domvpavlino.ru

Одноклеточные фораминиферы. Отряд Фораминиферы (Foraminifera). Понятие о планктонных протистах

Фораминиферы , отряд простейших типа саркодовых. Самый многочисленный отряд, известно около 10000 современных видов и более 40 000 видов ископаемых фораминифер, около 65 надсемейств и 300 семейств. Рассматриваются в ранге класса или типа простейших эукариотических организмов. Класс разделяют на 15 подклассов и около 40 отрядов

Большинство фораминифер населяют придонные слои (бентосные организмы), некоторые – парят в толще воды (планктонные виды). Фораминиферы имеют раковину - наружный скелет . Большинство раковин известковые, иногда образуют хитиноидные или состоящие из посторонних частиц, склеенных выделениями клетки. Внутренняя полость раковины сообщается с окружающей средой через многочисленные поры, а также через отверстие в раковине - устье. Через него и поры в стенках раковинок выдаются наружу тончайшие ветвящиеся и соединяющиеся между собой ретикулоподии (особые ложноножки), которые служат для движения и захвата пищи, образуют вокруг раковинки сеточку , диаметр которой во много раз превосходит диаметр раковинки. К такой сеточке прилипают пищевые частички (например, одноклеточные водоросли), которыми питаются фораминиферы.

Фораминиферы - одиночные преимущественно морские протисты; некоторые формы обитают в солоноватых и пресных водоемах; встречаются формы, обитающие на большой глубине в рыхлом жидком иле (до 16 м от поверхности дна). К примеру, фораминиферы были обнаружены на дне Марианской впадины на глубине более 10 тысяч метров.

Фораминиферы бывают как бентосными, так и планктонными . Раковины планктонных фораминифер являются наиболее распространённым компонентом биогенных отложений (фораминиферовый ил) океанов, но не глубже 4000 м, где известковые раковины фораминифер растворяются в толще воды, не достигнув дна. Эти илы в наше время покрывают не менее четверти поверхности планеты и состоят преимущественно из раковинок фораминифер рода Globigerina (глобигериновый ил). Ископаемые фораминиферы служат для определения возраста палеозойских, мезозойских и кайнозойских отложений. Современные фораминиферы, как правило, мелкие (0,1-1 мм), а некоторые вымершие виды достигали 20 см. Основная масса раковин фораминифер имеет размер песчаной фракции - более 61 мкм. Концентрация фораминифер в морской воде максимальна в экваториальных и высокоширотных водах. При этом видовое разнообразие и сложность строения раковин характерны лишь для экваториальных областей. Концентрация фораминифер может достигать 100 тыс. экземпляров на 1 кубический метр воды.

Раковины фораминифер по способу образования подразделяются на:

  • секреционные,
  • агглютинированные.

Секреционные (выделение) сформированы минеральным или органическим веществом, выделенным самим организмом.

Агглютинированные раковины (склеенный) состоят из захваченных из окружающей толщи воды песчинок и обломков скелетов других организмов, склеенных выделяемым клеткой клейким веществом.

Раковины фораминифер являются основным компонентом писчего мела.

По составу раковины фораминифер могут быть:

  • органическими - наиболее древние из всех фораминифер, встречаются с самого начала палеозоя;
  • агглютинированными - состоящие из самых разнообразных частичек, порою с карбонатным цементом;
  • секреционными известковыми (карбонатными) - сложенные кальцитом (СаСО3).

Раковины могут быть однокамерными примитивных представителей) или многокамерными (более продвинутый вариант), а многокамерные разделяются на линейные и спиральные . Спиральные могут навиваться разными способами, клубковидный способ считается более архаичным, чем планоспиральный (когда все витки в одной плоскости) и трохоидный (витки располагаются один за другим). У многокамерных начальная камера обычно является самой маленькой, а самая молодая (последняя) - самой крупной. Секреционные раковины часто имеют «ребра жесткости» для повышения механической прочности.

Для фораминифер характерен гапло-диплофазный жизненный цикл . В особях гаплоидного поколения - гамонтах происходит интенсивное деление ядер и образуются однотипные (как правило) двухжгутиковые гаметы , которые затем, попарно сливаясь, формируют зиготу , из которой развивается особь следующего поколения - агамонт.

Так как при слиянии гамет хромосомный набор удваивается, данное поколение становится диплоидным. В агамонтах также происходит интенсивное деления ядер, большая часть из которых в дальнейшем претерпевает мейоз. Вокруг ядер, ставших гаплоидными в результате редукционого деления, обособляется цитоплазма и формируется раковина, в результате чего образуются аналоги спор - агаметы , из которых вновь развиваются гамонты.

Фораминиферы – это самый обширный отряд простейших животных подкласса корненожек, которые входят в класс саркодовых типа саркомастигофоры. К данному отряду относят более 4 тысяч видов этих животных. Все фораминиферы – это морские одиночные одноклеточные организмы, участвующие в образовании бентоса в придонных слоях. Планктонными организмами являются представители только двух семейств фораминиферов, они обитают в толще воды.

Представители данного отряда животных распространены в океанах и морях повсеместно. Они обнаружены во всех широтах и на любой глубине. Но в приполярных областях количество фораминифер в единице объема воды почти в сто раз меньше, чем в экваториальном поясе. Наибольшее разнообразие видов фораминиферов наблюдается в подпочвенных соленых водах и колодцах с соленой водой в Средней Азии. Ученые расценивают их, как остатки морской фауны.

Отличительной особенностью фораминиферов является наличие раковины – защитного образования, которое окружает тело животного снаружи. Это внешний скелет, его строение сложно, а форма разнообразна у разных видов. Раковина большинства фораминиферов известковая, иногда хитиноидная, реже состоит из песчинок, прилипших к слизи, покрывающей тело животного. Раковины могут быть однокамерные, многокамерные, в некоторых случаях ветвящиеся. В раковине имеется внутренняя полость, которая сообщается с окружающим пространством через множество пор и крупное отверстие – устье. Через поры и устье наружу из раковины выходят тонкие ложноножки (ризоподии), служащие для передвижения и улавливания пищи. Эти ризоподии соединяются между собой, формируя сеть, размеры которой превышают размеры самой раковины. Это приспособление для охоты на многочисленные одноклеточные организмы – пищу для фораминиферов. По способу питания фораминиферы делят на фильтраторов, хищников и растительноядных.

Размеры клеток фораминиферов колеблются от 0,1 до 1 мм, вымершие виды достигали в диаметре 20 см. В клетке особи данного отряда может быть одно или несколько ядер, выполняющих различные функции, как у инфузорий. У планктонных форм фораминиферов для повышения плавучести в цитоплазме имеются включения пузырьков газа, капель жира и пресной воды.

