domvpavlino.ru

Mhc иммунология. Главный комплекс гистосовместимости человека (HLA). Взаимодействие T- и B-лимфоцитов

Главный комплекс гистосовместимости………………………………………...3

Строение главного комплекса гистосовместимости……………………………6

Молекулы главного комплекса гистосовместимости…………………………..8

Функции Главного комплекса гистосовместимости…………………………..14

Антигены MHC: история исследований………………………………………16

Список использованной литературы…………………………………………...18

Главный комплекс гистосовместимости.

Главный комплекс гистосовместимости – это группа генов и кодируемых ими антигенов клеточной поверхности, которые играют важнейшую роль в распознавании чужеродного и развитии иммунного ответа.

Антигены, обеспечивающие внутривидовые различия особей, обозначаются как аллоантигены, а когда они включаются в процесс отторжения аллогенных тканевых трансплантатов, то приобретают название антигенов тканевой совместимости (гистосовместимости). Эволюция закрепила единичный участок тесно сцепленных генов гистосовместимости, продукты которых на поверхности клеток обеспечивают сильный барьер при аллотрансплантации. Термины «major histocompatibility antigens» (главные антигены гистосовместимости) и «major histocompatibility gene complex» (MHC) (главный генный комплекс гистосовместимости) относятся соответственно к продуктам генов и генам этого хромосомного участка. Многочисленные минорные антигены гистосовместимости, наоборот, кодируются множественными участками генома. Им соответствуют более слабые аллоантигенные различия молекул, выполняющих разнообразные функции.

Открытие MHCпроизошло при исследовании вопросов внутривидовой пересадки тканей.

Затем, первоначально в гипотетической, на основании клеточной феноменологии, а затем в экспериментально хорошо документированной форме с использованием методов молекулярной биологии было установлено, что Т-клеточный рецепторраспознает не собственно чужеродныйантиген, а его комплекс с молекулами, контролируемыми генамиглавного комплекса гистосовместимости. При этом и молекула MHC и фрагмент антигена контактируют с Т - клеточным рецептором.

MHC кодирует два набора высокополиморфных клеточных белков, названных молекулами MHC класса I и класса II. Молекулы класса Iспособны связывать пептиды из 8-9 аминокислотных остатков,молекулы класса II- несколько более длинные.

Высокий полиморфизм молекул MHC, а также способность каждой антигенпрезентирующей клетки (АПК)экспрессировать несколько разных молекул MHC обеспечивают возможность презентации T-клеткам множества самых различных антигенных пептидов.

Следует отметить, что хотя молекулы MHCи называются обычно антигенами, они проявляют антигенность только в том случае, когда распознаются иммунной системой не собственного, а генетически иного организма, например, при аллотрансплантации органов.

Наличие в МНС генов, большинство из которых кодирует иммунологически значимые полипептиды, заставляет думать, что этот комплекс эволюционно возник и развивался специально для осуществления иммунных форм защиты.

Существуют еще и молекулы MHC класса III, номолекулы MHC класса Iимолекулы MHC класса IIявляются наиболее важными в иммунологическом смысле.

Главный комплекс гистосовместимости характеризуется крайне выраженным полиморфизмом. Ни одна другая генетическая система организма не имеет такого количества аллельных форм как гены МНС.

Долгое время биологический смысл столь выраженного полиморфизма оставался непонятным, хотя какое-то селективное значение такой аллельной изменчивости было очевидным. Впоследствии было доказано, что подобный полиморфизм прямо связан с процессом презентации антигенных детерминант Т-клеткам.

С полиморфизмом антигенов МНС связано такое явление, как генетический контроль иммунного ответа. В тех случаях, когда аминокислотные остатки, образующие антигенсвязывающую щель у молекул II класса, не в состоянии связать пептидный фрагмент чужеродного антигена, T-хелперы остаются ареактивными, и их помощь В-клеткам не реализуется. Это обстоятельство и является причиной генетически детерминированного дефекта в иммунном реагировании.

Основные события, которые привели к формированию разнообразия генов МНС в процессе эволюции связаны с тандемными дупликациями, точечными мутациями, рекомбинациями и конверсией генетического материала. Тандемные дупликации (процесс повторения исходного гена на той же самой хромосоме) хорошо известны для многих генетических систем, контролирующих синтез белков, например, иммуноглобулинов. Именно в результате этого процесса возникло несколько полигенных форм молекул MHC. Спонтанные замены отдельных нуклеотидов в процессе редупликации ДНК (точечные мутации) также хорошо известны, они приводят к формированию аллельных генов, которые также определяют полиморфизм белков. Рекомбинации между отдельными участками гомологичных хромосом в процессе мейоза могут привести к обмену как целых участков этих хромосом, так и отдельных генов и даже частей генов. В последнем случае процесс называется генной конверсией. Мутации, рекомбинации и конверсия генов создают многообразие их аллельных форм и определяют полиморфизм антигенов МНС.

Такая высокая степень полиморфизма имеет потенциальную ценность для выживания вида, и именно благодаря ей весь вид не становится жертвой мимикрии микробов, при которой они экспрессируют структуры, близкие по конформации к продуктам MHC . T-клетки, способные распознать неповторимую индивидуальную комбинацию специфичностей собственного организма, оказываются в состоянии реагировать на продукты такой мимикрии, как на чужеродные. Кроме того, возможно, что столь высокий сбалансированный полиморфизм продуктов MHC обеспечивает более широкое разнообразие антигенов, распознаваемых иммунной системой данного вида, а также гетерозиса (гибридной силы), поскольку у гетерозигот возникает максимальная комбинаторика аллелей. Братья и сестры имеют один шанс из четырех быть идентичными по антигенам MHC.

Главный комплекс гистосовместимости - это группа генов и кодируемых ими антигенов клеточной поверхности, которые играют важнейшую роль в распознавании чужеродного и развитии иммунного ответа. Главный комплекс гистосовместимости человека получил названиеHLA . HLA был открыт в 1952 г. при изучении антигенов лейкоцитов. Антигены HLA представляют собой гликопротеиды, находящиеся на поверхности клеток и кодируемые группой тесно сцепленных генов 6-й хромосомы. Антигены HLA играют важнейшую роль в регуляции иммунного ответа на чужеродные антигены и сами являются сильными антигенами.

Антигены HLA подразделяются на антигены класса I и антигены класса II . Антигены HLA класса I необходимы для распознавания трансформированных клеток цитотоксическими Т-лимфоцитами.

Важнейшая функция антигенов HLA класса II - обеспечение взаимодействия между Т-лимфоцитами и макрофагами в процессе иммунного ответа. Т-хелперы распознают чужеродный антиген лишь после его переработки макрофагами, соединения с антигенами HLA класса II и появления этого комплекса на поверхности макрофага.

Способность Т-лимфоцитов распознавать чужеродные антигены только в комплексе с антигенами HLA называют ограничением по HLA . Определение антигенов HLA классов I и II имеет большое значение в клинической иммунологии и используется, например, при подборе пар донор-реципиент перед трансплантацией органов.

Открытие MHC произошло при исследовании вопросов внутривидовой пересадки тканей. Генетические локусы, ответственные за отторжение чужеродных тканей, образуют в хромосоме область, названную главным комплексом гистосовместимости (MHC) (англ. major histocompatibility complex).

Затем, первоначально в гипотетической, на основании клеточной феноменологии, а затем в экспериментально хорошо документированной форме с использованием методов молекулярной биологии было установлено, что Т-клеточный рецептор распознает не собственно чужеродныйантиген, а его комплекс с молекулами, контролируемыми генами главного комплекса гистосовместимости. При этом и молекула MHC и фрагмент антигена контактируют с ТКР.

MHC кодирует два набора высокополиморфных клеточных белков, названных молекулами MHC класса I и класса II. Молекулы класса I способны связывать пептиды из 8-9 аминокислотных остатков, молекулы класса II - несколько более длинные.

Высокий полиморфизм молекул MHC, а также способность каждой антигенпрезентирующей клетки (АПК) экспрессировать несколько разных молекул MHC обеспечивают возможность презентации T-клеткам множества самых различных антигенных пептидов.

Следует отметить, что хотя молекулы MHC и называются обычно антигенами, они проявляют антигенность только в том случае, когда распознаются иммунной системой не собственного, а генетически иного организма, например, при аллотрансплантации органов.


Наличие в МНС генов, большинство из которых кодирует иммунологически значимые полипептиды, заставляет думать, что этот комплекс эволюционно возник и развивался специально для осуществления иммунных форм защиты.

Существуют еще и молекулы MHC класса III , но молекулы MHC класса I и молекулы MHC класса II являются наиболее важными в иммунологическом смысле.

B-клеточный рецептор, или B-клеточный рецептор антигена (англ. B-cell antigen receptor, BCR ) - мембранный рецептор В-клеток, специфично узнающий антиген . Фактически В-клеточный рецептор представляет собой мембранную форму антител(иммуноглобулинов), синтезируемых данным В-лимфоцитом, и имеет ту же субстратную специфичность, что и секретируемые антитела. Этот рецептор, как и антитела, может существовать в нескольких формах в зависимости от того, к какому классу принадлежат его тяжёлые цепи. С В-клеточного рецептора начинается цепь передачи сигнала внутрь клетки, которая в зависимости от условий может приводить к активации, пролиферации, дифференцировке или апоптозу В-лимфоцитов . Сигналы, поступающие (или не поступающие) от B-клеточного рецептора и его незрелой формы (пре-В-клеточного рецептора), оказываются критическими в созревании В-лимфоцитов и в формировании репертуара антител организма.

Помимо мембранной формы антитела, в состав B-клеточного рецепторного комплекса входит вспомогательный белковыйгетеродимер Igα/Igβ (CD79a/CD79b), который строго необходим для функционирования рецептора . Передача сигнала от рецептора проходит при участии таких молекул, как Lyn, SYK, Btk, PI3K, PLCγ2 и других.

