - при слишком большой скорости вращения сверло «сгорит», а при слишком большой подаче сломается.

Скорость резания выражается формулой

где v - скорость резания, м/мин; D - диаметр сверла, мм; n - число оборотов шпинделя в минуту; π - число, равное 3,14.

При выборе скорости резания учитывают свойства обрабатываемого материала и материала сверла, диаметр сверла, величину подачи и условия сверления (глубину сверления, наличие охлаждения и др.).

Величина подачи определяется с учетом диаметра сверла. Так, например, при обработке стали средней твердости сверлом диаметром 6 мм допускают подачу 0,15 мм/об; при диаметре сверла 12 мм - 0,25 мм/об; при диаметре сверла 20 мм - 0,30 мм/об и т. д.

Правильный выбор скорости и подачи сверла оказывает большое влияние не только на производительность, ко и на стойкость режущего инструмента и качество обрабатываемого отверстия. Сверло работает лучше при большой скорости резания и малой подаче.

Число оборотов, скорость и подачу можно определять и по таблицам.

Уход за сверлильными станками. Сверлильные станки будут работать с требуемой точностью, производительно и безотказно длительное время лишь в том случае, если за ними будет соответствующий уход.

Уход за сверлильным станком заключается прежде всего в поддержании на рабочем месте чистоты и систематической уборке стружки. Особенно следует оберегать стол от забоин и ржавления. Забоины, остающиеся на столе в результате небрежной работы, снижают точность сверления и ускоряют необходимость проведения ремонта станка.

Чтобы избежать образования забоин и выработки на столе, детали следует устанавливать аккуратно, без ударов и значительных перемещений по столу. Опорные плоскости, которыми деталь устанавливается на стол, должны быть чистыми и не иметь заусенцев.

По окончании работы стол станка и его пазы должны быть тщательно очищены от грязи и стружки, протерты сухими концами и смазаны тонким слоем масла для предохранения от ржавления.

Перед работой необходимо смазать все трущиеся части станка, места смазки и залить масло в масленки.

Во время работы проверяют рукой нагрев подшипников. Нагрев должен быть терпимым для руки. Во избежание несчастного случая перед проверкой степени нагрева подшипников электродвигатель следует остановить и проверку производить при неработающей ременной или зубчатой передачах. Необходимо также следить за тем, чтобы шестерни станка были всегда надежно ограждены.

Расчет штучного времени аналитическим методом.

Рис. 2 – эскиз детали

Заготовка: сталь 25ХГМ ГОСТ 4543-71

Деталь крепится в трехкулачковом патроне на вертикально-сверлильном станке с ЧПУ.

Сверлится 4 отверстия ø16 по квалитету h14 с выдерживанием промежуточного размера ø106 по 14 квалитету.

Расчет режимов резания.

При сверлильных работах рекомендуется задавать режимы исходя из мощности используемого оборудования. Наиболее удобный материал режущего инструмента – быстрорежущая сталь (Р18, Р6М5). Подачи при сверлильных работах вычислять по формуле:

S- подача, мм/об

D- диаметр сверла, мм

С- коэффициент, зависящий от обрабатывемого материала и иных технологических факторов (таблица 1)

Kls- коэффициент на подачу, зависящий от условия выхода стружки (таблица 2)

S = 0.047*16 0.6 *0.7 = 0.173 мм/об

Режимы резания при сверлении

Затрачиваемая мощность при сверлении зависит от крутящего момента. Крутящий момент вычисляется по формуле:

Мкр- крутящий момент, воспринимаемый сверлом при резании, Н*м

См, q, y- коэффициенты на крутящий момент при сверлении, зависящий от условий резания (таблица 3)

D- диаметр сверла, мм

S- подача, мм/об

Кмр- коэффициент на крутящий момент, зависящий от механических свойств материала (таблица 4)

М кр = 10*0,0345*16 2 *0,173 0,8 *2,03 = 44,054 Н*м

Для обеспечения жесткости СПИД при сверлении, необходимо устанавливать сверло в патроне с минимальным по возможности вылетом (больше на 3-5 мм чем глубина обрабатываемого отверстия).

Скорость резания при сверлении вычисляется по формуле:

Общий поправочный коэффициент на скорость резания, учитывающий фактические условия резания,

К v = К мv К иv К ιv ,= 0,75*1*1 = 0,75

где К мv - коэффициент на обрабатываемый материал

К иv – коэффициент на инструментальный материал

К ιv , - коэффициент учитывающий глубину сверления

Vр = 7*16 0,4 *0,75/0,173 0,7 *45 0,2 = 25,66 м/мин.

Частота вращения вычисляется по формуле:

n = 1000*25,66/3,14*16 = 510,74 об/мин.

Назначает частоту вращения 500 об/мин.

Расчет времени на данную операцию.

Затраты основного времени:

Т о = L р *i/S*n = 13*4/0.173*500 = 0.15 мин.

Где Lр – длина рабочего хода сверла,

i – количество отверстий.

Затраты вспомогательного времени:

Т в = Т в.у. + Т в.изм = 0,18 + 0,1 = 0,28 мин.

Где Т в.у – время на установку, мин.

Т в.изм – время на измерение, мин.

Оперативное время:

Т оп = Т в + Т о = 0,28+0,15 = 0,43 мин.

Окончательная норма штучного времени:

Где T oi время основных переходов

T bj время вспомогательных переходов

k 1 и k 2 – время на техническое и организационное обслуживание рабочего места, на отдых и личные потребности при одностаночном обслуживании, % от оперптивного времени; k 1 = 2.5, k 2 = 3.

Т шт = 0,43*(1+5,5/100) = 0,45 мин.

Загрузка...