Жизненный цикл фораминиферов – это чередование гаплоидного и диплоидного поколений. Зигота дает начало диплоидному поколению. После многократного деления ядра, особь становится многоядерной и распадается на множество гамет, из которых развивается гаплоидное поколение. Позднее гаметы копулируют, снова образуя диплоидные зиготы.

Ископаемые фораминиферы известны с кембрийского периода, хотя ученые полагают, что эти организмы появились на Земле еще в докембрии. Расцвет фораминиферов был в карбоновом и пермском геологическом периоде. В это время раковины после гибели этих организмов сформировали значительные слои осадочных горных пород – мела и известняка. Вследствие горообразовательных процессов дно морей с отложениями этих пород поднималось и превращалось в сушу. Так образовались горные хребты: Гималаи, Альпы, Пиренеи, состоящие преимущественно из фораминиферовых известняков, которые люди издавна используют как строительный материал и для получения извести. Ископаемые фораминиферы играют важную роль в стратиграфии палеозойских, мезозойских и кайнозойских отложений, то есть определения возраста горных пород.

Царство Животные

(Regnum Zoa, или Animalia)

Подцарство Простейшие, или одноклеточные (Subregnum Protozoa)

Тип Саркодовые

(Phylum Sarcodina) Є-ныне

Класс Фораминиферы (Classis Foraminifera)

Род Textularia C2 - ныне Nodosaria Р - ныне

Fusulina С 2 – С 3

Schwagerina Р 1 Globigerina Р - ныне Nummulites Р

Класс Радиолярии (Classis Radiolaria) О-ныне

Отряд Spumellaria О - ныне Отряд Nassellaria Т - ныне

Царство Животные (Regnum Animalia, или Zoa)

Животные – одно из самых распространенных царств органического мира, наряду с растениями и грибами. Основным признаком всех животных является гетеротрофное питание – использование в пищу готовых органических продуктов. Растения, напротив, самостоятельно синтезируют органические вещества, являясь автотрофными организмами. Грибы являются как гетеротрофами, так и сапротрофами – организмами, питающимися отмершим органическим веществом.

Царство животных подразделяется на два подцарства – одноклеточных и многоклеточных. У одноклеточных животных все функции организма выполняет одна клетка, а у многоклеточных – различные клетки, объединенные в органы и ткани.

Подцарство Простейшие, или одноклеточные животные (Subregnum Protozoa)

Простейшие животные обладают одной клеткой, которая выполняет все жизненные функции. Органеллы клетки – митохондрии, пластиды, комплекс Гольджи и др. – являются аналогами тканей многоклеточных животных, а органоиды – жгутики – аналогами их органов.

Разделение простейших животных на более мелкие систематические категории обусловлено строением клетки и ее производных. Так, в пределах подцарства простейших выделяют четыре типа: Инфузории (Infusoria,

рис. 1), Жгутиконосцы (Mastigofora, рис. 2), Споровики (Sporozoa) и Саркодовые (Sarcodina).

На практических занятиях рассматриваются наиболее важные в стратиграфическом отношении саркодовые, большинство из которых обладают способностью строить минеральную (реже органическую) раковину, хорошо сохраняющуюся в ископаемом состоянии.

Тип Саркодовые (Phylum Sarcodina) Є-ныне

У саркодовых органоидами, выполняющими функции движения и захвата пищи, являются псевдоподии, или ложноножки. Большинство саркодовых имеют раковину, органическую или минеральную по своему составу. Преимущественно живут в морских водах, однако встречаются формы, обитающие в пресных водоемах, артезианских колодцах, в листовом опаде и влажном мху. Размеры саркодовых изменяются в очень широких пределах – от 10 микрон до 10-15 см. Саркодовые играют очень важную породообразующую роль – благодаря наличию минерального скелета. Тип саркодовых подразделяется на классы в зависимости от состава скелета: у фораминифер он в основном карбонатный, а у радиолярий – кремневый.

Класс Фораминиферы (Classis Foraminifera) Є-ныне

Фораминиферы – одиночные преимущественно морские животные; некоторые формы обитают в солоноватых и пресных водоемах; встречаются формы, обитающие на большой глубине в неконсолидированном жидком осадке (до 16 м от поверхности дна). С середины мелового периода распределение фораминифер в морских бассейнах биполярно: в северном полушарии раковинки спирально-завитых форм закручены по часовой стрелке, а в южном – против часовой стрелки. В приполярных бассейнах численность фораминифер примерно в 100 раз меньше, чем у экватора. В настоящее время известно около 4000 современных видов и более 30 000 видов ископаемых фораминифер. Образ жизни – бенотосный или планктонный. Для улучшения плавучести у планктонных форм в цитоплазме формируются пузырьки газа, капельки жира и пресной (т.е. менее плотной) воды. Отдельные особи фораминифер могут жить от 2 недель до 1 месяца (планктонные формы) и до 2 месяцев (бентосные формы). По способу питания фораминиферы бывают фильтраторами, хищниками и растительноядными формами.

Многие фораминиферы имеют раковину, пронизанную системой каналов, по которым во все части клетки транспортируются питательные вещества (рис. 4). У каждой раковины есть устье – одно или система

отверстий, через которые клетка сообщается с внешним миром. Из отверстий устья как правило высовываются псевдоподии, служащие для захвата пищи или передвижения (рис. 5).

псевдоподии (ложноножки)

раковина

Раковины фораминифер по способу образования подразделяются на секреционные и агглютинированные . Секреционные (от лат. secretio – выделение) сформированы минеральным веществом, выделенным самим организмом. Агглютинированные раковины (от лат. agglutino – склеенный) состоят из захваченных из окружающей толщи воды песчинок и обломков скелетов других организмов, склеенных выделяемым клеткой клейким веществом.

По составу раковины фораминифер могут быть: а) органическими – наиболее древние из всех фораминифер, встречаются с самого начала палеозоя; б) агглютинированными – состоящие из самых разнообразных частичек, порою с карбонатным цементом; в) секреционными известковыми (карбонатными ) – сложенные кальцитом (СаСО3 ).

Форма раковин фораминифер очень разнообразна. Встречаются раковины однокамерные (рис. 6) и

многокамерные (рис. 7).

Однокамерные раковины имеют очень разнообразную форму – округлую, грушевидную, звездчатую, кустистую и т.д. (см. рис. 6).