Известно, что В-клеточный рецептор играет особую роль в развитии и поддержании злокачественных В-клеточных заболеваний крови. В связи с этим большое распространение получила идея применения ингибиторов передачи сигнала от этого рецептора для лечения данных заболеваний. Несколько таких препаратов показали себя эффективными и сейчас проходят клинические испытания .

ГОУ ВПО Тверская ГМА Минздрава России Кафедра клинической иммунологии с аллергологией

ГЛАВНЫЙ КОМПЛЕКС ГИСТОСОВМЕСТИМОСТИ

Учебно-методическое пособие по общей иммунологии. Тверь 2008.

Продукты

Учебно-методическая разработка для практических занятий по общей иммунологии для студентов 5 курса лечебного и педиатрического факультетов, а также для клинических ординаторов и врачей, интересующихся вопросами иммунологии.

Составлена доцентом Ю.И.Будчановым.

Заведующий кафедрой, профессор А.А.Михайленко Методическая рекомендация утверждена на цикловой методической комиссии ТГМА п

© Будчанов Ю.И. 2008 гг.

Мотивация Иммуногенетика – новый, важный раздел иммунологии. Знание системы гистосовместимости

необходимо не только в трансплантологии, но и в понимании регуляции иммунного ответа, так и взаимодействия клеток при иммунном ответе. Определение HLA-антигенов используется в судебной медицине, популяционно-генетических исследованиях и в изучении гене предрасположенности к заболеваниям.

1. Студент должен знать: А. Строение HLA-системы человека.

Б. HLA антигены I, II классов и их роль в межклеточных взаимодействиях. В. Понятия генотипа, фенотипа, гаплотипа.

Г. Значение HLAтипирования в медицине.

Д. Взаимосвязь HLA-антигенов и ряда заболеваний человека. 2. Студент должен уметь:

Применить полученные знания по иммуногенетике в клинической практике.

Вопросы для самоподготовки по теме занятия:

1. Понятие о генах и антигенах гистосовместимости. HLA система человека. Номенклатура, генная организация (гены классов I, II,III).

2. Антигены классов I и III, их роль в межклеточных взаимодействиях, в представлении антигена Т-лимфоцитам, в феномене двойного распознавания.

3. Понятие HLA фенотипа, генотипа, гаплотипа. Особенности наследования.

4. Методы исследования и типированияHLA системы: серологические, клеточноопосредованные, генные (полимеразная цепная реакция, зонды ДНК).

5. Практические аспекты типированияHLA антигенов. HLA в популяциях, биологическое значение.

6. HLA и заболевания человека, механизмы ассоциации.

ЛИТЕРАТУРА ДЛЯ САМОПОДГОТОВКИ

1. Хаитов Р.М., Игнатьева Г.А., Сидорович И.Г. Иммунология. Норма и патология. Учебник. – 3-е

изд., М., Медицина, 2010. – 752 с. – [ с.241 - 263 ].

2. Хаитов Р.М. Иммунология: учебник для студентов медицинских вузов. – М.: ГЕОТАР-Медиа, 2006. – 320с. – [с. 95 – 102].

3. Белозеров Е.С. Клиническая иммунология и аллергология. А-Ата., 1992, с. 31-34.

4. Зарецкая Ю.М. Клиническая иммуногенетика. М., 1983.

5. Методическая разработка. 6. Лекция.

Дополнительная литература

Коненков В.И. Медицинская и экологическая иммуногенетика. Новосибирск, 1999 г. Ярилин А.А. Основы иммунологии. М., 1999, с. 213-226.

Алексеев Л.П., Хаитов Р.М. HLA и медицина. Сб. Современные проблемы аллергологии, иммунологии и иммунофармакологии. М., 2001, с. 240-260.

СМОЖЕТЕ ЛИ ВЫ ОТВЕТИТЬ?

(Впишите дома . Самоконтроль позволит выявить трудные вопросы для обсуждения. На занятии Вы проверите правильность ответов, дополните их. Постарайтесь самостоятельно найти ответы и покажите, что Вам это по силам.)

1. В какой паре хромосом локализуется главный комплекс гистосовместимости у человека? …………… .

2. На клетках каких органов и тканей содержатся трансплантационные? …………антигены

……………………………………………………………………………….……………………. .

3. Что обозначает сокращениеHLA? ………………………………………………………………………….

………………………………………………………………………………………… .

4. На каких клетках не обнаруживаются антигены системыHLA? ……………………….…

…………………………………………………………………………………………. .

5. Из каких локусов, сублокусов состоит ГКГС: I класс ……..……… II класс ………………………………

III класс …………………………………….. .

6. Продукты генов какого класса ГКГС не экспрессируются на мембране клеток? ……………………… .

7. Какие клетки необходимо выделить для выявления HLA II класса? ………………..…………………… .

8. Какими методами выявляютHLA антигены? ……………………………………………………………

………………………………………………………………………………………….. .

9. У типируемого пациента выявлено6 возможных антигенов HLA-A, HLA-B, HLA-C. Как называется такая ситуация? …………………………… .

10. Какой антиген гистосовместимости часто встречается у больных с анкилозирующим спондилитом?

…………………….. .

11. Какие гены входят HLAв класса III? ………………………………..……………………………

…………………………………………………………………………………………… .

12. Из каких цепей состоят антигены HLA класса I? ………………….

13. Из каких цепей состоят антигены HLA класса II? …………………

14. Цитотоксический лимфоцит (CD8) распознает чужеродный пептид в комплексе сHLA какого класса?

…………………………. .

15. Th (CD4+) распознает чужеродный антиген презентированный дендритной клеткой или макрофагом в комплексе с HLA какого класса? …..………

Каковы возможные комбинации эритроцитарных антигенов у ребенка, если изоантигенный состав

эритроцитов

Отца: AO, NM, ss, dd, Cc, Ee ,

а матери: AB, MM, SS, DD, Cc, EE .

Выберите правильный ответ.

AO, MN, Ss, DD, CC, EE

AA, MM, Ss, Dd, cc, ee

OO, NN, Ss, Dd, CC, Ee

AB, MN, Ss, Dd, cc, EE

AO, NN, Ss, Dd, Cc, EE

AB, MM, SS, Dd, cc, Ee

Напишите еще один правильный вариант ответа___, ___, ___, ___, ___, ___.

А больше можете?

Сколько? …………. .

Справочные и теоретические материалы

Главный комплекс гистосовместимости - ГКГС (англ. МНС – Major Histocompatibility Complex) представляет собой систему генов, контролирующих синтез антигенов, которые определяют гистосовместимость тканей при пересадках органов и индуцируют реакции, вызывающие отторжение трансплантатов. Поверхностные структуры цитомембраны клеток, индуцирующие реакции

отторжения, получили название антигенов гистосовместимости , а кодирующие их гены были названы генами гистосовместимости – Н-генами (Histocompatibility). Открытие антигенов гистосовместимости послужило основой развития трансплантационной иммунологии.

В последующем было доказано, что главный комплекс гистосовместимости является

основной генетической системой, определяющей функционирование иммунной системыи,

прежде всего Т-системы иммунитета. ГКГС регулирует иммунный отв ,еткодирует способност ь распознавать «своё» и «чужое», отторгать чужеродные клетки, способность синтезировать ряд

Совсем не обнаруживаются классические антигены системыHLA в жировой ткани и на эритроцитах, а так же на нейронах и клетках трофобласта.

СХЕМА РАСПОЛОЖЕНИЯ ГЕНОВ СИСТЕМЫ HLA

НА 6 ХРОМОСОМЕ

DP LMP TAP DQ DR

C2 Bf C4b C4a TNF

У человека главная система гистосовместимости получила названиеHLA-система (Human Leukocyte Antigens). Это система генов, контролирующих синтез антигенов гистосовместимости. Она состоит из трех регионов расположенных на коротком плече6-й хромосомы. Эти регионы носят название: класс 1, класс 2, класс 3 (класс I, класс II, класс III).В состав региона входят гены или локусы. В названии каждогоHLA-гена присутствует буквенное обозначение локуса(А, В, С) и порядковый номер, например: HLA-A3, HLA-B27, HLA-C2 и т.д. Одноименное обозначение имеют и антигены, кодируемые геном . В локусе D выявлено 3 сублокуса (DP, DQ, DR). (Смотри схему расположенную выше). В утвержденном ВОЗ списке насчитывается138 антигенов HLA. (Однако использование ДНК-типирования, т.е. возможности изучать сами гены, привело к выявлению буквально в последние годы более 2000 аллелей).

К I классу относятся HLA - А, -В и -С локусы. Эти три локуса главного комплекса гистосовместимости человека контролируют синтез трансплантационных антигенов, которые можно определить серологическими методами(CD – Serological Determined). Молекулы антигенов HLA I класса состоят из 2 субъединиц: α- и β- цепей (смотри рисунок). Тяжелая или α-цепь состоит из 3 внеклеточных фрагментов – доменов α1, α2, и α3 (экстрацеллюлярные домены), небольшого участка принадлежащего клеточной мембране(трансмембранный участок) и внутриклеточный фрагмент (цитоплазматический участок). Легкая цепь – β2 -микроглобулин, нековалентно связана с α-цепью, а с мембраной клетки не связана.

Домены α1 и α2 образуют углубление, в котором может располагаться пептид(участок антигена) длиной 8-10 аминокислот. Это углубление называют пептидсвязывающий клефт (от англ cleft).

(К новым антигенам HLA класса I открытым недавно относятся антигены MIC и HLA-G. О них мало что известно в настоящее время. Необходимо отметить HLA-G, который называют неклассическими, выявлен только

на поверхности клеток трофобласта и он обеспечивает иммунологическую толерантность матери к антигенам плода.)