Рис. 6 Раковины однокамерных фораминифер

Рис. 7 Раковины многокамерных фораминифер

Наибольшее разнообразие форм наблюдается у многокамерных раковин, расположение камер у которых, однако, подчиняется определенным правилам. Так, существуют одно-, двух- и трехрядные, а также клубкообразные раковины (рис. 8).

Рис. 8 Клубкообразно завитые раковины фораминифер

В наиболее простом случае одно-, двух- и трехрядные раковины являются прямыми, а камеры при этом чередуются в смежных рядах (у двух- и трехрядных форм) (рис. 9).

Рис. 9 Прямые многокамерные раковины фораминифер: 1 – однорядная; 2 – двухрядная; 3 - трехрядная

Сложнее обстоит дело с многокамерными раковинами, спирально закрученными в одной плоскости. Такие раковины называются спирально-плоскостными (рис. 10). В том случае, если при взгляде сбоку будут видны все обороты, начиная от первого, находящегося в центре, и кончая последним, внешним, раковину можно назвать эволютной (от лат. volutio – оборот) (рис. 10.1). Если же каждый последующий оборот полностью перекрывается предыдущим, раковина будет называться инволютной (т.е. «оборот в обороте») (рис. 10.3, 10.4). Встречаются полуинволютные и полуэволютные раковины – при неполном охвате каждым последующим каждого предыдущего оборота раковины (рис. 10.2).

Рис. 10 Многокамерные спирально-плоскостные раковины фораминифер: 1 – спирально-плоскостная эволютная раковина; 2 –

спирально-плоскостная полуинволютная раковина; 3 – спирально-плоскостная инволютная раковина; 4 – разрез поперек оси навивания инволютной спирально-плоскостной раковины фораминиферы.

Нетрудно догадаться, что осью навивания раковины будет называться воображаемая линия, вокруг которой происходит нарастание оборотов. Диаметр раковины (D) будет перпендикулярен оси навивания, а длина раковины (L) окажется равной отрезку оси навивания, заключенному между боковыми сторонами раковины (рис. 11). Эти величины очень важны для установления формы инволютных спирально-плоскостных многокамерных однорядных раковин фораминифер. В случае, если D>>L, раковина может быть названа монетовидной (рис. 12.1). При D>L раковина имеет форму двояковыпуклой линзы, и называется линзовидной (рис. 12.2). При D=L раковина

шаровидная (рис. 12.3), а при D

Кроме того, существуют многокамерные раковины, закрученные по восходящей спирали, не лежащей в одной плоскости. У таких раковин невозможно определить длину и диаметр: они отличаются соотношением ширины (В) и высоты (Н) раковины (рис. 13). В том случае, если В больше или равна Н, мы имеем дело со спирально-конической раковиной (рис. 14), обороты которой возрастают не столь стремительно, как у спиральновинтовой (см. рис. 13), у которой высота всегда больше ширины.

Для изучения внутреннего строения раковины фораминифер делают различно ориентированные шлифы: вдоль и поперек оси навивания у спирально-плоскостных форм, продольно оси у прямых многокамерных раковин и т.п. Шлиф является необходимым атрибутом при изучении большинства фораминифер: помимо внешнего строения, видимого на поверхности раковин, необходимо изучение их внутреннего строения, скрытого наружными стенками. На шлифах видны структура стенок, характер роста раковины, характер перегородок, их частота, изменения формы и размеров устья на разных стадиях роста и количество этих стадий роста, присутствие дополнительных скелетных образований (внутренних и наружных); элементы наружной скульптуры (бугорки, кили, шипы); внутренний дополнительный скелет представлен столбиками, дополнительными септами, хоматами, осевыми уплотнениями и пр. Шлифы дают представление о последовательности закладки септ (перегородок) между камерами, характере изменения устья в онтогенезе, наличии утолщений и строении стенок камер, отражающих функциональную природу находившейся внутри живой клетки (см. рис. 10.4).

Класс Радиолярии (Classis Radiolaria) Є-ныне

Радиолярии – одиночные морские планктонные организмы, имеющие кремневый панцирь, погруженный внутрь клетки. Панцирь тончайший, пронизан многочисленными порами, имеет всегда весьма строго симметричное строение. Радиолярии – морские животные, предпочитающие соленость от 32 до 38‰. Они обитают на различных глубинах – от верхних слоев океанических вод до придонных областей ультраабиссали. В зависимости от формы кремневого панциря выделяются пять отрядов. Радиолярии имеют большое породообразующее значение: на больших глубинах, ниже порога карбонатонакопления (более 4,5 км, где кислотность морской воды повышенная и растворяются все соединения карбоната кальция), накапливаются радиоляриевые илы, дающие начало радиоляритам – горным породам кремневого состава, свидетельствующим о весьма глубоководных обстановках осадконакопления.

Отряд Spumellaria O - ныне

(от лат. spuma - пузырь, пена)

Секреционный кремневый скелет различных Spumellaria. Величина сфер редко превышает 100 микронов (100 μm, или 0,1 мм). У некоторых форм иглы отломаны. Необходимо обратить внимание на разнообразие форм: помимо округлых, встречаются трех– и пятилучевые.

Скелет спумеллярий секреционный кремневый, сетчатый, разнообразной формы - от шарообразной до цилиндрической. Наблюдается одна или несколько органических и минеральных сфер, вложенных одна в другую. Центральная органическая сфера с равномерно расположенными порами. От поверхности сфер отходят радиальные иглы, не сходящиеся в центре клетки. Скелет многоосный, реже одноосный, что зависит от степени сплющенности и длины игл. Концы игл заострены или ветвятся. Поверхность игл гладкая или с радиальной скульптурой, нередко расположенной спирально.

Спумеллярии иногда образуют ложные колонии. Планктон, стеногалинные; обитают на глубинах от 50 до 8000 м и более.

Отряд Nassellaria T - ныне

(от лат. nassa - носик)

Скелет секреционный кремневый, сетчатый, одноосный, удлиненный в виде треножника, шлема, реже - цилиндра. Широкий конец раковины, как правило, открыт; узкий конец замкнут и обычно оканчивается шипом. Часто наблюдается от 1 до 8 поперечных пережимов. Центральная органическая капсула с порами, сконцентрированными на одном конце.

Планктон, стеногалинные; обитают на глубинах от 50 до 8000 м и глубже.

План описания рода фораминифер:

Раковина по способу образования Состав раковины Тип строения

Форма раковины: - общая форма раковины

- эволютная или инволютная раковина (в случае спирально-плоскостных раковин)

- соотношение длины и диаметра и вытекающая из этого форма спиральноплоскостной инволютной многокамерной раковины μm).

Муляж, изображающий идеализированную раковину с поровыми каналами на ее поверхности и зигзагообразной линией,

Краткое описание:

Раковина спирально-винтовая, агглютинированная, как правило, мелкозернистая, состоит из кварцевых, реже-известковых частиц, с различным количеством известкового цемента. Раковина многокамерная, удлиненно-треугольной формы. Камеры располагаются по винтовой спирали в два прямых ряда, разделенных зигзагообразной линией. Устье находится в основании септальной поверхности.

Встречается во всех морях на глубинах до 7000 м, наиболее часто-в неритической провинции.

Подвижный бентос. Средний карбон-ныне.

Общая характеристика. К подклассу фораминифер (лат. foramen, род. foraminis - отверстие, дыра, fero - носить) относится большая группа саркодовых, насчитывающих до 20 000 современных и ископаемых видов, цитоплазма которых заключена в органическую, агглютинированную или известковую раковину. Псевдоподии фораминифер состоят из тонких, разветвленных, корневидных, соединяющихся между собой (анастомозирующих) нитей, выходящих из раковины либо только через устье, либо через устье и каналы, пронизывающие стенку раковины. Фораминиферы в большинстве своем морские бентосные или планктонные, свободноживущие или прикрепленные формы. Небольшая часть фораминифер приспособилась к жизни в солоноватоводных бассейнах и лишь немногие известны в пресных водоемах. В ископаемом состоянии известны начиная с кембрия.

Строение тела. Цитоплазма фораминифер обычно бесцветная, иногда окрашена в розовый, оранжевый или желтый цвета. Эктоплазма, довольно однородная по структуре, осуществляет обмен веществ с внешней средой и служит местом образования псевдоподий. Под электронным микроскопом псевдоподии представляют собой пучок волоконец разного диаметра; каждое волоконце окружено оболочкой. Способность псевдоподий вытягиваться и втягиваться основана на свойстве цитоплазмы изменять свое агрегатное состояние, переходя из жидкого состояния (золь) в вязкое (гель). Псевдоподии, не связанные с субстратом, разветвляются, соединяются перемычками и образуют своеобразную ловчую сеть, в которую попадают личинки, различные микроорганизмы и органический детрит (рис. 26). Переваривание пищи нередко происходит вне раковины.

Строение раковины. Подавляющее число фораминифер имеет раковину, и лишь у небольшой части цитоплазма окружена утолщенной эластичной органической оболочкой - мембраной. Раковина может быть относительно простой или достигать большой сложности (рис. 27). Ее размеры колеблются от 0,02 до 110-120 мм. Стенка раковины может быть органической, агглютинированной и известковой. Наиболее низкоорганизованные фораминиферы (аллогромииды) имеют стенку, состоящую из тектина, представляющего комбинацию протеинов и углеводов. У многих фораминифер в тектиновую стенку включены посторонние частицы разного минерального и химического состава: зерна кварца, различных тяжелых минералов, карбонатов, пластинки слюды, спикулы губок, органический детрит (обломки спикул губок, раковинки иных фораминифер, скелеты радиолярий, обломки раковин моллюсков) и другой "строительный материал".

При этом фораминиферы обычно так же, как и раковинные амебы, "заглатывают" во внутрь этот "строительный материал". Через некоторое время протоплазма разбухает и "строительный материал" выталкивается на поверхность, где цементируется тектином, карбонатом кальция, окислами или карбонатом железа.

Таким образом, возникают агглютинированные раковины.

Раньше предполагалось, что в редких случаях цементом у некоторых фораминифер мог быть кремнезем. Однако у современных фораминифер наличие кремневого цемента пока не установлено. Многие исследователи считают, что наблюдаемый у ряда ископаемых фораминифер кремневый скелет является вторичным и развился в процессе фоссилизации по карбонату кальция. Неясным остается также вопрос, откуда берется железистый цемент, обладают ли фораминиферы способностью выделять железо из цитоплазмы или оно привносится извне в виде обломков железистых минералов. Цитоплазма некоторых фораминифер обладает своеобразной избирательной способностью - для постройки скелета она "выбирает" материал только определенного размера, цвета и даже состава, например только зерна кварца или спикулы кремневых губок, или листочки слюды. Но чаще всего используется всякий подходящий обломочный материал, рассеянный на дне водоема. Цемент и агглютинированные частицы входят в состав раковины в разной пропорции: у одних форм частицы плотно прилегают друг к другу, у других они разделены участками цемента, иногда цемент полностью преобладает. Микроструктура стенки агглютинирующих фораминифер изучена недостаточно. У многих имеется внутренняя органическая выстилка.

Большинство фораминифер имеет секреционную известковую раковину, стенка которой состоит из тектиновой основы, пропитанной минеральными солями; важную роль здесь играет углекислый кальций (кальцит или арагонит) с различным количеством примеси углекислого магния (до 18%) и фосфата кальция и магния. Стенка известковых раковин по своему строению довольно разнообразна. Существует три основных типа микроструктур стенки: микрогранулярный, фарфоровидный и гиалиновый (стекловидный). В последнее время выделен еще криптокристаллический. Употребляемые названия "фарфоровидный" и "стекловидный" не очень подходящие, так как они отражают не специфику самой микроструктуры, а общий облик стенки, но эти названия общеприняты и пока существуют в литературе.

Микрогранулярный тип стенки наблюдается у палеозойских эндотирид, фузулинид и у некоторых мезокайнозойских отрядов; он характеризуется наличием зерен микрозернистого кальцита размером от 1 до 5 мк, отсутствием цемента и непостоянной примесью агглютинированных частиц. Раковина с таким типом микроструктуры стенки не имеет скульптуры, дополнительных скелетных образований; внутренний скелет представлен в виде выростов стенки. Поверхность раковины тусклая, светлого или серовато-желтого цвета.

Фарфоровидный тип стенки отличается беспорядочным расположением кристаллов и их кристаллографических осей; кристаллы имеют различную форму, их размеры от 0,5 до 5 мк. В отраженном свете стенка белая, фарфоровидная, иногда блестящая. Стенка раковины содержит органическую основу. Этот тип стенки характерен для отряда милиолид.

Стекловидный, или гиалиновый, тип разделяется на два подтипа: стекловато-зернистый и стекловато-радиальный. У первого подтипа кристаллы кальцита или арагонита однообразной округлой или угловатой формы, плотно прилегают друг к другу; размеры кристаллов 0,5-10 мк; оптические оси ориентированы беспорядочно или с преобладанием определенной ориентировки с осью С под углом к поверхности стенки. У стекловато-радиального подтипа кристаллы кальцита или арагонита сильно удлиненные, расположены в основном перпендикулярно к поверхности стенки; так же расположена оптическая ось С.