Регион класса 2 (D-регион) системы HLA состоит из 3 сублокусов: DR, DQ, DP, кодирующих трансплантационные антигены. Эти антигены относят к разряду антигенов выявляемых клеточноопосредованными методами, а именно реакцией смешанной культуры лимфоцитов(англ. mixed lymphocyte culture – MLC). В последнее время выделены ещё локусы HLA-DM, -DN , а также гены ТАР и LMP (не экспрессированы на клетках). Классическими являются DP, DQ, DR .

Красным цветом показан презентируемый пептид

Недавно были получены антитела, с помощью которых удается идентифицировать антигены DR и DQ. Поэтому антигены второго класса в настоящее время определяются не только клеточноопосредованными методами, но и серологически, так же как и антигены HLA 1 класса.

Молекулы HLA 2-го класса представляют собой гетеродимерные гликопротеиды, состоящие из двух разных цепей α и β(смотри рисунок). Каждая цепь содержит по 2 внеклеточных домена α1 и β1 на N-терминальном конце, α2 и β2 (ближе к мембране клетки). Имеются ещё трансмембранный и цитоплазматический участки. α1 и β1домены формируют углубление, которое может связывать пептиды длиной до 30 аминокислотных остатков.

Белки МНС-II экспрессированы не на всех клетках. HLA молекулы II класса в большом количестве присутствуют на дендритных клетках, макрофагах и В-лимфоцитах, т.е. на тех клетках, которые взаимодействуют с Т-лимфоцитами-хелперами во время иммунной реакции, с помощью

HLA молекул II класса

Т-лимфоциты

значительного количества

антигенов2-го класса, но при стимуляции митогенами, ИЛ-2

начинают экспрессировать молекулы HLA 2-го класса.

Необходимо

отметить,

все 3 вида интерферонов

значительно усиливают

экспрессию

молекул HLA 1-го

на клеточной мембране различных клеток. Так

γ-интерферон в

значительной мере усиливает экспрессию молекул 1-го класса на Т- и В-лимфоцитах, но коме того на клетках злокачественных опухолей (нейробластом и меланом).

Иногда обнаруживается врожденное нарушение экспрессии молекулHLA 1-го или 2-го классов, что приводит к развитию«синдрома голых лимфоцито в». Больные с такими нарушениями страдают недостаточностью иммунитета и зачастую погибают в детском возрасте.

Регион III класса содержит гены, продукты которых непосредственно вовлечены в иммунную реакцию. Он включает структурные гены для компонентов комплемента С2 и С4, Bf (пропердиновый фактор) и гены фактора некроза опухолей– ФНО (TNF). Сюда входят гены, кодирующие синтез 21гидроксилазы. Таким образом, продукты HLA-генов 3 класса не экспрессированы на клеточной мембране , а они находятся в свободном состоянии.

HLA-антигенный состав тканей человека определяют аллельные, геныотносящиеся к каждому из локусов, т.е. на одной хромосоме может быть только по одному гену каждого локуса.

В соответствии с основными генетическими закономерностями каждый индивидуум является носителем не более двух аллелей каждого из локусо ви сублокусов (по одному на каждой из парных аутосомных хромосом). В гаплотипе (набор аллелей на одной хромосоме) присутствует по одному аллелю каждого из сублокусовHLA. При этом, если индивид гетерозиготе н по всем аллелямHLAкомплекса, у него при типировании(A, B, C, DR, DQ, DP – сублокусов) выявляется не более двенадцати HLA антигенов. Если индивид гомозиготен по некоторым антигенам, у него выявляется меньшее число антигенов, однако это число не может быть меньше 6.

Если у типируемого субъекта выявлено максимально возможное количество антигеновHLA, это получило название «full house» («полный дом» антигенов).

Наследование HLA-генов происходит по кодоминантному типу, при котором у потомства в

Наиболее богаты антигенамиHLA – лимфоциты. Поэтому выявление этих антигенов проводится именно на лимфоцитах. (Вспомните, как выделить из периферической крови лимфоциты).

Молекулы антигенов HLA-A, -B, -C составляют около 1% белков поверхности лимфоцитов, что примерно равно 7 тыс. молекул.

Одним из наиболее значимых достижений в иммунологии явилось обнаружение центральной роли, которую играет МНС млекопитающих и человека в регуляции иммунного ответа. В строго контролируемых экспериментах было показано, что один и тот же антиген вызывает иммунный ответ разной высоты у организмов с разным генотипом,инаоборот, один и тот же организм может быть реактивным в различной степени по отношению к разным антигенам. Гены контролирующие такой высокоспецифичный иммунный ответ, названы Ir-генами (Immune response genes). Они локализованы в области 2-класса системы HLA человека. Ir-генный контроль реализуется через -Т систему лимфоцитов.

Центральным

клеточного

взаимодействия

иммунном

отявляетсяете

взаимодействие

молекулами HLA,

экспрессированными

поверхности

антигенпредставляющих клеток,

представляющих

для распознавания

чужеродный

антигенный

пептид, и антиген-распознающим рецептором – TCR (T-cell receptor)

на поверхности Т-лимфоцита

хелпера. При

одновременно

распознаванием

чужеродного

происходит

распознавание собственных HLA антигенов.

Т-лимфоцит хелпер (CD4+) распознает чужеродный антиген лишь в комплексе поверхностными молекулами ГКГС 2 класса антигенпредставляющих клеток.

Цитотоксические лимфоциты (Т-эффекторы, CD8+) распознают антиген,

например вирусной природы, в комплексе с молекулой HLA I класса клетки мишени. Экзогенные антигены представляются молекулами HLA II класса,

эндогенные – молекулами I класса.

(Таким образом, процесс распознавания чужеродного огранич(е сриктирован) собственными HLA-антигенами. Это и есть концепция «двойного распознавания» или «распознавания измененного своего».)

Важная роль системыHLA состоит также в том, что она контролирует синтез факторов комплемента, вовлекаемых как в классический(С2 и С4), так и альтернативный (Bf) пути активации комлемента. Генетически обусловленный дефицит этих компонентов комплемента, может вызвать предрасположенность к инфекционным и аутоиммунным заболеваниям.

Практическое значение HLA-типирования. Высокий полиморфизм делает системуHLA великолепным маркером в популяционно-генетических исследованиях и изучении генетической предрасположенности к заболеваниям, но в то же время создает проблемы в подборе пар донор– реципиент при трансплантации органов и тканей.

Популяционные исследования, проведенные во многих странах мира, выявили характерные различия в распределении HLAантигенов в разных популяциях. Особенности распределения HLA-

антигенов используются в генетических исследованиях для изучения структуры, происхождения и эволюции различных популяций. Например, грузинская популяция, относящаяся к южным европеоидам, имеет сходные черты HLA-генетического профиля с греческой, болгарской, испанской популяциями, указывающими на общность их происхождения.

Типирование HLA-антигенов широко используется в судебно-медицинской практике для исключения или установления отцовства, родства.

Обратите внимание на связь некоторых заболеваний с наличием в генотипе того или иного HLA-антигена. Это связано с тем, что HLA широко используется для изучения генетических основ предрасположенности к заболеваниям . Если раньше не предполагалось, например, что заболевание рассеянным склерозом имеет наследственную основу, то в настоящее время благодаря изучению связи с системойHLA факт наследственной предрасположенности твердо установлен. Используя

системойHLA, для некоторых заболеваний определен также и способ наследования.

Например,

анкилозирующий

спондилит

аутосомно-доминантный

наследования,

гемохроматоз и врожденная адреналовая гиперплазия– аутосомно-рецессивный. Благодаря очень

ассоциации

анкилозирующего

спондилита

антигеномHLA-B27, HLA-типирование

используется в диагностике ранних и неясных случаев этого заболевания. Выявлены генетические маркеры инсулинзависимого сахарного диабета.

ПРАКТИЧЕСКАЯ РАБОТА

Определение HLA антигенов «у доноров»

Типирование тканевых антигенов производят при помощи набора сывороток, состоящего из 50 и более антилейкоцитарных сывороток (сыворотки многорожавших женщин, дающие от 10 до 80% положительных реакций с лейкоцитами плода, или сыворотки добровольцев, иммунизированных

человеческими

лейкоцитами, содержащими

определенные SD-антигены.

Сыворотки

многорожавших женщин, в результате естественной иммунизацииHLA-антигенами мужа во время

беременности, содержат в ряде случаев антитела к HLA в достаточно высоком титре.).

Серологически

антигены

гистосовместимости

определяют

лимфоцитотоксического

теста (англ.

lymphocytotoxicity test).

называют

микро лимфоцитотоксическим

использования

постановке

микрообъем

ингредиентов.

Принцип его основан на взаимодействииHLA-молекул на поверхности лимфоцитов обследуемого человека со специфическими анти-HLA-антителами и комплементом, что приводит к гибели клеток. Гибель клеток определяется при обычном световом микроскопировании после окрашивания витальными красителями.

Суспензии лимфоцитов смешивают с антисывороткой к определенному антигену(HLA-B8, HLA-B27 и т.д.), инкубируют 1 час при 25 С, добавляют комплемент и инкубирует вновь 2ч при 37 С, а затем добавляют трипановый синий или эозин. В случае присутствия в лимфоцитах антигена, соответствующего антителам, содержащимся в сыворотке, антитела в присутствии комплемента повреждают мембрану лейкоцитов, краска проникает в их цитоплазму и они окрашиваются в синий или же в красный цвет (если использовался эозин).

Какие клетки будут окрашены при HLA-типировании?

На основании результатов типирования устанавливают степень совместимости донора и реципиента и возможность трансплантации органа или ткани между ними. Донор и реципиент должны быть совместимы по эритроцитарным антигенам АВО иRh, по лейкоцитарным антигенам системы HLA. Однако на практике трудно бывает подобрать полностью совместимых донора и реципиента. Селекция сводится к подбору наиболее подходящего доно. Трансплантация возможна при

несовместимости по одному из антигеновHLA, но на фоне значительной иммуносупрессии. Подбор оптимального соотношения антигенов гистосовместимости между донором и реципиент значительно продлевает жизнь трансплантата.