Криптокристаллический тип микроструктуры стенки характерен для палеозойских фораминифер; стенка состоит из кристаллов кальцита с нечеткими границами.

Нередко в процессе фоссилизации секреционных известковых раковин возникают вторичные микроструктуры, связанные с процессами перекристаллизации. В одних случаях происходит укрупнение кристаллов, в других - распадение удлиненных кристаллов на мелкие субизометрические зерна.

Макроструктуру стенки раковины образуют морфологически обособленные слои, внутрикамерные выстилки, вторичные слои на внешней поверхности раковины и на поверхности септ.

Первичная стенка раковины может быть однослойной либо состоящей из двух или нескольких слоев. Первично-однослойные стенки развиты преимущественно у представителей с фарфоровидной микроструктурой, а также у многих агглютинированных и тектиновых раковин. У фораминифер со стекловидной и с микрогранулярной структурой развиты как однослойные, так и многослойные стенки; у многослойной стенки отдельные слои разделены тонкими прослоями органического вещества; слои, слагающие стенки, обычно отличаются друг от друга особенностями строения. Для некоторых групп (фузулиниды) эти слои имеют специальные названия: первичная стенка называется протекой; она состоит из наружного тонкого слоя - тектума и основного внутреннего слоя, носящего, различные названия. У швагерин он имеет ячеистое строение и назван кериотекой (см. рис. 39). У стекловатых многослойных раковин трехслойную первичную стенку предложено называть биламеллярной, поскольку первично в ней различали внутренний и наружный (или основной) слои.

Стенка раковины изнутри бывает выстлана тонкой органической пленкой. На внешней поверхности раковины и на внутренних оборотах развиты вторичные слои стенок раковины; они образуются после формирования новой камеры в виде последующих наслоений на наружной или внутренней стороне ранее образовавшейся стенки (их называют иногда слоями нарастания, или утолщения, или вторично-многослойными).

В простейшем случае при образовании новой камеры вся открытая часть раковины перекрывается новым раковинным веществом и ее старая часть значительно утолщается (рис. 28), в то время как вновь образованная септа и все предшествующие септы остаются однослойными (рис. 28, 1); такой тип строения наблюдается у нодозариид, булиминид и простейших семейств роталиид. Во втором случае при образовании новой камеры раковинное вещество перекрывает всю открытую часть раковины и налегает на предшествующую септу таким образом, что она становится двойной, а вновь образованная апертурная септа остается однослойной (рис. 28, 3). У подобных двойных септ в полостях, остающихся между двумя слоями, развивается система септальных каналов. Такой тип двойных септ с системой внутрисептальных каналов характерен для отряда роталиид и получил название роталоидных септ. В третьем случае вновь образованная камера с конечной апертурной септой является первично-двойной и по способу образования напоминает первый случай (рис. 28, 2). Подобные двойные септы, также снабженные системой каналов, характерны для раковин некоторых групп отрядов булиминид и нуммулитид (орбитоиды).

Пористость стенки. У многих фораминифер наблюдается пористая стенка. Поры могут быть простыми и сложными. Простые поры представлены цилиндрическими канальцами диаметром 0,2-0,5 мк; сложные поры характеризуются объединением мелких поровых канальцев в более крупные (кериотекальная пористость у фузулинид).

У некоторых мезокайнозойских фораминифер наблюдается альвеолярное строение стенки, образованной различными выростами, составляющими дополнительные внутрикамерные скелетные образования. Все поровые каналы обычно покрыты органической выстилкой. Форма и частота пор на раковине в последние годы интенсивно изучаются с применением электронного сканирующего микроскопа.

Форма раковины. Раковина фораминифер может быть одно-, двух- и многокамерной (рис. 29). При непрерывном росте образуется раковина, не разделенная на камеры; такая раковина называется однокамерной. В простейшем случае однокамерная раковина имеет форму шара или колбы, с одним устьем (Saccammina, Lagena) или с несколькими отверстиями (Astrorhiza). Она может быть агглютинированной или известковой. При усиленном нарастании вдоль устьевого края возникает раковина в форме трубки, открытой с одной стороны или с обеих.


Рис. 29. Схема строения раковин фораминифер: 1 - однокамерная; 2 - двухкамерная; 3-5 - многокамерные: 3 - однорядная, 4 - спирально-плоскостная: 4а - сбоку, 4б - со стороны устья, 5 - спирально-коническая: 5а - с дорзальной стороны, 5б - со стороны устья, 5в - с вентральной стороны; АА - ось навивания, Д 1 - большой диаметр, Д 2 - малый диаметр, к - кнль, рр - плоскость симметрии, с - септальные швы, сп - септальная поверхность, сш - спиральный шов, Т - толщина раковины, у - устье

Двухкамерные раковины состоят из шаровидной начальной камеры и второй, длинной, неразделенной, трубчатой, отделенной от первой одной перегородкой. Вторая камера может быть прямой или разветвленной, или завитой в неправильную клубковидную, плоскую или коническую спираль.

Раковина, у которой внутренняя полость разделена перегородками, или септами, на камеры, называется многокамерной (рис. 29, 3-5). Возникновение многокамерности связано с изменением характера роста цитоплазмы и раковины. Рост из постоянного становится периодическим, причем периоды усиленного роста отделяются Друг от друга периодами покоя. Каждому периоду роста отвечает образование новой камеры, которая, как правило, бывает больше предыдущей; форма и расположение новой камеры и апертурной септы, отделяющей вновь образованную камеру от внешней среды, зависят от физико-химических свойств цитоплазмы, от величины краевых углов, образуемых расходящимися псевдоподиями со стенками предшествующей камеры, и от характера поверхности последней. Возникновение периодичности роста имело большое значение в развитии фораминифер, так как освобождало, их от необходимости непрерывно строить раковину. Следы такой периодичности можно уже наблюдать на некоторых одно- и двухкамерных трубчатых раковинах, несущих легкие пережимы.

Наиболее простой формой многокамерной раковины можно считать одноосную или однорядную, когда каждая последующая камера, имея форму шара как наиболее выгодную, обладающую наибольшим объемом при наименьшей поверхности, наращивается над предыдущей. Но у таких однорядных форм довольно велика опасность излома, особенно в местах пережимов, поэтому совершенствование формы приводит к тому, что новая камера охватывает своей основной частью часть предыдущей камеры, как бы надвигаясь на нее.

Другим способом укрепления раковины служит ее закручивание в спираль. Наиболее примитивным типом будет неправильно-клубковидный, при котором обороты навиваются беспорядочно в нескольких направлениях. При упорядочивании такого навивания возникают плектогирные раковины или раковины милиолинового типа. В первом случае ось навивания последующего оборота отклоняется, на некоторый угол от положения оси предыдущего оборота. Во втором случае камеры образуют спирально-свернутый клубок, располагаясь в нескольких взаимно пересекающихся плоскостях. Это объясняется тем, что направление оси навивания изменяется с ростом раковины на определенный угол. Длина каждой камеры составляет обычно половину оборота. У одних форм камеры отстоят друг от друга на 144° и располагаются в пяти плоскостях (Quinqueloculina), пересекающихся под углом 72° (см. рис. 42), у других камеры расположены в трех плоскостях (Triloculina), взаимно пересекающихся под углом 120°, и, наконец, у третьих, каждая камера расположена от предшествующей на 180° (Pyrgo, или Biloculina).

Спирально-плоскостной тип рассматривается как видоизмененный одноосный, у которого главная ось спирально завивается в одной плоскости. Линии соприкосновения смежных оборотов спирали раковины называются спиральными швами. Воображаемая прямая линия, вокруг которой происходит навивание оборотов раковины, носит название оси навивания. По оси навивания у спирально-плоскостных измеряется толщина раковины. Перпендикулярно к оси навивания через начальную камеру проводится диаметр, раковины. Сечение раковины перпендикулярное диаметру является экваториальным. С экваториальным сечением совпадает плоскость симметрии. Форма спирально-плоскостных раковин разнообразна и зависит от диаметра и толщины (см. рис. 41, 3). При диаметре, значительно превышающем толщину, раковина имеет дисковидную или чечевицеобразную форму. При диаметре, почти равном толщине, раковина приобретает шаровидную форму. При толщине, значительно превышающей диаметр, возникает веретеновидная форма. Если при рассмотрении спиральной раковины сбоку видны все обороты, она называется эволютной (см. рис. 35, 1), Если последний оборот охватывает все предыдущие обороты, то раковина называется инволютной (см. рис. 48, 5). Между этими двумя крайними типами строения имеется большое число форм, занимающих промежуточное положение (полуэволютные и полуинволютные).

Степень возрастания оборотов бывает различна. У большинства спирально-плоскостных раковин возрастание оборотов происходит постепенно, но у некоторых форм обороты возрастают очень быстро и раковина приобретает вид "рога изобилия" или даже становится веерообразной. Иногда быстрое возрастание оборотов может приводить к смыканию противоположных концов веера и к возникновению циклического типа раковины. У циклических раковин камеры расположены по концентрическим окружностям в одной плоскости (см. рис. 49).

При спирально-коническом типе (роталиевый) камеры располагаются по улитковидной, или трохоидной, спирали (рис. 29, 5). Сторону, отвечающую основанию конуса, где виден обычно только последний оборот, принято называть вентральной, или брюшной. Сторона, отвечающая вершине конуса, где видны все обороты, называется дорсальной, или спинной. Спиральный шов отделяет друг от друга спиральные обороты.

Спирально-винтовой тип раковин отличается тем, что высота нарастания камер происходит по высокой спирали, которая значительно превосходит диаметр основания (см. рис. 37). Обычно у таких раковин спиральное расположение камер выглядит как двух-, трех- или многорядное расположение камер и поэтому для них чаще употребляются названия двухрядные, трехрядные или многорядные раковины. У прикрепленных фораминифер раковина приобретает древовидную или неправильно разветвленную форму (см. рис. 34, 4).

Форма камер отличается большим разнообразием. Различают камеры: шаровидные, овальные, трубчатые, циклические, радиально удлиненные, угловатые (конические, ромбовидные, усеченно-конические), валикообразные.

Однако рассмотренными выше основными типами строения раковин не исчерпывается все многообразие их форм.

Гетероморфизм. Нередко в процессе индивидуального развития (онтогенеза) происходит изменение типа строения раковины, что приводит ее к гетероморфному строению. Например, начальная раковина может быть спирально-плоскостной, следующий отдел может состоять из двух редко расположенных камер и конечный отдел может быть однорядным. Такая раковина называется триморфной. Если раковина сочетает всего два типа строения, то она биморфна (см. рис. 37, 2б, в), и, наконец, если она однотипна по своему строению, то ее называют мономорфной. Наиболее резко гетероморфное строение раковины бывает выражено у микросферических особей (шизонтов).

Апертура, или устье. Отверстие, при помощи которого цитоплазма сообщается с внешней средой, расположенное в конце однокамерной или в последней септе многокамерной раковины, носит название устья, или апертуры. Последняя септа образует септальную, или устьевую, поверхность. При образовании новой камеры устье предыдущей камеры становится отверстием, соединяющим соседние камеры. Это отверстие называется фораменом (отверстие, дыра); отсюда весь подкласс получил название фораминиферы. Устье (рис. 30) расположено в центре, эксцентрично или в основании апертурной перегородки; оно может быть простым, т. е. состоять из одного отверстия разнообразной формы: округлой, овальной, щелевидной, крестообразной, ветвистой, радиально-лучистой. Сложное устье состоит из нескольких отверстий. Наиболее распространенным типом сложного устья является ситовидное устье, состоящее из многочисленных мелких отверстий. У многих фораминифер строение устья осложняется дополнительными образованиями, к числу которых относятся особые выросты, называемые зубными пластинками, или зубами. Они имеют важное таксономическое значение и служат, по-видимому, для укрепления края раковины и прикрепления пучка выходящих псевдоподий.

Кроме основного устья для выхода эктоплазмы наружу служат различные отверстия, имеющиеся в раковине. К их числу относятся тонкие каналы, пронизывающие стенку некоторых агглютинированных и известковистых микрозернистых и радиально-лучистых раковин; дополнительные устья расположены в разных местах: вдоль периферического края, вдоль шва и т. д.

Система каналов. У наиболее высоко организованных фораминифер (роталииды, нуммулитиды) имеется система каналов внутри раковины (рис. 31). Основными элементами этой системы являются спиральный и межсептальный каналы. Спиральный канал связан с брюшной лопастью каждой из камер; от него отходят межсептальные каналы, расположенные в полостях двойных септ и открывающиеся тонкими порами в швах. У некоторых роталиид система каналов очень сложна: наблюдается не один, а два спиральных канала, от которых отходят пупочные и межсептальные каналы.