На занятии будут продемонстрированы планшеты HLAдля типирования лейкоцитов. Вспомните, как получить чистую суспензию лимфоцитов из клеток периферической крови. Подумайте, как защитить содержимое лунок от высыхания в процессе постановки реакции? Как получаются сыворотки для HLA типирования?

В настоящее время могут использоваться для типирования комплемент фиксирующие моноклональные антитела (МАТ). Они используются как в микролимфоцитотоксическом тесте, так и в реакции иммунофлуоресценции. Учет реакции возможен как люминисцентной микроскопией, так и с помощью проточного цитофлуориметра.

современный метод

определенияHLA-генов ДНК-типирование . Он

основан на различных вариантах полимеразной цепной реакции (ПЦР) и молекулярной гибридизации.

этих методов

заключается в

накоплении необходимого

анализа значительног

количества

её полимеризации и в использовании, комплементарныхзондов

анализируемым участкам ДНК. Причем одним из преимуществ ДНК-типирования является то, что не

требуется наличия жизнеспособных лимфоцитов, а используется ДНК любых клеток. А ведь

ДНК может храниться годами и десятилетиями. Для реакции необходимы,

дорогостоящие

олигонуклеотидные зонды, праймеры.

Применение молекулярно-генетического метода – ДНК-типирования, позволило значительно расширить представление о полиморфизме ранее известных генетических локусов системы HLA-A, B, C, DR,DQ, DP. Кроме того, открыты новые гены, в частности TAP, DM, LMP и другие. Открыты гены HLA класса I - E, F, G, H, но функция их продуктов пока неясна. На декабрь 1998 г. число идентифицированных аллелей генов HLA-комплекса составило 942. А на 31 декабря 2000 года было выявлено молекулярно-генетическим ДНК-типированием 1349 аллелей и их обнаружение продолжает расти.

НОВАЯ НОМЕНКЛАТУРА HLA . Как уже отмечалось, молекулы HLA 1 класса состоят из α- и β-цепей. Причем полиморфной является только α-це .пьАллельные варианты кодирующих генов получили в новой номенклатуре четырехзначное наименование (например, HLA-A0201 вместо ранее применяемого обозначения HLA-A2 , причем методами молекулярной биологии установлено12 (!) новых субтипов этого антигена (новых аллельных вариантов), получивших наименование А0201, А0202, А0203, … до А0212). У HLA-B27 установлено 9 аллельных вариантов специфичности и только часть из них ассоциирована с анкилозирующим спондилитом(это, естественно, повышает их прогностическую ценность).

Эффективность трансплантации аллогенных почек(по результатам годовой выживаемости в центрах трансплантологии, перешедших на селекцию доноров на основе молекулярно-генетического

координационного центра органного донорства и институтом Иммунологии.

Ещё более впечатляющие данные, полученные за последние2-3 года в ходе проведения национальных (в первую очередь в США) и международных программ по пересадке аллогенного, «неродственного» костного мозга. Благодаря переходу селекции пар донор-реципиент на -ДНК типирование и созданию банкаHLA-генотипированных доноров, включающего 1,5 млн. человек, годовую выживаемость пересаженного костного мозга удалось повысить 10с -20% до 70-80% (!). В свою очередь это привело к тому, что число трансплантаций костного мозга от неродственных доноров в США (где в настоящее время насчитывается наибольшее число генотипированных доноров и реципиентов) за период с 1993 по 1997 г. возросло более чем в 8 раз. Ошеломляющий

эффект от пересадок неродственного костного мозга достигнут исключительно за счет подбора полностью HLA совместимых пар донор-реципиент ДНК-типированием.

Ниже приводится выдержка из книги академика Р.В.Петрова«Я или не я: Иммунологические мобили». М., 1983. - 272 с.

«…Получая в 1930 году Нобелевскую премию, в своей торжественной лекции по этому поводу Карл Ландштейнер говорил, что открытие всё новых антигенов в клетках человеческих тканей будет

теоретический интерес. Оно нашло в числе других практических применений судебно-медицинское применение.

Представьте себе такую ситуацию: необходимо определить принадлежность пятна крови. Чья эта кровь – человека или животного? Нет необходимости объяснять, что такая ситуация чаще всего имеет отношение к криминалистике. И решение задачи зачастую становится ответом на главнейшие вопросы следствия. Ответить не него можно только с помощью иммунных сывороток. Ни по каким

другим показателям различить кровь человека и, например, собаки невозможно. Микроскопические или биохимические методы исследования бессильны.

Судебные медики имеют в арсенале своих средств набор иммунных сывороток различной специфичности: против белков человека, лошади, курицы, собаки, коровы, кошки и т.д. Исследуемое пятно смывают, а затем ставят реакции преципитации. При этом используют весь набор иммунных сывороток. Какая сыворотка вызовет преципитацию, тому виду животного или человеку принадлежит кровь исследуемого пятна.

Допустим, судебный эксперт заключает: «Нож испачкан кровью человека». А подозреваемый в убийстве говорит: «Да. Но это моя кровь. Не так давно этим ножом я порезал свой палец». Тогда экспертиза продолжается. На столе криминалистов появляются антисыворотки против групп крови и к HLA-антигенам. И иммунология снова дает точный ответ: кровь относится к группе АВ, содержит фактор М, резус-отрицательный, антигены гистосовместимости такие то и т.д. Ситуация окончательно

разъясняется. Полученная характеристика полностью совпадает с антигенной характеристикой крови подозреваемого. Следовательно, он сказал правду, это действительно его кровь.

Остановимся ещё на одной ситуации, которая имеет огромное моральное звучание. Представьте себе, что война или иное бедствие разлучили родителей с детьми. У детей потерялись фамилии и имена. Неужели нельзя найти своего ребенка среди других? Ведь антигены эритроцитов и HLA передаются по наследству. И если у отца и матери нет фактора, Мто его не может быть и у ребенка. И наоборот, если оба родителя принадлежат к группе А, то ребенок не может иметь группу крови В или АВ. Так же и по HLA-антигенам. Причем с очень высокой достоверностью».

Установление подлинности останков членов царской семьи НиколаяII проводилось именно так, с помощью ДНК типирования.

например, в Англии, к вопросам определения отцовства относятся особенно щепетильно. Но там это чаще всего связано не с войной. Строгие законы об отцовстве объясняются строгими законами о наследниках и правах наследования капиталов, титулов, прав, привилегий.

Вообразите лорда, который объявляет своим наследником юношу, которого родила не его жена. Тогда может возникнуть необходимость доказать, что юноша его сын. Или вдруг появляется джентльмен, объявляющий себя незаконнорожденным сыном и, следовательно, наследником миллионера. Может быть, это правда, но может быть, сей джентльмен – аферист. Вопрос решает анализ антигенов родителей и детей».

Распределение HLA-антигенов оказалось разным у представителей разных рас национальностей. С 1966 г. интенсивное исследование структуры антигенов тканевой совместимости по инициативе ВОЗ стало проводиться во всех странах мира. Вскоре карта мира оказалась покрытой иммунологическими иероглифами, показывающими, где и в каком сочетании встречаются антигены

HLA. Теперь, пожалуй, нет необходимости подобно Туру Хейердалу снаряжать экспедицию на тростниковой лодке, чтобы доказать миграцию населения из Южной Америки на острова Полинезии. Достаточно взглянуть в современный атлас распространенияHLAантигенов и с уверенностью сказать, что в обоих этих географических регионах есть общие генетические маркеры.

Полиморфизм классических HLA - антигенов, выявляемых серологическими и клеточно-опосредованными методами

На цитоплазматических мембранах практи­чески всех клеток макроорганизма обнаружива­ются антигены гистосовместимости . Большая часть из них относится к системе главного ком­ плекса гистосовместимости , или МНС (аббр. от англ. Main Hystocompatibility Complex ).

Антигены гистосовместимости играют ключевую роль в осуществлении специфичес­кого распознавания «свой-чужой» и индук­ции приобретенного иммунного ответа. Они определяют совместимость органов и тканей при трансплантации в пределах одного вида, генетическую рестрикцию (ограничение) иммунного реагирования и другие эффекты.

Большая заслуга в изучении МНС, как яв­ления биологического мира, принадлежит Дж. Доссе, П. Догерти, П. Гореру, Г. Снеллу, Р. Цинкернагелю, Р. В. Петрову, ставшим ос­новоположниками иммуногенетики.

Впервые МНС был обнаружен в 60-х годах XX в. в опытах на генетически чистых (инбредных) линиях мышей при попытке межлинейной пе­ресадки опухолевых тканей (П. Горер, Г. Снелл). У мышей этот комплекс получил название Н-2 и был картирован в 17-й хромосоме.

У человека МНС был описан несколько позже в работах Дж. Доссе. Его обозначи­ли как HLA (аббр. от англ. Human Leukocyte Antigen ), так как он ассоциирован с лейкоци­тами.

Биосинтез HLA определяется генами , локализованными сразу в нескольких локусах короткого плеча 6-й хромосомы.

МНС имеет сложную структуру и высокую полиморфность. По химической природе анти­гены гистосовметимости представляют собой гликопротеиды, прочно связанные с цитоплаз матической мембраной клеток . Их отдельные фрагменты имеют структурную гомологию с молекулами иммуноглобулинов и поэтому от­носятся к единому суперсемейству.

Различают два основных класса молекул МНС .

    Условно принято, что МНС I класса индуцирует преиму­щественно клеточный иммунный ответ.

    МНС II класса- гуморальный.

Основные классы объединяют множество сходных по структуре антигенов, которые кодируются множеством аллельных генов. При этом на клетках индиви­дуума могут экспрессироваться не более двух разновидностей продуктов каждого гена МНС, что важно для поддержания популяционной гетерогенности и выживания как отдельной особи, так и всей популяции в целом.