Рис. 31. Система каналов у роталиид: 1а - вид с вентральной стороны; 1б - внутренний слепок по продольному сечению; вк - внутрисептальный канал, к - камеры, ск - спиральный канал, у - устье, у" - устье спирального канала

Дополнительный скелет. К дополнительному скелету относятся те образования, которые усложняют строение раковины и септ. Они могут быть внутренними и наружными. К внутренним образованиям относятся известковые отложения, расположенные у эндотирид и фузулинид по краям экваториального устья (хоматы) или по бокам дополнительных устьев (парахоматы), или прерывисто только около септ (псевдохоматы). К ним относятся также столбики конической формы нуммулитид, пронизывающие раковину. На поверхности оборотов они имеют вид бугорков - гранул и служат для укрепления раковины.

К числу наружных дополнительных скелетных образований относятся различные скульптурные элементы в виде ребрышек, ячеек, килей, бугорков, игл, шипов и различных выростов на раковине.

У некоторых фораминифер, имеющих спиральную раковину, пупочная область бывает закрыта своеобразной втулкой или диском, состоящим из стекловатого кальцита; нередко этот диск бывает пронизан канальцами, связанными с внутренней системой каналов. У многих раковин планктонных фораминифер имеются тонкие длинные иглы, значительно увеличивающие их общую поверхность и облегчающие парение в толще воды.

Размножение и развитие. У фораминифер наблюдается сложный жизненный цикл развития (рис. 32), сопровождаемый чередованием бесполого и полового поколений. При половом размножении на каком-то этапе развития у особи, достигшей взрослого состояния, ядро делится на огромное число (тысячи) частиц, вокруг которых обособляется небольшая частица цитоплазмы. Таким путем возникают одноядерные клетки, снабженные двумя жгутами. Это половые клетки, или гаметы. По своему строению они совершенно одинаковы и благодаря жгутикам обладают подвижностью. После слияния двух гамет (оплодотворение), обычно происходящих от разных особей, возникает оплодотворенная клетка - зигота, имеющая диплоидный набор хромосом. Вокруг зиготы выделяется первая (эмбриональная) известковая камера. От нее, у многокамерных фораминифер, образуется вторая, третья и т. д. камеры. Зигота дает начало микросферическому поколению, или шизонту. Шизонт (форма В) сравнительно долгое время остается одноядерным, но с диплоидным набором хромосом. Затем на каком-то этапе роста происходит редукционное деление и ядро становится гаплоидным (с одинарным набором хромосом). При достижении шизонтом взрослого состояния ядро делится последовательно несколько раз и шизонт временно становится многоядерным; образуются десятки, а иногда свыше сотни маленьких ядер, вокруг которых обособляется цитоплазма. В этом случае возникают так называемые "эмбрионы", или амебовидные зародыши. Вокруг каждого "эмбриона" образуется довольно крупная эмбриональная камера. "Эмбрионы" покидают материнскую раковину и переходят к самостоятельному существованию. Этот процесс представляет собой бесполое размножение. Возникшие особи постепенно растут, строят новые камеры и дают макросферическое поколение, получившее название гамонтов (форма А).


Рис. 32. Схема чередования поколений у фораминифер: а - микросферическая форма (шизонт В) с дочерними "эмбрионами"; б, б" - мегасферические формы (гамонты А 1 , А 2); г - гамета с гаплоидным (п) набором хромосом, з - зигота с диплоидным (2п) набором хромосом, рр - редукционное деление, э - дочерние "эмбрионы"

Изучение онтогенеза фораминифер показало, что обычно наблюдается закономерное чередование гамонтов и шизонтов. Но иногда это закономерное чередование нарушается, за одним шизонтом (форма В) следует два поколения гамонтов (формы А 1 , А 2). В одних случаях гамонты почти не отличимы или несколько отличаются по размерам, - в других - гамонты крупнее шизонтов и обладают большим числом камер, в третьих - гамонты и шизонты отличаются по размерам начальных камер. У макросферических особей начальная камера обычно крупных размеров, раковина сравнительно небольшая и число камер меньше, чем у микросферических особей. Последние отличаются маленькими размерами начальных камер, сравнительно большой раковиной и общим большим числом камер. Явление, связанное с образованием у фораминифер двух типов строения раковины, получило название диморфизма. Изучение диморфизма (или триморфизма) важно не только с точки зрения систематики, но и для изучения происхождения и родственных связей между фораминиферами. При этом более важное значение имеют особи, возникшие в результате полового процесса и более полно отражающие онтогенетическое развитие.

Основы систематики и классификации. Важное значение для систематики фораминифер имеют строение и состав стенки раковины, строение цитоплазмы и ядра, особенности чередования поколений и другие признаки. На этом основании Д. М. Раузер-Черноусова и А. В. Фурсенко (1959) выделили 13 отрядов. Американские исследователи А. Леблик и Е. Таппан (1964) предложили разделять отряд фораминифер на пять подотрядов. В соответствии с принятым в учебнике рангом фораминифер в качестве подкласса эти подотряды подняты до уровня надотрядов. Подкласс фораминифер на основании строения стенки раковины разделен на пять надотрядов: Allogromioidea, Textularioidea, Fusulinoidea, Miliolidoidea, Rotalioidea.

В морях и океанах у поверхности воды и на дне обитают раковинные одноклеточные организмы, которые относятся к типу простейшиих и называются фораминиферами. Это очень древние организмы. История их существования насчитывает не менее 600 млн. лет. Самые ранние находки фораминифер известны из кембрийских отложений.

Название "простейшие" применительно к фораминиферам не означает "примитивные". Фораминиферы - эукариотные организмы, а это значит, что их четко оформленное ядро отделено оболочкой от цитоплазмы и ядерная ДНК заключена в хромосомах. Прежде всего, по этой причине они относятся к царству животных. Кроме того, фораминиферы отличаются большим разнообразием, сложностью и специализацией скелетных образований (раковин), и в этом смысле они в некоторых случаях далеко позади себя оставляют скелетные образования таких высоко организованных групп животных, как моллюски и другие высшие беспозвоночные.

Фораминиферы одноклеточные, поэтому ни тканей, ни тем более органов у них не существует. Тело фораминифер состоит из цитоплазмы. Различные физиологические функции - захват пищи, ее переваривание, выделение, дыхание, размножение, передвижение и др. - выполняют отдельные внутриклеточные цитоплазматические структуры (органоиды), а координация этих функций осуществляется самой же цитоплазмой. У фораминифер, как и у других простейших, наблюдается дифференцирование цитоплазмы на внутреннюю, эндоплазму, и наружную, эктоплазму. Эндоплазма является наиболее объемной частью цитоплазмы. Эктоплазма выстилает раковину изнутри тонким слоем, а также может облекать ее снаружи сплошным чехлом и образует тонкие выросты, называемые ретикулоподиями, или ложнононожками. Они обеспечивают значительную часть жизненных процессов фораминифер: передвижение, прикрепление, питание, частичное переваривание пищи (бактерии, диатомовые водоросли, мелкие копеподы, растительный детрит), вывод метаболитов, газообмен, рост раковин. Длина ретикулоподий превышает размеры самой раковины в 5 и более раз. Они могут ветвиться, переплетаться между собой, образовывая т. н. ретикулоподиальную ловчую сеть .