МНС I класса состоит из двух нековалентно связанных полипептидных цепей с разной молекулярной массой: тяжелой альфа-цепи и легкой бета-цепи. Альфа-цепь имеет внеклеточный участок с доменным строением (al-, a2- и аЗ-домены), трансмембранный и цитоплазматический. Бета-цепь представляет собой бета-2-микроглобулин, который «нали­пает» на аЗ-домен после экспрессии альфа-це­пи на цитоплазматической мембране клетки.

Альфа-цепь обладает высокой сорбционной способностью по отношению к пептидам. Это свойство определяется al- и а2-домена­ми, формирующими так называемую «щель Бьоркмана» - гипервариабельный участок, ответственный за сорбцию и презентацию молекул антигена. «Щель Бьоркмана» МНС I класса вмещает нанопептид, который в та­ком виде легко выявляется специфическими антителами.

    Процесс формирования комплекса «МНС I класса-антиген» протекает внутриклеточно непрерывно .

    В его состав включаются любые эндогенно синтезированные пептиды, в том числе вирусные. Комплекс изначально соби­рается в эндоплазматическом ретикулуме, куда при помощи особого белка, протеосомы, пере­носятся пептиды из цитоплазмы. Включенный в комплекс пептид придает структурную ус­тойчивость МНС I класса. В его отсутствие функцию стабилизатора выполняет шаперон (калнексин).

Для МНС I класса характерна высокая ско­рость биосинтеза - процесс завершается за 6 часов.

    Этот комплекс экспрессируются на поверхности практически всех клеток, кроме эритроцитов (в безъядерных клетках отсутс­ твует биосинтез) и клеток ворсинчатого трофобласта («профилактика» отторжения пло­да). Плотность МНС I класса достигает 7000 молекул на клетку, и они покрывают около 1 % ее поверхности. Экспрессия молекул заметно усиливается под влиянием цитокинов, напри­мер γ-интерферона.

В настоящее время у человека различают более 200 различных вариантов HLAI класса. Они кодируются генами, картированными в трех основных сублокусах 6-й хромосомы и наследуются и проявляются независимо: HLA-A, HLA-B и HLA-C. Локус А объединяет более 60 вариантов, В - 130, а С - около 40.

Типирование индивидуума по HLA I класса проводится на лимфоцитах серологическими методами - в реакции микролимфоцитолиза со специфическими сыворотками. Для диагнос­тики используют поликлональные специфи­ческие антитела, обнаруживаемые в сыворотке крови многорожавших женщин, пациентов, получавших массивную гемотрансфузионную терапию, а также моноклональные.

Учитывая независимое наследование генов сублокусов, в популяции формируется беско­нечное множество неповторяющиеся комби­наций HLAI класса. Поэтому каждый человек строго уникален по набору антигенов гистосовместимости, исключение составляют только однояйцовые близнецы, которые абсолютно похожи по набору генов.

Основная биологи­ ческая роль HLA I класса состоит в том, что они определяют биологическую индивидуаль­ ность («биологический паспорт») и являются маркерами «своего» для иммунокомпетентных клеток . Заражение клетки вирусом или мутация изменяют структуру HLAI класса. Содержащая чужеродные или модифицированные пептиды молекула МНС I класса имеет нетипичную для данного организма структуру и является сиг­налом для активации Т-киллеров (СО8 + -лим- фоциты). Клетки, отличающиеся по I классу, уничтожаются как чужеродные.

МНС 1 – для облегчения распознавания внутриклеточной инфекции.

В структуре и функции МНС II класса есть ряд принципиальных отличий.

    Во-первых, они имеют более сложное строение. Комплекс об­разован двумя нековалентно связанными по­липептидными цепочками (альфа-цепь и бета-цепь), имеющими сходное доменное строение. Альфа-цепь имеет один глобуляр­ный участок, а бета-цепь - два. Обе цепи как трансмембранные пептиды состоят из трех участков - внеклеточного, трансмембранного и цитоплазматического.

    Во-вторых, «щель Бьоркмана» в МНС II клас­са образована одновременно обеими цепочками. Она вмещает больший по размеру олигопептид (12-25 аминокислотных остатков), причем пос­ледний полностью «скрывается» внутри этой щели и в таком состоянии не обнаруживается специфическими антителами.

    В-третьих, МНС II класса включает в себя пептид, захваченный из внеклеточной среды путем эндоцитоза, а не синтезированный са­мой клеткой.

    В-четвертых, МНС II класса экспресси руется на поверхности ограниченного числа клеток : дендритных, В-лимфоцитах, Т-хел-перах, активированных макрофагах, тучных, эпителиальных и эндотелиальных клетках. Обнаружение МНС II класса на нетипичных клетках расценивается в настоящее время как иммунопатология.

Биосинтез МНС II класса протекает в эндоплазматическом ретикулуме, образующий­ся димерный комплекс затем встраивается в цитоплазматическую мембрану. До включе­ния в него пептида комплекс стабилизируется шапероном (калнексином). МНС II класса экспрессируется на мембране клетки в течение часа после эндоцитоза антигена. Экспрессия комплекса может быть усилена γ-интерферо­ном и снижена простагландином Е г

По имеющимся данным, человеческому организму свойственен чрезвычайно высо­кий полиморфизм HLA II класса, который в большей степени определяется особенностя­ми строения бета-цепи. В состав комплекса входят продукты трех основных локусов: HLA DR, DQ и DP. При этом локус DR объединяет около 300 аллельных форм, DQ - около 400, a DP - около 500.

Наличие и тип антигенов гистосовместимости II класса определяют в серологи­ческих (микролимфоцитотоксический тест) и клеточных реакциях иммунитета (сме­шанная культура лимфоцитов, или СКЛ). Серологическое типирование МНС II класса производят на В-лимфоцитах с использо­ванием специфических антител, обнаружи­ваемых в сыворотке крови многорожавших женщин, пациентов, получавших массивную гемотрансфузионную терапию, а также син­тезированных методами генной инженерии. Тестирование в СКЛ позволяет выявить ми­норные компоненты МНС II класса, не опре­деляемые серологически. В последнее время все чаще применяют ПЦР.

Биологическая роль МНС II класса чрез­вычайно велика. Фактически этот комплекс участвует в индукции приобретенного им­ мунного ответа. Фрагменты молекулы анти­гена экспрессируются на цитоплазматической мембране особой группы клеток, которая получила название антигенпрезентирующих клеток (АПК). Это еще более узкий круг сре­ди клеток, способных синтезировать МНС II класса. Наиболее активной АПК считается дендритная клетка, затем - В-лимфоцит и макрофаг.


Чарлз Б . Карпентер (Charles В . Carpenter)

Антигены, обеспечивающие внутривидовые различия особей, обозначаются как аллоантигены, а когда они включаются в процесс отторжения аллогенных тканевых трансплантатов, то приобретают название антигенов тканевой совмести­мости (гистосовместимости). Эволюция закрепила единичный участок тесно сцепленных генов гистосовместимости, продукты которых на поверхности клеток обеспечивают сильный барьер при аллотрансплантации. Термины «major histocompatibility antigens» (главные антигены гистосовместимости) и «major histocompatibility gene complex» (MHC) (главный генный комплекс гистосовмести­мости) относятся соответственно к продуктам генов и генам этого хромосомного участка. Многочисленные минорные антигены гистосовместимости, наоборот, кодируются множественными участками генома. Им соответствуют более слабые аллоантигенные различия молекул, выполняющих разнообразные функции. Структуры, несущие детерминанты MHC, играют значительную роль в иммуни­тете и самораспознавании в процессе дифференцировки клеток и тканей. Инфор­мация о МНС-контроле иммунного ответа получена в опытах на животных, когда гены иммунного ответа были картированы внутри MHC-у мышей (Н-2), крыс (RT1), морских свинок (GPLA). У человека MHC назван HLA. Отдельным бук­вам аббревиатуры HLA придается различное значение, и с международного согласия HLA служит для обозначения человеческого МНС-комплекса.

Относительно MHC можно сделать несколько обобщений. Во-первых, в малом участке (менее 2 сантиморган) MHC кодируется три класса генных продуктов. Молекулы класса I, экспрессируемые практически всеми клетками, содержат одну тяжелую и одну легкую полипептидную цепи и являются продуктами трех редуплицированных локусов-HLA-A, HLA-B и HLA-C. Молекулы класса II, экспрессия которых ограничивается В-лимфоцитами, моноцитами и активирован­ными Т-лимфоцитами, содержат две полипептидные цепи (aи b) неравной вели­чины и являются продуктами нескольких тесно сцепленных генов, в сумме обо­значаемых как зона HLA-D. Молекулы класса III представляют собой компонен­ты комплемента С4, С2 и Bf. Во-вторых, молекулы классов I и II образуют комп­лекс с псевдоантигеном, или антиген гистосовместимости и псевдоантиген слитно распознаются Т-лимфоцитами, имеющими соответствующий рецептор для антиге­на. Распознавание своего и несвоего при запуске и в эффекторной фазе иммунно­го ответа непосредственно направляется молекулами I и II классов. В-третьих, четких ограничений межклеточных взаимодействий, в которых участвуют супрессорные Т-лимфоциты, у человека не выявлено, но роль генов HLA достаточно важна для некоторых проявлений супрессорной Т-клеточной активности. В-чет­вертых, в МНС-регионе локализуются гены ферментных систем, не имеющих непосредственного отношения к иммунитету, но важных для роста и развития скелета. Известные локусы HLA на коротком плече 6-й хромосомы представлены на 63-1.

Локусы системы HLA. Антигены класса I. HLA-антигены I класса определяются серологически с помощью человеческих сывороток, главным обра­зом от многорожавших женщин, и в меньшей степени с помощью моноклональных антител. Антигены I класса путствуют с разной плотностью во многих тканях организма, включая В-клетки, Т-клетки, тромбоциты, но не на зрелых эритроцитах. Количество серологически выявляемых специфичностей велико, и система HLA является наиболее полиморфной из известных генетических систем человека. Внутри HLA-комплекса для серологически выявимых HLA антигенов I класса четко определяются три локуса. Каждый антиген 1 класса содержит b 2 -микроглобулиновую субъединицу (мол. масса 11500) и тяжелую цепь (мол. масса 44000), несущую антигенную специфичность (63-2). Существует 70 четко определенных А- и В-специфичностей и восемь специфичностей локуса С. Обозначение HLA обычно путствует в наименовании антигенов главного комплекса гистосовместимости, но может не употребляться, когда позволяет контекст. Антигены, неокончательно классифицированные ВОЗ, имеют в обозна­чении букву w после названия локуса. Номер, следующий за обозначением локу­са, служит собственным названием антигена. HLA-антигены населения Африки, Азии и Океании в настоящее время недостаточно четко определены, хотя они включают часть общих антигенов, свойственных лицам западноевропейского происхождения. Распределение HLA-антигенов различно в разных расовых груп­пах, и они могут быть использованы как антропологические маркеры в изучении заболеваний и миграционных процессов.

63-1. Схематическое изображение хромосомы 6.

Показана локализация зоны HLA в регионе 21 короткого плеча. Локусы HLA-A, HLA-B и HLA-C кодируют тяжелые цепи класса I (44000), тогда как b 2 -микроглобулиновая легкая цепь (11500) молекул класса I кодируется геном хромосомы 15. Зона HLA-D (класс II) расположена центромерно по отношению к локусам А, В и С с тесно сцеп­ленными генами компонентов комплемента С4А, С4В, Bf и С2 на участке B-D. Порядок расположения генов комплемента не установлен. Каждая молекула класса II D-региона образована a- и b-цепями. Они путствуют на клеточной поверхности в разных участ­ках (DP, DQ и DR). Цифра, предшествующая знакам aи b, означает, что существуют различные гены для цепей данного типа, например, для DR существует три гена b-цепей, так что экспрессируемые молекулы могут быть 1ba, 2baили 3ba. Антигены DRw52(MT2) и DRw53(MT3) находятся на 2b-цепи, тогда как DR - на lb-цепи. DR неполиморфен, а молекулы DQ-антигенов полиморфны как по a-, так и по b-цепям (2a2b). Другие типы DQ (1a1b) имеют ограниченный полиморфизм. Полиморфизм DP связан с b-цепями. Общая протяженность HLA-региона- около 3 сМ.

Поскольку хромосомы парны, каждый индивид имеет до шести серологически определимых антигенов HLA-A, HLA-B и HLA-C, по три от каждого из родителей. Каждый из этих наборов обозначается как гаплотип, и в соответствии с простым менделевским наследованием четвертая часть потомства имеет идентичные гаплотипы, половина - часть общих гаплотипов и оставшаяся четверть - полностью несовместима (63-3). Значение роли этого генного комплекса в транспланта­ционном ответе подтверждается тем, что подбор по гаплотипу пар донор - реципиент среди потомства одного поколения обеспечивает наилучшие результа­ты при трансплантации почек - около 85-90% длительного выживания (гл. 221).

Антигены класса II. Зона HLA-D примыкает к локусам класса I на коротком плече 6-й хромосомы (63-1). Этот регион кодирует серию моле­кул класса II, каждая из которых содержит a-цепь (мол, масса 29000) и b-цепь (мол. масса 34000) (63-2). Несовместимость по этому региону, особенно по антигенам DR, определяет пролиферативную реакцию лимфоцитов in vitro. Смешанная лимфоцитарная реакция (MLR) оценивается по уровню пролиферации в смешанной культуре лимфоцитов (MLC) и может быть положительной даже при идентичности по антигенам HLA-A, HLA-B и HLA-C (63-3). Антигены HLA-D определяются с помощью стандартных стимулирующих лимфо­цитов, гомозиготных по HLA-D и инактивированных рентгеновскими лучами или митомицином С с целью придания реакции однонаправленности. Существует 19 таких антигенов (HLA-Dwl-19), обнаруженных с использованием гомозигот­ных типирующих клеток.

Попытки определения HLA-D серологическими методами сначала позволили обнаружить серию D-связанных (DR) антигенов, экспрессированных на молеку­лах класса II В-лимфоцнтов, моноцитов и активированных Т-лимфоцитов. Затем были описаны и другие тесно сцепленные антигенные системы, которые получили различные наименования (MB, MT, DC, SB). Идентичность отдельных групп молекул класса II сейчас установлена, и гены соответствующих a - и b-цепей выделены и секвенированы. Генная карта класса II, представленная на 63-1, отражает минимальное число генов и молекулярных участков. Хотя молекула масса II может содержать DRaиз гаплотипа одного из родителей, a DRb- другого (транскомплементация), комбинаторика вне каждого из участков DP, DQ, DR редка, если вообще возможна. Молекулы DR и в определенной степени DQ могут служить стимулами для первичной MLR. Вторичная MLR определяется как тест с примированными лимфоцитами (PLT) и дает возможность получить результат через 24-36 ч вместо 6-7 дней для первичной реакции. Аллоантигены DP были открыты благодаря их способности вызывать стимуляцию PLT, хотя они не дают первичной MLR. Хотя В-лимфоциты и активированные Т-лимфоциты экспрессируют все три набора молекул класса II, антигены DQ не экспрессируются на 60-90% DP- и DR-позитивных моноцитов.

63-2. Схематическое изображение молекул кле­точной поверхности клас­сов I и II.

Молекулы класса I состоят из двух полипептидных це­пей. Тяжелая цепь с мол. массой 44 000 проходит сквозь плазматическую мем­брану; ее наружный участок состоит из трех доменов (a 1 , a 2 и a 3), формируемых дисульфидными связями. Легкая цепь с мол. массой 11500 (b 2 -микроглобулин, b2мю) кодируется хромосомой 15 и нековалентно связана с тяжелой цепью. Аминокис­лотная гомология между мо­лекулами I класса состав­ляет 80-85%, снижаясь до 50% в участках a 1 и a 2 , которые, вероятно, соответ­ствуют участкам аллоантигенного полиморфизма. Мо­лекулы класса II образова­ны двумя нековалентно связанными полипсптидными цепями, a-цепь с мол. массой 34000 и b-цепь с мол массой 29000. Каждая цепь содержит два домена, сформиро­ванных дисульфидными связями (из С. Б. Carpenter, E. L. Milford, Renal Transplantation: Immunobiology in the Kidnev/Eds. B. Brenner, F. Rector, New York: Samiders, 1985).

63-3. HLA-зона хромосомы 6: наследование HLA-гаплотипов. Каждый хромосомный сегмент сцепленных генов обозначается как гаплотип, и каждый индивид наследует по одному гаплотипу от каждого родителя. На диаграмме пред­ставлены антигены А, В и С гаплотипов а и b для данного гипотетического индивида; ниже раскрыты обозначения гаплотипов в соответствии с текстом. Если мужчина с гаплотипом ab женится на жен­щине с гаплотипом cd, потомки могут быть только четырех ти­пов (с точки зрения HLA). Если в мейозе у одного из родителей происходит рекомби­нация (отмечена прерывистыми линиями), то это приводит к формированию измененного гап-лотнпа. Частота измененных гап­лотипов у детей служит мерой расстояний на генетической кар­ге (1% частота рекомбина­ций== 1 сМ; 63-1) (из Г.. В. Carpenter. Kidney Inter­national, Г)78. 14. 283).

Молекулярная генетика. Каждая полипептидная цепь молекул классов I и II содержит несколько полиморфных участков в дополнение к «част­ной» антигенной детерминанте, определяемой с помощью антисывороток. В тесте клеточно-опосредованного лимфолиза (CML) определяется специфичность киллерных Т-клеток (Тк), которые возникают в процессе пролиферации при MLR, путем тестирования на клетках-мишенях от доноров, не служивших источником стимулирующих клеток для MLR. Антигенные системы, определяемые этим мето­дом, обнаруживают тесную, но неполную корреляцию с «частными» антигенами класса 1. Клонирование циготоксических клеток позволило обнаружить набор полиморфных детерминант-мишеней на молекулах HLA, некоторые из которых невозможно выявить с помощью аллоантисывороток и моноклональных антител, полученных иммунизацией мышей человеческими клетками. Некоторые из этих реагентов могут быть использованы для идентификации «частных» детерминант HLA, в то время как другие направлены к более «общим» (иногда называемым супертипируемыми) детерминантам. Одна такая система «общих» HLA-B антиге­нов имеет два аллеля, Bw4 и Bw6. Большинство «частных» HLA-B связаны или с Bw4, или с Bw6. Другие системы сопряжены с подгруппами HLA антигенов. Например, HLA-B-позитивные тяжелые цепи содержат дополнительные участки, общие для В7, В27, Bw22 и В40 или для В5, В15, В18 и Bw35. Существуют и другие типы перекрывающихся антигенных детерминант, о чем свидетельствует реакция моноклональных антител с участком, общим для тяжелых цепей HLA-A и HLA-B. Изучение аминокислотной последовательности и псптидных карт не­которых молекул HLA показало, что гипервариабельные участки антигенов клас­са I сосредоточены в наружном a 1 -домене (63-2) и прилегающем участке a 2 -домена. Вариабельные последовательности молекул класса II различны для разных локусов. Замечательно, что a 3 -домен класса I, a 2 -домен класса II и b 2 -домен, а также часть мембранной молекулы Т8 (Leu 2), участвующей в межкле­точных взаимодействиях (гл. 62), обнаруживают значительную гомологию последовательности аминокислот с константными зонами иммуноглобулинов. Это подтверждает гипотезу об эволюционном формировании семейства генных продуктов, которые несут функции иммунологичсского распознавания. При иссле­довании геномной ДНК HLA для молекул классов I и II были обнаружены типич­ные экзон-интронные последовательности, причем экзоны были идентифицированы для сигнальных пептидов (5) каждого из доменов, трансмембранного гидро­фобного сегмента и цитоплазматического сегмента (З). Имеются пробы кДНК для большинства цепей HLA, а применение ферментативных гидролизатов для оценки состояния полиморфизма рестрикционных фрагментов по длине (ПДРФ), позволило получить данные, которые коррелируют с результатами изучения молекул класса 11 серологическими методами в MLR. Однако многочисленность (20-30) генов класса 1 делает оценку полиморфизма по ПДРФ затруднитель­ной. Многие из этих генов не экспрессируются (псевдогены), хотя некоторые могут соответствовать дополнительным локусам класса I, которые экспрессируют­ся только на активированных Т-клетках; функции их неизвестны. Разработка специфических проб на локусы HLA-A и HLA-B поможет разобраться в этой достаточно сложной проблеме.