Разветвленные ретикулоподии (ловчая сеть) Аллогромия яйцевидной (Allogromia ovoides). Она имеет одноосную однокамерную раковину (1 - ретикулоподии, 2 - захваченная пища (диатомовая водоросль в одном из сплетений ретикулоподий), 3 - кремневые оболочки переваренных водорослей внутри раковины.

Мягкое тело фораминифер надежно защищено раковиной. Раковины образованы либо продуктами выделения цитоплазмы в виде органического вещества и минеральных солей, либо построены в основном из постороннего материала, заимствованного из окружающей среды, а выделяемые цитоплазмой вещества служат лишь цементом. Таким образом, различают раковины секреционные (известковые и кремневые) и агглютинированные (лат. agglutinare - склеивать) Общим для всех фораминифер является наличие псевдохитиновой основы их раковин. Псевдохитин - особое органическое вещество, выделяемое эктоплазмой. Известковая раковина фораминифер имеет псевдохитиновую основу, пропитанную углекислым кальцием, иногда с примесью фосфата кальция или углекислого магния. Секреционные раковины из кремнезема у фораминифер встречаются исключительно редко. Агглютинированная раковина может быть построена из частиц различного минерального состава, фрагментов скелетов других организмов, а порой и мелких раковинок самих же фораминифер.

На рисунке изображены типы строения и состав стенки раковин фораминифер. 1 - одноосная многокамерная известковая (секреционная) раковина Нодозария эксцентричная (Nodosaria perversa ), 2 - спиральная известковая раковина Букцелла необыкновенная (Buccella inusitata ), 3 - неправильного строения известковая раковина Хомотрема красная (Homotrema rubrum ), 4 - гетероморфная агглютинированная раковина Аммотиум сетчатый (Ammotium cassis ).

Среди большого разнообразия форм у раковин фораминифер выделяют 3 главных типа строения: 1 - неправильного строения, 2 - одноосные и 3 - спиральные. Иногда в одной и той же раковине сочетаются два или более типа. Такие раковины называют гетероморфными. Раковины неправильного строения известны у некоторых низко организованных фораминифер. Они бывают одно- или двухкамерные; разнообразные по форме: округлые, плоские, шаровидные, бутылочковидные, трубчатые простые и древовидно ветвящиеся. К одноосным относятся раковины, у которых камеры нарастают циклически вокруг воображаемой оси. Они могут быть однокамерными или многокамерными. Раковины называют спиральными, когда нарастание камер происходит по спирали в одной или нескольких плоскостях.

Размеры раковин фораминифер колеблются главным образом в пределах от десятых долей миллиметра до 2, реже - 3 мм. Но и среди этих одноклеточных животных существуют гиганты. В тропических морях, на коралловых рифах обитают фораминиферы с плоскими округлыми известковыми раковинами, достигающими размеров от 2 до 6 см в диаметре.

Размножаются фораминиферы циклично. В каждом цикле происходит чередование полового и бесполого поколений. Жизненный цикл фораминифер распадается на 2 этапа. Первый - агамогония (бесполое размножение) - включает в себя рост диплоидного агамонта из зиготы и завершается образованием агамет (эмбрионов). Перед образованием эмбрионов у фораминифер происходит мейоз, сопровождающийся сокращением числа хромосом вдвое, в результате эмбрионы становятся гаплоидными. Второй этап, гамогония (половое размножение), охватывает период роста гамонта, образующегося из гаплоидного эмбриона, и распадение гамонта на многочисленные гаметы - половые элементы, дающие в результате попарного слияния вновь зиготу. И жизненный цикл начинается сначала.

Жизненный цикл Криброэльфидиума кудрявого (Сribroelphidium crispum ) имеющего спиральную известковую раковину. 1) зигота, 2) диплоидный агамонт, развившийся из зиготы, 3) выход агамет (эмбрионов) из раковины агамонта, 4) молодой гаплоидный гамонт, 5) зрелый гамонт на стадии формирования гамет, 6) выход гамет из раковины гамонта, 7) гаметы в момент их слияния.

Фораминиферы насчитывают в своем составе более 10000 видов. Они населяют все районы Мирового океана, встречаясь от тропиков до полярных областей. Одни фораминиферы, планктонные, обитают в верхних слоях пелагиали от (0-100 м) и до глубин 1000 м, следуя в основном направлению течений и таким образом расселяясь. Среди них выделены холодноводные (арктические и антарктические), умеренного пояса и тепловодные виды (субтропические и тропические). Основным экологическим фактором, определяющим распространение планктонных фораминифер, является температура. Другие фораминиферы, донные, живут на морском дне от самых верхних горизонтов литорали до сверхабиссальных глубин. У донных фораминифер хорошо выражена зональность в их распределении по различным глубинам. Они расселяются на значительные расстояния в основном пассивным способом, вместе с осадком, взмученным придонными течениями. Активно донные фораминиферы расселяются на небольшие расстояния, переползая по субстрату (мягкий и жесткий грунт, водоросли, раковины моллюсков, ветви кораллов и т. д.) с помощью ложноножек.

Все фораминиферы, как правило, стеногалинные организмы. Только некоторые представители донных видов способны выдерживать повышение или понижение солености. В отличие от планктонных, донные фораминиферы толерантны к низкому уровню кислорода в воде. Они не живут лишь в настоящих бескислородных условиях.

Практическую и научную значимость фораминифер трудно переоценить. Ископаемые фораминиферы сыграли и играют большую роль в развитии многих отраслей геологии, в частности в поисках и разведке нефтяных месторождений. Благодаря малым размерам, они содержатся в достаточном количестве в тех небольших образцах горных пород, которые извлекаются из недр земли при буровых работах. Поэтому определить возраст нефтеносных пород и уточнить положение их границ удается исключительно благодаря фораминиферам. Не меньший интерес вызывает эта группа организмов как объект исследований для решения теоретических вопросов в биологии. Среди одноклеточных организмов фораминиферы используют как модель эукариотной клетки для исследований в области молекулярной биологии, генетики, биохимии.

к.б.н. Преображенская Т.В. (ИБМ ДВО РАН)

Загрузка...