Комплемент (класс III). Структурные гены трех компонентов комплемента-С4, С2 и Bf-путствуют в зоне HLA-B-D (63-1). Это два локуса С4, кодирующие С4А и С4В, первоначально описанные как эритроцитарные антигены Rodgers и Chido соответственно. Эти антигены оказались в дей­ствительности абсорбированными из плазмы молекулами С4. Другие компоненты комплемента не имеют тесного сцепления с HLA. Между генами С2, Bf и С4 кроссинговера не описано. Все они кодируются участком между HLA-B и HLA-DR длиной около 100ко. Существуют два аллеля С2, четыре Bf, семь С4А и три С4В, кроме того, в каждом локусе имеются молчащие аллели QO. Исклю­чительная полиморфность гистотипов комплемента (комплотипы) делает эту систему пригодной для генетических исследований.

Таблица 63-1. Наиболее распространенные гаплотины HLA

В табл. 63-1 представлены четыре наиболее широко распространенных гаплотипа, обнаруженных у лиц западноевропейского происхождения. Результаты MLR у людей, не состоящих в родстве, отобранных по признаку совместимости по этим гаплотипам, отрицательны, в то же время реакция обычно имеет место, если неродственные индивиды подобраны только на совместимость по HLA-DR и DQ. Такие идентичные распространенные гаплотипы, возможно, в неизменном виде происходят от единого предка.

Другие гены 6-й хромосомы. Недостаточность стероид 21-гидроксилазы, аутосомно-рецессивный признак, вызывает синдром врожденной гипер­плазии надпочечников (гл. 325 и 333). Ген для этого фермента локализуется на участке HLA-B-D. Ген 21-гидроксилазы, прилегающий к гену С4А, делетирован у лиц, страдающих упомянутым синдромом, вместе с С4А (C4AQO), и ген HLA-B может трансформироваться с конверсией В 13 в редкий Bw47, обнаруживаемый только в измененных гаплотипах. В отличие от поздно проявляющегося дефици­та 21-гидроксилазы, сцепленного с HLA, врожденная гиперплазия надпочечников, связанная с дефицитом 21b-гидроксилазы, не сцеплена с HLA. В нескольких семейных исследованиях показано, что идиопатический гемохроматоз, аутосомно-рецессивное заболевание, сцеплено с HLA (гл. 310). Хотя патогенез рас­стройств всасывания железа в желудочно-кишечном тракте неизвестен, установ­лено, что гены, модулирующие этот процесс, находятся вблизи участка HLA-A.

Таблица 63-2. Сцепление генетических дефектов

Локализация

Обнаруживаемые

гаплотипы

Дефицит С2

Aw25, B18, BfS, DR2

Дефицит 21-ОН

A3, Bw47, BfF, DR7

Дефицит 21-ОН (позднее про­явление)

Идиопатический гемохроматоз

Болезнь Педжета

Спинно-мозжечковая атаксия

Болезнь Ходжкина

63-4. Схема относительной роли HLA-A, HLA-B, HLA-C и HLA-D анти­генов в инициации аллоиммунного ответа и в образовании эффекторных клеток и антител.

Два главных класса Т-лимфоцитов распознают антигены: Тк - предшественники цитотоксических «киллерных» клеток и Тх-хелперные клетки, способствующие развитию цитотоксического ответа. Тх также обеспечивают помощь В-лимфоцитам при развитии «зрелого» IgG-ответа. Важно отметить, что Тк обычно распознают антигены класса I, тогда как сигнал для Тх создает преимущественно HLA-D, который тесно связан с анти­генами класса II (из С. В. Carpenter.- Kidney International, 1978, 14, 283).

Гены иммунного ответа. При изучении in vitro ответа на синтети­ческие полипептидные антигены, гемоцианин, коллаген, столбнячный токсоид выявлено, что зона HLA-D аналогична региону Н-2. I у мыши. Презентация антигенных фрагментов на поверхности макрофагов или других клеток, несущих молекулы II класса, требует сопряженного распознавания комплекса «молекула II класса + антиген» Т-лимфоцитами, несущими соответствующий рецептор (ы) (гл. 62). Стержнем этой гипотезы «свое-)-Х» или «измененное свое» состоит в том, что Т-зависимый иммунный ответ, действие Т-хелперов/индукторов (Тх) осуществляется только в том случае, если будут синтезированы соответствующие детерминанты класса II. Гены последних и есть Ir-гены. Поскольку аллогенные детерминанты класса И распознаются как уже измененные, аллогенная MLP представляет собой модель иммунной системы, в которой путствие псевдоанти­гена необязательно (63-4). Эффекторные фазы иммунитета требуют распо­знавания псевдоантигена в комплексе с собственными структурами. Последние у человека, как и у мыши, представляют собой молекулы антигенов гистосовместимости I класса. Человеческие клеточные линии, инфицированные вирусом грип­па, лизируются иммунными цитотоксическими Т-лимфоцитами (Тк) только в том случае, если реагирующие клетки и клетки-мишени идентичны по локусам HLA-A и HLA-B. Аллогенная MLR служит моделью и для формирования цитотоксических Т-лимфоцитов, рестриктированных по классу I (63-4). Дета­ли рестрикции по различным молекулам классов I и II и эпитопам могут быть вычленены при использовании примированных клеток, подвергшихся размноже­нию и клонированию. Например, на уровне антигенпрезентирующих клеток дан­ный Тх-клон распознает антигенный фрагмент, комплексированный со специфи­ческим участком молекулы класса II, с помощью рецептора Ti. Рестриктирующими элементами.для некоторых микробных антигенов являются аллели DR и Dw.

Супрессия иммунного ответа (или, низкий уровень отвечаемости) к пыльце кедра, антигенам стрептококков и шистосом доминантна и сцеплена с HLA, что свиде­тельствует о существовании генов иммунной супрессии (Is). Показано также наличие специфических аллельных ассоциаций HLA с уровнем иммунного ответа, например, для антигена клещевины Ra5 - с DR2 и для коллагена - с DR4.

Ассоциации с болезнями. Если главный комплекс гистосовместимости вы­полняет важную биологическую функцию, то какова эта функция? Одна из гипо­тез состоит в том что он играет роль в иммунном надзоре за неопластическими клетками, появляющимися в течение жизни индивида. Велико значение этой системы при беременности, поскольку между матерью и плодом всегда существует тканевая несовместимость. Высокая степень полиморфизма может также способ­ствовать выживаемости видов в противостоянии огромному числу микробных агентов путствующих в окружающей среде. Толерантность к «своему» (аутотолерантность) может перекрестие распространяться на микробные антигены, следствием которой будет высокая восприимчивость, приводящая к возникнове­нию смертельных инфекций, в то время как полиморфизм по системе HLA спо­собствует тому что часть популяции распознает опасные агенты как чужеродные и включает адекватную ответную реакцию. Эти гипотезы связывают роль HLA с преимуществами, благодаря которым система выживает в условиях давления отбора Каждая из этих гипотез имеет определенные подтверждения.

Важным свидетельством роли комплекса HLA в иммунобиологии послужило обнаружение положительной ассоциации некоторых патологических процессов с антигенами HLA. Изучение этих ассоциаций было стимулировано открытием генов иммунного ответа, сцепленных с Н-2-комплексом, у мышеи. В табл. 63-3 суммированы наиболее значимые ассоциации HLA и болезней.

Установлено что частота встречаемости HLA-B27 повышается при некоторых ревматических заболеваниях, особенно при анкилозирующем спондилите, заболе­вании явно семейного характера. Антиген В27 имеется лишь у 7% лиц западно­европейского происхождения, но его обнаруживают у 80-90% больных анкило­зирующим спондилитом. В пересчете на относительный к это означает, что этот антиген ответствен за восприимчивость к развитию анкилозирующего спон­дилита, которая в 87 раз выше у его носителей, чем в общей популяции. Анало­гично показана высокая степень ассоциации с антигеном В27 острого переднего увеита, синдрома Рейтера и реактивных артритов по крайней мере при трех бактериальных инфекциях (иерсиниозе, сальмонеллезе и гонорее). Хотя обычная форма ювенильного ревматоидного артрита также ассоциирована с В27, тип забо­левания со слабо выраженным суставным синдромом и иритом связан с В27. При псориатическом артрите центрального типа чаще встречается В27, тогда как Bw38 ассоциирован как с центральным, так и с периферическим типами. Псориаз ассоциирован с Cw6. У больных с дегенеративным артритом или подаг­рой не обнаруживается каких-либо изменений в частоте встречаемости антигенов.

Большинство других ассоциаций с болезнями свойственно антигенам HLA-D-зоны Например, глютенчувствительная энтеропатия у детей и взрослых ассо­циирована с антигеном DR3 (относительный к 21) Действительный процент больных с данным антигеном варьирует от 63 до 96% в сравнении с 22-27% в контроле. Тот же антиген чаще обнаруживается у больных с активным хрони­ческим гепатитом и герпетиформным дерматитом, страдающих в то же время и глютенчувствительной энтеропатией. Ювенильный инсулинзависимыи сахарный диабет (тип I) ассоциирован с DR3 и DR4 и отрицательно ассоциирован с DR2 У 17-25% больных диабетом I типа обнаружен редкий аллель Bf (М). Диабет с началом во взрослом периоде жизни (типа II) не имеет ассоциации с HLA. Гипертиреоидизм в США ассоциирован с В8 и Dw3, в то время как в японской популяции - с Bw35. Более широкое обследование здоровых и больных предста­вителей различных рас поможет прояснить вопрос об универсальных HLA-маркерах. Например, антиген В27, редкий у здоровых лиц японской национальности, обычен у больных с анкилозирующим спондилитом. Точно так же DR4 - маркер тля диабетаI типа у представителей всех рас. Иногда HLA-маркер явно ассо­циирован только с частью симптомов внутри синдрома. Например, миастения зна­чительно сильнее ассоциирована с антигенами В8 и DR3 у больных без тимомы, а рассеянный склероз - с антигеном DR2 у лиц с быстро прогрессирующим течением болезни. Синдром Гудпасчера, связанный с аутоиммунным поражением клубочковых базальных мембран, идиопатический мембранозный гломерулонефрит, отражающий аутоиммунные процессы с образованием антител к антиге­нам клубочков, а также мембранозный нефрит, индуцированный золотом, в зна­чительной степени ассоциированы с HLA-DR.

Таблица 63-3. Заболевания, ассоциированные с HLA-антигенами

Заболевания

Относительный к

Ревматоидные

Анкилозирующий спондилит

Синдром Рейтера

Острый передний увеит

Реактивный артрит (Yersinia, Salmonella, Gonococcus)

Псориатический артрит (центральный)

Псориатический артрит (периферический)

Ювенильный ревматоидный артрит

Ювенильный артрит со слабо выраженным суставным синдромом

Ревматоидный артрит

Синдром Шегрена

Системная красная волчанка

Системная красная волчанка (в результате

приема апрессина)

Желудочно-кишечные

Глютенчувствительная энтеропатия

Хронический активный гепатит

Язвенный колит

Гематологические

Идиопатический гемохроматоз

Пернициозная анемия

Герпетиформный дерматит

Псориаз вульгарный

Псориаз вульгарный (в японской популяции)

Пузырчатка вульгарная (в европейской попу ляции)

Болезнь Бехчета

Эндокринные

Сахарный диабет I типа

Гипертиреоидизм

Гинертиреоидизм (в японской популяции)

Заболевания

Наиболее тесно ассоциированные антигены

Относительный к

Недостаточность надпочечников

Подострый тиреоидит (de Quervain)

Тиреоидит Хашимото

Н еврологические

Миастения

Рассеянный склероз

Маниакально-депрессивное расстройство

Шизофрения

Почечные

Идиопатический мембранозный гломеруло-

Болезнь Гудпасчера (анти-GMB)

Болезнь минимальных изменений (стероидный

Полицистозная болезнь почек

IgA-нефропатия

Нефропатия, вызванная золотом

Инфекционные

Туберкулоидная лепра (в азиатской попу­

Полнопаралич

Низкий ответ на вирус вакцины

Иммунодефицитные

Дефицит IgA (доноры крови)

Неравновесное сцепление. Хотя распределение аллелей HLA варьирует в расовых и этнических популяциях, наиболее характерную особенность популяционной генетики антигенов HLA представляет наличие неравновесного сцепле­ния для некоторых антигенов А и В, В и С, В, D и локусов комплемента. Неравно­весность сцепления означает, что антигены тесно сцепленных локусов оказывают­ся вместе чаще, чем следует из предположения о случайной ассоциации. Класси­ческим примером неравновесного сцепления является связь антигена локуса AHLA-A1 с антигеном локуса В HLA-B8 у лиц западноевропейского происхож­дения. Одновременное наличие А1 и В8, рассчитанное на основе частот их генов, должно наблюдаться с частотой 0,17. 0,11, т. е. примерно 0,02. Тогда как на­блюдаемая частота их сосуществования составляет 0,08, т. е. в 4 раза больше, чем ожидаемая, и разность между этими величинами составляет 0,06. Последняя величина обозначается дельта (D) и служит мерой неравновесности. Обнаружено неравновесное сцепление и других гаплотипов А- и В-локусов: A3 и В7, А2 и В 12, А29 и В 12, A11 и Bw35, Для некоторых детерминант D-зоны описано нерав­новесное сцепление с антигенами В-локуса (например, DR3 и В8); а также для антигенов В- и С-локусов. Серологически выявляемые антигены HLA служат маркерами для генов целого гаплотипа внутри семейства и маркерами специ­фических генов в популяции, но только при наличии неравновесного сцепления.

Значение неравновесного сцепления велико, поскольку такие генные ассоциа­ции могут порождать определенные функции. Давление отбора в процессе эволю­ции может быть основным фактором в сохранении некоторых генных комбинаций в генотипах. Так, например, существует теория, согласно которой А1 и В8, а также некоторые детерминанты D и других регионов обеспечивают селективное преимущество перед лицом эпидемий таких болезней, как чума или оспа. Однако возможно также, что потомки людей, выживших во время подобных эпидемий, сохраняют восприимчивость к иным болезням, поскольку их уникальный генный комплекс не обеспечивает адекватный ответ на другие факторы окружающей среды. Главная трудность этой гипотезы состоит в допущении, что отбор действу­ет на несколько генов одновременно и обеспечивает тем самым возникновение наблюдаемых значений Л, однако потребность в сложных взаимодействиях между продуктами разных локусов МНС-комплекса - лишь начальное звено для на­блюдаемых явлений и селекция может усилить множественное неравновесное сцепление. Сохранение некоторых распространенных гаплотипов, названных вы­ше, поддерживает этот взгляд.

С другой стороны, гипотеза отбора необязательно должна объяснять нерав­новесное сцепление. Когда популяция, лишенная некоторых антигенов, скрещи­вается с другой, для которой характерна высокая частота этих антигенов, нахо­дящихся в равновесии, Dможет проявиться через несколько поколений. Напри­мер, нарастание Dдля А1 и В8, обнаруженное в популяциях в направлении с востока на запад, от Индии к Западной Европе, может быть объяснено на основе миграции и ассимиляции населения. В малых группах неравновесность может быть обусловлена совместимостью, эффектом основателей и дрейфом генов. Наконец, некоторые случаи неравновесного сцепления являются результатом неслучайного кроссинговера во время мейоза, так как хромосомные сегменты могут быть в большей или меньшей степени ломкими. Будь то давление отбора или ограничения кроссинговера, неравновесность сцепления может исчезать в течение нескольких поколений. Большое число неслучайных ассоциаций имеется в HLA-генном комплексе и определение их причин может обеспечить проникнове­ние в механизмы, лежащие в основе чувствительности к болезням.

Сцепление и ассоциации. В табл. 63-2 перечислены болезни, служащие приме­ром сцепления с HLA, когда наследственные признаки маркируются в пределах се­мьи соответствующими гаплотипами. Например, дефицит С2, 21-гидроксилазы, идиопатический гемохроматоз наследуются по рецессивному типу с наличием часгичного дефицита у гетерозигот. Эти генетические нарушения также являются HLA-ассоциированными и обусловливаются избытком некоторых HLA-аллелей у боль­ных людей, не состоящих в родстве. Дефицит С2 обычно сцеплен с гаплотипами HLA-Aw 25, В 18, В55, D/DR2, а при идиопатическом гемохроматозе проявляется как сцепление, так и сильная ассоциация между HLA-A3 и В 14. Высокая степень неравновесного сцепления в этом случае вызвана мутациями у лица, послужившего его источником; кроме того, недостаточен был период времени, необходимый для возвращения пула генов в состояние равновесия. С этой точки зрения HLA-гены - простые маркеры сцепленных генов. С другой стороны, для проявления конкретного нарушения может требоваться взаимодействие со специфическими HLA-аллелями. Последняя гипотеза потребовала бы признания более высокого темпа мутаций с экспрессией дефектных генов, что происходит только при условии сцепления с не­которыми HLA-генами.

Болезнь Педжета и спинно-мозжечковая атаксия являются HLA-сцепленными аутосомно-доминантными наследственными заболеваниями; они обнаруживаются сразу у нескольких членов семьи. Болезнь Ходжкина служит проявлением HLA-сцепленного рецессивного наследственного дефекта. Никаких HLA-ассоциаций не было обнаружено при этих заболеваниях, что свидетельствует в пользу исходной множественности «основоположников» этих болезней с мутациями, связанными с различными аллелями HLA.

Сцепление с HLA без труда определяется, когда доминантность и рецессив­ность признаков легко разграничить, т. е. когда высока экспрессивность и процесс детерминируется дефектом единичных генов. При большинстве ассоциаций HLA-маркеры отражают факторы ка, вовлекаемые в реализацию и модуляцию иммун­ного ответа под влиянием множественных генов. Примером полигенного иммунного заболевания является атоническая аллергия, при которой ассоциация с HLA может быть очевидной только у лиц с низким генетически контролируемым (не в связи с HLA) уровнем продукции IgE. Другой пример такого рода - дефицит IgA (табл. 63-3), ассоциированный с HLA-DR3.

Клиническое значение системы HLA. Клиническое значение типирования HLA для диагностики ограничивается определением В27 при диагностике анкилозирую­щего спондилита; тем не менее и в этом случае наблюдается 10% ложноположи­тельных и ложноотрицательных результатов. Изучение HLA имеет ценность также в практике генетических консультаций для раннего определения болезней в семьях с идиопатическим гемохроматозом, врожденной гиперплазией надпочечников, связанной с дефицитом стероидгидроксилазы, в особенности если HLA-типирование осуществляется на клетках, полученных амниоцентезом. Высокая степень полиморфизма в системе HLA делает ее ценным инструментом для тестирования различных клеточных препаратов, в особенности в судебно-медицинской практике. Некоторые болезни, такие как сахарный диабет I типа и другие, для которых пока­заны HLA-ассоциации, требуют дополнительного изучения роли компонентов системы HLA в патогенезе этих заболеваний.

Загрузка...